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ABSTRACT: 
 
We propose an algorithm of blood vessel segmentation for MRA data in this paper. The generic region growing, as well as 
thresholding, is not appropriate to extract the whole part of the vessels on MRA data. This is because of the image property of the 
MRA, where the intensity of each pixel on the blood area depends on the amount of blood flow. Moreover, thin vessels are affected 
by the partial volume effect which reduces the intensity of vessel parts as the low pass filtering effect. So the range of the intensity of 
the blood vessel in MRA image is not restricted in a small interval but spread widely. To get correct segmentation results by region 
growing, the growing condition should be flexibly adapted according to the local characteristics in each ROI. We have designed a 
branch-based region growing for this purpose. Since its growing process is performed on one branch at a time, the growing 
conditions can be optimized according to its surrounding properties. It is also possible to connect a break point by extending the 
vessel, which improves segmentation results. By applying this method to 5 head MRA data sets, the availability of the method has 
been confirmed. In addition, to evaluate the segmentation result quantitatively, we developed a new evaluation method which utilizes 
MIP data. 
 
 

1. INTRODUCTION 

MRA (magnetic resonance angiography) and CTA (X-ray CT 
angiography) are widely used for the diagnosis of serious 
circulation diseases. These data are basically slice images, and it 
is difficult to understand vessel’s shape and their perspective 
locations on the slice data. This is the reason why MIP 
(maximum intensity projection) or 3-D image is used for 
diagnosis. These images are created by accumulating a lot of 
MRA/CTA slice images.   
 
Figure 1 shows an example of MIP and 3-D image. Both images 
are created from the same MRA data, but features and image 
quality of them are quite different. In general, 3-D image is 
superior to MIP in regard to both reality and perspective. 
  
In recent years, 3-D images are commonly used for CTA 
diagnosis and a lot of 3-D applications have been developed. 
On the contrary, MIP is mainly used for MRA diagnosis.  
 

 
 

Figure 1. Comparison of MIP (left) and 3-D image (right).  
 
The reasons why 3-D images are not used for MRA data are:  

 
1. Creating 3-D image requires blood vessel segmentation. 
2. Blood vessel segmentation on MRA data is quite difficult. 

 
If blood vessel segmentation is easily obtainable, 3-D image 
will be available on MRA diagnosis. MRA is the only imaging 
method of blood circulation without invasiveness, and so, it is 
strongly desired to realize the blood vessel segmentation for 
MRA data.  
 
 

2. METHODS 

2.1 Problems in the conventional methods 

As the range of the blood vessel intensity in MRA is widely 
spread, conventional binarizing method is unable to extract 
blood vessel region. The same is true for region growing, 
because the growing condition is also determined from the 
range of the intensity value. In addition, when the growing 
proceeds in the narrow and long vessels, it often stops the 
growing on the way because of noise or insufficient resolution 
of the image. 
 
To overcome this problem, it is obvious that the growing 
condition has to be changed adaptively according to the local 
vessel intensity. But a conventional region growing has several 
growing points simultaneously as shown in Figure 2, and it can 
hold one growing condition at a time. To solve the problem, we 
proposed a new kind of region growing which keeps spreading 
in restriction along only one vessel.  Hereinafter we call it 
“branch-based region growing”. 
 
 



 

 2 

 
 
Figure 2.  Comparison of region-growing method:  

left: ordinary method, right: branch based method. 
 
 
2.2 Branch based region-growing 

The branch-based region growing performs the region-growing 
branch by branch and if growing point reaches a branch 
bifurcation part, let it go into only one side of the branches. 
Figure 3 shows an example of the growing at a branch 
bifurcation. The left figure shows the ordinary region growing 
and the right figure shows branch-based region growing. The 
number written in a voxel means the order of extraction step. 
When growing point reaches an edge of the vessel, the growing 
stops, and then, it starts again from the latest branch bifurcation 
point as shown in Figure 4. 
 
 
 

 
 

Figure 3.  Processing of growing at the branch connection:  
left: ordinary method, right: branch based method. 

 
 
  

 
 

Figure 4. Order of the branch extraction and the contents of the 
stack. 

 
 
2.3 Detection of branch bifurcation 

In every growing cycle, the connectivity of the region added at 
the cycle is examined to find a branch bifurcation. This process 
is done as follows:  
 

1. Start the region growing from one of the voxels in the 
added region. In this growing, the targets (voxels to be 
extracted as the connected object of added region) are 
the voxels which have the same cycle number. 

2.  After the growing finishes, voxels in a part of the added 
region are labelled as new parent voxels of the next 
cycle of branch-based region growing.  

3. The voxels which are not connected are treated as the 
branch to be traced later. 

   
 
To reduce over-dividing of branches, the region growing for 
checking connectivity are modified by the following 
modifications:  
 

1. Use 26-neighbourhood to grow diagonal directions. 
(Original region growing uses 6-neighbourhood.)     

2. Extend the range of the target cycle number of grouping to 
2 from 1 as shown in Figure 5.  

 
The number of branches detected according to the growing 
conditions described above is shown in Table 1. 
 

 
Figure 5. Voxels incorporated as connected region. 

    
 

Growing condition 
thickness neighbours 

number of 
branches 

1 6 96390 
1 26 204 
2 6 159 
2 26 115 

 
Table 1.  Number of detected branches under several growing 

conditions.  
 
 
2.4 Dynamical change of the growing conditions 

Next step for the branch based region-growing is how to change 
the growing condition.  
 
One of methods commonly used is to modify growing 
conditions according to the grey level intensity value of the area 
extracted recently. A typical example for this type of the 
growing condition is to use the following equation: 
 
 ),,( zyxgh ≤− σµ      (1) 
 
where  �  = average intensity of the neighbouring region 

during a certain duration of the resent growing steps. 
�= intensity deviation of the same neighbouring region 

as the above defined. 
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 g(x,y,z) = the intensity value of the target voxel 
 x,y,z = the coordinates of the target voxel  
               h = a parameter which corresponds to control the 

easiness of growing. 
  
The results obtained by the vessel segmentation using the above 
condition were not satisfactory ones in which many parts of 
shortages were found. The main reason of this seems to be that 
the intensity value changes widely in the vicinity of the branch 
bifurcation.   
 
We carried out a branch-based region growing as a trial to 
check the actual intensity transition within blood vessels. The 
voxels with more than 70 intensity level (max=255) are set as 
the target voxels. Figure 6 shows the linkages between branches 
and branch attributes (length, thickness and intensity value). 
Each rectangle corresponds to each branch unit, i.e., region 
between bifurcations. The brightness inside rectangles indicates 
the intensity value of the corresponding branch unit, and its 
length and width indicate the length and thickness of the branch 
unit respectively.  
 
This figure shows that the average values of the intensity and 
the thickness of the vessel widely change in the vicinity of the 
branch. The relation between the intensity and the thickness of 
each branch is shown in Figure 7. The horizontal axis indicates 
vessel thickness obtained by counting the number of voxels in 
the cross section area and the vertical axis indicates the average 
intensity of each branch unit.  
 
We can see a close relation between the thickness and the 
intensity on this figure. Especially, in the range of section area 
(thickness) less than 30, this relation seems almost linear. On 
the other hand, there exist several dots which don’t fit to the 
relation. They seem to correspond to the leak region. By getting 
rid of these dots on branch units, we can get more proper results. 
The following equation is proposed for this purpose:  
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where  �i = average intensity of i-th extracted branch  
 di = average thickness of i-th extracted branch 
 cmin = lower limits of the intensity of ROI 
 k = exclusive rate (if k=0, all branches are accepted) 
 di = upper limits of the thickness range that the linear 

relation between thickness and intensity is formed. 
 
 

 

 
Figure 6. Attributes and linkages of extracted branches. 

 
   

 
 

Figure 7. Relation between the thickness and the intensity of 
each branch unit. 

 
 
2.5 Connection search over a gap 

In the case of a narrow and long region like a blood vessel, a 
break of growing often occurs because of missing voxels on the 
way. This problem can be solved by extending the searching 
area for vessels. But it increases over-extraction errors and 
needs a lot of processing time.  
 
In fact, the break occurs at the edge of the vessel, and it is 
enough to search for vessels at that point only. In the branch-
based region growing, the growing stops at the each edge of the 
vessel, and then starts seeking vessels over a gap. If a vessel to 
be connected is found, the extracting process starts again, 
otherwise, the process enters into the next branch extraction. 
 
Figure 8 shows results of segmentation. The start point of the 
region growing was set at a point inside the carotid artery. In 
the case of this data, as the intensity of a posterior 
communicating artery is partially low, the following vertebral 
artery and some subsequent vessels are not extracted by the 
conventional method shown in the left image. By using our 
method presented above, those vessels are extracted and 
moreover narrow vessels of parietal region are also detected as 
shown in the right image.   
 

 
 
Figure 8. Effectiveness of the connection search: Left: not 
applied, Right: applied. 
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2.6 Evaluation of the Results 

It is a difficult problem how to evaluate the results of 
segmentation. We can evaluate only subjectively the results by 
observing 3-D images of the extracted region. Moreover, as the 
shapes and location of blood vessels are not stable like brain or 
other organs, it is quite difficult to judge whether the results of 
detection are success or failure by observing 3-D images. 
Consequently, the objective evaluation method, in which the 
result is measured and shown by numeric value, is necessary for 
blood vessel segmentation.  
 
Properly segmented 3-D reference data for the ordinal organs 
are obtainable by the manual segmentation on each slice data. In 
this case the numeric evaluation is possible by measuring the 
difference between the result of the segmentation and 3-D 
reference data. But in the case of blood vessels, manual 
segmentation is impossible because it is quite difficult to 
recognize blood vessels on MRA slice images correctly.  
 
Here we propose a new evaluation method which compares two 
projection images. One is a group of 2-D vessel region images, 
which are manually extracted from MIP and used as reference 
data. Hereinafter we call it “segmented MIP” for short. It is easy 
to distinguish vessel region on MIP and 2-D manual 
segmentation can be performed without fail. The result of 3-D 
segmentation is also projected to the same directional plane as 
the MIP data. We call it projected result and it is used for the 
projection image for evaluation with segmented MIP.     
 
 

 
 

Figure 9. Evaluation method of segmentation. 
 
 
 
 

The evaluation value is obtained by counting the number of the 
pixels on the image given by subtraction operation of two 
projection images mentioned above. More precisely, as shown 
in Figure 9, the shortage regions are acquired by subtracting 
projected result from segmented MIP. The excess regions are 
acquired by subtracting segmented MIP from projected result. 
Thus we can get false negative and false positive error index 
value, respectively.    

 
In this evaluation process it may often happen that the 
thicknesses of vessels are different on two images and it causes 
erroneous edges of the vessels appear on the differential images. 
So, the vessels on the image going subtraction process are 
thinned previous to the subtraction so that the erroneous edges 
do not appear.    
 
An example of differential images is shown in Figure 10.  The 
black lines in the left image indicate the shortage region, and 

those in the right indicate the excess region. Each image is 
obtained along x, y and z axis, and the sum of pixels on these 
three images is used as index values of the extraction error.  
 
 

 

 
 
Figure 10. Differential image for evaluation.  

left: pixels of shortage    right: pixels of excess. 
 
 

3. DISCUSSION 

3.1 MRA data 

We evaluate our segmentation method using 5 head MRA data 
obtained from 3 volunteers.  Data-I is acquired from 1.5T MRI 
and the others are acquired from 3T MRI. Both MRI machines 
are manufactured by Siemens.  Specifications of each data set 
are shown in Table 2. The data depth is 16 bits / voxel and 9-10 
bits are effectively used. To reduce variation of intensity range 
between the data sets, the intensity values are normalized to 
8bits / voxel.   
 
 

Data Person Resolution Slices 
I A 512 x 512 168 
II B 384 x 512 72 
III C 384 x 512 72 
IV B 288 x 384 128 
V C 288 x 384 128 

 
Table 2.  Specifications of MRA data sets  

 
 
3.2 Experiment 

We performed vessel region segmentation for each data set 
using the following methods. 
 
A) Normal (conventional) region growing  
B) Branch-based region growing:  

with searching process at the edge of the branch 
C) Branch-based region growing 

with searching process at the edge of the branch and 
removing non-vessel region  

 
On each data, we set the starting point at the bottom of the left 
carotid artery. Growing condition cmin in eq.(2) is changed every 
5 steps in the feasible range. In method-C, parameters are 
experimentally determined as k=0.5 and dc =20. In method-A 
and method–B, parameters k, dc are unused. (k = dc=0) 
 
The extraction error of data-I is shown in Figure 11. Each bar 
on the same growing condition corresponds to the method-A, -
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B, -C respectively. The lower part of each bar (painted light 
grey) reveals the shortage error and the upper part (dark grey) 
reveals the excess error. As the tendency of every data was 
almost the same, hereinafter, we talk about the evaluation of 
data-I as the representative example.     
 
 

 
Figure 11. Extraction error of data I. 

 
 
3.3 Shortage error (false negative) 

The shortage error in all methods increases as cmin becomes 
large.  The following differences are appeared among the three 
methods compared under the same cmin,  
The shortage error in method-B is less than that of method-A 
for all cmin. The reason is that the vessels beyond the gap are 
connected and added to the extracted region in the method-B. 
Especially, improvement at cmin=90 is conspicuous, this is 
because of the addition of posterior communicating artery 
(already shown in Figure 8). 
 
In method-C, as the region to be extracted is restricted based on 
the relation between the thickness and the intensity, the shortage 
error is a little bit larger than that of method-B. This tendency is 
more remarkable as cmin becomes smaller. 
   
3.4 Excess error (false positive)   

Excess error decreases as cmin becomes large in all methods. The 
tendency of the excess error in each method is as follows. 
 
The excess error of method-B is larger than that of method-A 
under all conditions. This reason is that some connections to 
non-vessel region are added accidentally. On the other hand, the 
excess error of method-C is equal to or less than that of method-
A.  This reason is that most of the accidental connections were 
removed by the restriction based on the relation between 
thickness and intensity. 
  
3.5 Total error of extraction  

Total error is obtained by summing up the shortage error (false 
negative) and the excess error (false positive). As shown in 
Figure 10, both errors are countable as the number of pixels in 
line-shaped regions and the sum of the both error is treated as 
the error index which is shown as the height of bars in Figure 
11.   
 

The evaluation of each method is performed by comparing their 
total error on the same growing condition cmin. In practical use, 
as the cmin which produces minimum error is often used for 
segmentation, we made a comparative evaluation of their 
superiority under the optimized cmin. 
  
As is clear from Figure 11, the optimized cmin of data-I is 70. As 
to other data (II, III, IV, V), 55,55,70,75 are obtained as the 
optimized cmin respectively. Total error of each method under its 
optimized cmin is shown in Figure 12. To help for comparison 
among three methods, the vertical axis in this chart represents 
the ratio of the total error to that of method-A.   
 
 

 
Figure 12. Extraction error ratio under optimized Cmin 

 
 
As a whole, the shortage error of method-B is smaller than that 
of method-A, but the excess error in method-B is always larger 
than that of method-A. Consequently, the total error of method-
B is not always smaller than that of method-A. In these 5 data, 
the results are as follows: almost the same (within 1%): 3, 
improved: 1, deteriorate: 1. That is, the advantage of method-B 
against method-A is not recognized. 
 
Method-C decreases the shortage error and increases the excess 
error as well as method-B. But the excess error of method-C is 
quite smaller than that of method-B. And so, the total error of 
method-C is always smaller than method-B and also smaller 
than method-A in most cases.  
 
The deteriorate ratios of total error of method-C to that of 
method-A are 6.5, 7.4, 1.9, 1.7, 7.2[%]. These results lead us to 
the conclusion that our proposed method-C has a good effect on 
blood vessel segmentation for MRA data.  Several 3-D images 
of the extracted vessel region obtained by method-C are shown 
in Figure 13 and 14. 
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Figure 13. 3-D images of the extracted vessel (data-I) 
 

 
 

Figure 14. 3-D images of the extracted vessel (data-II) 
 

 
4. CONCLUSIONS 

We have developed a branch-based region growing algorithm 
which is designed for blood vessel segmentation for MRA data. 
We examined our segmentation algorithm and its appropriate 
growing conditions for this method. In addition, to perform an 
objective evaluation on the segmentation result, we developed 
the evaluation method based on projection images. We applied 
5 MRA data sets to our segmentation method, and we 
confirmed the validity of our proposed method. 
 
The biggest problem of our method is its processing time. It 
takes about 5 minutes to get one segmentation result, which is 
ten times longer than conventional region-growing method. 
Most of the time is consumed for branch bifurcation detection. 
It is necessary to optimize the processing for our method to be 
practical.  
 
The growing condition we have shown is only one instance 
among many. Further discussion on the growing condition is 
still required to utilize this method effectively and to improve 
segmentation reliability.   
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