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ABSTRACT: Soil temperature is a necessary component for estimating below-ground processes for 
continental and global carbon budgets; however, there are an insufficient number of climatic stations 
monitoring soil temperature. We used a n  11-day running average of daily mean air temperature to 
estimate daily mean soil temperature at a depth of 10 cm using linear regression. This model was tested 
using data from 6 climate reg~ons across the United States. Frequency analyses for 17 of 19 data sets 
showed that the number of days which were w~thin a k3.5OC range centered on the measured sol1 tem- 
perature va r~ed  from 77 to 96%. The values of R2 between observed and final predicted soil tempera- 
tures ranged from 0.85 to 0.96 with standard errors from 1.5 to 2.9"C for all 19 simulations. Changes of 
soil temperature under snow cover were smaller than those without snow cover. Soil temperature 
under vegetation cover was also simulated assuming the rate of soil warming under vegetation cover 
would be reduced with increasing leaf area index according to the Beer-Lambert Law. Annual soil res- 
piration can be estimated from the predicted soil temperature with reasonable accuracy. Daily soil tem- 
perature may be predicted from daily air temperature once regional equations have been established, 
because weather stations in the United States can be generalized into a few regions and sites wthin 
each region may use the same equation. 

INTRODUCTION 

Soil temperature is a critical variable controlling 
below-ground processes for global and continental 
carbon budgets. Whereas many stations across the 
United States have long-term records of daily air 
temperature and precipitation, few climate stations 
monitor soil temperature. Toy et al. (1978) used 
monthly mean air temperature to predict monthly soil 
temperature at continental scales. However, the 
influence of soil temperature on soil decomposition 
and respiration is exponential rather than linear 
(Edwards 1975, Raich & Schlesinger 1992), so simula- 
tions of belowground ecosystem processes for conti- 
nental scales based on monthly time steps may be 
biased. Thus, a daily model of soil temperature is 
necessary. 

Many analyses of soil temperature are based on the 
theories of heat flow and energy balance (Campbell 

1977, Parton 1984, Stathers et al. 1985, Nobel & Geller 
1987, Thunholm 1990). Theory-based models may pro- 
vide accurate estimates of soil temperature at small 
scales, but may not be practical for estimation of soil 
temperature at  continental and global scales. The 
many parameters required may depend on topo- 
graphy, soil texture, and soil water content - all of 
which may vary over short distances. Hasfurther & 
Burman (1974) used daily air temperature as a driving 
variable to predict daily soil temperature through a 
Fourier series analysis; but the model could be run only 
after convolution coefficients and correction factors 
were defined for a particular site. Models requiring 
coefficients that are defined for each particular site are 
also not practical for simulations over many different 
sites. 

The objectives of this study are: (1) to develop a 
general methodology for estimation of daily soil tem- 
perature at continental scales using daily air tempera- 
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ture and precipitation data for bare ground; (2) to 
demonstrate how the predictions of soil temperature 
would effect annual soil respiration assuming different 
Q," values; and (3) to simulate soil temperature under 
vegetation based on leaf area index (LAI). LA1 can be 
remotely sensed from satellites (Tucker 1979, Asrar et  
al. 1984, Running et al. 1986, Peterson et al. 1987, 
Nemani & Running 1989). Thus, one may use remote 
sensing data with climate data to predict soil tempera- 
tures at continental scales. 

BACKGROUND 

Air temperature correlates well with soil tempera- 
ture because both are determined by the energy 
balance at  the ground surface. The daily amplitude 
of soil tempzrature at the surface i s  greater than the 
daily amplitude of air temperature for clear days 
and is less for cloudy days. A depth of 10 cm was 
selected for soil temperatures because most soil 
ecosystem processes occur within the top layers of 
soil (Buringh 1984, Pritchett & Fisher 1987). This 
model was developed first to estimate soil tempera- 
tures for bare ground because the soil temperature 
data obtained from weather stations are usually 
measured in places with little or no vegetation. 
Furthermore, vegetation can influence greatly the 
surface energy balance ( ~ e r m a k  et al. 1992), so it is 
necessary to adjust predicted bare-soil temperatures 
for different LAIs. 

A time lag exists between air and soil temperatures 
due to the relatively large heat capacity of the 
ground. Nevertheless, typical lags between air tem- 
perature and soil temperature at a depth of 10 cm are 
approximately 4 h for minimum temperatures and 6 h 
for maximum temperatures (Lee 1978). As these time 
lags are less than 24 h ,  the same day's data may be 
used for model predictions of mean soil temperature. 
Soil temperature for a given day is usually considered 
to be the result of air temperatures in the past several 
days. 

If snow is present, the relationship between air and 
soil temperatures will be different from that without 
snow due to insulation of the snow. Although the depth 
of snow cover on the ground may influence the rate of 
change in soil temperature, this influence is not con- 
sidered in the model. 

Between temperatures of 0 and 5"C, root growth of 
most plants and germination of most seeds are inhib- 
ited (Soil Conservation Serv~ce 1975). Below-ground 
biochemical processes usually become inactive when 
soil temperature I S  below freezing. Therefore, when- 
ever the predicted daily soil temperature is below O°C, 
it is assigned as 0 "C. 

MODEL DESCRIPTION 

Prediction of soil temperature under bare ground 

The input data required are: (1) daily maximum air 
temperature ("C); (2) daily minimum air temperature 
("C); and (3) daily precipitation (mm). Daily mean soil 
and air temperatures were calculated as the simple 
average of the daily maximum and minimum values. 
Daily maximum and minimum soil temperature data are 
available from the National Oceanic and Atmospheric 
Administration, Asheville, NC, USA. Daily maximum 
and minimum air temperature and precipitation data 
were obtained from EarthInfo, Inc. (Boulder, CO, USA; 
original source was the National Climatic Data Center). 
Selection of air temperature and precipitation data as 
driving variables is based on: (1) daily data are readily 
available; and (2) soil temperature may be more con- 
trolled by climate at large scales. 

Eleven-day running averages of daily air tempera- 
ture were processed on a yearly basis. An 1 l-day run- 
ning average was selected after comparing prelimi- 
nary results using 5-day to 31-day running averages. 
Running averages were determined in order to reduce 
the effects of extremes in air temperature. For the 
l l-day running averages, averaged air temperature on 
Julian Day 11 was the mean value of air temperatures 
from Julian Day 1 to Julian Day 11. Values of air 
temperature on the first 10 d were calculated using 
l-day to 10-day running averages respectively. The 
l l-day running averages of air temperature were used 
as the independent variable and observed daily soil 
temperatures at 10 cm depth (without smoothing) as 
the dependent variable to establish linear regression 
equations for the 7 model development sites (Fig. 1) .  

regional equations 

Estlrnate daily Tr fro; reg~onal equatms 1 
I 

$. 
J 

Determine presence of SP and modify estimated Ts 
I 

Fig. 1 Flow chart for predicting daily soil temperature from 
daily alr temperature and precipitation data Ta: daily mean 
air temperature In 'C; Ts: dally mean so11 temperature in "C; 
SP: amount of snowpack on the ground (water equivalent 

In mm),  Ppt: precipitation in mm 
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The model calculates l -dimensional snowpack (water 
equivalent in mm) on the ground according to the air 
temperature and precipitation data. The snowpack 
increases whenever the daily mean air temperature is 
below or equal to 0°C and precipitation occurs on the 
same day; otherwise, there is no change in snowpack. 
The snowpack decreases or disappears whenever the 
mean air temperature 1s above 0°C.  

An initial value of snowpack (l-dimensional water 
equivalent in mm) and a snow-melt coefficient (mm 
d- '  "C-') a re  required a s  inputs. The depth of snow- 
pack determines the day of the year when snow dis- 
appears. As the simulation~ begin on the first day of 
the year, the initial value for the depth of snowpack is 
based on data for the previous year, if available; other- 
wise, an estimated value is selected based on site 
information. The initial values for depth of snowpack 
in the model simulations varies from 0 to 30 mm. Snow- 
melt coefficients also vary from site to site and year to 
year beca.use the 'quality' of snow can influence the 
melting rate. Therefore, estimated values for the snow 
melt coefficient are  based on general site information, 
and varies from 0.3 to 1.2 mm d-' "C-'. 

Estimated daily soil temperatures from the regional 
equations were modified according to determination of 
snowpack on the ground, because the rate of change In 
soil temperature under snow cover will be less due  to 
snow's low thermal diffusivity and high albedo. When 
air temperature is above freezing, the snowpack will 
melt and the ~ilelt water will increase the heat capacity 
of the soil. Therefore, whenever a snowpack is present, 
soil temperature on the current day will not change 
much compared with the soil temperature on the pre- 
vious day and Eq. (1) is used: 

where F(J)  is the modified soil temperature on Day J 
starting on Julian Day 2,  and the value of F(l) is as- 
sumed to be E(1);  A(J) and A(J - l )  are the observed 
daily air temperature on the current day and previous 
day respectively; E(J- l )  is the soil temperature on the 
previous day solely estimated from the regional re- 
gression equation; and M, is a rate scaler of 0.1. When 
snowpack is not present, Eq. (2) is used: 

where E(J) is the soil temperature estimated from the 
regression equation on the current day; and M2 is a 
rate scaler of 0.25. E( J )  was used for Eq. (2) because 
the predicted temperatures have smaller errors than 
those using E(J- l ) .  

The rate scalers M, and M?, were selected initially 
from regressions of the running average of air tem- 
perature and the observed soil temperature for each 
site. Except for Alaska, the scalers were similar in 

magnitude, so in order to make the model simpler and 
more useful at large scales, constant values for M, and  
M2 were used for all 7 model development sites. The 
annual means of the predicted soil temperatures using 
constant scalers were less than 0.6"C different from 
those predicted from the regressions (except Alaska) 

Prediction of soil temperature under vegetation 

Experimental studies have shown that vegetation 
canopies can lower soil temperature during growing 
season significantly and  reduce mean annual soil tem- 
perature (Li 1926, Jemison 1934, Qashu & Zinke 1964, 
Armson 1977, Munn et  al. 1 9 7 8 , ~ e r m a k  et  al. 1992). 
Qashu & Zinke (1964) concluded that lower soil 
temperatures under oak or pine canopies may result 
from a lower rate of soil warming during spring time, 
whereas the rate of soil cooling is the same with or 
without canopy cover. 

We hypothesize that a lower rate of soil warming 
under vegetation canopies results when less radiation 
is absorbed by the soil. According to the Beer-Lambert 
law, the fraction of radiation transmitted through a 
canopy is equal to e '-KLA'l ,  where K is the extinction 
coefficient and LA1 is the l-sided leaf area index. 
Typical values of K are  about 0.5 for different forest 
species (Jarvis & Leverenz 1984). 

After estimation of daily soil temperature for bare 
ground, Eq. (3) is used for simulating soil temperatures 
under vegetation cover when A(J)  > T(J-l) :  

where T(J) and T(J-l)  a re  the mean soil temperatures 
under vegetation on the current day and  previous day 
respectively; and A(J)  is the mean air temperature on 
the current day. When A(J )  5 T(J - l ) ,  Eq. (4 )  is used: 

For evergreen conifers, the correction for LA1 begins 
on Julian Day 2, and  the soil temperature for the first 
day is determined as  above. 

METHODS 

Selection of sites 

Climatic regions can be defined using different 
principles for different scales from a single country 
to the whole globe. We used the Koppen climate 
classification (Strahler & Strahler 1989) modified 
with information from the National Climatic Data 
Center (NCDC) for the conterminous U.S. (Karl et  
al. 1988). 
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A total of 19 data sets of daily soil temperature at a 
10 cm depth were selected for this study. Seven sites 
representing 6 different Koppen climatic regions in the 
USA were used to develop the model and establish the 
regional equations. The model was then tested both 
temporally using 7 data sets and spatially using 5 data 
sets. The years chosen for each site were selected on 
the basis of having the fewest number of days with 
missing data. Daily soil temperature for forested sites 
with known LA1 could not be obtained. 

Sites used for model development 

The 7 selected sites are described in Table 1. They 
are: (1) Milton, Florida (FL84), representing a humid, 
warm-summer climate (Cfa); (2) Corvallis (Oregon 
State Tu'niversity), Oregon (OR84), a maritime, cool- 
summer site with little or no snow cover during the 
year (Cb); (3) Chatham Experimental Farm, Michigan 
(MI87), a humid-continental, cool-summer site with 
a long period of snow cover during the year (Dfb); 
(4) Jackson Experimental Station, Tennessee (TN84), a 
humid, warm-summer-site (Cfa); (5) Western Montana 
Branch Station, Montana (MT80), a cold and dry site 
(H); (6) Old Edgerton, Alaska (AK84), a subarctic site 
(Dfc); and (7) Safford, Arizona (AZ85), a subtropical 
desert site (BWh). Latitude ranges from 30.8 to 61.8' N 

among the 7 sites. Elevation ranges from 66 to 1096 m 
above sea level. Soils vary in texture from cobbly loam 
to clay loam; soil cover is either grass, sod or none. 
There is little variation in slope. Six of the 7 regional 
equations were generated using all 365 d of data for 
the given year; the regional equation for the site in 
Alaska, 1984, was generated using only the days when 
observed mean soil temperatures were 2 0°C. 

Data sets used for model testing 

Twelve more data sets were used to test the model. 
Seven were from the same development sites but 
collected during different years to test the stability 
of the model over time (Table 2). Five different 
sites whose climatic types are similar to 5 of the 
7 model development sites were used to test whether 
the model can be extended to large spatial scales 
(Table 3). The 5 sites are: (1) Gainesville, Florida 
(FL84p, paired with FL84); (2) New Mexico State Uni- 
versity at Las Cruces, New Mexico (NM85p, paired 
with AZ85); (3) Geneva, New York (NY87p, paired 
with MI87); (4) Creston, Montana (MT80p, paired 
with MT80); (5) Raleigh-Durham, North Carolina 
(NC83p, paired with TN84). Data sets to pair with the 
model development sites In Oregon and Alaska were 
unavailable. 

Table 1 Informalion for the 7 sites in different climatic regions across the United States. The data sets from these 7 sites were 
used for model development and establishing regional equations 

Site: Cfa H Cb Dfb Cfa BWh Dfc 
Location (U.S. state). FL MT OR M1 TN A Z AK 

Year 1984 1980 1984 1987 1984 1985 1984 
Abbrev~ation F:L84 MT80 OR84 M187 TN84. AZ85 AK84 
Latitude (" N) 30.8 46.3 44.6 46.4 35.6 32.8 61.8 
Longitude ("W) 87 114 123 87 89 110 145 
Elevat~on (m) 66 1096 69 267 122 900 402 
Soil type Sandy Cobbly Clay Sandy Lintonia Clay Clay & sandy 

loam loam loam loam loam loam 
Cover Rare Grass Unknown Sod Grass Bare Sod 
Slope ( X )  2 2 2 3 0 0 0 
Aspect ( O )  90 180 250 180 - - 

Jan Ta" 8.0 -6.5 5.5 -6.6 -0.3 5.9 -15 7 
Jul Ta 26.3 18.5 18.9 20.2 25.3 28.7 12.8 
Ann. Ta 19.2 7.5 10.9 6.8 15.1 17.3 -1.5 
Ann. T S ~  22.5 12.1 12.8 8.2 15.7 19.5 0.8 
Ann. A T c  3.3 4.6 1.9 1.4 0.6 2.2 2.1 
Ann. pptd 1539 448 1234 828 1372 300 278 
Missing datar 

Air 0 13 0 0 0 2 0 
Soil 0 3 0 0 0 4 0 

"Td = mean air temperature ("C) for January, July, and for year d ~ n n u a l  precipitation (mm) 
"Ts = mean soil temperature ("C) for January, July, and for year eNo. of days during the year when data 
'Difference of annual mean soil temperature and mean air temperature are missing 

- 
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FL MT OR M1 T N  AZ AK 
- 

Year 1987 1983 1988 1989 1987 1989 1989 
Abbrev. FL87 MT83 OR84 M189 TN87 AZ89 AK89 
Jan Ta 8.5 1.0 4.0 -4.5 3.0 6.5 -23.0 
J u l T a  27.0 17.0 19.5 20.5 26.5 28.5 16.0 
Ann. Ta 18.5 7.5 11.5 5.5 16.0 18.0 -1.5 
Ann, ppt 1844 311 953 620 1295 123 313 

M~ssing data 
Air 0 0 0 0 0 0 2 
Soil 0 0 0 0 0 0 0 

Table 2. Information for a second year of data for the 7 model the year, then predicted relative annual soil respiration 
development sites These 7 data sets collected during dif- (5, unitless) is calculated from the temperature func- 
ferent years were used for d temporal test of the model, tion alone: 

See Table 1 for explanation of symbols 

I:, = X exp [ X .  F(J)] (5) 

where F(J) is the predicted soil temperature on Julian 
Day J (starting from Julian Day 1 to 365) and X is 0.07, 
0.09, 0.11 for Qlols of 2.0, 2.4, or 3.0, respectively. 
Measured relative annual soil respiration (K,,,  unitless) 
is calculated by: 

where G(J)  is daily measured soil temperature for each 
of the 7 model developn~ent sites. Errors in annual soil 
respiration were then determined by: 

Estimations of annual soil respiration 
Statistical analyses 

It has long been recognized that soil respiration rate 
increases exponentially with temperature; respiration 
increases about 2.4 times for a 10°C increase in tem- 
perature (Qlo = 2.4) (Raich & Schlesinger 1992). We 
chose Qlo values of 2.0, 2 .4 ,  and 3.0 to examine how 
the range in measured Qlols affected the relative errors 
of annual soil respiration calculated from the predicted 
and measured soil temperatures. 

Daily soil respiration is calculated as a specific rate 
times a function of daily soil temperature; daily soil 
respiration is then summed over a year to obtain the 
annual value. If the specific rate does not change over 

Table 3. Informat~on for different sites whlch were paired 
with 5 of 7 model-development sites. The data sets from 
these 5 different sites were used for a spatial test of the model. 

See Table 1 for explanation of symbols 
- 

FL NM NC NY MT 
- 

Year 1984 1985 1983 1987 1980 
Abbrev. FL84p NM85p NC83p NY87p MT80p 
Paired site FL AZ TN M1 MT 
Lat. (ON) 29.6 32.3 35.9 42.9 48.2 
Long. (O\Y] 82 107 7 9 7 7 114 
Elev. (m) 29 1183 115 219 896 
Soil type Sandy Belen Silty Silt Silt 

loam clay loam loam loam 
Cover Bare Bare Sod Sod Bare 
Slope (%) 6 0 5 0-3 2 
Aspect (") 315 - 225 90 180 
Jan Ta 12.0 4.0 3.5 3 . 5  -8.5 
Jul Ta 26.5 26.5 26.5 22.0 17.5 
Ann. Ta 21 5 16.5 15.0 9 0 6.5 
Ann. ppt 997 319 1200 862 627 
Missing data 

Air 0 0 0 0 0 
Soil 0 0 0 0 0 

An aggregated equation including all 7 model- 
development sites was also produced and F tests 
[defined as MSEl/MSE2 where MSE is the mean 
square error or residual mean square, and the larger 
MSE is taken as  numerator (Neter et  al. 1990)l were 
used to determine whether there were significant 
differences between each of the 7 regional equations 
and the aggregated equation. A dummy variable was 
created for the aggregated equatlon and a t-test was 
used to determine whether there were significant 
differences among the 7 model-development sltes. 
Frequency analysis was used to determine the accu- 
racy of model prediction. 

RESULTS AND DISCUSSION 

There were strong relationships between the aver- 
aged daily air temperatures and observed daily soil 
temperatures at  the 10 cm depth for all 7 model devel- 
opment sites; R2 values ranged from 0.86 to 0.97 
(Fig. 2). With the exception of Oregon (due to its 
maritime climate), the absolute value of the regression 
intercepts increased with the increase in latitude, 
perhaps because the sites located in higher latitude 
usually have greater variability of air and  soil temper- 
atures. At a similar latitude, a moist site (MI) has a 
smaller variation than that of a dry site (MT). 

These 7 linear regressions were considered as re- 
gional equations. The relationship between observed 
and estimated soil temperatures will be exact if the 
intercept (bo) = 0 and the slope (b , )  = 1; bo and b, for 
6 of the 7 development sites were not significantly 
different from 0 and  1, respectively (data not shown). 
The poor correlation for the Alaska site resulted from: 
(1) the data used for establishing the equation a re  from 
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days with observed soil temperatures 20°C only; and 
(2) the assignment of predicted soil temperatures 
below freezing as 0°C. Predicted soil temperatures for 
6 of the 7 development sites (FL, OR, TN. AZ, IMT, MI) 
show close correspondence with observed soil temper- 
atures (Fig. 3). 

Predicted soil temperatures from the regional equa- 
tions and observed soil temperatures were strongly 
correlated In all 19 simulations (Table 4). While the 
number of days with estimated errors within f 2.0°C 
ranged from 46 to 82,  averaging 60 % (data not shown); 
the number of days with errors within +3.5 "C ranged 
from 64 to 96, averaging 84 % of the year. Values of 
R2 ranged from 0.85 to 0.96 and the standard error of 
estimates ranged from 1.5 to 2.9"C. The model re- 
sponds to changes of both temporal and spatial 
dimensions with reasonable accuracy (Table 4 ) .  

- 5 L - .  . , , , , . r  
0 5 10 15 20 25 30 

Averaged Air Temperature (C) 

-5 I 
0 5 10 15 20 ' '25" ' 30 ' 

Averaged Acr Temperature (C) 

Fig. 2. Relationships between air temperatures ("C) after 
1.1-day runnlng averages and sol1 temperatures ('C) at 10 cm 
depth for the 7 model-development sites representing differ- 
ent climatic regions in the U.S. The equation for the site in 
Alaska was generaled using only the days when observed 
mean soil temperatures are 2 0 ° C  ( N  = 169); the others were 

from 365-day data for the given years 

Florida. 1984 

0 4 ~ n ~ # ~ I ~ ~ . ~ . - l  
1 121 24 1 361 

Day of Year 

A 
Fig. 3.  Comparisons of predicted daily soil temperatures with ) 
observed values at 10 cm depth for the 7 model development 
sites: (a) FL84, (b) OR84, (c) AK84, (d) TN84, (e) AZ85. 

( f )  MT80, and (g) M187 

Although significant errors existed between the pre- 
dicted and observed soil temperatures for the Alaska 
site (Fig. 3c, Table 4), the result was better than that 
achieved by not assigning 0°C to the days when the 
predicted soil temperature was <O°C, because the 
regression equation was generated from the days with 
observed soil temperatures tO°C. Using all 365 d of 
data for the regression equation improved winter-time 
predictions of soil temperature, but underestimated 
actual soil temperatures during growing season. Also, 
a significant improvement in prediction of soil tem- 
perature could be achieved for the Alaska site if the 
constant rate scalers (M, and M2)  were tuned for this 
site. For soil biological processes, it is more important 
to have a better soil temperature estimation during the 
growing season than to have better estimation during 
the winter time for sites like Alaska. 

The predictions of soil temperature from some of the 
data sets used for model testing are better than the 
predictions from the data used for model development. 
Although regional equations should be tested for each 
new area, these results suggest that most sites within 
the same climatic region could use the same equation. 
However, both F- and t-tests showed there were sig- 
nificant differences between each of the 7 regional 
equations and an aggregated equation as well as the 
differences among the 7 regional equations at the 
0.05 level. Substantial differences exist between the 
results from the regional equations and the aggregated 
equation for the 7 model-development sites (Table 5). 
Thus, it may not be appropriate to use a single regres- 
sion equation to predict daily soil temperature from 
daily air temperature over a continent. 
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Day of Year 

Tennessee, 1984 

1 

121 24 1 361 
Day of Year 

Day of Year 

- 1 5 4 , , , 8 q # , #  
1 121 241 361 

Day of Year 

, ' Observed 

Arizona 1985 

o ! ~ l ~ ~ ~ . ~ ~ ~ ~ r .  
1 121 24 1 361 

Day of Year 

-5 
1 121 24 1 361 

Day of Year 

For all 7 model-development sites, the average annual in light of the low specific heat of soil and the reduced air 
soil temperature at a 10 cm depth is higher than mixing that usually occurs in the air layer adjacent to the 
the average annual air temperature (Table 1). Higher soil surface (Toy et al. 1978). The variations range from 
average soil temperatures have been reported before 0.6 at TN to 4.6 'C at MT; these differences are probably 
(Shulgin 1978, Toy et a1 1978) and might be expected caused by climate. For example, larger difference be- 
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Table 4. Frequency analyses of predicted soil temperatures 
for all 19 simulatlons includ~ng 7 for model development sites 

and 12 data sets for model testing 

Abbrev. of days with error of: R'* S E ~  
53.5"C >5"C 

"Coefficient of determination from h e a r  regression be- 
tween observed and predicted soil temperatures 

"Standard error for pred~cted soil temperature 
'Data sets used for model development 
tData sets used for model testing on temporal dimension; 
data sets denoted by p were used for model testing on 
spatial dimension 

Table 5. Comparison of soil temperature predictions from 
regional equations ( R )  and aggregated equation (A) for 

all 7 model development sites 

Site abbrev. % of days with error of: 
S3 5°C 

R A R A 

Table 6. Percent errors of annual soil respiration calculated 
from the predicted daily soil temperatures and measured soil 
temperatures (Eq. 7) with various Q,, values at the 7 model 

development sites 

Site abbrev. Qlo = 2.0 Qlo 2.4 QLo = 3.0 

FL84 -2 - 2 -4 
OR84 -1 - 2 -3 
M187 - 1 -2 - 4 
TN84 -1 - 1 -2 
AZ85 -1 -2 - 3 
AK84" - 1 - 1 -2 
MT80 - 1 - 3 - 6 

"During the period that observed soil temperatures 2 0 "C 

tween air and soil temperatures at MT may result from 
both a longer time period of snow cover during winter 
and less precipitation during summer. Explanation for 
this can be developed from the use of detailed, physical 
models of soil temperature. 

Relative annual soil respirations estimated from the 
predicted soil temperatures were slightly less than 
those determined using measured soil data (Table 6). 
As expected, the relative errors increase wi.th an in- 
crease in the Qlo value. For any given day, large errors 
in predicted soil temperature would cause substantial 
errors in the predicted soil respiration, but the errors 
in predicted so11 temperature were not strongly biased 
so the annual estimates of soil respiration had small 
but consistent relative errors. 

Soil temperatures for deciduous and coniferous 
forests at the Tennessee slte, 1984, were simulated 
using LA1 of 5 (Fig. 4) .  The period of simulation for 
the deciduous forest was from Julian Day 97 to 307 
(Hutchison & Baldocchi 1989). After leaf emergence, 
the warming rate of soil temperature was substantially 
slowed down; after leaves senesced, the soil eventually 
reached the same temperature as that of bare ground. 
For coniferous forest, the influence of vegetation on 
soil temperature lasted the entire year. Soil tem- 

perature under forest cover in the northern hardwood 
ecosystem increases gradually compared with that at 
bare ground and reaches the maximum in August 
(Armson 1977) which agrees well with the trends in 
Fig. 4 .  

- 2 
5 

Bare ground 
L1 

; 20- 
0 

E - 
15- 

? 

Conifer 

1 121 241 361 
Day of Year 

Fig. 4. Simulation of soil temperatures for conifer and de- 
clduous forests using the Tennessee, 1984, climate data. The 
simulation results are compared to the predicted soil temper- 

atures for bare ground (Fly 3d) 
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CONCLUSIONS 

Daily soil temperature at 10 cm depth for various 
sites and years may be predicted from daily air 
temperature, once equations have been established for 
different climatic regions. For s~te-specific applica- 
tions, the accuracy of the predictions can be improved 
by determining if snowpack is present. The predicted 
soil temperatures are reasonably accurate for simulat- 
ing biological processes, such as soil respiration, on an 
annual time step. We suggest that this methodology 
may be appropriate for predicting daily soil tempera- 
ture from daily air temperature at large scales, because 
thousands of weather stations can be generalized into 
a few regions and the sites within a region may use 
the same equation. It may be possible to estimate soil 
temperature under vegetation cover at regional and 
continental scales using LA1 estimated from satellites. 
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