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Abstract. The main purpose of this paper is to present in a unified approach
to see different results concerning group actions and integrable systems in
symplectic, Poisson and contact manifolds. Rigidity problems for integrable
systems in these manifolds will be explored from this perspective.
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1. Introduction

From the very beginning: symmetries, group actions and integrable systems
have been close allies. The study of symmetries of the differential systems given
by Hamilton’s equation associated to an energy function H, led naturally to the
existence of Poisson commuting functions and the method of integration by quadra-
tures. When the number of commuting functions is maximal, the resolution by
quadratures is possible and the set of commuting functions defines an integrable
system on the phase space T ∗(Rn). The idea can be naturally exported to any
symplectic manifold and the reduction process can be seen as a reduction of the
dynamics in the manifolds given by a Marsden-Weinstein reduction associated to a
toric group.

One of the most striking and basic results in the theory of integrable systems on
symplectic manifolds is the theorem of Liouville-Mineur-Arnold [53],[54],[2] which
states that the foliation defined by a regular integrable system in the neighbourhood
of a compact fibre is a fibration by tori and that the symplectic form can be given
semilocally as a Darboux form. This theorem is achieved by constructing action-
angle coordinates in a neighbhourhood of a regular fibre and proving a Darboux
theorem in this coordinates. It is really intriguing to understand the difficulties in
extending this theorem to a more general context. This is the case of including
singularities into the picture or trying to construct global action-angle coordinates.
The study of these problems concerning integrable systems is still a challenging
issue for symplectic topologists, geometers and dynamicists.

Experts working in dynamical systems are interested in the properties of the
Hamiltonian vector field and its flow. Topologists are interested in both construct-
ing global examples of integrable systems and studying obstruction theories. Ge-
ometers are interested in understanding the geometrical structure (symplectic) of
these objects and in proving classification theorems.

Symmetries are present in many physical problems and therefore they show up
in integrable systems theory as well. The ace in the hole in the study of integrable
systems is to look for symmetries. The very proof of Liouville-Mineur-Arnold uses
this strategy. It finds a toric Hamiltonian action tangent to the fibres of the moment
map. In this paper we will also consider additional symmetries showing up. We
will try to study which properties hold for these additional symmetries. Those
symmetries are encoded in actions of Lie groups.

Among all kind of symmetries the toric ones play a central rôle in this paper.
Hamiltonian actions of tori in symplectic geometry have attracted the attention
of many specialists. Along the way many results of symplectic uniqueness are ob-
tained. A good example of this is Delzant’s theorem [21] which enables to recover
information of a compact 2n-dimensional manifold by looking at the image of the
moment map of a Hamiltonian torus action which is a convex polytope in Rn. A
lot of contributions in the area of Hamiltonian actions of Lie groups have been
done ever since. Let us mention some of the references of the large list of results
in that direction: the works of Lerman and Tolman to extend those result to sym-
plectic orbifolds ([42]) and the works of Karshon and Tolman for complexity one
Hamiltonian group actions ([38]) among many others. One of the current topics of
interest are singularities of integrable systems. Besides the classical references on
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the symplectic geometry and topology of these singularities [27], [26], [52], [7], [79],
and more recently the work in connection to (semi)-toric actions and singularities
([66], [67]).

The notion of integrability and its connection to group actions can be naturally
studied in the contact context too. Toric contact manifolds have been largely stud-
ied by Banyaga and Molino [4, 5], Luzt [50] and Lerman [41]. In my thesis, I studied
the integrable non-degenerate but not necessarily toric case. More recently, inte-
grability in the contact context has been studied by Khesin and Tabaschnikov [22].
We will present classification results for integrable systems with non-degenerate
singularities in contact manifolds and give complete proofs.

Last but not least, Poisson manifolds constitute a natural scenario to study
Hamilton’s equations. As a first and basic example of Poisson manifolds, we have
the dual of a Lie algebra. Poisson manifolds are foliated by symplectic manifolds but
this foliation is not necessarily regular. When considering a Hamiltonian system in a
Poisson manifold we obtain families of Hamiltonian systems in the symplectic leaves
of this foliation but there are some additional “transversal” structures given by
extra symmetries (Casimir functions). We can therefore define integrable systems
on these manifolds too and study similar topological/geometrical and dynamical
properties.

Organization of this paper:

This paper is divided in three sections: The symplectic, contact and Poisson
section. In this paper we wanted to give a global perspective and underline a
common strategy in symplectic, contact and Poisson about the role of group actions
in studying integrable systems: their (equivariant) normal and also some rigidity
issues.

The results in the symplectic section concerning symplectic orthogonal decom-
position and complete proof of symplectic equivalence with the linearized model
are contained in the author’s thesis. We include here an outline of this proof. A
more detailed proof can be found in [55]. The Mather point of view in this proof
is also new compared to Eliasson’s point of view. We also re-state Eliasson’s theo-
rem using the foliation defined by the Hamiltonian vector fields. This formulation
is necessary since because of the existence of hyperbolic singularities one cannot
guarantee that the moment map is a function of the elements in Williamson’s basis.
(This inaccuracy has propagated somehow in the literature of integrable systems
and had already been detected by myself [58] and other authors. A different ap-
proach and hypothesis are contained in the works of Matveev and Bolsinov [7] and
[52]).

Most of the results contained in the Poisson case are joint results with other
coauthors and the complete proof of the statements is contained somewhere else.
The Poisson case is a summary of old results with a new perspective. We focus on
the role of actions and symmetries in the proofs. As a bonus we also prove that,
unlike the symplectic and contact case, integrable systems on Poisson manifolds are
not rigid.

The contact case of integrable systems was just published in a short note before
but contained no proofs. We offer here the detailed proof for the sake of complete-
ness.
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2. The Symplectic case

In June 29th of 1853 Joseph Liouville presented a communication entitled “Sur
l’intégration des equations différentielles de la Dynamique” at the “Bureau des
longitudes”. In the resulting note [49] he relates the notion of integrability of the
system to the existence of n integrals in involution with respect to the Poisson
bracket attached to the symplectic form. These systems come to the scene with the
classical denomination of “completely integrable systems”. In another language, a
particular choice of n-first integrals in involution determines the n components of
a moment map F : M2n −→ Rn. A lot of work has been done in the subject after
Liouville. Let us outline some of the remarkable achievements from a geometrical
and topological point of view.

2.1. Liouville-Mineur-Arnold Theorem: Torus actions meet integrable
systems. An integrable system on a symplectic manifold (M2n, ω) is given by a set
of generically independent functions F = (f1, . . . , fn) satisfying {fi, fj} = 0,∀i, j.
The mapping F : M2n −→ Rn given by F = (f1, . . . , fn) is called moment map.

The distribution generated by the Hamiltonian vector fields Xfi
is involutive and

is tangent to the fibers of F = (f1, . . . , fn).

Assume that the moment map is proper. Let L be a regular orbit of this dis-
tribution then this orbit is a Lagrangian submanifold. Moreover, it is a torus and
the neighbouring orbits are also tori. Those tori are called Liouville tori. This is
the topological contribution of a theorem which has been known in the literature
as Arnold-Liouville theorem. The geometrical contribution of the above-mentioned
theorem ensures the existence of symplectic normal forms in the neighbourhood of
a compact regular orbit. To the author’s knowledge, the works of Henri Mineur
[53, 54] already gave the a complete description of the Hamiltonian system in a
neighbourhood of a compact regular orbit. That is why we will refer to the classi-
cal Arnold-Liouville theorem as Liouville-Mineur-Arnold theorem. Let us state the
theorem below,

Theorem 2.1. (Liouville-Mineur-Arnold Theorem)

Let (M2n, ω) be a symplectic manifold and let F : M2n −→ Rn be a proper
moment map. Assume that the components fi of F are pairwise in involution with
respect to the Poisson bracket associated to ω and that df1 ∧ · · · ∧ dfn 6= 0 on a
dense set. Let N = F−1(c), c ∈ Rn be a connected levelset. Then there exists a
neighbourhood U(N) of N and a diffeomorphism φ : U(N) −→ Dn × Tn such that,

(1) φ(N) = {0} × Tn.
(2) A set of coordinates µi in Dn and a set of coordinates βi in Tn for which,

φ∗(
∑n

i=1 dµi ∧ dβi) = ω.
(3) F depends only on φ∗(µi) = pi and it does not depend on φ∗(βi) = θi.

The new coordinates pi obtained are called action coordinates. The coordinates
θi are called angle coordinates. Mineur also showed that the action functions pi

can be defined via the period integrals. Let x be a point in a small neighbourhood
of N , the period integrals are defined by the following formula:

(2.1) pi(x) =
∫

Γi(x)

α
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where α fulfils the condition dα = ω, and Γi(x) is a closed curve which depends
smoothly on x and which lies on the Liouville torus containing x. The homology
classes of Γ1(x), ..., Γn(x) form a basis of the first homology group of the Liouville
torus.

The existence of action-angle coordinates in a neighbourhood of a compact or-
bit provides a symplectic model for the Lagrangian foliation F determined by the
symplectic gradients of the n component functions fi of the moment map F . In
fact, Liouville-Mineur-Arnold theorem entails a “uniqueness” result for the sym-
plectic structures making F into a Lagrangian foliation. In other words, if ω1 and
ω2 are two symplectic structures defined in a neighbourhood of N for which F is
Lagrangian then there exists a symplectomorphism preserving the foliation, fixing
N and carrying ω1 to ω2. This is due to the following observation: Let Xfi be the
symplectic gradients of the functions fi for any 1 ≤ i ≤ n, then the Lagrangian
condition implies that in fact F =< Xf1 , . . . , Xfn

>, further {fj , fk}i = 0 where
{., .}i stands for the Poisson bracket attached to ωi , i = 1, 2 . Then by virtue of
Liouville-Mineur-Arnold theorem there exists a foliation-preserving symplectomor-
phism φi taking ωi to ω0 =

∑n
i=1 dpi∧dθi. In all, the diffeomorphism φ−1

2 ◦φ1 does
the job. It takes ω1 to ω2, it fixes N and it is foliation preserving.

So if the orbit is regular the existence of action-angle coordinates enables to
classify the symplectic germs, up to foliation-preserving symplectomorphism, for
which F is Lagrangian in a neighbourhood of a compact orbit. There is just one
class of symplectic germs for which the foliation is Lagrangian.

One could look at the problem from a global perspective. There are topological
obstructions to the existence of global action-angle coordinates as it was shown by
Duistermaat in [25].

The problem of classification of symplectic germs for regular Lagrangian folia-
tions can be taken further to consider the case of foliations not necessarily deter-
mined by a completely integrable system. Curras-Bosch and Molino have considered
the following concomitant problem: They consider the problem of classification for
germs of Lagrangian foliation defined in a neighbourhood of an torus equipped with
an affine structure. The motivation for considering an affine structure on the torus
is the Bott-Weinstein connection attached to the regular leaves of a Lagrangian
foliation [?]. In the case the germ of Lagrangian foliation is determined by a com-
pletely integrable system this affine structure is trivial. In the above mentioned
papers it is proved that there is no uniqueness result for the symplectic germ if the
affine structure on the torus is non-trivial.

Consequences:

Action-angle coordinates give:

• An action of a torus Tn tangent to the Liouville tori which is Hamiltonian.
• A normal form for the set of first integrals in involution (action coordinates).

In these coordinates, F = (p1, . . . , pn).
• A normal form for the symplectic structure: the symplectic structure is

Darboux ω =
∑n

i=1 dpi ∧ dθi.

Remark 2.2. Indeed one of the author’s favourite proof of the action-angle theorem
is in the paper of Duistermaat [25]. The theorem uses strongly the existence of a
torus action tangent to the fibration given by the moment map.
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2.1.1. Global action-angle coordinates: Some applications. The global problem of
existence of action-angle variables is related to Monodromy and the Chern class of
the fibration given by the fibers of the moment map.

In the case of generalized global action-angle coordinates on compact manifolds,
the semi-local torus action extend to a torus action Tn on the compact symplectic
manifolds (M2n, ω). We get global action-angle coordinates with singularities and
a toric manifold. Symplectic geometry can be read from the Delzant polytope [21].

The existence of action-angle coordinates has many implications in dynamics: for
instance the topological entropy of these systems is zero if there are no singularities
in the way [71] and [45].

Other applications of global action-angle coordinates show up (not so unexpect-
edly) in the context of geometric quantization using real polarizations. We include
here a short summary. A more extended version of these applications (with singu-
larities in the way) can be found in the short note [56].

Let (M2n, ω) be a symplectic manifold such that [ω] is integral. Under these
circumstances (see for instance [75] ), there exists a complex line bundle L with a
connection ∇ over M such that curv(∇) = ω. The symplectic manifold (M2n, ω)
is called prequantizable and the pair (L,∇) is called a prequantum line bundle of
(M2n, ω). In order to construct the geometric quantization of these objects, we
need to restrict the space of sections to a subspace of sections which are flat in
“priviledged” directions given by a polarization. In the case of real polarizations
given by integrable systems, both problems are connected.

Consider the following:

Example 2.3. Consider M = S1 ×R and ω = dt ∧ dθ. Take as L the trivial bundle
with connection 1-form Θ = tdθ. Now, let P =< ∂

∂θ > then flat sections satisfy,
∇Xσ = X(σ)− i < θ, X > σ. Thus flat sections σ(t, θ) = a(t).eitθ are defined along
leaves are given by the condition t = 2πk, k ∈ Z.

This example shows that flat sections are not globally defined but they exist along
a subset of leaves of the polarization. These are called Bohr-Sommerfeld leaves.
The characterization of Bohr-Sommerfeld leaves for regular fibrations under some
conditions is a well-known result by Guillemin and Sternberg ([34]). In particular
the set of Bohr-Sommerfeld leaves is discrete and is given by “action” coordinates.

Theorem 2.4 (Guillemin-Sternberg). If the polarization is a regular fibration with
compact leaves over a simply connected base B, then the Bohr-Sommerfeld set is
discrete and assuming that the zero-fiber is a Bohr-Sommerfeld leaf, the Bohr-
Sommerfeld set is given by, BS = {p ∈ M, (f1(p), . . . , fn(p)) ∈ Zn} where f1, . . . , fn

are global action coordinates on B.

This result connects with Liouville-Mineur-Arnold theorem. When we consider
a toric manifolds the base B may be identified with the image of the moment map
by the toric action (Delzant polytope).

In view of the previous theorem, when the polarization is given by an integrable
system with global action-angle coordinates it makes sense to “quantize” these
systems counting integral Liouville tori.



INTEGRABLE SYSTEMS AND GROUP ACTIONS 7

This can be formalized following the idea of Kostant [43], in the case there are
no global sections denote by J the sheaf of flat sections along the polarization, we
can then define the quantization as Q(M) =

⊕
k≥0 Hk(M,J ). Then quantization

is given by precisely the following theorem of Sniatycki [73]:

Theorem 2.5 (Sniatycki). If the leaf space Bn is a Hausdorff manifold and the
natural projection π : M2n → Bn is a fibration with compact fibres, then all the
cohomology groups vanish except for degree half of the dimension of the manifold.
Furthermore, Q(M2n) = Hn(M2n,J ), and the dimension of Hn(M2n,J ) is the
number of Bohr-Sommerfeld leaves.

2.2. Rigidity. In this section, we explore the consequences that normal forms have
for structural stability problems.

For structural stability we understand the following: Given close geometrical
“objects” in a certain topology, we want to see if these objects are equivalent.

As a general principle normal forms for geometrical structures give structural
stability. Sometimes because of the type of singularities, this is not enough though
(as we will see in the Poisson section).

When we have additional symmetries, it is still possible to prove rigidity using
the averaging techniques. In this case, we would obtain the equivariant version.

As a first example of this, the equivariant version of Darboux theorem was stated
by Weinstein in [76] and was proved by Chaperon in [17] for smooth compact group
actions.

In the case the normal forms are given in a neighbhourhood of a fixed point
for the action, we may linearize this action in such a way that the normal forms
prevail. If the group is non-compact there is a hope to do it for analytic actions
of semisimple groups/algebras in the Hamiltonian setting [60]. In the smooth case
this is possible only for actions of semisimple actions of compact type [31].

We can also prove the following rigidity theorem for symplectic group actions on
a compact symplectic manifold (see [62] and [65],

Theorem 2.6. Let ρ0 and ρ1 be two C2-close symplectic actions of a compact
Lie group G on a compact symplectic manifold (M, ω). Then they can be made
equivalent by conjugation via a symplectomorphism.

In particular:

• Liouville-Mineur-Arnold theorem entails semi-local rigidity for integrable
systems in a neighbourhood of a compact orbit.

• (equivariant) Darboux theorem gives (equivariant) local rigidity for sym-
plectic forms.

One may think that a “key point” to obtain rigidity for integrable systems is the
existence of compact action (of Tn).

But, we also have normal forms and rigidity for some non-degenerate singular
integrable systems. Indeed we also have infinitesimal rigidity for a certain type of
singular integrable systems called non-degenerate.
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2.3. Singular counterparts to Arnold-Liouville. What can be said about the
corresponding classification problem for symplectic germs if the completely inte-
grable systems has singularities?

This question is quite natural because singularities are present in many well-
known examples of integrable systems. In fact, if the completely integrable system
is defined on a compact manifold then the singularities cannot be avoided.

One of the main goals of [58] was to prove that the uniqueness result for sym-
plectic germs for which the foliation determined by a completely integrable system
is generically Lagrangian holds when L is a singular orbit.

In the singular case, the problem can be posed at three different levels:

(1) At the orbit level: In the neighbourhood of a compact singular orbit.
(2) At a semi-local level: In the neighbourhood of a compact singular leaf.
(3) At a global level.

The problem of topological classification of integrable Hamiltonian systems be-
gan with Fomenko [28] in some particular cases. Nguyen Tien Zung [79] studied the
general case for the semi-local problem for non-degenerate singularities. It turns
out that from a topological point of view we have a product-like description of the
singularities in terms of the Williamson type. Nguyen Tien Zung also proved in [79]
the existence of partial action-angle coordinates. The symplectic classification in
the semi-local case for non-elliptic singularities has been studied in the hyperbolic
case by Dufour, Molino and Toulet in [23]. The focus-focus case has been studied
recently by San Vu Ngoc in [70]. In the hyperbolic and focus-focus case there are
more invariants attached to the singularity. The symplectic germ in the hyperbolic
case is determined by the jet of a function depending on a variable and in the
focus-focus case is determined by the jet of a function in two variables. The singu-
lar global case has been studied by Nguyen Tien Zung in the paper [?] where the
notion of Duistermaat-Chern class and monodromy (introduced by Duistermaat for
regular foliations) is extended in order to include the singularities into the picture.

The condition of non-degeneracy is always present in the works cited above.
There are also some contributions for degenerate singularities in the world of inte-
grable systems. A recent contribution in that direction is contained in the paper [9]
by Colin de Verdière. In that paper, among other things, the problem of classifica-
tion of germs of singular Lagrangian manifolds is posed for more general singularities
with a special emphasis on quasi-homogeneous singularities. For instance in this
paper an explicit classification is obtained in the case of the cusp.

The singular analogue of Liouville-Mineur-Arnold theorem was considered by
Eliasson in his thesis [26]. He constructed singular action coordinates for a special
type of non-degenerate singularities. This is a major breakthrough which uses a
clever combination of analysis and Moser’s path method. However, there were some
inaccuracies in some statements which lead to some confusion in the literature. We
will try to clarify those here.

The singular achievements formerly specified often have a semiclassical version.
Their semiclassical counterpart has been obtained by Colin de Verdière and San Vu
Ngoc in [10, 9].
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After this digression we will focus on the orbit-like case.

The singularity of the orbit can be described in terms of the singularity of the
functions fi.

Let us start with the case L is reduced to a point.

Observe that the Poisson bracket induces a Lie algebra structure in the set of
functions. Since the functions fi are in involution with respect to the Poisson
bracket, the quadratic parts of the functions fi commute defining in this way an
abelian subalgebra of Q(2n,R) (the set of quadratic forms on 2n-variables). In the
case the singularity of the functions fi is of Morse type this subalgebra is indeed a
Cartan subalgebra. We call these singularities of non-degenerate type.

The problem of classification of singularities for the quadratic parts of the func-
tions fi can be therefore converted into the problem of classification of Cartan sub-
algebras of Q(2n,R). The singularities for the quadratic parts are well-understood
thanks to a result of Williamson [78] where Cartan subalgebras of Q(2n,R) are
classified. Let us recall its precise statement,

Theorem 2.7. (Williamson)

For any Cartan subalgebra C of Q(2n,R) there is a symplectic system of coordi-
nates (x1, . . . , xn, y1, . . . , yn) in R2n and a basis f1, . . . , fn of C such that each fi is
one of the following:

(2.2)

fi = x2
i + y2

i for 1 ≤ i ≤ ke , (elliptic)
fi = xiyi for ke + 1 ≤ i ≤ ke + kh , (hyperbolic){

fi = xiyi+1 − xi+1yi, (focus-focus pair)
fi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The linear system given by the quadratic parts of the fi is called the linear model
for a singularity. Williamson’s Theorem can be seen as a normal form theorem for
the linear model.

We may attach a triple of natural numbers (ke, kh, kf ) to a non-degenerate sin-
gularity p of F , where ke stand for the number of elliptic components in the linear
model, kh and kf the number of hyperbolic and focus-focus components in the
linear model respectively.

By virtue of Williamson theorem this triple is an invariant of the linear system.
That is why this triple is often called the Williamson type of the singularity.

Now that the classification in the linear model has been carried out a natural
question arises:

Can we linearize the completely integrable system symplectically in a neighbour-
hood of a point p?

We can reformulate the question as follows,

Problem 1
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Consider a foliation F defined by a completely integrable system defined in a
neighbourhood of a non-degenerate singular 0-dimensional orbit of F . Assume that
we are given two symplectic forms ω1 and ω2 for which the foliation F is Lagrangian.
Does there exist a local diffeomorphism fixing p and taking ω1 to ω2?

This problem of symplectic linearization is closely related to another problem in
the spirit of Morse lemma which was solved succesfully by Vey for analytic systems
and by Vey and Colin de Verdire for smooth systems.

Problem 2

Given a function f : Rn −→ R with a non-degenerate singularity at the origin
and let ω be a volume form on Rn and let Q be its quadratic part at the origin.
Does there exist a diffeomorphism φ : (Rn, 0) −→ (Rn, 0) such that φ∗(f) = Q and
such that ω is taken to the volume form ω0 = dx1 ∧ · · · ∧ dxn?

In [8] Colin de Verdière and Vey prove that there exists a smooth function χ
such that φ∗(ω) = χ(Q) · ω0.

In that paper it is also proved that the function χ is characteristic of the pair
(f, ω) if Q is definite, otherwise only the jet is characteristic for the pair.

As a corollary of this result we obtain normal forms for foliations defined by the
levelsets of f because we can find a foliation-preserving diffeomorphism sending the
volume form χ(Q) · ω0 to the volume form ω0 as was observed in the paper cited
above. Notice as well that this result provides an affirmative answer to Problem 1 in
the case n = 2 because a volume form on a 2-dimensional manifold is a symplectic
form and the Lagrangian condition for a curve is automatic in that dimension.

The affirmative answer to Problem 1 in any dimension was provided in the elliptic
case by Eliasson in [27]. As a matter of fact the proof provided by Eliasson seems
complete just in the case the singularity is completely elliptic ( of Williamson type
(ke, 0, 0)).

What is not true in general is that the moment map has component functions
which are, in turn, functions of the basis of the Cartan subalgebra. This fails
essentially in the case the system has hyperbolic components. Errors stating this
normal form result are unfortunately too common in the literature of integrable
systems.

In this paper we will sketch a different proof of Eliasson’s normal form in
the context of linearization of associated foliation (not moment map) for general
Williamson type. The proof that I am going to discuss here is essentially a slightly
more sophisticated proof that the one in my thesis [58].

Observe that this normal form theorem can be seen as a symplectic linearization
result which ensures that the initial completely integrable system can be taken
to the linear system and that the symplectic form can be taken to the standard
one. As a byproduct we obtain a multiple differentiable linearization result for n
commuting vector fields with singularities of non-degenerate type.
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The symplectic linearization in a neighbourhood of an orbit L with dim L > 0 is
due to Ito in the analytic case [40]. Partial results in that direction (with dim L = 1
in a manifold of dimension 4) where obtained by Currás-Bosch and myself in [13]
and independently by Colin de Verdire and San Vu Ngoc in [10]. The final result
in any dimension was obtained by Nguyen Tien Zung and myself in [59]. In [59] it
is also included a G-equivariant version of the symplectic linearization.

2.3.1. The theorems in the non-degenerate singular case. We begin by an elemen-
tary definition:

Definition 2.1. A point x0 ∈ M2n is a singular point of the integrable Hamiltonian
systems if the rank of dx0F = (dx0f1, . . . , dx0fn) is less than n.

Let x0 be as singular point of the foliation defined by F , we start by defining
the rank and corank of a singular point.

Definition 2.2. Let x0 ∈ M2n be a singular point of the integrable Hamiltonian
system we say that the rank of x0 is k if the rank of the moment map at x0 is k,
that is to say if rank dx0F = rank(dx0f1, . . . , dx0fn) = k.

We say that a singular point of rank k has corank n− k.

Recall that the foliation can be thought as a pair (χ,A) , where χ is an n-
dimensional commutative Lie algebra of vector fields and A is a vector space of
first integrals of the vector fields of χ. The foliation obtained from χ is called the
singular Lagrangian foliation.

We follow Nguyen Tien Zung [79] for the definitions concerning the notion of
transversal linearization at a singular point .

Let x0 be a singular point and let χx0 be the subspace of Tx0M generated by
Xx0 , ∀X ∈ χ. Let Kx0 = ∩f∈AKerdx0f , and let Bx0 the set of f ∈ A such that
dx0f = 0. Then ∀f ∈ Bx0 the 2-order jet of f − f(x0) gives a quadratic form
on Kx0 , such that its kernel contains χx0 , so it gives a quadratic form f

′T
x0

on
Kx0/χx0 , the set of quadratic forms obtained in this way which we denote by A

′T
x0

,
is a commutative subalgebra under the Poisson bracket, which is often called the
transversal linearization of F .

Notice that Kx0/χx0 carries a natural symplectic structure ωx0 , and it is sym-
plectomorphic to a subspace Rx0 ⊂ Tx0M

2n.

We are going to introduce the notion of nondegenerate point but first we need
to recall the definition of Cartan subalgebra.

Definition 2.3. A Cartan subalgebra is a maximal self-centralizing abelian subal-
gebra.

Definition 2.4. A singular point of corank k is called non-degenerate if A
′T
x0

is a
Cartan subalgebra of the algebra of quadratic forms on Rx0 .

The linear model is given by Williamson’s theorem stated above.

The rank 0 case
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In this paragraph we state the analogue of Eliasson’s theorem for general sin-
gularities, using foliations. Other statements using moment maps and additional
hypotheses on the bifurcation diagrams have been provided by [52] and [7].

Assume that F is a linear foliation on M2n with a rank 0 singularity at the origin
p. Assume that the Williamson type of the singularity is (ke, kh, kf ). Recall that
the foliation is then generated by the following vector fields,

Xi = −yi
∂

∂xi
+ xi

∂
∂yi

for 1 ≤ i ≤ ke ,

Xi = yi
∂

∂xi
+ xi

∂
∂yi

for ke + 1 ≤ i ≤ ke + kh ,

Xi = xi
∂

∂xi+1
− yi+1

∂
∂yi

− xi+1
∂

∂xi
+ yi

∂
∂yi+1

and
Xi+1 = −xi

∂
∂xi

+ yi
∂

∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

We can prove [58] that,

Theorem 2.8. Let ω be a symplectic form defined in a neighbourhood of the origin
for which F is Lagrangian, then there exists a local diffeomorphism φ : (U, p) −→
(φ(U), p) such that φ preserves the foliation and φ∗(

∑
i dxi ∧ dyi) = ω, being xi, yi

local coordinates on (φ(U), p).

Remark 2.9. In the case the singularities are completely elliptic, this is equivalent
to Eliasson’s theorem.

Proof of theorem 2.8Infinitesimal rigidity and rigidity

In this paragraph we sketch a more evolved proof that the one contained in the
author’s thesis [58]. A detailed proof will be provided in [55].

The proof uses the classical scheme of “infinitesimal rigidity” implies rigidity.

In the spirit of Thom and Mather we can study (unfinitesimal) stability of an
integrable system Ã F = (f1, . . . , fn) with constraints {fi, fj} = 0.

For non-degenerate singular integrable systems, we have proved in [61] that a
singular Poincaré lemma holds.

Namely,

Theorem 2.10 (Miranda-Vu Ngoc, [61]). Let g1, . . . gr, be a set of germs of smooth
functions on (R2n, 0) with r ≤ n fulfilling the following commutation relations

Xi(gj) = Xj(gi), ∀i, j ∈ {1, . . . , r}
where the Xi’s are the vector fields defined above. Then there exists a germ of
smooth function G and r germs of smooth functions fi such that,

(1) Xj(fi) = 0, ∀i, j ∈ {1, . . . , r}.
(2) gi = fi + Xi(G) ∀i ∈ {1, . . . , r}.

We can restate this result in a different language.

Theorem 2.11 (Miranda-Vu Ngoc, [61]). Integrable systems are infinitesimally
stable in a neighbourhood of a non-degenerate fixed point.

We can define a deformation complex using the action of Rn on X = C∞(M) (
Rn ×X 3 (`, g) 7→ {f(`), g} ∈ X) (Chevalley-Eilenberg).
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The cocyles of this deformation complex are defined as:

(cocycles) Z1(f) Ã n functions g1 = α(e1), . . . , gn = α(en) (mod. basic func-
tions) such that

(2.3) ∀i, j {gi, fj} = {gj , fi}.
A cocycle defines an infinitesimal deformation of the system since mod ε2 we have

{fi + εgi, fj + εgj} ≡ 0.

Singular Poincaré lemma proves that every cocycle is a coboundary.

The condition H1(f) = 0 is equivalent to the existence of a singular Poincaré
lemma and this can be used to prove an orthogonal symplectic decomposition.

The symplectic orthogonal decomposition allows to prove theorem 2.8 because
it reduces the symplectic equivalence problem to 2 and 4-dimensional cells (for
focus-focus singularities). The symplectic othogonal decomposition is attained via
Moser’s path method. A detailed proof will be contained in [55].

Indeed, Eliasson’s normal form for non-degenerate singularities (orbits) of rank
0 give rigidity for integrable systems.

Normal forms for non-degenerate singularities in a neigbourhood of
an orbit

Normal forms for higher rank have been obtained jointly with Nguyen Tien Zung.

These normal form results can be seen as a symplectic Morse-Bott theorem for
integrable systems. The singular fibers can have non-compact symmetry group
associated to it. This is why in order to obtain a complete proof of the symplectic
equivalence problem, we need to consider the equivariant version of the statements.

So we may prove the following [58] and [79]:

Theorem 2.12. Let U(L) be a neighbourhood of a nondegenerate singular orbit of
an integrable system with n degrees of freedom. Assume the corank of the orbit is
n − k = ke + kh + 2kf . Let F be the singular Lagrangian foliation defined by the
integrable system. Then there exists a normal finite covering Ũ(L) of U(L) such
that the foliation can be lifted to F̃ and a free Hamiltonian action of the torus Tk

in the covering Ũ(L) which preserves the moment map.

Now we can introduce the linear model associated to the orbit L. Later, we will
see that the invariants associated to the linear model are the Williamson type of
the orbit and a twisting group Γ attached to it.

First we introduce the linear model in the covering,

Denote by (p1, ..., pk) a linear coordinate system of a small ball Dk of dimen-
sion k, (θ1, . . . , θk) is a standard periodic coordinate system of the torus Tk, and
(x1, y1, ..., xn−k, yn−k) a linear coordinate system of a small ball D2(n−k) of dimen-
sion 2(n− k). Now we consider the manifold

(2.4) V = Dk × Tk ×D2(n−k)

with the standard symplectic form
∑

dpi ∧ dθi +
∑

dxj ∧ dyj , and the following
moment map:

(2.5) F = (p1, ..., pk, f1, ..., fn−k) : V → Rn
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where

(2.6)

fi = x2
i + y2

i for 1 ≤ i ≤ ke ,
fi = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi = xiyi+1 − xi+1yi and
fi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The linearized foliation in the covering is the foliation determined by the above
moment map. This presentation of the foliation would be the one of A, that is,
the above components of the moment map are the first integrals of the system. We
can also look for generators of χ to define the linearized foliation in the covering.
After performing a linear change of coordinates in such a way that the hyperbolic
functions can be written as fi = x2

i − y2
i , the following vector fields form a basis of

χ,

Yi = ∂
∂θi

for 1 ≤ i ≤ k ,

Xi = −yi
∂

∂xi
+ xi

∂
∂yi

for 1 ≤ i ≤ ke ,

Xi = yi
∂

∂xi
+ xi

∂
∂yi

for ke + 1 ≤ i ≤ ke + kh ,

Xi = xi
∂

∂xi+1
− yi+1

∂
∂yi

− xi+1
∂

∂xi
+ yi

∂
∂yi+1

and
Xi+1 = −xi

∂
∂xi

+ yi
∂

∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

In order to prove equivalence in a neighbourhood of an orbit we need to first
consider additional symmetries corresponding to the deck-transformations. We
prove it for general symplectic actions preserving the system.

2.4. Additional symmetries. We assume also that the group acts symplectically
and preserves the moment map which is underlying in the foliation.

We end up proving the equivariant version of the symplectic uniqueness result in
a neighbourhood of a singular compact orbit. This result is contained in [58] and
[59].

We are going to introduce the notion of linear action on the linear model associ-
ated to the orbit L for a given symplectic action preserving the system. Later, we
will see that the invariants associated to the linear model are the Williamson type
of the orbit and a twisting group Γ attached to it.

We recall the notion of linear model. Denote by (p1, ..., pk) a linear coordinate
system of a small ball Dk of dimension k, (θ1(mod1), ..., θk(mod1)) a standard
periodic coordinate system of the torus Tk, and (x1, y1, ..., xn−k, yn−k) a linear
coordinate system of a small ball D2(n−k) of dimension 2(n − k). Consider the
manifold

(2.7) V = Dk × Tk ×D2(n−k)

with the standard symplectic form ω0 =
∑

dpi∧dθi+
∑

dxj∧dyj , and the following
moment map:

(2.8) F = (p1, ..., pk, fk+1, ..., fn) : V → Rn

where

(2.9)

fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,
fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf
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For the sake of simplicity we will denote by p the mapping whose components are
the k regular first integrals pi and h will stand for the mapping whose components
are the singular first integrals fi, i ≥ k; following this convention we will write
F = (p,h). Let Γ be a group with a symplectic action ρ(Γ) on V , which preserves
the moment map F. We will say that the action of Γ on V is linear if it satisfies
the following property:

Γ acts on the product V = Dk × Tk ×D2(n−k) componentwise; the action of Γ
on Dk is trivial, its action on Tk is by translations (with respect to the coordinate
system (θ1, ..., θk)), and its action on D2(n−k) is linear with respect to the coordinate
system (x1, y1, ..., xn−k, yn−k).

Suppose now that Γ is a finite group with a free symplectic action ρ(Γ) on
V , which preserves the moment map and which is linear. Then we can form the
quotient symplectic manifold V/Γ, with an integrable system on it given by the
induced moment map as above:

(2.10) F = (p1, ..., pk, fk+1, ..., fn) : V/Γ → Rn

The set {pi = xi = yi = 0} ⊂ V/Γ is a compact orbit of Williamson type (ke, kf , kh)
of the above system. We will call the above system on V/Γ, together with its
associated singular Lagrangian foliation, the linear system (or linear model) of
Williamson type (ke, kf , kh) and twisting group Γ (or more precisely, twisting action
ρ(Γ)). We will also say that it is a direct model if Γ is trivial, and a twisted model
if Γ is nontrivial.

A symplectic action of a compact group G on V/Γ which preserves the moment
map (p1, ..., pk, fk+1, ..., fn) will be called linear if it comes from a linear symplectic
action of G on V which commutes with the action of Γ. In our case, let G′ denote
the group of linear symplectic maps which preserve the moment map then this
group is abelian and therefore this last condition is always satisfied.

In [58] and [59] we prove the following:

Theorem 2.13 (Miranda-Zung). Consider F the foliation defined by a completely
integrable system and consider L, a compact orbit of Williamson type (ke, kh, kf ).
Let ω be a symplectic for which the foliation F is Lagrangian. Then there exists
a finite group Γ and a diffeomorphism taking the foliation to the linear foliation
on V/Γ given by the linear model above , and taking ω to ω0, which sends L to
the torus {pi = xi = yi = 0}. The smooth symplectomorphism φ can be chosen so
that via φ, the system-preserving action of the compact group G near L becomes a
linear system-preserving action of G on V/Γ. If the moment map F is real analytic
and the action of G near L is analytic, then the symplectomorphism φ can also be
chosen to be real analytic. If the system depends smoothly (resp., analytically) on a
local parameter (i.e. we have a local family of systems), then φ can also be chosen
to depend smoothly (resp., analytically) on that parameter.

Remark 2.14. A nice consequence is the abelianity of the group of symplectomor-
phisms preserving the moment map. In particular, in the case the action of the
group is effective then this group is Abelian, in all, since it is also compact it is a
product of a torus with a finite group. In the end, in the case the group is connected
we recover actions by tori in the spirit of the theorem of Delzant.
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Remark 2.15. This theorem has interesting applications to geometric quantization
of singular real polarizations (see [56] and [37].

3. The Contact case

Loosely speaking, the odd-dimensional counterpart of the theorems obtained
would be considered in the contact case. That is we can consider foliations on a
contact manifold as close as possible to the ones described by completely integrable
systems on symplectic manifolds. The regular case started with Lutz ([50]) who
studies the problem of classification for contact structures in a compact contact
manifold under the constraint that they are invariant under the action of a torus.
This problem is naturally linked with the analogous problem for symplectic mani-
folds exposed above. Recent contributions to that problem in the setting of contact
orbifolds are due to Lerman [41] where a convexity result is also established. This
problem has been considered by Molino and Banyaga in [4] and [5] also for singular
foliations. The common property of the foliations considered by Lutz, Lerman,
Molino and Banyaga is that their orbits are given by a torus action. Here we
prove a similar result in the neighbourhood of a compact orbit but for foliations
whose orbits are not necessarily given by a torus action but fulfil hypothesis of non-
degeneracy. The foliation is determined as the enlarged foliation of a Legendrian
foliation described by the horizontal parts of contact vector fields together with a
Reeb vector field. We also assume that the Reeb vector field is the infinitesimal
generator of an S1-action. We study the problem of classification for Legendrian
foliations under the assumption that the contact form has the same Reeb vector
field.

Consider a contact manifold M2n+1 together with a contact form. We assume
that the Reeb vector field associated to α coincides with the infinitesimal generator
of an S1 action. We assume further than there exists n-first integrals of the Reeb
vector field which commute with respect to the Jacobi bracket. Then there are two
foliations naturally attached to the situation. On the one hand, we can consider the
foliation associated to the distribution generated by the contact vector fields. We
call this foliation F ′. On the other hand we can consider a foliation F given by the
horizontal parts of the contact vector fields. The functions determining the contact
vector fields may have singularities. We will always assume that those singularities
are of non-degenerate type.

Observe that F ′ is nothing but the enlarged foliation determined by the foliation
F and the Reeb vector field.

Let α′ be another contact form in a neighbourhood of a compact orbit O of F ′
for which F is Legendrian and such that the Reeb vector field with respect to α′

coincides with the Reeb vector field associated to α. In this chapter we prove that
then there exists a diffeomorphism from a neighbourhood of O to a model manifold
taking the foliation F ′ to a linear foliation in the model manifold with a finite
group attached to it and taking the initial contact form to the Darboux contact
form. As it was done in the last chapter for Lagrangian foliations determined by a
completely integrable system, we also prove the G-equivariant version of this fact
for Legendrian foliations. That is, we prove that in the case there exists a compact
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Lie group preserving the first integrals of the Legendrian foliation and preserving
the contact form then the contactomorphism can be chosen to be G-equivariant.

The problem of determining normal forms for foliations related to Legendrian
foliations has its own story. P. Libermann in [47] established a local equivalence
theorem for α-regular foliations. Loosely speaking, those foliations are regular
foliations containing the Reeb vector field and a Legendrian foliation. The problem
of classifying contact forms is different from the problem of classification of contact
structures. As a example of this, if M is a compact manifold then any two contact
structures are equivalent as Gray’s theorem asserts ([30]). Whereas one can find
examples of two contact forms which are not equivalent (see for example [29]). The
problem of classifying contact structures which are invariant under a Lie group was
considered by Lutz in [50]. In particular he proves that two contact structures in a
compact manifold M2n+1 which are invariant by a locally free action of Rn+1 are
equivalent in the sense that there exists an equivariant contactomorphism taking
one to the other.

The foliations studied by Libermann and Lutz are regular. The singular counter-
part to the result of Lutz was proved by Banyaga and Molino in [5] but for contact
forms.

Namely, Banyaga and Molino study the problem of finding normal forms under
the additional assumption of transversal ellipticity. The assumption of transversal
ellipticity allows to relate the foliation F ′ of generic dimension (n + 1) with the
foliation given by the orbits of a torus action.

In this section we extend these results for foliations which are related in the
same sense to (n + 1)-foliations but which are not necessarily identified with the
orbits of a torus action. All our study of the problem is done in a neighbourhood
of a compact orbit. Global results for contact manifolds admiting torus action
have been obtained by Banyaga and Molino in [5] and recently by Lerman in [41].
Linearization results for contact vector fields in R2n with an hyperbolic zero were
considered by Guillemin and Schaeffer in [32].

We will prove that for any two contact forms for which F is Legendrian and hav-
ing the same Reeb vector field, we can find a foliation preserving contactomorphism
taking one to the other. It turns out that the Legendrian condition imposed on
the foliation for the contact form α becomes a Lagrangian condition for the same
foliation with the symplectic form dα defined in a convenient submanifold. The
result appears then as an application of the symplectic equivalence results for the
symplectic case spelled out before. We can also establish the G-equivariant ver-
sion of contact equivalence. Applying this G-equivariant version to the particular
case of the finite group attached to the finite covering, we obtain as a consequence
the contact equivalence of any two contact forms fulfilling the above mentioned
conditions.

In contrast to symplectic manifolds (M, ω) where the condition iX(ω) = 0 implies
X = 0, in a contact manifold we can find non-trivial solutions X to the equation
iX(ω) = 0. A privileged solution of this equation has the particular name of Reeb
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vector field. It is a concept attached to the contact form rather than the contact
structure.

Definition 3.1. Given a contact pair (M, α), the Reeb vector field Z is the unique
vector field satisfying the following two conditions,

• iZdα = 0.
• α(Z) = 1.

The Reeb vector field is a particular case of what we call contact vector field.

Definition 3.2. Let f be a smooth function on the contact pair (M, α) the contact
vector field associated to f is the unique vector field Xf fulfilling the following two
conditions

• iXf
dα|E = −df|E .

• α(Xf ) = f.

Observe that the contact vector field associated to the function 1 is precisely the
Reeb vector field.

As it is proved in [47], we can express any vector field X in T (M) as a sum of
two vector fields X1 and X2 where the vector field X1 belongs to the subbundle E
and its called the horizontal part of X and the vector field X2 is the component
in the direction of the Reeb vector field. The standard notation for the horizontal
vector field associated to X is X̂.

We can now define the notion of Jacobi bracket of two functions, which is the
contact counterpart to the Poisson bracket of two functions.

Definition 3.3. Let f, g be two smooth functions on a contact pair (M, α), we
define the Jacobi bracket as,

[f, g] = α([Xf , Xg]).

The following relations are proved in [47],

•
(3.1) X[f,g] = [Xf , Xg]

•
(3.2) [f, g] = dα(Xf , Xg) + f(Z(g))− g(Z(f))

Definition 3.4. A submanifold N ⊂ M2n+1 is Legendrian if dimN = n and
α(X) = 0 for any X ∈ T (N).

3.1. Toric and non-toric contact manifolds and integrability. In this section
we define the foliations that we will work with throughout this section and we will
also define the linear model. Let (M2n+1, α) be a contact pair and let Z be its
Reeb vector field. We make the following assumptions,
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• We assume Z coincides with the infinitesimal generator of an S1 action.
Let S be one of its orbits.

• We assume that there are n first integrals f1, . . . , fn of Z (that is Z(fi) = 0)
which fulfil the following additional hypotheses:
(1) The first integrals are independent in an open dense set. That is,

df1 ∧ · · · ∧ dfn 6= 0 in an open dense set.
(2) The n-first integrals are in involution with respect to the Jacobi bracket

associated to α. That is to say,

[fi, fj ] = 0 ,∀i, j.

(3) The minimum rank of the differential (df1, . . . , dfn) is k. Let p be a
point in M2n+1 such that the rank is exactly k. Let O be the orbit of
the contact vector fields through p. We will assume the following,

(a) O is diffeomorphic to a torus of dimension k + 1.
(b) The first integrals f1, . . . , fk are non-singular along O and the

first integrals fk+1, . . . , fn have a non-degenerate singularity in
the Morse-Bott sense along O.

Since [fi, fj ] = 0 then due to formula 3.1, [Xfi , Xfj ] = 0 and this implies that
the distribution < Z, Xf1 , . . . , Xfn > is involutive because the functions fi are first
integrals of the Reeb vector field. Thus, we can talk about the foliation generated
by the contact vector fields of the functions 1, f1, . . . , fn. This foliation will be
denoted by F ′.

On the other hand, consider the horizontal parts of the contact vector fields.
They have the form X̂f = Xf −fZ. Thus the distribution < X̂f1 , . . . X̂fn > defines
an involutive distribution. The foliation defined by this distribution will be denoted
by F . Observe that since α(Xf ) = f and α(Z) = 1 then the regular leaves of this
foliation are Legendrian submanifolds with respect to α.

That is why this foliation will be called the singular Legendrian foliation.

In fact we will work with germ-like foliations. That is, we will assume that the
foliation is defined in a neighbourhood of O. Now let p ∈ M be a singular point.
We will say that the point has rank r if the dimension of the orbit through p is r.

Once the two foliations F and F ′ are defined we are ready to pose the following
problem.

Problem

Study the contact forms α′ defined in a neighbourhood of O for which F is
Legendrian and such that the Reeb vector field with respect to α′ coincides with
the Reeb vector field with respect to α.
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As far as this problem is concerned we will prove the following.

There exists a diffeomorphism φ defined in a neighbourhood of O such that
φ∗(α′) = α and φ preserves the foliations F and F ′.

In order to deal with this problem we will need to introduce coordinates in such
a way that the foliations F and F ′ are really simple. This judicious choice of
coordinates leads us to the linear model.

3.1.1. Differentiable linearization. In this subsection we want to prove that under
the above assumptions there exist coordinates in a neighbourhood of O such that
the foliation can be linearized.

We prove the following theorem,

Theorem 3.5. There exist coordinates (θ0, . . . , θk, p1, . . . , pk, x1, y1, . . . , xn−k, yn−k)
in a finite covering of a tubular neighbourhood of O such that

• The Reeb vector field is Z = ∂
∂θ0

.
• There exists a triple of natural numbers (ke, kh, kf ) with ke+kh+2kf = n−k

and such that the first integrals fi are of the following type, fi = pi, 1 ≤
i ≤ k and
fi+k = x2

i + y2
i for 1 ≤ i ≤ ke ,

fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

• The foliation F is given by the orbits of the distribution D =< Y1, . . . Yn >
where Yi = Xi − fiZ being Xi the contact vector field of fi with respect to
the contact form α = dθ0 +

∑n−k
i=1

1
2 (xidyi − yidxi) +

∑k
i=1 pidθi.

Proof. First of all, since Z is the infinitesimal generator of an S1-action, according
to the Slice Theorem [?] a neighbourhood of O in M2n+1 is diffeomorphic to the
bundle S1×S1

x
W where S1

x denotes the isotropy group at a point in the orbit. Thus
we can choose coordinates

(θ0, . . . , θk, p1, . . . , pk, x1, y1, . . . , xn−k, yn−k)

in a finite covering of a neighbourhood of O such that the Reeb vector field has the
form Z = ∂

∂θ0
. Now the 1-form α can be written as

α = dθ0 + α.

Observe that since Z is the Reeb vector field in particular we obtain

iZdα = 0

Using Cartan’s formula LZ(overlineα) = diZ(α) + iZdα we deduce that α does
not depend on θ0.

Further, the condition on the contact form α ∧ dαn 6= 0 implies that dα is a
symplectic form in the submanifold N0 = {p ∈ U(O), θ0 = 0}. Let fi be the n
first integrals. The equation

iY dα = −dfi
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has a unique well-defined solution when restricted to the symplectic submanifold
N0. We denote by Xs

fi
the n Hamiltonian vector fields of the functions fi with

respect to the symplectic structure dα on N0. We denote by Xc
fi

the n contact
vector fields of the functions fi with respect to the contact structure α. With all
these information at hand we can write

(3.3) Xc
fi

= Xs
fi

+ giZ

for certain smooth functions gi.

We are going to focus our attention in the symplectic submanifold N0 and in the
Hamiltonian vector fields Xs

fi
for a while.

First of all, we will check that {fi, fj} = 0 where {, } stands for the Poisson
bracket attached to dα. Thus, the vector fields Xs

fi
define a completely integrable

Hamiltonian system on N0 and the foliation they define is a singular Lagrangian
foliation.

We are going to check

{fi, fj} = [fi, fj ]

Because of the definition of Poisson bracket,

{fi, fj} = dα(Xs
fi

, Xs
fj

)

Since dα = dα, we can write this last equality as, dα(Xs
fi

, Xs
fj

)

Taking into account this observation and due to 3.3 this equality can be written
as,

{fi, fj} = dα(Xc
fi
− giZ, Xc

fj
− giZ)

But Z is the Reeb vector field and the last expression reads

dα(Xc
fi

, Xc
fj

)

which is, by definition, the Jacobi bracket of the functions fi and fj . Thus {fi, fj} =
[fi, fj ] = 0
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Denote by ON a singular compact orbit of minimal rank of the singular La-
grangian foliation in N0. According to the symplectic linearization theorem (the-
orem 2.13) for Lagrangian foliations. There exists a diffeomorphism in a neigh-
bourhood of a singular compact orbit which takes the foliation to the linearized
one and the symplectic structure dα to the Darboux symplectic structure. Re-
call that the linearized foliation has a finite group attached to it. In particular,
we can find a diffeomorphism in a covering of a tubular neighbourhood of ON ,
φ : ˜(U(ON )) −→ φ( ˜(U(ON ))) such that in the new coordinates provided by the
diffeomorphism the first integrals have the following simple form:

fi = pi, for 1 ≤ i ≤ k , fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,
fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

Now define,

ϕ : S1 × ˜(U(ON )) −→ ϕ(S1 × ( ˜U(ON )))
(θ0, z) −→ (θ0, φ(z))

Observe that since

φ∗(
k∑

i=1

dpi ∧ dθi +
n−k∑

i=1

dxi ∧ dyi) = dα

Then by using the relative Poincaré lemma in a neighbourhood of compact orbit,
we may assume φ∗(

∑
1
2 (xidyi − yidxi) +

∑
pidθi + dH) = α

this yields,

ϕ∗(dθ0 +
∑ 1

2
(xidyi − yidxi) +

∑
pidθi + dH) = dθ0 + α

Thus we may assume that in the new coordinates

α = dθ0 +
n−k∑

i=1

1
2
(xidyi − yidxi) +

k∑

i=1

pidθi + dH

Now consider the path of contact forms

αt = dθ0 +
n−k∑

i=1

1
2
(xidyi − yidxi) +

k∑

i=1

pidθi + tdH

Observe that α1 = α and α0 is the Darboux contact form. Consider now the
diffeomorphism,

φ1(θ0, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0−H, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k).
So ψ1(α1) = α0. Thus, ψ∗1(α1) = α0 and in the new coordinates provided by ψ1

we can assume that α is the Darboux contact form. That is to say, we can assume
that α = dθ0 +

∑n−k
i=1

1
2 (xidyi−yidxi)+

∑k
i=1 pidθi. In the new coordinates fi have

the same form.

Finally the foliation we are considering is generated by the horizontal parts of Xfi

which in the new coordinates are Yi = Xi−fiZ being Xi the contact vector field of
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fi with respect to the contact form α = dθ0 +
∑n−k

i=1
1
2 (xidyi− yidxi)+

∑k
i=1 pidθi.

This ends the proof of the theorem.

¤

This theorem establishes the existence of a linear foliation and a model manifold.

The model manifold is the manifold M2n+1
0 = Tk+1 × Uk × V 2(n−k), where Uk

and V 2(n−k) are k-dimensional and 2(n−k) dimensional disks respectively. Now we
introduce a contact form in this model manifold. We take coordinates (θ0, . . . , θk)
on Tk+1, (p1, . . . , pk) on Uk and (x1, . . . , xn−k, y1, . . . yn−k) on V 2(n−k) and we
consider the following contact form

α0 = dθ0 +
k∑

i=1

pidθi +
(n−k)∑

i=1

1
2
(xidyi − yidxi).

The pair (M2n+1
0 , α0) is called the contact model manifold. The Reeb vector

field in the contact model manifold is the vector field ∂
∂θ0

.

Now consider functions of the following type, fi = pi, 1 ≤ i ≤ k and

fi+k = x2
i + y2

i for 1 ≤ i ≤ ke ,
fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The linear foliation is the foliation given by the orbits of the distribution D =<
Y1, . . . Yn > where Yi = Xi − fiZ being Xi the contact vector field of fi in the
contact model manifold.

In all, we have proved that there exists a finite covering of a neighbourhood
U(O) of the compact orbit considered such that the lifted foliation in the covering
is differentiably equivalent to the linear foliation in the contact model manifold.

The linear model for the foliation F ′ is the foliation expressed in the coordinates
provided by the theorem together with a finite group attached to the finite covering.

The different smooth submodels corresponding to the model manifold are labeled
by a finite group which acts in a contact fashion and preserves the foliation in the
model manifold. This is the only differentiable invariant. Therefore, our problem
of contact equivalence will be studied in this model manifold and the equivalence
will be established via the equivariant version equivalence which will be considered
in the last section.

We now prove the following theorem,

Theorem 3.6. Let α be a contact form on the model manifold M2n+1
0 for which

F is a Legendrian foliation and such that the Reeb vector field is ∂
∂θ0

. Then there
exists a diffeomorphism φ defined in a neighbourhood of the singular orbit O =
(θ0, . . . , θk, 0, . . . , 0) preserving F ′ and taking α to α0.

Proof. We are going to solve the problem by adjusting the contact form to a point
where we can apply our symplectic linearization result.
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Let us start by considering the contact 1-form α,

α = Adθ0 +
∑

Bidpi +
∑

Cidθi +
∑

Didxi +
∑

Eidyi

Observe that the fact that the Reeb vector field is ∂
∂θ0

imposes the following two
conditions on α,

• α( ∂
∂θ0

) = 1, that is to say A = 1.
So far we can write α = dθ0 + α′, being α′ =

∑
Bidpi +

∑
Cidθi +∑

Didxi +
∑

Eidyi.
• i ∂

∂θ0
dα = 0,

Since dα = dα′ the condition becomes,

i ∂
∂θ0

dα′ = 0

Now Cartan’s formula yields,

0 = i ∂
∂θ0

dα′ = L ∂
∂θ0

α′ − di ∂
∂θ0

α′

Since the last term vanishes this chain of equalities give the condition,

L ∂
∂θ0

α′ = 0

Therefore, the coefficient functions do not depend on θ0. Let us see that the
submanifold θ0 = 0 equipped with the form dα′ is a symplectic submanifold of the
model contact manifold. We denote this submanifold by N .

Since α is a contact form dα has to be symplectic in the vector bundle E defined
by E = {(p, u) ∈ T (M), αp(u) = 0} and dα = dα′ then dα′ defines a symplectic
structure on N .

Observe that the vector fields Xi = Xfi are tangent to the submanifold N .
Next step, we check that the vector fields Xi are Lagrangian for N , observe that
α(Xi) = fi.

Now since, dα′(Xi, Xj) = Xiα(Xj)−Xjα(Xi)− α([Xi, Xj ])

According to the computation above Xiα(Xj) = Xi(fj) but fi are first integrals
for the foliation and therefore this term vanishes. Symmetrically, the second term
vanishes. And since the Lie bracket of the vector fields are zero we obtain,

dα′(Xi, Xj) = 0

Therefore, the foliation F is Lagrangian for dα′ and we may apply the symplectic
linearization result in a neighbourhood of L = Tk (theorem ??) to find a local
diffeomorphism ϕ : U(L) −→ ϕ(U(L)) in a neighbourhood of the leaf L, preserving
the foliation F and satisfying ϕ∗(ω0) = dα′, where ω0 =

∑
i dpi∧dθi +

∑
dxi∧dyi.

After shrinking the initial neighbourhood if necessary, the neighbourhood of Tk+1

in the initial manifold M can be decomposed as a product, S1 × U(L). The S1

corresponds to an orbit of the Reeb vector field. We denote by z a point in U(L).
Now we define a diffeomorphism in the following way,
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φ : S1 × U(L) −→ φ(S1 × U(L))
(θ0, z) −→ (θ0, ϕ(z))

Since ϕ preserves F it is clear that this diffeomorphism is foliation-preserving.

Now consider φ(S1 × U(L)) endowed with the Darboux contact form. That is
with the contact form α0 = dθ0 +

∑k
i=1 pidθi +

∑(n−k)
i=1

1
2 (xidyi−yidxi). It remains

to check that the diffeomorphism above is indeed a contactomorphism.

First observe that since
ϕ∗(ω0) = dα′

and ω0 = d(β), being β = (
∑k

i=1 pidθi +
∑(n−k)

i=1
1
2 (xidyi − yidxi)) we can assert

that ϕ∗(β) = α′ + df for a smooth function f . Observe that since ϕ preserves the
foliation the function f is a basic function for the foliation. Now consider the path
αt = α0 + tdf being α0 the contact form α0 = dθ0 + α′. Consider

ψ1(θ0, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0−H, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k),
we obtain ψ∗1(α1) = α0.

Therefore φ is a contactomorphism and clearly it preserves the foliation.

¤
Remark 3.7. The proof we have included here is the one provided in my thesis.
There is another way to go which is to consider the reduction via the Hamiltonian
S1-action that the Reeb vector field determines in its symplectization. In the next
section we use this idea to prove an equivariant statement of the theorem above.

3.2. Additional symmetries. In this subsection we consider a compact Lie group
G acting on a contact model manifold in such a way that preserves the n first
integrals of the Reeb vector field and preserves the contact form as well. We want
to prove that there exists a diffeomorphism in a neighbourhood of O preserving the
n first integrals , preserving the contact form and linearizing the action of the group.
This result is a consequence of the equivariant symplectic linearization theorem.

The notion of linear action of a Lie group on the contact model manifold is
analogous to the equivalent notion for the symplectic model manifold.

Let G be a group defining a smooth action ρ : G × M2n+1
0 −→ M2n+1

0 on
M2n+1

0 . We assume that this action preserves the contact form α0 of the contact
model manifold. That is to say ρ∗g(α0) = α0. Assume further that it preserves the
n-first integrals (f1, . . . , fn), where fi = pi, 1 ≤ i ≤ k. For the sake of simplicity
we denote by F the collective mapping F = (p1, . . . , pk, fk+1, . . . , fn). We will say
that the action of G on M2n+1

0 is linear if it satisfies the following property:

G acts on the product M2n+1
0 = Dk×Tk+1×D2(n−k) componentwise; the action

of G on Dk is trivial, its action on Tk+1 is by translations (with respect to the
coordinate system (θ0, . . . , θk)), and its action on D2(n−k) is linear with respect to
the coordinate system (x1, y1, ..., xn−k, yn−k).

Under the above notations and assumptions. Now we can state and prove the
following theorem,

Theorem 3.8. There exists a diffeomorphism φ defined in a tubular neighbourhood
of O such that,



26 EVA MIRANDA

• it preserves the contact form α0 i.e φ∗(α0) = α0.
• it preserves F .
• it linearizes the action of G. That is to say φ ◦ ρg = ρ

(1)
g ◦ φ.

Proof. Recall that α0 = dθ0+α0 being α0 the 1-form (
∑k

i=1 pidθi+
∑(n−k)

i=1
1
2 (xidyi−

yidxi)). Consider the symplectic manifold S = M2n+1
0 × (−ε, ε) endowed with the

symplectic form ω0 = dt ∧ dθ0 + dα0, where t stands for a coordinate function on
(−ε, ε). An action of G on M2n+1

0 can be extended in a natural way to an action
of G on S as follows,

ρ̂ : G×M2n+1
0 × (−ε, ε)+ −→ M2n+1

0 × (−ε, ε)
(g, z, t) −→ (ρg(z), t)

On S we consider the moment mapping F̂ = (F, t). We can apply the equi-
variant linearization theorem to obtain a symplectomorphism ϕ̂ preserving F̂ and
linearizing the action ρ̂. From the definition of the action ρ̂ and the definition of F̂ ,
this symplectomorphism clearly descends to a diffeomorphism ϕ on M2n+1

0 which
linearizes the action ρ and which satisfies ϕ∗(dα0) = dα0.

Therefore by applying relative Poincaré lemma,

ϕ∗(α0) = α0 + dh

Finally the diffeomorphism,

φ(θ0, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0 − h, . . . , θk, p1, . . . , pk, x1, . . . , yn−k)

takes the form α0 + dh to α0 and provides new coordinates for which the action is
linear.

¤

In the previous section we have attained the contact linearization in the cover-
ing. Now applying the theorem of equivariant linearization to the group of deck
transformations we obtain as a corollary the following theorem,

Theorem 3.9. Let F be a foliation fulfilling the hypotheses specified in section 3.1,
let F ′ be the enlarged foliation with the Reeb vector field Z and let α be a contact
form for which F is Legendrian and such that Z is the Reeb vector field then there
exists a diffeomorphism defined in a neighbourhood of O taking F ′ to the linear
foliation, the orbit O to the torus {xi = 0, yi = 0, pi = 0} and taking the contact
form to the Darboux contact form α0.

3.2.1. Another approach to the equivariant case: The rigidity problem. In the same
sense, that the rigidity problem was approached in the symplectic case, we can also
prove that close contact structures are equivalent at the local, semilocal and global
case in the

The local case a linearization result for compact contact group actions was al-
ready established by Marc Chaperon [17].

In the global case, we can use the path method in the contact setting due to [30]
and reproduce the same ideas of the proof of the symplectic case.
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This statement is implicit in [65],

Theorem 3.10 (Miranda-Monnier-Zung). Let ρ0 and ρ1 be two C2-close contact
actions of a compact Lie group G on a compact contact manifold (M,α). Then
they can be made equivalent by conjugation via a contactomorphism.

4. The Poisson case

In this section we are going to provide some normal form results for integrable
systems in the Poisson setting.

We start this section by providing some natural examples of Hamiltonian and
integrable systems in Poisson manifolds.

4.1. Examples.

4.1.1. Example 1: Newton systems. This example was found with Alain Albouy. I
thank him for explaining me about Projective Dynamics.

Consider a system of the form:

q̈ = f(q)

These kind of systems are called Newton system. It is a Hamiltonian system in
moment and position coordinates.

Appell discovered that such systems can be projectivised.

Appell’s transformation (central projection) allows to change the “screen” of
projection (change of affine coordinates). Two such systems and their solutions are
equivalent. This is the principle of “Projective Dynamics” (Appell, Killing, Albouy
[1]...).

The study of projective dynamics allows to:

• Solve some problems by separation of variables.
• Simplify the solution of those systems by finding an appropriate screen. For

instance the Neumann problem on the ellipsoid becomes a Newton System
(Knoerrer).

By means of Appell’s transformation we transform both the dynamics
and the initial symplectic structure. We are including singularities into
the picture (coming from projectivisation). It motivates to look at the
integrable system from the Poisson point of view.

An example of Newton system is the two fixed-center problem (Euler, 1760). A
particle in the plane moves under the gravitational attraction of two fixed points A
and B with masses mA and mB .

This system reads:

q̈ = −mA
qA

‖qA‖3 −mB
qB

‖qB‖3

(qA = q −A, qB = q −B) Two first integrals are:
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H =
1
2
‖q̇‖2 − mA

‖qA‖ −mB
mB

‖qB‖

G = 〈qA ∧ q̇, qB ∧ q̇〉 − mA

‖qA‖〈qA, u〉 −mB
mB

‖qB‖〈qB , u〉

where u = qA − qB

They satisfy {H,G} = 0.

We can now perform central projection for the two-centers problem:

We start from the cotangent bundle in T ∗(R2) . Consider the “position” homo-
geneous coordinates [q0 : q1 : q2]. (the initial affine chart is q0 = 1).

We now perform central projection to the screen q2 = 1. After this, we change
the momenta accordingly and we obtain an integrable system on the new screen.

The new “symplectic ”structure (it is not symplectic we added “singularities” in
the procedure) reads:

dv1 ∧ dq1 +
q1

q2
(dq1 ∧ dv2 + dq2 ∧ dv1) +

(v2q1 − v1q2)
q2
2

dq1 ∧ dq2 + (
q2
1

q2
2

− 1)dv2 ∧ dq2

It makes sense to dualize the 2-form to get the hyperplane q2 = 0 into the
picture. By doing so, we can associate a bivector field which is a Poisson structure
on a dense set together with an integrable system on it.

4.1.2. Example 2: Gelfand-Cetlin system. The Gelfand-Cetlin system has been
classically (Guillemin-Sternberg) considered as an integrable system on a coadjoint
orbit O of u(n)∗. A good reference for this system is [34].

The dual of a Lie algebra constitute a simple example of linear Poisson structure
with Poisson brackets defined via the structure constants. The Gelfand-Cetlin
system can be seen as a system on the dual of a Lie algebra, as follows. We dualize
the increasing sequence of Lie algebra inclusions:

u(1) ⊂ · · · ⊂ u(n− 1) ⊂ u(n)

where u(k) is considered as the left-upper diagonal block of u(k + 1) for k =
1, . . . , n− 1), we get a sequence of surjective Poisson maps:

u(n)∗ 7−→ u(n− 1)∗ 7−→ · · · 7−→ u(1)∗

The family of functions on u(n)∗ obtained by pulling-back generators of the
Casimir algebras of all the u(k)∗ for k = 1, . . . , n yields an integrable system on
u(n)∗. The complete integrability of this system is a consequence of the method of
Thim).

For particular generators, its restriction to an open subset ofO gives the Gelfand-
Cetlin system (a commendable reference for this paper is [34]).

This system is defined not only when restricted to the coadjoint orbit with the
Kirillov-Kostant-Souriau symplectic structure but on u(n)∗.
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4.1.3. Example 3: Magnetic Flows on Homogeneous Spaces and coadjoint orbits.
The geodesic flow can be interpreted as the inertial motion of a particle on a
Riemannian manifold (Q, gij) with kinetic energy given by:

H(x, p) =
1
2

∑

i,j

gijpipj

The symplectic structure associated to g comes from the cotangent symplectic
structure with momenta defined via pj = gij ẋi. The motion of a particle under
additional magnetic field given by a closed 2-form on Q:

Ω =
∑

i,j

Fij(x)dxi ∧ dxj

is described by Hamilton’s equations associated to the symplectic structure ω +
ρ∗(Ω) where ρ is the standard projection from T ∗Q to Q.

Let G be a compact Lie group and H a closed subgroup. Let a ∈ h be H-adjoint
invariant.

In particular, H ∈ Ga. Let O(a) stand for the adjoint orbit. We then have a
submersion of homogeneous spaces σ : G/H −→ G/Ga

∼= O(a) and ω = σ∗(ΩKKS)
(with ΩKKS the Kostant-Kirillov-Souriau symplectic form) gives a magnetic field
on G/H. We then have [6]:

Theorem 4.1 (Bolsinov, Jovanovich). The magnetic geodesic flows of normal met-
ric ds2

0 in G/H with respect to the magnetic form ω is completely integrable in the
non-commutative sense.

By using a Theorem of Mischenko-Fomenko (non-commutative integrability Ã
commutative integrability) we obtain integrability of the magnetic geodesic flows
on G/H. Again, this can be viewed in the Poisson manifold T ∗(G)/H.

4.2. The local structure of a Poisson manifold. We start by defining what is
a Poisson structure.

When working with Poisson structure we need to work with bivector fields in-
stead of using forms.

Definition 4.1. A Poisson structure on a smooth manifold M is given by a smooth
antisymmetric bivector field Π satisfying

[Π, Π] = 0

This defines a Poisson bracket on C∞(M),

{f, g} := Π(df, dg)

Hamiltonian vector fields are defined by the formula Xf := Π(df, )̇ and the man-
ifold M is endowed with a smooth foliation (in the Sussmann sense) whose leaves
are symplectic manifolds. This symplectic foliation integrates the distribution of
Hamiltonian vector fields.



30 EVA MIRANDA

There is no Darboux theorem for Poisson manifolds. The best “normal form”
that we can get is the following result due to Weinstein [77]

Theorem 4.2 (Weinstein). Let (Mn, Π) be a smooth Poisson manifold and let
p be a point of M of rank 2k, then there is a smooth local coordinate system
(x1, y1, . . . , x2k, y2k, z1, . . . , zn−2k) near p, in which the Poisson structure Π can
be written as

Π =
k∑

i=1

∂

∂xi
∧ ∂

∂yi
+

∑

ij

fij(z)
∂

∂zi
∧ ∂

∂zj
,

where fij vanish at the origin.

The Poisson manifold is locally a product of a symplectic manifold with a Poisson
manifold with vanishing Poisson structure at the point.

(Mn,Π, p) ≈ (N2k, ω, p1)× (Mn−2k
0 , Π0, p2)

The symplectic foliation on the manifold is locally a product of the induced
symplectic foliation on M0 with the symplectic leaf through x.

4.3. Integrable systems, normal forms and action-angle coordinates for
Poisson manifolds. The results contained in this section are based on joint work
with Camille Laurent-Gengoux and Pol Vanhaecke and are mostly contained in our
joint paper [33].

Let us start by defining what is an integrable system on a Poisson manifold.

Definition 4.2. Let (M, Π) be a Poisson manifold of (maximal) rank 2r and of
dimension n. An s-tuplet of functions F = (f1, . . . , fs) on M is said to define a
Liouville integrable system on (M, Π) if

(1) f1, . . . , fs are independent
(2) f1, . . . , fs are pairwise in involution
(3) r + s = n

Viewed as a map, F : M → Rs is called the momentum map of (M, Π,F).

There are several problems analogous to the symplectic case that we could con-
sider in the Poisson setting.

We can also consider these problems for “easy” Poisson manifolds (but not as
easy as symplectic). These will be the b-Poisson case. [35], [36]. This will be
considered in a future paper.

4.3.1. A Darboux-Carathéodory theorem in the Poisson context. We start by stating
the local normal theorem that we have for Poisson structures contained in [33]:

Theorem 4.3 (Laurent, Miranda, Vanhaecke [33]). Let m be a point of a Poisson
manifold (M, Π) of dimension n. Let p1, . . . , pr be r functions in involution, defined
on a neighborhood of m, which vanish at m and whose Hamiltonian vector fields
are linearly independent at m. There exist, on a neighborhood U of m, functions
q1, . . . , qr, z1, . . . , zn−2r, such that
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(1) The n functions (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) form a system of coordi-
nates on U , centered at m;

(2) The Poisson structure Π is given on U by

(4.1) Π =
r∑

i=1

∂

∂qi
∧ ∂

∂pi
+

n−2r∑

i,j=1

gij(z)
∂

∂zi
∧ ∂

∂zj
,

where each function gij(z) is a smooth function on U and is independent
of p1, . . . , pr, q1, . . . , qr.

Observe that in this theorem we have an adaptation of Weinstein’s splitting
theorem to some of the first integrals of the integrable system but not all of them.

As we explained in [33], not every integrable system on a Poisson manifold can
be splitted (in a compatible way with Weinstein’s theorem).

The following example is contained in [33]:

On R4, with coordinates f1, f2, g1, g2, consider:

(4.2) Π =
∂

∂g1
∧ ∂

∂f1
+ g2

2 ∧
∂

∂f2
+ g2

∂

∂g1
∧ ∂

∂f2
,

As we proved in [33] the system and the system is not splitted.

Remark 4.4. In general we can formulate the condition of an integrable system to
be splitted via the Vorobjev data (ΠV ert, Γ,F) associated to the Poisson structure.
These data are determined in terms of the Poisson fibration over a symplectic leaf.
This is the content of a common project with Camille Laurent-Gengoux.

Indeed the fact, that these systems cannot be splitted is closely related to the
non-rigidity of integrable systems in the Poisson context.

That is to say, we can find close integrable systems which are not equivalent.

As an example consider the following one

On M = R4 consider the Poisson structure

π =
∂

∂x
∧ ∂

∂y
+ z1

∂

∂z1
∧ ∂

∂z2
.

and consider the two integrable systems.

(1) The integrable system defined by F = (x, z1).
(2) The integrable system defined by Fε = (x, z1 + εxz2).

Then both integrable systems are close but are not equivalent (the first one is
“splitted” and the second one is not. This example is contained in the joint work
[46]).

4.3.2. An action-angle theorem for Poisson manifolds. Assume that:

(1) The mapping F = (f1, . . . , fs) defines an integrable system on the Poisson
manifold (M, Π) of dimension n and (maximal) rank 2r.

(2) Suppose that m ∈ M is a point such that it is regular for the integrable
system and the Poisson structure.



32 EVA MIRANDA

(3) Assume further than the integral manifold Fm of the foliation Xf1 , . . . Xfs

through m is compact (Liouville torus).

The following theorem is contained in [33]:

Theorem 4.5 (Laurent, Miranda, Vanhaecke). Then there exists R-valued smooth
functions (σ1, . . . , σs) and R/Z-valued smooth functions (θ1, . . . , θr), defined in a
neighborhood U of Fm such that

(1) The functions (θ1, . . . , θr, σ1, . . . , σs) define a diffeomorphism U ' Tr×Bs;
(2) The Poisson structure can be written in terms of these coordinates as

Π =
r∑

i=1

∂

∂θi
∧ ∂

∂σi
,

in particular the functions σr+1, . . . , σs are Casimirs of Π (restricted to U);
(3) The leaves of the surjective submersion F = (f1, . . . , fs) are given by the

projection onto the second component Tr ×Bs, in particular, the functions
σ1, . . . , σs depend only on the functions f1, . . . , fs.

The proof follows the spirit of Duistermaat in the symplectic case. The steps of
the proof are the following:

(1) Topology of the foliation. The fibration in a neighbourhood of a compact
connected fiber is a trivial fibration by compact fibers.

(2) These compact fibers are tori: We can recover a Tn-action tangent to the
leaves of the foliation. This implies a process of uniformization of periods.

(4.3)
Φ : Rr × (Tr ×Bs) → Tr ×Bs

((t1, . . . , tr),m) 7→ Φ(1)
t1 ◦ · · · ◦ Φ(r)

tr
(m).

(3) We prove that this action is Poisson ( we use the fact that if Y is a complete
vector field of period 1 and P is a bivector field for which L2

Y P = 0, then
LY P = 0).

(4) Finally we use the Poisson cohomology of the manifold and averaging with
respect to this action to check that the action is Hamiltonian.

(5) To construct action-angle coordinates we use Darboux-Carathéodory and
the constructed Hamiltonian action of Tn to drag normal forms from a
neighbourhood of a point to a neighbourhood of a fiber.

In [33] we also give a version for the non-commutative case.

4.4. Equivariant theorems for Poisson manifolds. In this short paragraph we
recall very quickly some equivariant results for compact group actions on Poisson
manifolds which preserve the Poisson structure.

For a special kind of Poisson structures called tame, we have the following the-
orem (see [63]) which is an equivariant version of Weinstein’s splitting theorem
[77].

Theorem 4.6 (Miranda-Zung [63]). Let (Pn, Π) be a smooth Poisson manifold, p
a point of P , 2k = rankPi(p), and G a compact Lie group which acts on P in such
a way that the action preserves Π and fixes the point p. Assume that the Poisson
structure Π is tame at p. Then there is a smooth canonical local coordinate system
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(x1, y1, . . . , xk, yk, z1, . . . , zn−2k) near p, in which the Poisson structure Π can be
written as

(4.4) Π =
k∑

i=1

∂

∂xi
∧ ∂

∂yi
+

∑

ij

fij(z)
∂

∂zi
∧ ∂

∂zj
,

with fij(0) = 0, and in which the action of G is linear and preserves the subspaces
{x1 = y1 = . . . xk = yk = 0} and {z1 = . . . = zn−2k = 0}.

This result implies local rigidity for compact Poisson group actions.

By using Conn’s linearization theorem [20] for semisimple Lie algebra’s of com-
pact type, we can also prove an equivariant linearization theorem which can be
found in [63].

Among the set of Poisson actions there is a particular class of Poisson actions
which deserves a special attention: The class of Hamiltonian actions.

Recently we have proved a rigidity result for Poisson actions with Philippe Mon-
nier and Nguyen Tien Zung.

Not to distract the reader with many technical details, we give a “sloppy” state-
ment here. The exact statement can be found in [65].

Theorem 4.7 (Miranda-Monnier-Zung [65]). Let ρ0 and ρ1 two close Hamiltonian
actions of compact semisimple type, then they are equivalent.

In this paper, we also find an application to prove an equivariant normal form
result for Poisson structures without assuming that the Poisson structure is tame.
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Mathématique, Coll. CNRS, No. 237, Paris, (1975), 187-210.
[44] El Kacimi-Alaoui, Sur la cohomologie feuillete, Compositio Math. 49 (1983), no. 2,195–215.
[45] B. Kruglikov and V. Matveev, Vanishing of the entropy pseudonorm for certain integrable

systems. ( Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 19-28.
[46] C. Laurent-Gengoux and E. Miranda, Splitting theorem and integrable systems in Poisson

manifolds, work in progress, 2011.
[47] P. Libermann, Legendre foliations on contact manifolds. Differential Geom. Appl. 1 (1991),

no. 1, 57–76.
[48] P. Libermann, C.M Marle, Symplectic geometry and analytical mechanics. Mathematics and

its Applications, 35. D. Reidel Publishing Co., Dordrecht, 1987.
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