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This thesis was conducted as a data mining project that was inspired by the re-
cent advances in the fields of statistics and computer science as well as their
applications in the business field. The main objective of the thesis was to predict
future house price using a publicly available data set containing observed infor-
mation about real estate value in Sindian District, Taiwan. First, the data was ex-
amined for useful information by computing basic descriptive statistics as well
as plotting graphs for visualization of the distribution and relationships of the
variables. Subsequently, the data was divided into a training set and a test set,
then linear regression and random forests models were built and tested. These
models used statistics to identify the pattern as well  as the relationships be-
tween the predictors and the response in the training data which would then be
used to predict future values of the response on the basis of the predictors. The
linear model selection was done by the best subset method while the random
forests models were compared using test  MSE and the model with the lowest
test MSE was chosen. The results showed that random forests models had sig-
nificantly lower MSE and thus proved to be more suitable for the predicting pur-
pose. 
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GLOSSARY

MSE Mean Squared Error

RSS Residual Sum of Squares

TSS Total Sum of Squares
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1 INTRODUCTION

Data mining refers to applying statistical and machine learning methods to ex-

tract meaningful information from data repositories. Thanks to the development

of state-of-the-art technologies, there is a massive amount of data generated

which opens the doors for data mining techniques to bring considerable value.

(SIGKDD 2018.) According to Columbus (2017), the amount of companies us-

ing big data analytics rose sharply from 17% in 2015 to 53% in 2017 (Columbus

2017). Indeed, data mining as well as statistical learning methods are being ap-

plied in a variety of fields such as medical, social sciences or business (Man-

gasarian,  Street  &  Wolberg  1995,  570-577;  Buza  2014;  Metzger,  Leitner,

Ivanovic, Schmieders, Franklin, Carro, Dustdar & Pohl 2015, 276-290). Inspired

by the value that data mining and statistical learning could bring, this thesis was

conducted as a data mining project with the main objective of using statistical

learning methods to predict future house price in Sindian District, Taiwan and a

publicly  available data set from Yeh & Hsu (2018)  containing recorded data

about real estate valuation in Sindian District was used for this purpose (Yeh &

Hsu 2018, 260-271). The statistical learning methods would identify the patterns

and the relationship between the variables in the data set, use this information

to build models that could predict the house price based on the other variables.

The information of the house used for leaning and predicting consisted of its

transaction date, age, distance from the nearest metro, the number of conve-

nience stores nearby and geographic coordinates. After the statistical models

that can learn by identifying the relationships between the house price and the

aforementioned data were built, they would take new data of the latter as inputs

and come up with predictions for the former as output. 

The outline of this thesis is structured as follows. Section 2 contains the theoret-

ical framework needed for this project which mainly involves the theory behind

the statistical learning methods. Section 3 describes specifically the methodol-

ogy of this thesis. This includes data gathering, exploring, preprocessing and

model building. Additionally, the methods as well as criteria for evaluating and

choosing models are also presented. Section 4 is mainly used to describe the
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data exploration process since this is a crucial step in a common data mining

project. Section 5 describes the results of applying the methods in section 3 to

the data. The last section is used to analyze and discuss the results from the

previous  section,  suggest  potential  application  and  further  development  and

lastly make final conclusions for the thesis.  
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2 THEORETICAL FRAMEWORK

2.1 Statistical learning 

2.1.1 Definition

Generally, statistical learning means a set of approaches used for estimating

some assumed relationship between variables of a data set.  Normally, there

would be some input variables X1 , X2 , ..., X p and a corresponding output variable

Y . There are several names for these variables. The input variables can also be

called predictors, independent variables, features or just variables while the out-

put variable can be called response or dependent variable. The relationship be-

tween Y  and X=(X1 , X2 ,... , X p ) can be generalized as:

Y=f ( X )+ϵ .

In this formula, f  is a fixed but unknown function of X  while ϵ  is a random error

term having mean zero and independent of X . Statistical learning methods aim

at giving a good estimation of f . (James et al. 2013, 15-17.)

2.1.2 Importance of estimating f

The estimate of  f  is important because of two main reasons, one of which is

when X  or a set of input variables are available but Y  or output variable is un-

known, a sufficiently accurate estimate of f  allows prediction of Y  using the for-

mula:

Ŷ= f̂ ( X )
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with f̂  is the estimate of f  and Ŷ  is the prediction of Y . For this objective, f  can

be treated as a black box in the sense that predicting Y  accurately is more im-

portant than knowing its true form. The accuracy of the prediction depends on

two quantities known as reducible error and irreducible error. If f̂  is not an exact

estimate of f , which happens most of the time, then the error caused by this is

called reducible error since it is possible to reduce this quantity by choosing a

more suitable statistical method. On the other hand, even if f̂  is exactly equal to

f , the prediction would still have some error due to the fact that Y  is also a func-

tion of ϵ  which could not be predicted using X . In other words, regardless of the

accuracy of f̂ , the error ϵ  is irreducible. The other reason for estimating f  is to

properly have an insight on the dynamics of the variables, how they affect each

other.  f  is now used to understand how Y  changes as a function of X . There-

fore, contrary to prediction, the true form of  f  must be known. (James et al.

2013, 17-19.)

2.1.3 Flexibility and interpretability trade-off

FIGURE 1. Flexibility and interpretability trade-off of different statistical methods 
(James et al. 2013, 25).
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There is a significant trade-off between flexibility and interpretability of the vari -

ous statistical methods.  The flexibility of a method could be understood as the

ability to give many shapes and forms to the estimate of f . For instance, linear

regression is seen as inflexible since it can only create linear functions. Figure 1

depicts the trade-off between flexibility and interpretability of some well-known

methods. Inflexible methods are easy to interpret, making it easier to under-

stand the relationship between the predictors and response,  however,  these

methods might be biased for estimating a much more complicated problem by a

too simple model. These methods are suitable in situations where the main ob-

jective is inference since they are capable of describing the relationship of the

variables in an understandable way. On the contrary, flexible methods can fit

data with complex relationship, however, they usually result in complicated esti-

mates of f  that make it difficult to understand how variables interact with each

other. These methods potentially work better when the task of prediction is inter-

ested since the  estimated models can match the data  better.  Unfortunately,

highly flexible methods could be at risk of overfitting which essentially means

that the model fits the training data too well and consequently follows some pat-

terns randomly caused in  the training data only,  therefore, the model  would

have  substandard  performance  facing  new  data  since  the  random patterns

found in the training data would not exist in the new data. (James et al. 2013,

25-26.)

2.1.4 Supervised learning

Most statistical learning problems could be divided into two categories: super-

vised and unsupervised. This thesis focuses on the supervised learning task. In

essence, supervised learning means that the statistical method is trained using

a data set that has each of  its  observation tagged with an answer that  the

method should come up with. In other words, the data is fully labeled. (Salian

2018.) For example, for every observation of X1 , X2 ,... , X p there is a correspond-

ing value of Y  (James et al. 2013, 26). Supervised learning mainly aims at relat-

ing the response to the predictors so as to predict the response accurately with
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future predictors and this objective matches regression problem well, therefore,

supervised learning is commonly used in regression problems. The statistical

methods that are used in this thesis are linear regression and random forests,

both of which fall into regression and supervised learning category.

2.1.5 The mean squared error

The mean squared error (MSE) computed by the formula:

MSE =
1
n
∑
i=1

n

( yi − f̂ (x i))
2,

is commonly used to evaluate the performance of a statistical method by quanti-

fying how close the predicted responses are to the actual responses. In the for-

mula,  f̂ (x i) stands for the predicted response of the ith observation. The MSE

would be small if the predicted responses are close to the observed responses

and vice versa. The  MSE obtained from using the training data is called train

MSE while the MSE obtained from applying the statistical method to new data is

called test  MSE. Usually, the test  MSE is more important since the train  MSE

only shows the statistical method’s performance on old data while the test MSE

shows the method’s performance on unseen data which can be a valid measure

of how well it would predict future data, which is also the main objective of the

prediction task. (James et al. 2013, 29-30.)

2.2 Linear regression

2.2.1 Simple linear regression



11

Linear regression is a simple approach for supervised learning as well as pre-

dicting quantitative value. Simple linear regression predicts one variable based

on another variable (Lane, Scott, Hebl, Guerra, Osherson & Zimmer n.d., 462).

The method involves only one independent variable and one dependent vari-

able, assuming there is a linear relationship between two variables (James et al.

2013, 61). Therefore, the predicted values of the response plotted as a function

of the predictor would form a straight line (Lane et al. n.d., 462). Figure 2 shows

an example of body weight plotted as a function of height (Sullivan & LaMorte

2016). The stars represent the actual data points while the straight line is the

prediction of body weight and the linear relationship is quite visible.  

The simple linear relationship could be expressed mathematically as:

Y≈ β0 + β1 X.

In this equation, β0 and β1 are two unknown constant, in which β0 is the intercept

parameter while β1 is the slope parameter. They are also known as the model

coefficients. By estimating the coefficients, future values of Y  could be predicted

using this formula:

FIGURE 2. Body weight plotted as a function of height 
(Sullivan, LaMorte 2016).
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ŷ =β̂0 + β̂1 x .

In the formula, ŷ is a single prediction of Y  based on a value x of  X , while β̂0

and  β̂1 are estimates of the coefficients  β0 and  β1 respectively. (James et al.

2013, 61.)

2.2.2 Estimating β0 and β1

Normally, the real values of β0 and β1 are unknown, therefore, the data are used

to make estimates of them. The objective is to come up with estimates that

make the model fit the data well and while there are a number of measures for

evaluating this quality, the most commonly used is called least squares which

aims at minimizing the residual sum of squares (RSS):

RSS = e1
2
+ e1

2
+ ... + en

2 

where e i = y i − ŷ i known as the ith residual is the difference between the ith ob-

served value y i  and predicted value ŷ i of Y . Figure 3 shows an example of a

linear model fitted using least squares for a data set in which Sales is the re-

sponse and TV, which stands for TV advertising cost, is the predictor. Each gray

line represents an error and the fit is calculated by minimizing the sum of these

errors. β̂0 and β̂1 can be found using the following formulae:

β̂1 =

∑
i=1

n

(x i − x̄ )( y i − ȳ )

∑
i=1

n

(x i − x̄ )2
,

β̂0= ȳ − β̂1 x̄,

in which ȳ and x̄ are the sample means. (James et al. 2013, 62.)
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2.2.3 Multiple linear regression

In reality, there are usually more than one predictors, therefore, simple linear re-

gression could be insufficient to compute a reasonable prediction. Multiple lin-

ear regression alleviates this problem by extending the simple linear model to fit

multiple predictors, giving each predictor a slope coefficient:

Y = β0 + β1 X1 + β2 X2 + ... + βp X p + ϵ.

The coefficients could be interpreted as the average effect on  Y  of a unit in-

crease in X j while the other predictors remain the same. Similar to simple linear

regression, multiple linear regression predicts future values of the response by

the following formula:

ŷ =β̂0 + β̂1 x1 + β̂2 x2 + ... + β̂p xp.

The  coefficients  are  also  estimated  by  minimizing  the  RSS =∑
i=1

n

( y i − ŷ i)
2.

(James et al. 2013, 71-72.) 

FIGURE 3. Example of a linear model fitted using least squares (James et al. 2013, 62).
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2.2.4 Best subset selection

One of the main concerns when multiple linear regression is applied is choosing

the predictors to include in the model because of several reasons. First, redun-

dant predictors that do not improve the regression performance should be re-

moved so that  the model  becomes simpler  and easier  to  interpret.  Second,

most of the times, not all of the predictors have meaningful relationship with the

response. If all of the predictors are used to train the model, the ones that do

not have strong correlation with the response would actually add noise and neg-

atively affect the performance of the model. Additionally, collinearity would be

caused if too many variables are working the same task. Finally, using only im-

portant variables helps reducing the cost of measuring the redundant variables.

(Faraway 2002, 124.) 

One possible method for identifying the best predictors for multiple linear re-

gression  is  called  best  subset  selection.  Basically,  this  method fits  separate

least squares linear models for each combination of the predictors, then the re-

sulting models would be reviewed to come up with the best model. This algo-

rithm describes the steps involved in using best subset selection:

• Let  Μ0 be a null model which contains no predictors and only has the

sample mean as the intercept

• For k = 1, 2, …, p:

◦ Fit ( p
k ) linear models that have k predictors

◦ Choose the best among these by smallest RSS and call it Μk

• Select the best model from Μ0, ... , Μp. (James et al. 2013, 205.)

2.3 Random forests

2.3.1 Decision trees
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Essentially, decision trees solve regression task by split the data set into differ-

ent regions, calculate the mean of the responses in each region then simply use

that as the prediction for every observation in that region (James et al. 2013,

306). Figure 4 and 5 illustrate an example of a decision tree with two predictors

X 1 and X 2 (Drakos 2019). First, the data set is split into two regions based on

the split value 0.302548 of predictor X 2. The region that has X 2 < 0.302548 is

then divided again using split value 0.800113 of predictor X 1 and for simplicity,

these two regions are called  R1 and  R2 (Figure 5). At this point, the splitting

stops and the means of the responses of R1 and R2 are calculated and used

for prediction. In other words, every observation that has  X 2 < 0.302548 and

X 1 < 0.800113 would have a predicted response value of 0.807 (mean of re-

sponses  of  R1)  and,  on  the  other  hand,  every  observation  that  has

X 2 < 0.302548 and X 1≥ 0.800113 would have a predicted response value of 0.5

(mean of responses of R2). 

FIGURE 4. Example of a decision tree (Drakos 2019).
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According to James et al. (2013, 306), the decision on how to split the data fo-

cuses on minimizing the RSS:

RSS =∑
j=1

J

∑
i∈R j

( y i − ŷ R j
)
2,

in which ŷ R j
 is the mean response of the R j region. Starting with the whole train-

ing data set, all predictors X1, X2, ... , X p and all possible cutpoints s are consid-

ered then the ones that yield the tree with the lowest RSS are picked. The cut-

FIGURE 5. Example of a decision tree (Drakos 2019). R1 is the bottom left 
region and R2 is the top left region.
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point s is the value that is used to split the data into two regions { X∣X j < s} and

{ X∣X j ≥ s}. This process is applied recursively to split the data further until a

certain criterion is met, such as until no region has more than five observations. 

Apparently, decision trees offer several advantages as a statistical method. To

begin with, trees are intuitive, therefore, easy to be explained. Additionally, they

could be easily visualized and interpreted. (James et al. 2013, 315.) Unfortu-

nately, trees also have a major drawback known as high variance which means

even a small change in the data could affect the prediction negatively (Hastie,

Tibshirani & Friedman 2009, 312). Usually, models that overfit would have high

variance.  A method called random forests which is an extension of decision

trees can help alleviate these problem. 

2.3.2 Random forests

According to Ruozzi (2016), it is possible to reduce the variance of a variable by

averaging the whole set.  Suppose there are  Z1 , Z2 , ... , Z p random variables,

then the variance reduction could be mathematically expressed as follows:

Var ( 1p∑i=1

p

Z i)= 1
p

Var (Zi).

Evidently, the variance of the variables is reduced by p times by taking average.

Therefore, it would be intuitive to reduce the variance of a statistical method by

building several distinct models from different training data sets then averaging

those models. However, in reality, there would not be multiple different training

data sets, therefore, a brilliant resampling technique called bootstrap is used to

generate more data sets. Essentially, bootstrapping means randomly taking  n

observations from a size n data set with replacement which means that a same

observation can occur in the new data (James et al. 2013, 189). This process

can be applied repeatedly to create different data sets. Figure 6 illustrates the

bootstrap process as described (Yen 2019).  
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Basically, the random forests method uses bootstrapping to generate a number

of different data sets, builds tree models from those data then averages the

models. However, at the model building process, whenever a split decision is

made, only a random sample of the predictors are taken into consideration. For

example, suppose there are  X1, X2, ... , X p predictors, at each split a new ran-

dom sample of m predictors is made and usually m≈√ p. This is because if all of

the predictors are considered at each split, there might be some prominent pre-

dictors that the trees would end up choosing, thus creating a number of similar

trees and averaging similar trees would not significantly reduce the variance.

Therefore, by allowing only a sample of predictors at each split, random forests

reduce the significance of the outstanding predictors and give other predictors

more chance, making the result trees less similar and correlated and thus more

reliable. (James et al. 2013, 320.)

FIGURE 6. The bootstrap process (Yen 2019).
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3 METHODOLOGY

This thesis was carried out as a data mining project that focused on making fu-

ture predictions for the house price in Sindian District, New Taipei City, Taiwan.

According to Shmueli, Bruce, Yahav, Patel & Lichtendahl Jr. (2018), a typical

data mining process includes the following steps: 

• Understand the purpose of the project

• Obtain the data 

• Explore, clean, preprocess data 

• Reduce data dimension

• Determine the mining task

• Divide the data

• Choose the techniques

• Use algorithm

• Interpret the results

• Deploy. 

As shown in Figure 7, Walker (2016) also came up with a similar process for

data mining, although this was divided into four main steps with smaller sub-

steps rather than a detailed list of ten steps by Shmueli et al. (2018).

FIGURE 7. The data mining process (Walker 2016).
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The process starts with defining the main purpose of the project. This is impor-

tant since having a good understanding of the purpose of the project would lead

to a clear overview, better planning and resource investment. 

Once the purpose is properly identified, the next step would be data acquisition,

which potentially involves taking sample from a larger database or even from

multiple  data sources.  (Shmueli  et  al.  2018.)  Therefore,  this  step requires a

number of important skills such as sampling, extracting, handling or merging

data. Indeed, when it comes to data, there is a wide variety of data kinds that

require different treatments such as database data, data warehouse and trans-

actional data. Relational databases consist of tables, each table has a set of at-

tributes and tuples which represent objects that are identified by unique keys

and  attribute  values.  Normally,  this  kind  of  data  is  accessed  by  database

queries which would be transformed into relational operations to allow retrieval

of specified subset of data. Data warehouses are repositories of information

from various sources and are modeled by a multidimensional  data structure

known as data cube. Even though data warehouse tools could help in data

analysis, additional tools are still needed for deeper analysis. Transactional data

store transactions as records, for examples, purchases, bookings and clicks.

Additionally, there are other kinds of data with different forms and structures

such as sequence data, data streams, spatial  data, design data,  multimedia

data and networked data which offer various kinds of information. (Han, Kamber

& Pei 2012, 9-14.) While data mining could involve massive database, the ac-

tual  analysis  might  need only  a  much smaller  amount  and moreover,  using

smaller data if possible also significantly reduces time and resource cost, thus

knowing what kinds of data, what portion of the whole data and how much is

needed is crucial. (Shmueli et al. 2018.)

After the data are properly gathered, they need to be thoroughly explored and

preprocessed to ensure usable condition. This step usually consists of handling

missing  values,  identifying  anomalies  such  as  outliers,  visualizing  data.

(Shmueli et al. 2018.) Data exploration aims at having a good insight on the

data. There are many kinds of data attribute such as nominal, ordinal, binary

and numeric and this information matters because data attribute decides the
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kind of values that data have. For examples, binary attribute has only two possi-

ble values that are 0 and 1 which mean absence and presence respectively

while numeric attribute refers to quantitative values usually measured in real or

integer numbers. Another typical exploratory step would be examining basic sta-

tistical descriptions of the data since these quantitative values reveal a lot about

the data’s properties. Usually, these statistical descriptions include values that

measure central tendency such as mean, median and mode, or measure the

dispersion such as range, variance and standard deviation. Data exploration

also heavily relies on data visualization with some common approaches such as

scatter plot, histogram and boxplot since visualization makes it easier to notice

trends and relationships. (Han et al. 2012, 41-56.) 

FIGURE 8. Network graph for The Wizard of Oz (Blue, 2015).



22

Figure 8 is an example for data visualization using network graph to illustrate

the interactions of the characters in The Wizard of Oz. Each node is a character

while  the  lines  represent  the  interactions  between  them and  the  bigger  the

node, the more interactions that character has. Additionally, the characters are

also classified according to their community and coded by color. (Blue, 2015.)

Moving on to data preprocessing, this usually has four main forms: data clean-

ing, data integration, data reduction and data transformation. Data cleaning in-

volves handling missing values, outliers and inconsistencies. Next, data integra-

tion essentially means integrating multiple data files together. When the data is

too large and difficult to handle, data reduction could be used to reduce the di -

mensions resulting in a new data set with fewer variables. Lastly, data transfor-

mation alters the data so that mining method would have better performance.

(Han et al. 2012, 85-87.)

FIGURE 9. Forms of data preprocess (Han et al. 2012, 87).
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The next step in the mining process would be deciding on the suitable mining

techniques, depending on the goal of the project and information from the ex-

ploration  step.  Typically,  this  step  involves trying  different  statistical  learning

methods or even different settings of the same method. Then, the models are

tested to identify the optimal choice and the results are interpreted to extract

meaningful insights. (Shmueli et al. 2018.)

The purpose of this thesis was defined to be predicting house price in the Sin-

dian District, New Taipei City, Taiwan by applying statistical learning methods on

recorded data about real estate to build regression models. The data set was

originally from Yeh & Hsu’s research paper (2018) and was made publicly avail-

able on UCI Machine Learning Repository (Yeh & Hsu 2018, 260-271). After

downloaded, the data were handled using the software R. First, the data were

examined for missing values, distributions of the variables and basic descriptive

statistics. Then a correlation test was performed to check the relationship be-

tween each of the predictors and the response. After the exploration was done,

the data were split into a training set and a test set, with the training set took

two-thirds observations of the original data set. The training set was then used

to fit regression models. The first model was multiple linear regression. Since

there were six predictors, best subset selection method was used to identify the

best linear model by fitting the training data set (6k) times, each time with a dif-

ferent  set  of  k  predictors  for  k = 1, 2, ... , 6.  The models  were  fit  using  least

squares method that focuses on minimizing:

∑
i=1

n

ϵ
2
= ϵ ' ϵ = ( y − Xβ) '( y − Xβ),

in which:
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 y = [
y1

y2

.

.

.
yn

], 

X = [
1 x11 x12 ... x1k

1 x21 x22 ... x2k

.

.

.

.

.

.

.

.

.

 
 
 

.

.

.
1 xn1 xn2 ... xnk

], 

β = [
β0

β1
.
.
.
βk

], 

ϵ = [
ϵ1
ϵ2
.
.
.
ϵn

]. 
Using linear algebra, it can be shown that the least squares estimates for β is

the vector:

β̂ = (X ' X )
−1 X ' y. (Bremer 2012.) 

In R, there is a built-in package that automatically computes the estimated coef-

ficients using least squares. For each value of k , the best model was identified

using RSS or R2 and named Μk. R
2 is a quantitative value that measures the pro-

portion of variability in the response that can be explained using the chosen pre-

dictors and is defined by:
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R2
=

(TSS − RSS)
TSS

= 1 −
RSS
TSS

,

with TSS =∑ ( y i − ȳ)2 known as total sum of squares which measures the total

variance in the response. The value of R2 is between 0 and 1, being close to 1

means a large proportion of variability of the response is explained and close to

0 means the opposite. Therefore,  Μk was supposed to be the model with the

highest  R2  or  lowest  RSS.  Then  the  best  linear  model  was  chosen  from

Μ1,Μ2, ... , Μ6 using adjusted R2: 

Adjusted R2
= 1−

RSS/(n − d − 1)
TSS /(n − 1)

,

where  n is  the number of  observations and  d is  the number of  variables.  A

model with a large value of adjusted R2 would have small test error. Adjusted R2

had to be used in this step because  Μ1, Μ2, ..., Μ6 are models with different

number of predictors and R2 could not evaluate their performance fairly due to

the fact that R2 just increases as the number of predictors increases. (James et

al. 2013, 205-210.) Subsequently, the training data set was used to fit random

forests models by bootstrapping 500 different data sets, building different trees

from these sets then averaging to get the result. This process was also con-

ducted using the programming language R. Additionally, since the number of

predictors was rather small, random forests models were fit with every possible

value for the number of predictors considered at each split. The resulting ran-

dom forests models as well as the linear models were then used to make pre-

dictions using the test data set and the performance was evaluated using test

MSE. 
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4 DATA EXPLORATION

4.1 Basic descriptive statistics and correlation

There are 414 observations, 6 independent variables and 1 dependent variable,

in which the house price is the dependent variable that needs to be predicted 

and the others are independent variables that are used to make predictions. 

The variables’ names are as follows:

 X1: transaction date

 X2: house age (unit: year)

 X3: distance to the nearest MRT station (unit: meter)

 X4: number of convenience stores in the living circle

 X5: latitude (unit: degree)

 X6: longitude (unit: degree)

 Y: house price of unit area (10,000 New Taiwan Dollar/Ping, 1 Ping = 3.3

meter squared)

Below is a table containing some basic descriptive statistics of the variables.

The variable X1 was not included in this table because its values represent the

month and year of transaction, for which computing these numerical statistics

did not provide much information. Additionally, there were no missing values in

the data.

Table 1. Basic descriptive statistics of the data

X2 X3 X4 X5 X6 Y

Min 0.000 23.38 0.000 24.93 121.5 7.60

1st Quartile 9.025 289.32 1.000 24.96 121.5 27.70

Median 16.100 492.23 4.000 24.97 121.5 38.45

Mean 17.713 1083.89 4.094 24.97 121.5 37.98

3rd Quartile 28.150 1454.28 6.000 24.98 121.5 46.60

Max 43.800 6488.02 10.000 25.01 121.6 117.50
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Subsequently,  the  correlation  of  the  variables  were  investigated.  Figure  10

shows a scatter plot matrix of the data which gives a general overview of the re-

lationship between the variables by putting multiple plots together. 

It appeared that the response Y had some visible relationships with predictors

X3, X4, X5 and X6. On the other hand, there were no likely relationships be-

tween Y and X1 or X2. Moreover, X3 and X6 also seemed to correlate. This

could be confirmed by computing the correlations between these variables. 

FIGURE 10. Scatter plot matrix of the data
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Figure 11 shows the computed correlation of the variables whose values range

from -1 to 1, with being close to 1 means a strong positive relationship and be-

ing  close to  1  means a  strong negative  relationship  while  being  close to  0

means the relationship is weak. Evidently, Y had considerable relationships with

X3, X4, X5 and X6. However, X3 and X6 also strongly correlated. Judge, Hill,

Griffiths, Lutkepohl & Lee (1988, 882) stated that the existence of near linear re-

lationships among the explanatory variables was called multicollinearity. This re-

lationship would make the estimated coefficient have large variance and thus

unstable from sample to sample. This instability renders the estimate unreliable.

(Judge et al. 1988, 882.) According to Goldberger (1991, 245), the variance of

an estimated coefficient β̂ j for variable x j is given by:

σ
β̂ j

2
= σ

2

[(1 − R j
2
)∑

i=1

n

(x ij − x̄ j)
2
]

, 

where ∑
i=1

n

(x ij − x̄ j)
2 is the variation of x j and R j

2 known as the coefficient of deter-

mination in the auxiliary regression of x j on other x’s would be close to 1 if there

FIGURE 11. Correlations of the variables
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is high multicollinearity. It is obvious that if everything else is kept the same, a

large R j
2 means a large variance σ

β̂ j

2 , which would make the estimate β̂ j unreli-

able because the sample value could be significantly different from the true β j.

(Goldberger 1991, 245.) 

After correlation investigation, each variable was examined more carefully. Fig-

ure 12 shows the distribution of the response. The values appeared to have

normal distribution with a slight positive skewness of 0.59. This could show that

most of the houses in the Sindian District had prices close to the average price

and there were fewer expensive than average or cheap houses, which seemed

intuitively correct. 

4.2 X1 – Transaction date 

The transaction date (X1) is formatted as real numbers, consisting of an integer 

part and a fractional part in which the former indicates the year of the 

transaction while the latter could be used to interpret the month of the 

transaction using this formula:

FIGURE 12. Histogram of the response.
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 ( X 1 − Year ) × 12 = Month. 

For example, 2013.500 would be interpreted as June 2013. By following this for-

mula, it could be shown that the data set contained values from August 2012 to

July 2013. A boxplot of the response divided into different transaction months is

shown in Figure 13. It could be seen that there was no significant difference in

the house price among the months, which agreed with the correlation check in

Figure 11. 

FIGURE 13. Boxplot of house price based on transaction date.
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4.3 X2 – House age

The data contained houses ranging from newly built to more than 40 years old.

There was a decreasing trend in the price for houses that were built longer ago,

however, this trend was insignificant (Figure 14). Some older houses that were

more than 35 years old even had higher prices than newer houses, but these

were only a few exceptional cases. 

FIGURE 14. Plot of house price and house age.

FIGURE 15. Plot of house price and distance to the nearest MRT.
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4.4 X3 – Distance to the nearest MRT 

MRT stands for Taipei Mass Rapid Transit is a metro system in Taiwan. It was

clear that houses that were nearer to the metro were more expensive (Figure

15). Additionally, most of the houses were within half a kilometer distance from

the nearest metro. This could be confirmed by the histogram of X3 in Figure 16.

FIGURE 16. Histogram of distance to the nearest MRT.

FIGURE 17. Plot of house price and number of convenience stores in the living circle.
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4.5 X4 – Number of convenience stores in the living circle

The variable X4 recorded the number of convenience stores in the living circle,

which was defined to be within 500 meters of the house (Yeh & Hsu 2018, 260-

217). As expected, houses that were near more convenience stores would have

higher value (Figure 17). 

FIGURE 18. Plot of house price and latitude.

FIGURE 19. Plot of house price and longitude.
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4.6 X5 & X6 – Geographic coordinates

Finally, the plots between the house price and the houses’ geographic coordi-

nates shown in Figure 18 and 19 were studied. The location of the house could

be considered important factor in predicting the price. For example, houses that

are near the downtown would help save time traveling to the office or shopping

places (Yeh & Hsu 2018, 260-271). The plots showed that there were a slight

positive correlation between the price and the location. 
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5 RESULTS

5.1 Multiple linear regression

The results of applying best subset selection is shown in the table below, in

which each row represents the number of explanatory variables included in the

model and each column is the variable name. For example, in row 3, X2, X3

and X4 are marked which means the best linear model that used 3 predictors is

the one that used X2, X3 and X4. Surprisingly, even though X1 and X2 did not

have strong correlation with Y individually, they were still included in models that

used more than 3 variables. 

Table 2. Best subset selection.

X1 X2 X3 X4 X5 X6

1 x

2 x x

3 x x x

4 x x x x

5 x x x x x

6 x x x x x x
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Figure 20 shows a plot of the adjusted R2 of the models, indicating that models

that used 5 and 6 variables performed the best and therefore were used to pre-

dict the house price using the test data set. Below are the summary of these

models, which contain the estimates of the coefficients as well as their standard

error, t value and p value. In this case, the standard error of an estimated coeffi-

cient is an estimate of its standard deviation, the t value is the estimated coeffi-

cient divided by its standard error and the p value is the probability of getting a

similar result in a different data set where the variable has no predictive power.

(Princeton University Library 2007.) The stars next to the p values represent the

significance of the estimated coefficient based on its p value, with 3 stars mean-

ing the most significant. For example, in Figure 21, the p value of the estimated

coefficient of X2 was 0.000482, which meant the probability of having this same

result for X2 in a random data set was only 0.0482%, therefore, X2 truly contrib-

uted to predicting Y in this data set. Additionally, the values of the estimated co-

efficients could indicate how the response would change if a predictor increase

or decrease one unit while other predictors stay the same. In the model with 5

predictors, the p-values indicated that all of the predictors’ coefficients were sig-

nificant and this model had a test MSE value of  61.185. The summary of the 6

predictor model showed that X6 was not a significant predictor and this model

had a test MSE value of 61.164.

FIGURE 20. The adjusted R2 of linear models with different number of variables.
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5.2 Random forests

The test  MSE of the random forests models with different number of variables

considered at each split are shown in Figure 23.

FIGURE 21. Summary of linear model with 5 predictors.

FIGURE 22. Summary of linear model with 6 predictors.
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It appeared that the models that used only 2 or 3 random variables at each split

had the lowest test MSE. The detailed test MSE values are shown below.

Table 3. Test MSE of random forests models.

Number

of

variables

at each

split

1 2 3 4 5 6

Test MSE 35.52947 33.97212 34.17915 35.00408 35.05431 37.29897

Additionally, the permutation importance of the variables in the random forests

models in which the number of variables considered at each split was 2 (m = 2)

and 3 (m = 3) were computed and are shown below in Figure 24 and Figure 25.

This quantitative value measured by the increase in MSE represents the drop in

the prediction accuracy of the model by permuting the values of a predictor. The

essential idea is that if a predictor is important for the prediction then permuting

FIGURE 23. Test MSE of random forests models.
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its values would considerably reduce the accuracy or the performance of the

model. 

FIGURE 24. Variable permutation importance  of random forests model (m = 2).

FIGURE 25. Variable permutation importance of random forests model (m = 3).
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6 DISCUSSION & CONCLUSION

6.1 The models

For the multiple linear regression method, the performance and accuracy of a

model is usually measured by the  MSE (James et al. 2013, 29). Even though

the model that used all of the predictors yielded the best test  MSE, the other

model that did not include predictor X5 should be a better choice due to several

reasons. First, the model with 5 predictors had a test MSE that closely matched

that of the full model but the reduction of one predictor made the former easier

to interpret and explain. Second, it is also recommended that predictor X6 not

included in the model to make prediction because of the high correlation it had

with predictor X3, making the estimated coefficient of X6 unstable as well as un-

reliable (James et al. 2013, 99-101). Using the estimated coefficients in Figure

21, it is clear that the transaction date and the number of convenience stores in

the living area had a positive impact on the house price. Indeed, according to

Sinyi  Realty,  Global  Property Guide (2019),  there was an increase in house

price in Taiwan from 2012 to 2013, which is shown in Figure 26. 

 

FIGURE 26: House price change (Sinyi Realty, 
Global Property Guide).
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On the other hand, the house age as well as the distance from the nearest MRT

had some negative relationship with the house price, whose estimated coeffi-

cients were −3.035×10−1 and −4.474×10−3 respectively. Since the estimated co-

efficients were quite small, it seemed that the effect of these predictors on the

response were not significant. 
 

Among random forests models, the ones that considered only 2 and 3 random

variables at each split performed the best with the lowest test MSE. Through the

variable permutation importance plots, it seemed that predictor X3 which is the

distance to the nearest MRT played the most important part in making the pre-

dictions since permuting its value increased the  MSE by approximately 30%.

The same conclusion could be made from the multiple linear regression model,

since in that model X3 had the smallest p value, indicating that it was the most

significant predictor in the model. The latitude and the house age also had con-

siderable importance in the random forests models. According to James et al.

(2013, 25, 329), bagging is considered a statistical learning method with high

flexibility and since bagging a special case of random forests, random forests

also has high flexibility. It is widely acknowledged that in a flexible method, the

model performs similar to a black box which is nearly unable to interpret and

thus the interaction between the predictors and the response is not as straight-

forward as in a linear regression model (Plate 1999). Even when the importance

of the variables is known, it is still unclear how changes in a predictor would af-

fect the response.

Based on the test  MSE,  apparently random forests models performed better

than linear regression models with the largest MSE of random forests is still sig-

nificantly smaller than that of linear regression. Figure 27 and 28 visualize the

observed values and the predicted values of the response using random forest

model and linear regression model respectively. More specifically, the random

forests model used considered 2 predictors at each split and the linear model

used 5 predictors to make predictions. The x-axis shows the index number of

the observation in the test data set and the y-axis shows the values of the re-

sponse.  It  is  visible  that  the predictions made by the random forests model

matched the observed values better. The random forests method outperformed
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the linear regression method in terms of predicting the future values of the re-

sponse which is the house price based on the information of its transaction

date, house age, distance from MRT, the number of convenience stores and ge-

ographic coordinates. However, the random forests method did not provide as

much information about the interaction of the variables as the linear regression

method. Nevertheless, the goal of this thesis was to build a model that maxi-

mized predictive power and the random forests model was able to satisfy this

criterion at the cost of interpretability.

FIGURE 27. Observed values versus predicted values of the response made by 
random forests model. The red line is the observed values and the blue line is the 
predicted values.
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6.2 Utilization & further development

This approach of estimating house price using statistical learning could be uti-

lized in several ways. Admittedly, businesses such as real estate developers,

real estate brokers, investors and banks rely a lot on the ability to predict the fu -

ture housing market to make strategies and decisions. For examples, Park and

Bae (2014) proposed machine learning algorithms for predicting house price

that could offer mortgage lenders and financial institutions better appraisal, risk

analysis and lending decisions whose advantages were believed to consist of

analysis cost reduction as well as faster loan decisions. Construction compa-

nies could also use statistical models to estimate house price before a new con-

struction to decide whether it should be built or not (Rafiei & Adeli 2016). Real

estate economics researchers could use predictions of future house price to for-

mulate theories, study or analyze the real estate market, for examples, the rela-

tionship between supply and demand (Koskinen 2019). The government regula-

tors also require to be able to predict future price as well as analyze the effects

of other factors on the price for several important tasks such as urban planning

FIGURE 28. Observed values versus predicted values of the response made by 
linear regression model. The red line is the observed values and the green line is 
the predicted values.
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and development,  making laws that  regulate the market  or  estimating taxes

from real estate. 

In order to develop and improve the performance as well as effect of the statisti -

cal  learning methods in predicting house price, it  could be suggested that a

larger and more detailed data set be used. The data set could include more

variables that describe the house more thoroughly, for examples, the number of

rooms, house area, building type, number of stories or tax amount. Even though

a larger data set would make the mining task more challenging, it would also be

more rewarding. More sophisticated and advanced methods such as support

vector machine or neural network would improve the predicting ability, however,

these methods require a deeper theory understanding. 

6.3 Conclusions

In this thesis, two statistical learning methods known as multiple linear regres-

sion and random forests were implemented on a publicly available real estate

data set to build models that could predict the house price in Sindian District,

Taiwan (Yeh & Hsu 2018). The theoretical framework was presented to serve as

theoretical foundations for other parts of the thesis. First, it introduced and de-

fined statistical learning as well as the multiple linear regression and random

forests methods. This part also provided the theory of interpretability and flexi-

bility trade-off which showed that linear regression was easier to interpret while

random forests was more flexible (James et al. 2013, 25). The MSE was also

explained and later used as the measure for performance. Subsequently, the

methodology section was used to describe how this thesis was conducted as a

data mining project by listing the steps and how the theory as well as tech-

niques in the theoretical framework would be utilized. The data would be exam-

ined, then split into a training set to train the models and a test set to assess the

models’ performance using  MSE. From there, it was shown that the two main

steps for this project were data exploration and model building, whose results

were reported respectively.  The data exploration step provided better under-

standing of the data and could be used for model selection and interpretation



45

(Han et al. 2012, 39). The results from training and testing models showed that

random forests model managed to predict house price with considerably higher

accuracy than linear regression but also was almost impossible to interpret. Ap-

plications and further developments were also discussed.
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