
3111.16111.1111131,11  

CoA Memo. NQ. 156 

- JuneL  1968  

THE COLLEGE OF AERONAUTICS 

DEPARTMENT OF PRODUCTION ENGINEERING 

F  

"5' 4 

/(!). 0 

A short note on useful codes for Fluidic Control Circuits V:,)1:18611"; 
Sr)  

- by - 

E.A. Powell 

SUMMARY 

This note gives a survey of codes particularly useful for computational 
and analogue to digital circuits. Also included are logic circuits capable 
of converting the code into natural binary form as at some stage in a control 
circuit this is normally required. 
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A short note on useful codes for Fluidic Control Circuits 

Natural Binary Code 

Weighting Factors 

(
8  
23) 

\ 
(22) (21) (

1
2°) 

o o 0 0 0 
o 0 0 1 1 
0 o 1 0 2 
o 0 1 1 3 
o 1 0 0 4 

o 1 0 1 5 
1 o 6 

0 1 1 1 7 
1 0 0 0 8 

1 0 0 1 9 
1 0 1 0 lo 

1 0 1 1 11 

1 1 0 0 12 

1 1 0 1 13 

1 1 1 0 14 

1 1 1 1 15 

In a control or computational circuit, the intelligence conveyed by a 
signal may be conveyed by the flow or pressure level of the signal. If 
the signal is continuously variable (or is allowed to assume many different 
discrete values) and its magnitude represents a measurement or a computing 
quantity, circuit tolerances may be critical and a high degree of performance 
reliability may be difficult to achieve. However if the signal is only 
required to exist in one of two widely separated states signal accuracy 
is non-critical. 

This is one of the reasons why the natural binary code has become an 
international standard form for punched tape command signals. Disadvantages 
that occur using computational logic circuits are (1) error detection is not 
nossiUe and (2)when converting; analogue si:nals into a digital form (i.e out-jut 
from a rotary encoder) ambiguities occur. There are several meViods of 
overcoming these limitations; error detection or correction codes for 
computational circuits and double nozzle systems or reflected codes for 
converting analogue motion into digital signals. 
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Typical amble„-ms signals shown in figure 1  ,,nuld be duP to slight 
misa3ignment of nozzles, variation in pressures or different time delays. 

The reader should realise that each column of the natural binary code 
has a weighting factor from which its decimal value can be calclapted. 

Example: 

Binary number 
	

Decimal value 

1101 
	

8 + 4 + 0 + 1 = 13 

CODES PARTICULARLY USEFUL FOR COMPUTATIONAL CIRCUITS 

EXCESS-3 CODE 

A B C D 

0 0 1 - 1 0 (3) 

0 1 0 0 1 (4) 

0 1 0 1 2 (5) 

0 1 1 0 3 (6) 

0 1 1 1 4 (7) 

1 0 0 0 5 (8) 
1= 0 0 1 6 (9) 

1 
,0  

1 0 7 (10) 

1( 0 1 1 8 (11) 

1 1 0 0 9 (12) 

This is a binary decimal form of code which expresses each decade in 
digits from binary (3) to binary (12) as shown. We observe first that 
although it is a nonweighted code, the l excess -31  code is self-complementing 
and is thus potentially useful in subtraction. For example, the complement 
of 0 is 9 i.e. 0011 becomes 1100; the complement of 3 is 6 i.e. 0110 becomes 
1001 etc. This is also useful for applications which require a count which 
increases symmetrically either side of a zero position. 

A circuit suitable for converting the excess-3 code to natural binary 
is shown in figure 2. 
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PARITY 

Augmented Code 

23  22 21 20 P 

0 0 0 0 0 0 

0 0 0 1 0 1 

0 0 1 0 1 2 

o 0 1 1 0 3 
o 1 0 0 1 4 

o 1 0 1 0 5 
o 1 1 o o 6 

o o 1 1 1 7 
1 0 0 0 1 8 

1 0 0 1 0 9 

Parity, the simplest method for detecting the presence of a single 
error, depends on the assumption that the probability of multiple errors is 
exceedingly small. The basic principle of the parity check is to transmit 
an extra digit with each code group. 	This digit is chosen so that the 
entire group, including the parity check digit, contains either an odd or an 
even number of either l's or Ol s. There are thus four ways in which the 
parity check can be applied. The majority of systems use only the even 
check on the lt s; that is, to each code group a parity is included so that the 
total transmitted group always contain an'even number of ll s. A parity 
checking circuit is shown in figure 3. 
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2 -OUTLOF -5  CODE 

ABCDE 

1 1 0 0 0 0 

0 0 0 1 1 1 

0 0 1 0 1 2 

o 0 1 1 0 3 
o 1 o 0 1 4 
0 1 0 1 0 5 
o 1 1 0 o 6 
1 0 0 0 1 7 
1 0 0 1 0 8 
1 0 1 0 0 9 

The 2-out-of-5 is a parity checking type of code which is able to detect 
all but one kind of error, this being when the incorrect two outputs are 
reading l' s. With the exception of '0' the positions A, B, C, D, E are 
weighted 7 - 4 - 2 - 1-Parity„ respectively. 

Other error detection codes such as 3-out-of-5 and 2-out-of-7 are all 
possible and have been extensively used in relay computers. 

The logic function derived to design the circuit shown in figure 4 are:- 

23  = A.E.E 

22  = A.B+A.E 

21  = A.C+A.E 

2°  = A.D.E + E.ff.E + A.0 

An error detection circuit is shown in Figure 5. 
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HAMMERING'S SINGLE ERROR CORRECTING  CODE  

kkmkmmm 

POSITION  

1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 

1 1 0 1 0 0 1 1 

0 1 0 1 0 1 0 2 

1 0 0 0 0 1 1 3 

1 0 0 1 1 0 0 4 

0 1 0 0 1 0 1 5 

1 1001 1 o 6 

0 0 0 1 1 1 1 7 

1 1 1 0 0 0 o 8 

0 0 1 1 0 0 1 9 

1 0 1 1 0 1 0 10 

0 1 1 0 0 1 1 11 

0 1 1 1 1 0 0 12 

1 0 1 0 1 0 1 13 

0 0 1 0 1 1 0 

1 1 1 1 1 1 1 15 

Hammering developed a number of codes to detect and correct errors. 
His code to detect and correct a single error in a four bit binary output 
requires seven input readings. The code is shown above where I M2  denotes 
a digit carrying information and 1 k1  denotes a checking digit. 

To detect and correct a single errors  even parity checks are made 
on positions 4, 5, 6, 7; 2, 3, 6, 7, and 1, 3, 5, 7. 	A parity failure in 
any one or more of the combinations will indicate the position of the error. 

Let X, Y and Z indicate the outputs of the three parity checks. A 
3 01  bit output indicating correct even parity and a 1 11  bit output a parity 
failure. 
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EXAMPLE 

(1) (2) (3) 

POSITION 

(4) 	(5) (6) (7) 
0 0 1 1 0 0 1 Correct output for 9 
0 0 1 1 1 0 1 Output containing error 

1 1 0 1 4-5-6-7 parity failure X= 1 

0 1 0 1 2-3-6-7 parity correct Y= 0 

0 1 1 1 1-3-5-7 parity failure Z= 1 

The output from the parity check is in natural binary form. 

X Y Z POSITION 

Parity check outputs 	1 0 1 	5 

An error is shown to be in position 5 and therefore the input to 
position 5 is complemented. A circuit to perform this operation is shown 
in figure 6. 

The addition of an eighthposition to the code enables a single error 
correcting, double error detecting code to be formed. Hammering's code 
can also be used for double error detecting and correcting, single error 
correction and triple error detection, or quadruple error detection. 



CODES PARTICULARLY USEFUL FOR ANALOGUE TO DIGITAL CONVERSIONS. 

PE 	or  ICK CODE 

A B C D 

0 1 0 1 0 

0 0 0 1 1 

0 0 1 1 2 

0 0 1 0 3 
0 1 1 0 4 

1 1 1 0 5 
1 0 1 0 6 

1 0 1 1 7 
1 0 0 1 8 

1 1 0 1 9 

This code is particularly useful where analogue to digital conversions 
and computations must be made. Only one bit changes as the code progresses 
from one decimal value to the next, thus the possibility of ambiguous signals 
due to the misalignment of a nozzle is eliminated. The code shown in positions 
B, C and D for values of 2 0' to 2 42  is reflected for values 2 52  to 1 91 , thus 
to complement any number the bit in row 'Al  only need be altered. This 
ability is potentially useful when subtraction is required. 

The logic functions derived to design the circuit down in figure 7 
are: 

23  = 

22  = C.(A+B) 

21  = B.0 

20 = A.B 	A.C.D 	X.f.5 + R.E:d 
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GRAY CODE 
•••••41•111.• 

A B C D 

0 0 0 0 

0 0 0 1 1 

0 0 1 1 2 

0 0 1 0 3 
0 1 1 0 14. 
0 1 1 1 5 
0 1 0 1 6 
0 1 0 0 7 
1 1 0 0 8 

1 1 0 1 9 
1 1 1 1 10 

1 1 1 0 11 

1 0 1 0 12 

1 0 1 1 13 

1 0 0 1 14 

1 0 0 0 15 

This is a code designed to overcome the ambiguity problems encountered 
when using such devices as rotary encoders. The main advantage of this code 
is its very simple Gray to natural binary conversion logic but has the dis-
advantage the code recycles on 15 and not 9 as is required by many systems. 

Weighting values of 15, 7, 3 and 1 can be given to position A, B, C and D 
respectively. A simple rule to determine the equivalent decimal value is to 
subtract, add, subtract, add each successive '1' bit as it appears from left 
to right. 

EXAMPLE  1 

A B C D 

(15) (7) (3) (1) 

Decimal 6 	0 	1 	0 	1 7 - 1 m 6 

EXAMPLE 2 

Decimal 13 	1 	0 	1 	1 15 - 3 1 = 13 
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The code can be expressed by the following equations to enable a 
Gray to natural binary convertor to be designed: 

23  = A 

22 	+ A.E 

21  = R.E.c + R.B.E + A.B.E.+ A.B.C .  

2°  . 	+ A.E.c.t + X.B.C.D + R.B.E.E 

+ 	+ A.B.C.5 + A.B.C.D + 

which simplifies to the following 

23 
 
. A 

22  (r) B + (23) E 

21 
 . (22) C + (22) E 

2° 
 

M-) D = (21) 5 

From these equations the circuit shown in figure 8 was designed. 

MODIFIED GRAY CODE  

A B C D 

0 0 0 0 0 

o 0 0 1 1 

0 0 1 1 2 

o 0 1 0 3 

o 1 1 0 1. 

o 1 1 1 5 

0 1 0 1 6 

o 1 0 0 7 

1 1 0 0 

1 0 0 0 9 

The advauta;.fe of the simple decoding circuit has been 
added bonus of beinv, useful where the 9 to 0 transition is 

If the code needs to be converted into natural binary 
equations can be used to design a suitable circuit (figure 

23 A 

22  . 

21 a  C..(?2) + n(22) 

2° 	D. (21) + D(21) + A.E. 

retained with 
important. 

form, the following 
9). 
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LIBAW AND CRAIG CODE 

A B C D E 

O 0 0 0 0 

O 0 0 0 1 	1 

O 0 0 1 1 	2 

O 0 1 1 1 3 
O 1 1 1 1 	4 

	

1 1 1 1 1 	5 
1 1 1 1 0 6 

	

1 1 1 0 0 	7 
1 1 0 0 0 8 

1 0 0 0 0 9 

Although the Gray type of codes are easier to decode into natural binary 
form, difficulties can be encountered in the manufacture of the encoder strip 
or drum. This type of code was one developed to reduce these problems. 
A coded-pattern-nozzle arrangement (as shown in figure 10) can be manufactured 
with far greater ease than those required by previously mentioned codes. 

The following equations can be used to design the circuit shown in figure 
11. 

23  = A.0  
22  = B.0 

21  = E.D + c.f 
0 - 2 = D.0 + D.E + A.B + B.0 + A.E 

U -SCAN 

This system consists of a natural binary coded strip and two parallel 
rows of nozzles positioned one digit apart (figure 12). The row selected 
for reading is determined by the state of the least significant nozzle. 
When this nozzle is reading '0' the leading nozzles are read, but when 1 1' 
the lagging nozzles are read. The only nozzle read while changing its state 
is the one detecting the least significant digit, therefore the probability 
of ambiguous signals during transition periods is removed. A circuit capable 
of performing the required operations is shown in figure 13. 
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V -SCAN 
1111m.•••••••••=.1.  

The nozzle arrangement for a V-Scan of a natural binary code is shown 
in figure 14. The distance between each pair of nozzles is equal to the 
length of the previous digit. The selection of the nozzle to be read is 
made digit by digit. If the signal from the least significant digit is 
'0', the lagging nozzle of the next significant digit is chosen. The 
method of selection for each successive nozzle is identical and the process 
is repeated until the most significant digit is chosen. Figure 15 shows a 
'V' scan to binary readout circuit. 
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