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ABSTRACT

We present a robust method for measuring the effective plane of the Kuiper belt. The derived plane has an
inclination with respect to the ecliptic of 1�.86 and an ascending node of 81�.6, with a 1 � error in pole position of
the plane of 0

�
.37. The plane of the Kuiper belt is inconsistent with the invariable plane, the plane of Jupiter, and

the plane of Neptune at the greater than 3 � level. Using linear secular perturbation theory, we show that the plane
of the Kuiper belt is expected to oscillate about the position of the invariable plane with a period of 1.9 million
years and an amplitude of 1

�
.2. The present predicted position of the plane of the Kuiper belt has an inclination

with respect to the ecliptic of 1
�
.74 and an ascending node of 86

�
.7, within 0

�
.20 of our measured position.
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1. INTRODUCTION

The orbital distributions of bodies in the Kuiper belt hold
important clues to the formation and evolution of the outer
solar system (Morbidelli & Brown 2004). One important dy-
namical property of the Kuiper belt that has yet to be exploited
is its overall plane. The plane of the Kuiper belt is affected by
the total angular momentum of the solar system, recent stellar
encounters, and unseen distant masses in the outer solar sys-
tem. Early observers of the Kuiper belt implicitly assumed that
the plane of the Kuiper belt was the plane of the ecliptic and
that the peak concentration of objects would therefore be in the
ecliptic (Jewitt & Luu 1995; Irwin, Tremaine, & Żytkow 1995;
Gladman et al. 1998; Chiang & Brown 1999). Several authors
subsequently suggested that the invariable plane—the plane of
the average angular momentum of the solar system—is more
appropriately considered the plane of the Kuiper belt (Hahn
2000; Levison & Stern 2001; Allen, Bernstein, & Malhotra
2002). Despite the importance for searches and interpretations
of knowing the correct plane, no accurate measure of the po-
sition of the plane of the Kuiper belt has been made. The only
attempt to date at extracting a measurement of the plane has
been from Collander-Brown et al. (2003), who examined the
average angular momentum of subsets of known Kuiper belt
objects but concluded that the plane’s position could not be
accurately determined in that manner.

We present here a new and robust method for determining
the plane of the Kuiper belt that makes optimal use of the
discovery information from all known Kuiper belt objects. We
then examine outer solar system dynamics to determine the
expected plane of the Kuiper belt given perturbations from all
presently known planetary bodies. We finally conclude with a
discussion of the comparison between the measured and
expected plane of the Kuiper belt and the implications for the
outer solar system.

2. METHOD AND RESULTS

2.1. Measurement of the Plane

For any given patch of sky on the celestial sphere, the av-
erage directional orbital velocity vector of all Kuiper belt

objects within that patch must be parallel to the plane of
symmetry of the Kuiper belt. It thus follows that this plane of
symmetry—which we define to be the overall plane of the
Kuiper belt—could hypothetically be determined uniquely by
taking any two different patches in the sky, measuring the
plane-of-sky orbital velocity vectors (which, in practice, sim-
ply requires measurement of the inclination) of objects in
these patches, and taking the cross product of the two average
directional velocity vectors to determine the pole of the plane
of the Kuiper belt. There are no observationally induced biases
in this hypothetical method; selection of any two patches of
the sky will give precisely the same result. The difficulty with
this method is, of course, that to accurately measure the av-
erage velocity vector in one spot on the sky requires that a
large number of objects must be found in a small location,
which is prohibitive.
A logical and practical extension to this method is easily

implemented, but potential observational biases exist and
must be examined. If every Kuiper belt object across the sky
were known, we could determine the plane of the Kuiper belt
either by trivially finding the average plane of the location
of all of the objects or equivalently by finding the plane that,
on average, best goes through all of the directional velocity
vectors of the objects. In the practical case, we do not know
all Kuiper belt objects, only some biased subset, and taking
the average plane of the observed objects is fraught with
unknowable and likely severe biases. As an extreme example,
imagine a subset of Kuiper belt objects (KBOs) discovered
exclusively at high ecliptic latitude and in one longitudinal
hemisphere of the sky. The average plane of these objects will
be severely biased by the latitudes and longitudes of the
discovery positions. If we instead find the plane that best fits
the directional velocity vectors of the objects, we have an
estimate of the plane of the Kuiper belt that is almost unaf-
fected by biases caused by the discovery positions. Even in
our severe case described above, the average of all of the
velocity vectors is still in the plane of the Kuiper belt even
when the observational longitudes and latitudes are extremely
biased. We present extensive Monte Carlo testing below to
verify that this method indeed works in a manner unbiased by
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discovery location for the samples that we use in the real
Kuiper belt.

We apply this method of finding the plane of the Kuiper
belt to all objects known as of 2003 July 1. We define our
initial sample to include 728 objects detected at heliocentric
distances greater than 30 AU. We include in our sample
objects of all classes and orbital solution qualities, as our
method relies only on the direction of motion, found from
the inclination, which is adequately determined for almost all
objects even in short series of observations (Brown 2001).
Figure 1 shows for reference the ecliptic longitude and lat-
itude at the time of discovery of the KBOs in our sample.
The location of KBO discoveries clearly shows the expecta-
tions of the observers: most searches and thus discoveries
appear centered on the invariable plane or on the ecliptic
plane. For each object in our sample, we determine the di-
rection of the plane-of-sky orbital velocity vector from the
object position, inclination, and ascending node. These ve-
locity vectors are shown in Figure 2. Owing to the generally
extremely well determined inclinations and ascending nodes,
the errors in the direction vectors are small and do not affect
the following results. On average, these velocity vectors are
parallel to the plane of the Kuiper belt. In the raw data it is
easy to see that the plane of the Kuiper belt is displaced from
the ecliptic.

To find the plane that is the best fit to all of the velocity
vectors, we find the plane that minimizes the sum of the ab-
solute values of the distances from each vector to the plane.
We use a least-absolute-value fit rather than a more traditional
least-squares fit because a least-squares fit makes the implicit
assumption that the data are normally distributed about the
true result. A least-squares fit is thus strongly weighted by
(what should be extremely rare) outliers. Our data are natu-
rally distributed much more broadly than a normal distribu-
tion, so a least-squares fit would not give an appropriate result.
A least-absolute-value fit gives less weight to apparent outliers
and is more appropriate for our data.

We find that the best fit to the apparent plane of the Kuiper
belt has an angle with respect to the ecliptic of 1

�
.86 and an

ascending node of 81�.6. A projection of that plane onto the

velocity vectors (Fig. 2) shows that the fit correctly accounts
for the visual impression of the average velocity plane.

2.2. Monte Carlo Validation

To determine the validity of and the error bars on our
analysis, we turn to Monte Carlo simulation of the entire
process. We first assume a fixed plane to the Kuiper belt and
create a model Kuiper belt with 100,000 objects selected to
have random inclinations drawn from an inclination distribu-
tion determined with the method of Brown (2001) and random
true anomaly between 0� and 360�. For every KBO in our true
data sample, we select a modeled KBO that is at the latitude
and longitude where the true KBO was discovered. In this
manner, we select a modeled Kuiper belt with a known plane
that has the same number of objects discovered in the same
places and the same overall inclination distribution as the real
Kuiper belt, but with a different set of objects. We can then use
our analysis to measure the plane of this simulated Kuiper belt
and compare the results with the actual plane selected for the
simulation. Repeating this technique multiple times allow us
to develop statistics of the distribution of the measured plane
for any true plane.

In our first simulation, we fix the plane of the Kuiper belt
to be the invariable plane, and we perform 1000 separate
simulations. Figure 3 shows the measured pole positions of
the 1000 simulated Kuiper belts. The average of the 1000
measurements is within 0�.01 of the invariable plane, dem-
onstrating that the method is, on average, adept at accurately
measuring the true plane of the Kuiper belt. The spread in the
measured poles shows the accuracy of any single measure-
ment, including our real measurement. The 1000 individual
pole measurements are distributed roughly spherically sym-
metrically around the true pole, and the circles containing
84.1%, 97.7%, and 99.9% (1, 2, and 3 �) of the points have
radii of 0

�
.37, 0

�
.52, and 0

�
.75, respectively. Only one of the

1000 Monte Carlo simulations has a measured pole position
as distant from the invariable plane as is our measured Kuiper
belt pole position. We can thus rule out the invariable plane
as the true plane of the Kuiper belt at the greater than 3 �
level.

Fig. 1.—Ecliptic longitude and latitude (in degrees) at time of discovery
for all KBOs discovered as of 2003 July 1 at heliocentric distances greater
than 30 AU. The 16 KBOs found at ecliptic latitudes between 15� and 45� are
not shown. The dashed line shows the location of the invariable plane. Dis-
coveries have been concentrated along the ecliptic plane and along the in-
variable plane, the two most heavily searched areas.

Fig. 2.—Orbital plane-of-sky velocity direction vector (in degrees) for the
KBOs in our sample. The concentration of velocities away from the ecliptic is
apparent in this plot. The dashed line shows the plane that best fits the velocity
data in a least-absolute-value sense. The plane has an ascending node of 81�. 6
and an inclination to the ecliptic of 1�. 86.
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Similar Monte Carlo simulations with the plane positions in
different locations within a few degrees all show a nearly
identical spread in measurements. In Figure 4, we show the
distribution of pole positions that would be measured if the
true plane were at the position of the plane that we measured
above for the real Kuiper belt. The 1, 2, and 3 � error circles
have radii of 0�.36, 0�.53, and 0�.72. We will adopt the above
numbers as the error bars on our measurement, though we
point out that the rigorous method to determine the error bars
on our measurements is to assume a large number of different
pole positions and calculate the probability that a real pole a
certain distance away would yield the above measured value.
We expect, however, that these two different methods would
give essentially identical results.

2.3. Planes of Subsets of Objects

The same method can be used to separately determine the
plane of any subset of objects in the Kuiper belt. If we take the
70 multiopposition Plutinos as our sample, for example, we
find a plane with an ascending node of 120

�
and an inclination

of 1�.2—much closer to the plane of Neptune than the previ-
ous measurement. Monte Carlo simulation, however, shows
that this measurement is almost meaningless. The small num-
ber of objects, combined with the very wide spread in incli-
nation of the Plutinos (Brown 2001), makes the 1, 2, and 3 �
error bars on the measurement 7

�
, 10

�
, and 15

�
, respectively.

Measurement of the plane of the scattered Kuiper belt objects
or of any other small subset of objects gives equally unreliable
results. We therefore will only consider the average plane of
the entire Kuiper belt, with the caveat that different dynamical
classes and objects at differing semimajor axes could indeed
have different planes.

3. PREDICTED PLANE

The plane of the Kuiper belt is frequently assumed to be the
invariable plane of the solar system. The measurement of the
position of the plane of the Kuiper belt above differs signifi-
cantly from the invariable plane. Several dynamical effects
could change the plane of the Kuiper belt, including unseen
masses in the outer solar system and recent stellar encounters.
Below, we attempt to better understand the expected plane of
the Kuiper belt by examining the magnitude of the gravita-
tional perturbations to KBOs from the major planets, and then
we calculate the combined effect of all planets on the Kuiper
belt. We find that the assumption that the plane of the Kuiper
belt should be the invariable plane is overly simplistic and that
the current expected plane of the Kuiper belt differs signifi-
cantly from the invariable plane.

3.1. Neptune versus Jupiter

Objects in the Kuiper belt are likely to be most affected
gravitationally by Jupiter, the most massive planet in the solar
system, or by Neptune, the planet closest to the Kuiper belt.
The magnitudes of the effects of these planets can be con-
sidered by calculating the average gravitational effect of each
planet. One method by which to calculate this effect is to
consider all planets as if their masses were smeared into annuli
following their orbits around the Sun. We numerically inte-
grate the perpendicular component of the noncentral force
affecting a 44 AU Kuiper belt object and find that equal-mass
objects at the location of Jupiter, Saturn, Uranus, and Neptune
exert relative precessional forces in the ratio 1.0, 3.8, 20.9,
and 90.6, respectively. Multiplying these magnitudes by the
masses of these planets shows that the relative effects on a
44 AU Kuiper belt object for the major planets are 1.0, 1.1,

Fig. 4.—Comparison of the pole positions of the planes of Neptune, Jupiter,
the invariable plane, the measured plane of the Kuiper belt, and 1000 simu-
lated measurements where the plane was fixed at the measured plane. The
dashed lines again show the 1, 2, and 3 � error bars in the measurement. The
measured plane of the Kuiper belt is more than 3 � distant from the invariable
plane and the planes of Neptune and Jupiter.

Fig. 3.—Pole positions of the planes of Neptune (N), Jupiter (J), the
measured Kuiper belt (K), and the invariable plane (unlabeled diamond)
compared with the pole position measured for the plane in 1000 simulated
Kuiper belts where the plane was fixed as the invariable plane. The cross
shows the ecliptic north pole, and the large circles are separated by 1� of
latitude. The dashed circles show the radii at which 84.1%, 97.7%, and 99.9%
of the points are within the circle, showing the 1, 2, and 3 � error in the
measurement of 0�. 36, 0�. 53, and 0�. 72, respectively.
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0.9, and 4.9, respectively. We thus see that Neptune should
exert the largest control over the Kuiper belt.

3.2. Orbital Perturbations

While the simple calculation above provides insight into the
competing forces affecting particles in the Kuiper belt, a more
detailed calculation is required to predict the location of the
plane of the Kuiper belt. Small bodies in the solar system
undergo orbital perturbations owing to the combined gravita-
tional effects of all major planets. Except for regions near
resonances, these perturbations can be divided into two com-
ponents. First, all bodies undergo precession of their perihelia
and longitudes of ascending nodes. The instantaneous plane
about which the nodal precession occurs is called the forced
plane (or the Laplace plane, in studies of planetary satellites),
and it is this plane that is instantaneously the plane of the
Kuiper belt. Second, the forced plane will circulate about the
invariable plane with a different timescale. This second per-
turbation is caused by the mutual interactions of all of the
major planets and the perturbations of their own orbital planes.

To find the expected plane of the Kuiper belt, we first
use the first-order secular perturbation theory of Brouwer &
van Woerkom (1950), which determines the mutual perturba-
tions of all planets on each other. With these perturbations
known, we then use the extension of Murray & Dermott (1999)
to calculate the location of the forced plane for any object in
the solar system as a function of time. Figure 5 shows the
location of the forced plane of a test particle with a semimajor
axis of 44 AU (the median semimajor axis of the objects in our
sample) compared with the planes of Jupiter and Neptune and
with the invariable plane. All of the planes circulate about the
invariable plane. The plane of the 44 AU test particle circu-
lates about the invariable plane with an amplitude of 1�.2 and a
period of 1.9 million years. Figure 6 shows a polar projection
of the forced pole position of plane of the planes of Jupiter,
Neptune, and the 44 AU particle for a 10 million year period.
The circulation of the planets and the test particle about the
invariable plane is apparent.

Figure 7 shows the location of the present-day forced plane
for any test particle placed in the solar system. As required, in
the region near each planet the forced plane is equal to the
plane of that planet. At the marked locations of secular reso-
nances, secular perturbation theory fails (and few solar system
objects exist in stable orbits). In the region of the classical
Kuiper belt, the forced plane slowly moves closer to the in-
variable plane with increasing semimajor axis.

Fig. 5.—Inclination and ascending node of the orbits of Jupiter, Neptune,
and the forced plane of a test particle with a semimajor axis of 44 AU, as a
function of time, referenced to the ecliptic, from 5 Myr ago until 5 Myr from
now. The solid line at 1�. 58 inclination and 107�. 6 ascending node shows the
location of the invariable plane. The planes of Jupiter and Neptune and the
Kuiper belt all oscillate about the invariable plane.

Fig. 6.—Poles of the planes of the orbits of Jupiter (dots), Neptune (thin
line), and the Kuiper belt (thick line) over a 10 Myr period. The current planes
of Neptune and Jupiter, the forced plane of the 44 AU test particles, and the
measured plane of the Kuiper belt (with 1, 2, and 3 � error circles) are shown
as diamonds. The measured plane is more than 3 � distant from the planes of
Jupiter and Neptune but is within 0

�
. 20 of the plane expected from secular

perturbation theory.

Fig. 7.—Inclination and ascending node with respect to the ecliptic plane of
the forced plane of a test particle as a function of semimajor axis. The forced
plane is generally similar to that of the planet closest to the test particle except
near secular resonances, where the inclinations can get highly excited and
linear secular perturbation theory fails.
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The expected plane of the Kuiper belt is difficult to deter-
mine precisely through this first-order secular perturbation
theory. Objects in mean motion resonances and objects with
high eccentricity or inclination—which includes a substantial
fraction of the population—are potentially poorly described
by linear secular perturbation theory. In addition, Figure 7
shows that the theory predicts significantly different planes for
different regions of the Kuiper belt. Nonetheless, we will take
as the predicted position of the Kuiper belt the plane of the test
particle at 44 AU, which is the median semimajor axis of all of
the objects in our sample. This plane has an inclination with
respect to the ecliptic of 1

�
.74 and an ascending node of 86

�
.7,

0�.20 different from our measured Kuiper belt plane. We thus
conclude that secular perturbation theory adequately predicts
the true location of the apparent plane of the Kuiper belt and
no compelling reason exists to consider other, more exotic
effects.

3.3. Neptune and the Kuiper Belt

As seen in Figure 5, the plane of an object at 44 AU cir-
culates about the invariable plane with the same period as
Neptune but with the opposite phase. This initially counter-
intuitive result can be understood by examining the forcing of
Neptune and the effect of the secular resonance at 40.4 AU. As
shown above, the precession of the forced nodes of objects in
the Kuiper belt is affected primarily by Neptune. The period
of the forcing by Neptune is the period of Neptune’s nodal
precession, which is 1.9 Myr. The response to this forcing can
be seen in Figure 8, which shows the angle with respect to
Neptune of the node of the forced plane and the forced in-
clination with respect to the invariable plane as a function of
semimajor axis.

The amplitude and phase of the response to this forcing can
be understood in the context of a forced simple harmonic
oscillator (SHO). When an SHO is forced at a frequency much
lower than the resonant frequency, the response is an in-phase

oscillation with an amplitude nearly equal to the forcing am-
plitude. Near the resonant frequency the amplitude of oscil-
lation increases dramatically. At a frequency much higher than
the resonant frequency, the response is an out-of-phase os-
cillation with a amplitude decreasing as the forcing frequency
increases.
For the case of the Kuiper belt and the forcing by Neptune,

the resonant frequency occurs when the 1.9 Myr period of
Neptune’s precession is equal to the natural precession time of
an object about its forced plane. This equality, which defines
the location of the �18 secular resonance, occurs at 40.4 AU.
At smaller semimajor axes, Neptune’s precession frequency is
smaller than the natural precession frequency, so the response
is an in-phase oscillation of magnitude equal to the magnitude
of Neptune’s forcing. At larger semimajor axes, such as the
location of most of the objects in the Kuiper belt, Neptune’s
precession frequency is larger than the natural precession
frequency, so the response is an out-of-phase oscillation with
an amplitude that decreases with increasing semimajor axis.
The current location of the plane of the Kuiper belt is thus
seen as a natural consequence of high-frequency forcing by
the nodal precession of Neptune.

4. CONCLUSION

The apparent plane of the Kuiper belt is found to have an
inclination of 1�.86 and an ascending node of 81�.6 with a 1 �
error in the pole position of 0

�
.37. This plane is offset by 1

�
.86

from the ecliptic and by 0�.82 from the invariable plane. This
significant tilt of the apparent plane away from the two planes
usually assumed as the Kuiper belt plane is an expected
consequence of the forcing by the 1.9 million year precession
of the node of Neptune at 0�.7 from the invariable plane. The
Kuiper belt has no one true plane, as secular perturbations
warp the plane of objects as a function of semimajor axis.
This newly determined Kuiper belt plane should be used for

all calculations of inclinations and ascending nodes and can
make an important difference in the calculation of quantities
such as the inclination distribution of the Kuiper belt. For
example, using the method of Brown (2001) to determine the
inclination distribution of the classical Kuiper belt and as-
suming that the plane of the Kuiper belt is the plane measured
gives a best-fit inclination distribution of sin i times two
Gaussians with � = 1.3 and � = 12.0. In contrast, when the
ecliptic is used as the assumed plane of the Kuiper belt, the
narrowly peaked component is almost 50% wider. Similar
important effects can be seen in reexamining results such as
the correlation between inclinations and colors (Trujillo &
Brown 2002) and inclinations and absolute magnitudes
(Levison & Stern 2001; Trujillo & Brown 2004) seen in the
classical Kuiper belt.
The method developed here for determining the plane of

the Kuiper belt is robust and applicable to any dynamical or
physical subset of objects. In the future, as thousands of
Kuiper belt objects begin to be discovered, even tighter error
bars on the location of the overall plane, and good determi-
nations of the planes of different subsets of objects, will allow
the continued exploration of the dynamical structures in the
outer solar system.

We thank Chad Trujillo and Re’em Sari for inspirational
conversations. This research is supported by a PECASE grant
from NASA Planetary Astronomy.

Fig. 8.—Plane of a test particle as a function of semimajor axis compared
with the plane of Neptune. The ascending node and inclination are measured
relative to the invariable plane. Interior to the �18 secular resonance at
40.4 AU, the test particle oscillates about the invariable plane in phase with
Neptune with an inclination similar to Neptune’s. Near the secular resonance,
the inclination of the test particle becomes highly excited. Outside the reso-
nance the test particle circulates 180� out of phase from Neptune and with a
decreasing inclination. This behavior is that expected from a simple harmonic
oscillator being forced at the precession frequency of Neptune.
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