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Abstract. I will review how our picture of heavy-element nuclear structure
has evolved through remarkably simple ideas and related models. It is
well known that the Bethe-Weizsidcker semi-empirical mass model had an
important role in unraveling radioactive decay and element transmutation
in the heavy-element region in the 1930s. A remarkable aspect is that this
model could immediately after the discovery of fission be generalized to
explain this phenomenon through the consideration of deformation of a
charged liquid drop. Bethe and Bacher already raised the possibility that
shell structure (by them calculated in terms of a single-particle oscillator
potential) could give rise to noticeable deviations between results of the
macroscopic mass model and experiment but limited data prevented firm
conclusions. In the 1950s the single-particle models took a realistic form
and also included deformation. The possibility of the existence of a relatively
stable “island” of superheavy elements was raised already then. But it was
not until the work by Strutinsky in the mid 1960s that a quantitative model
for the nuclear potential-energy emerged in the form of the macroscopic-
microscopic model. Although new elements have been discovered at an
almost steady pace since 1940, theory indicates that we are close to the
end of this era: repulsive Coulomb effects will set the limit of observable
elements to near Z = 120.

1. Introduction

Most insights into and understanding of nuclear properties have historically and are
currently obtained in terms of surprisingly simple models. In systems which depend mainly
on electron behaviour the system properties can be obtained from solving the Schrodinger
equation with realistic, known Coulomb potentials. The nuclear system with its up to
a few hundred nucleons leads to a many-body Schrodinger equation which cannot be
solved, because the potential is based on the much more complicated nuclear forces.
Therefore other types of models are used. They are often referred to in a condescending
manner as phenomenological, but, actually all “models” are phenomenological. We
will here focus on the remarkable insights into nuclear properties that have been
obtained by the “liquid-drop model” and the single-particle model and a combination
of those that still today are providing much insight about the properties of superheavy
nuclei.
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2. The liquid-drop model and limits to nuclear stability

The liquid-drop model has its origin in the semi-empirical mass model, usually attributed to
von Weizsicker [1] and Bethe and Bacher [2]. The nuclear mass is

M(Z, N,shape) = MyZ + M,N — B(N, Z). (1)

The first two terms are obviously giving the mass of all the nucleons and electrons (hydrogen
mass is the sum of the a proton and an electron mass). The last term is the binding energy and
accounts for the mass deficit of a nucleus relative to the sum of the masses of the separated
particles. In the semi-empirical mass model it is given by
2 2

A L ) @)
This simple expression gives the nuclear binding energy, which for a heavy nucleus is roughly
1600 MeV (8 MeV per nucleon) to an accuracy of one percent. The terms represent in order
volume energy, surface energy, Coulomb energy, symmetry energy and a pairing correction.
The notation Z, N, and A stand for proton number, neutron number and total nucleon
number, respectively. The model was highly useful in interpreting the decay chains following
element transmutations. However, in some experiments in which uranium was bombarded
with neutrons a confusing number of radioactive decay products, which were difficult to
reconcile with properties given by the semi-empirical mass model, were observed. This all
was explained when Hahn and Strassmann [4] identified barium in the products following
neutron irradiation of uranium and Meitner and Frisch [5] suggested one could think of the
nucleus as a deformable charged liquid drop that had split into two smaller nuclei of about
equal size in fission. It then turned out that the simple semi-empirical mass model could be
generalized to describe this division and, just a few months later, Bohr and Wheeler suggested
the following generalization [6]

B(N, Z) = +ayA — a,4*® —

B B 23 z? (N — Z2)?

(N,Z,0) =+ayA — asA”"” By(a) — aCWBC(a) —a———— = 0(A). 3)
Only the Coulomb and surface energies depend on deformation. B() and Bc() are the ratios
of the surface and Coulomb energies at deformation o to that for spherical shape. With this
simple model one can show that stability with respect to fission decreases with increasing
proton number and is completely lost at proton numbers somewhat above Z = 100. Bohr
and Wheeler showed this by deriving Taylor expansions for the Coulomb and surface shape
dependencies. If the surface shape as function of deformation (to lowest order in «) is given
by

r(0) = Ry [1 + o Ps(cos 0)]

then surface and Coulomb energy to lowest order Taylor expansion are given by

2 1
E, = E (1 + §a22) and Ec = E2 <1 - goczz) :
The energy at deformation o, relative to spherical shape can be written as

Eqei(02) = Ec(0n) + Es(on) — (EQ + E?).

If Eg4r is negative then the spherical system has no barrier with respect to fission, i.e.

2 1
Eger(o) = gOszEg — goczzEg <0
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Table 1. Calculated values of the fissility parameter x for some sample nuclei.

Z 50 82 92 100 114 125 130
A 124 208 238 252 298 328 335
x 0402 0.645 0.709 0.792 0.870 0.950 1.006

This condition is usually written as

0
Ec
2E0

With common values of the constants (E? = 17.804%° and E? = 0.7103Z%/4'/3), the
fissility parameter x is then obtained as

1<

= X.

22
X = .
50.134

In Table 1 we calculate the fissility x for a few nuclides throughout the periodic system.
Clearly there are no fission barriers at Z = 130. However, already slightly above x = 0.80 the
barrier in the liquid-drop model becomes so low that one has to expect that the spontaneous-
fission half-lives become sufficiently short to make such a system unobservable. It is usually
taken to be around Z = 104. Thus, already in 1939 there were credible theories that showed
that that there is an end to the nuclear chart and that the end is due to fission. These insights
are still pretty realistic today, but have been refined because methods have been developed to
model microscopic “quantum” effects and how they can be combined with the liquid drop
model to allow more accurate descriptions of nuclear masses, fission barriers, and many
other nuclear properties. We will now discuss this macroscopic-microscopic model in which
microscopic effects are obtained from a single-particle model.

3. Macroscopic-microscopic model and single-particle shell
effects and their benchmarks

Already Bethe and Bacher [2] considered the possibility that microscopic effects might give
rise to deviations from the semi-empirical mass model. They noted that in an oscillator
potential there are large gaps in the corresponding single-particle level spectrum and
investigated if there were unusually large deviations between their theory and measured
masses at Z = 20, N = 20, namely 40Ca. They found none, but concluded that the masses
were not measured sufficiently accurately to observe the effect they expected. In Fig. 1 we
compare masses calculated in a modern liquid-drop model [3] to measured masses [13].
We observe that there are no particularly large deviations at these nucleon numbers. But
for heavier nuclei there are large deviations at the by now well-known magic numbers.
Around 1950 a modern single-particle model was developed [14-16]. It showed large gaps
at the nucleon numbers where there were large deviations between the semi-empirical mass
model and measured masses and it also agreed with some observed ground-state spins. But it
soon became clear that for large regions of the nuclear chart spins were not well explained.
This observation together with the experimental observations that nuclei in these regions had
large intrinsic quadrupole moments led to the suggestion that these nuclei were not spherical
but deformed [17-19]. Motivated by these developments, Nilsson in 1955 generalized the
spherical single-particle model to describe levels in deformed nuclei for any prescribed
spheroidal shape. A large part of the work was to devise a model specification that could
be implemented on computers of the day. Nilsson solved this by introducing coordinate
transformations that resulted in matrices of low dimensionality about ten or so [20].
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Figure 1. Top panel: difference between experimental masses and masses calculated in a modern
macroscopic liquid-drop model. These are also called “experimental” shell corrections, but do depend
somewhat on the theoretical macroscopic model used. Middle panel: microscopic corrections calculated
by use of Strutinsky’s method. Bottom panel: difference between the top and middle panel. This
difference is also equivalent to the difference between experimental and calculated masses. Lines
connect isotopes, full details are found in Ref. [3].

The model results for ground-state spins and low-lying level structure were shown to agree
well with experimental observations [21]. To calculate the level order it was necessary to
know for what deformation or nuclear shape to calculate the levels. This was done by
calculating what nuclear shape has the lowest energy. The potential energy for a particular
shape was calculated by summing the energy of the levels that are occupied at that shape. This
was done for a succession of shapes and the ground-state shape is the shape corresponding to
the minimum energy. It is the level structure here that is compared to experiment.

However, it turned out that apart from having some issues from fundamental grounds,
this method of obtaining the potential energy versus shape, also did not work well in practice
when the method was extended to larger deformations or additional multipole distortions. But
ten years after Nilsson introduced the deformed single-particle model, Strutinsky introduced
a method that combined physics from the macroscopic liquid-drop model and the single-
particle model [22, 23]. Briefly, the potential energy for any prescribed deformation is
calculated in the following manner. The energy for the charged liquid drop is calculated for
this shape, somewhat simplified it is the sum of a surface and electrostatic Coulomb energy.
The single-particle energies are calculated. A shell-plus-pairing correction is then obtained
from the calculated single-particle spectrum. In Strutinsky’s method the correction is about
—6 MeV when there is a large gap in the spectrum such as in the neutron spectrum at N = 126
for 2%8Pb. Since there is also a gap in the proton levels at Z = 82 the total shell-plus-pairing
correction at spherical shape is about —12 MeV. In situations where there is a high density of
levels the shell-plus-pairing correction sum is larger than 10 MeV.

By use of the method, potential energies versus shape are calculated, the shape and energy
at the minimum of this function are obtained. The energy at the minimum corresponds to the
ground-state mass. In Fig. 1 we compare a modern macroscopic-microscopic mass model to
experimental data, see discussion in the caption. One can gain much insight from calculated
single-particles levels versus deformation, a so-called Nilsson diagram. An example is shown
and discussed in Fig. 2.
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Figure 2. Calculated single-particle levels versus nuclear shape [7]. The higher multipole €, values are
those appropriate to the nucleus >>Ds (Z = 110). For spherical shape we see the well-known magic
proton number 82 but also a predicted gap at Z = 114. For some time it was thought that no observable
elements would exist beyond Rf (Z = 104) and that one would need to “jump” or sail across a sea
of instability to reach nuclei in the vicinity of the next predicted magic proton number 114. But by
now all elements up to Z = 118 have been observed and named. Thus, there are elements in the sea of
instability. The origin of their stability are the gaps in the single-particle level diagrams for deformed
shapes. The large negative shell corrections associated with these were present in early calculations
[8—10] but their significance was not realized until later [11], which led to the more detailed visualization
of the previous theoretical calculations [12].

No matter how well a model agrees with experimental results known at the time of
publication one of several requirements to qualify as a bona fide model is that it can predict
new experimental results. We have tested our FRDM (1992) mass model finalized in 1992
and published in 1995 [30] in this respect. It was adjusted to a 1989 data base of measured
masses [31]. It is compared to masses in Ref. [32] that are not in the 1989 evaluation that
is “new”” masses in the right part of Fig. 3. The accuracy 0.642 MeV is about the same as
for the masses to which the model was adjusted and with no increase in the deviations with
distance from stability. In the left part of the figure we compare to a larger data base of new
masses; those that are new in the AME2003 evaluation relative to the 1989 evaluation. Now
the deviation is actually substantially smaller than in the region the model was adjusted, only
0.462 MeV. An interesting feature is that many dots on the right representing large mass
deviations are not present on the left, most easily noticeable on the neutron-deficient side.
Since the theory did not change, this means that masses in the 1993 evaluation were either
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Figure 3. Comparison between masses calculated in the FRDM (1992) to measured masses that were
not known when the mass table was finalized, see text for further discussion.

removed (so they are not in the 2003 evaluation) or revised by more than the error bars. One
can also note that in the comparison to the right, theory and experiment did not know of each
other whereas in the 2003 evaluation the evaluators knew of the FRDM(1992) since it was
published in 1995 [30]. The right figure represents a double-blind result whereas the left only
a single-blind result.

The calculation of fission barriers is much more complicated than the calculation of
masses so we cannot review it here. Suffice to say a state-of-the-art calculation needs to
calculate the potential energy for at least all major shape types that might be involved in
the evolution from a single ground-state shape to separated fragments. We argue that a
minimum of five shape variables are needed: elongation, left and right emerging fragment
deformation (we limit our treatment to ellipsoidal shapes), neck diameter and mass division
between the emerging fragments. A reasonable spacing of the shape grid points leads to
calculations of potential energies for five million shapes for each nuclide considered. A
slightly simplified macroscopic model, the FRLDM is used in fission calculations. Extensive
details and benchmarks are given in Refs. [33-35].

4. Superheavy nuclei

It is unclear who first suggested the existence of a region of nuclei stabilized by magic
numbers, beyond the region of increasingly unstable nuclei at the end of the nuclear chart.
Gertrud Scharff-Goldhaber mentions the possibility of a stable region centered at Z = 126
in a rather subdued fashion in Ref. [36] in 1957, so we conclude it was generally discussed
already at that time. Later it was concluded that Z = 114 was more likely [37] the next
magic proton number. We give in Fig. 4 some examples of how the FRDM(1992) and
FRLDM(1992) have predicted o-decay properties of some superheavy nuclei. Recall that
the heaviest nuclei to which the model was adjusted were 4 &~ 260. Note that the kinks in
the experimental data are very similar in the calculated results. For Z = 113 the origin of
the kink is the gaps at Z = 108 and N = 162 in the deformed single-particle level spectra,
see Fig. 2 for the corresponding neutron diagram from Ref. [7]. For Z = 117 the kinks are
related to changes in deformation.

It is a-decay that usually serves to identify the observation of new elements or isotopes,
but it is fission that sets the limit to what is the heaviest element that can eventually be
reached. We show in Fig. 5 3282 calculated fission barrier heights. The calculations reproduce
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Figure 4. Measured o-decay Q values compared to calculated ground-state to ground-state Q values.
For Z = 113 different colors indicate different decay chains. The measured values may not correspond
to ground-state to ground-state transitions as evidenced by the differences between Z = 113 chains.
In the left figure the experimental data are from Ref. [24], HFB27 from Ref. [25] and KTUYO0S5 from
Ref. [26]. In the right figure the experimental data are from Refs. [27] and [28], Sobiczewski from
Ref. [29].
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Figure 5. Calculated fission-barrier heights in the heavy region. See text and Ref. [35] for extensive
discussions of barriers and the r-process.

the well-known regions of locally enhanced stability centered at »>Fm (Z = 100) and *’°Hs
(Z = 108), evidenced by the calculated high barriers. For still heavier nuclei we see a larger
region of high barriers, the spherical superheavy region. It is slightly offset to the north-west
from the predicted doubly-magic numbers Z = 114 and N = 184. These calculated results
and considerations suggest that it is unlikely that elements much above Z = 120 or isotopes
much beyond N = 184 will be observed.
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