Proceedings of the

FLUID AMPLIFICATION SYMPOSIUM

VOLUME III

U.S. ARMY MATERIEL COMMAND

HARRY DIAMOND LABORATORIES WASHINGTON. D.C. 20438

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

The findinge in this report are not to be construed as an official Department of the Army position, unless so designated by other author 1zed documents.

Deatroy this report when it is no longer needed. Do not return it to the orisinator.

AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copios of this report iron DDC. DDC releace to Clearinghouse for Federal Scientific and Technical Information is authorized.

Proceedings of the

FLUID AMPLIFICATION SYMPOSIUM

Sponsored by the

HARRY DIAMOND LABORATORIES

26, 27, and 28 October 1965

VOLUME III

U.S. ARMY MATERIEL COMMAND
Page

1. EXPERIMENTAL STUDY OF A PROPORTIONAL FLUIU AMPLIFIER, Cyrille Pavlin, BERTIN \& Cie, France 5-15
2. BIstable fluid Jet amplifier with LowSENSITIVITY TO RECEIVER REVERSE FLOW, W. S.Griffin, NASA 17-35
3. DEVELOPMENT OF A PURE FLUID NORGATE AND ANORLOGIC BINARY TO DECIMAL CONVERTER, T. W.Bermel and W. R. Brown, Corning Glass Works37-61
4. A PNEUNATIC TAPE-READER, Norman A. Eisenberg, Harry Diamond Laboratories 63-92
5. FLUID STATE HYBRID CONTROL SYSTEMS, P. A. Orner, Giannini Controls Corporation, Halvern, Pennsylvania, and J. N. Wilson, Uriversity of Saskatchewan, Saskatoon, Saskatchewan 93-106
6. A FLUID STATE dIGITAL TO ANALOG CONVERTER, Dr. Charles K. Taft, Ralph O. Turnquist, Case Institute of Technology, Cleveland, Uhio 107-130
7. A DIGITAL-PROPORTIONAL FLOID AMPLIFIER FOR A MISSILE CONTROL SYSTEM, Carl J. Campagnuolo, Leonard M. Sieracki, Harry Diamond Labs 131-159
8. A DEVELOPMENT REPORT ON A FLUID AMPLIFIER ATTITUDE CONTROL VALVE SYSTEY, Allen B. Holmes, John E. Foxwell, Harry Diamond Labs 161-177
9. APPLICATION OF FLUERICS TO MISSILE ATTITUDE CONTROL, Carl J. Campagnuelo, John E. Foxwell. Allen B. Holmes, Leonerd M. Sieracki, Marry Dianoond Laboratories 179-201
10. A SECOND GENERATION OF FLUID SYSTEM APPLICATIONS, Dr. R. E. Bowles, E. M. Dexter, Bowles Engineeling Corporation 203-226
11. A FLUID STATE ABSOLUTE PRESSURE RATIO COMPUTER, Charles A. Belstering, Giannini Controls Corporation, Malvern, Pennsylvania 227-243

CONTENTS (Cont ${ }^{\text {' }} \mathrm{d}$)

Page
12. A TEMPERATURE CUNTROL SYSTEM USING FLUERIC COIPONENTS, Richard N. Gottron, Wilmer Gaylord, ilarry Diamond laboratories 245-265
13. FLUID TIMER DEVELUPIENT, S. B. Martin, Sandia Corporation, E. R. Phillips, UNIVAC 267-287
14. THE USE OF A FLUİ AMPLIFIER IN AN INTERGITTENT Stream release valve for high altitude ReSEARCH, Tom Morton, Fluid State Technology Aviation Electric Limited, Montreal. Quebec, Canada 289-307
15. an evaluation of a fluid amplifier, face IASK RESPIRATOK, llentik II. Straub, M. S. Ë., James Meyer, M. D., Harry Diamond Laboratories 309-315
16. A FLUID OPERATED DIESEL I.OCOMOTIVE TRANSITION CONTROL UNIT, Charles H. Meyer, New York Central System, Richard S. Gluskin, Sperry Rand Corporation, Univac Division 317-333
17. AREA EXPERIENCE IN MODERATE VOLUME FABRICATION
OF PURE FLUID DEVICES, R. W. Van Tilbur ξ, Corning Glass Works 335-349

EXPERIMENTAL STUDY OF A PROPORTIONAL FLUID AM LIFIER
by
Cyrille Pavlin
Societe BERTIN \& Cie, PLAISIR (S.\&.O.) FRANCE

Abstract

ABSTRACI An amplifier has been designed and tested which applies the principle of the lever to aerodynamic jet deflection. The device yields good performances as a mass flow amplifier and provides facilities for matching impedances between stages. It can operate as a differential pressure sensor.

INTRODUCTION

The fluid amplifier that we studied has a unique control region shape. The leading idea was to avoid momentum control since this causes difficulties as the size of the device decreases. If the control jet velocity is to be similar to that of the power jet, the ratio of the control slot width to the power jet width will be the same as the flow gain ratio, neglecting boundary layers. The effect of the boundary layer is to reduce the velocity, requiring a compensating change in control jet size. Fabrication problems become increasingly difficult if this approach is followed.

Therefore, we tried to find another type of interaction using the pressure effect as a means of bending the power jet. In order that the pressure may rise with a small amount of control flow, the power jet has to be enclosed between two walls downstream of the injection region. These walls are convergent, so that they act like an aerodynamic lever to increase the jet deflection.

DESCRIPTION OF THE DEVICE

The power flow rectangular channel emerges between the control ports, the offset downstream walls of which are progressively converging towards the power jet. They are limited by sharp edges sufficiently close to the power jet as to give only a narrow outlet to the control flow, which must push back the power jet against the opposite edge in order to exit (Fig. 1, 2).*

The other parts of the amplifier are rather standard; after a certain path length in a constant pressure medium, the power jet is diverted between two active channels, adjacent or separated by a bleed line. We generally preferred this last arrangement because the inner splitters of the active channels being located at the maximum slope of velocity profile, the mass flow rate in both channels is small when the flow gain is maximum.

*Figures appear on pages 11 through 15.

Flow patterns in the injection region are shown with no control flow (Fig. 3) and with control flow (Fig. 4).

POWER JET SHAPE

Without control flow (Fig. 3)

The control ports being closed, the power jet has no deflection and passes at an equal distance from the wall edges of the control capacities. Residual air in the capacities is carried out by viscous effects. If the edges, initially removed are progressively moved towards the jet, air is ejected from the capacities where a vacuum appears at first. But from a certain distance to the jet, vacuum begins to decrease and then gives place to an overpressure. In figure 5 the pressure in the capacities is plotted against e/w

> e: distance between the edges
> $\mathrm{w}:$ the main jet channel width
for a given geometry.
With control flow (Fig. 4)
With a non-zero control flow, pressure rises on both sides of the power jet in the control capacities, no matter from which side the coritrol flow originates. However, a slight unbalanced pressure arises on the fed control side bending the main flow towards the opposite wall in the capacity. The power flow, when impinging the wall, is strongly repelled with a marked angle from its initial direction, because of the convergent shape of the wall.

As a result, unlike most fluid amplifiers the r wer jet is deflected towards the input control side.

The main purpose of such a design is to give, with a very simple geometry, a substantially better flow gain than that obtained with conventional fluid amplifiers.

MECHANISM OF DEVIATION

The power jet spreads by turbulent mixing in the control capacities with a velocity distribution decayine with the distance from the jet center line.

With no control flow, the mean streamline which grazes the wall edge comes necessarily from ari edge of the free power jet issuing inside the control capacities. It obeys KORST's escaping criterion: its total pressure is just equal to the surrounding static pressure outside the control capacities. In other words, the dynamic pressure on that streamline just balances the pressure difference between the capacity and downstream. In the steady state, air entrainment from the capacities reaches equilibrium when the pressure in the capacities agrees with the above condition.

When the power jet is strongly deflected, or when the wall edges are very close to the Jet, a narrow local overpressure strip exists on one or both sides of the jet, just at the extremity of the convergent walls. In the first case, the overpressure produces the jet deflection. KORST's escapirg criterion is still applicable, but to the maximum value of the overpressure. This explains the pressure rise in one control capacity when the other one is fed.

The importance of the overpressure strip in the deflection mechanism is clearly shown by the poor gain of an amplifier, the control capacities of which are limited by spoilers, as can be seen in Fig. 5. Suppression of the "aerodynamic lever" leads to a large reduction of gain.

EXPERIMENTAL RESULTS

Experimental models

Experimental work was undertaken with two homothetic models in order to test somewhat the scaling effects.

The general features of the amplifier are outlined in Fig. 2. The channel width w is about 0.15 cm (0.06 inch) in the larger model, with an aspect ratio of 6.7. The other model is reduced in a ratio of about 3. Edge distance e is variable.

The receiver position is movable and was adjusted for best operating conditions.

Tests were carried out with low dynamic pressure (3 psi at most).

Performances

Genersl features

The amplifier appears to be sensitive to control flow without threshold until the output flow reaches a maximum in connection with the power jet position just in front of the receiver.

Stability appears rather good unless the flow gain be very high, as observed by other experimenters.

Mass flow gain

Let us call q_{01} and q_{02} the mass flows through the active outputs, $q_{c 1}$ and $q_{C 2}$ the control mass flows. We define mass flow gain as the ratio of the change in output to the change in input control.

$$
G=\frac{q_{O_{1}}-q_{O_{2}}}{q_{c_{1}}-q_{c_{2}}}
$$

The gain, with e/w optimum, is usually between 10 and 100. A scale reduction tends to improve the performance.

Dynamic response

Until now, we have proceeded only to limited dynamic tests. We did not measure the gain, but only the phase shift between the input and the output on the smaller model. Harmonic control input signals were applied using a pneumatic oscillator. The dynamic measurements of output response to control flow fluctuation were carried out using a two-charnel constant temperature hot-wire anemometer arrangement. Simultaneous readings of input control and output stream velocity fluctuations were recorded on a dual-trace oscilloscope. The pictures, Fig. i, in which are superimposed the input signal and successively the left our י1t, the bleed and the right output, show that for 80 cps harmonic input, the lag between the output and the input is about 3 ms . This lag can be separated in two parts: the transport lag in the receivers and the specific lag of the amplifier (power jet settlement in the capacities).

Ampiifier output inmedance

To get a high sensitivity, a slight jet deflection must induce a large difference between the mass flow received in the active channels. Therefore the splitters of the receiver should cut the jet stream in a region where the transverse pressure gradient is maximum.

In this zone, the jet dynamic pressure is low and the high transverse velocity gradient is unfavorable to a good jet pressure recovery. As a result, the pressure recovery always remains small compared to the jet dynamic pressure. The device is a mass flow amplifier.

Input impedance

The input impedance is, by definition, the ratio of the change in input pressure to the change in control mass flow.

$$
z_{c}=\frac{\Delta P_{c}}{\Delta q_{c}}
$$

This depends on geometric dimensions; thereiore, we pr-fer to characterize the input of an amplifier by the change in input pressure divided by the dynamic pressure of the power jet stream for full deflection. This change is usually small because the power jet entrains the control flow almost equally in both the deflected and the undeflected positions.

Impedance matching a two-stage cascade

An amplifier suitably controlled by a preceding stage must have its control flow uniquely fed by the power flow of the first stage. In
particular, when the power jet of the first stage does not feed one active channel, the mass flow through this channel must be effectively zero.

This can be realized only in two ways:

1) If a difference exists between the ambient pressure in the first stage and the pressure in the control capacities of the second stage, the pneumatic resistance of the junction channel must be as high as possible.
2) If there is no pressure difference, the resistance of the junction channel may be low.

The first solution which sives a high input impedance must te rejected because, as we saw above, the output impedance of such an amplifier is low.

The second one can be realized by two means:
a) If the ambient pressure in the two amplifiers is the same, the gap, (e), between edges of the convergent walls in the second stage must be adjusted so as to make the pressure in the capacity equal to ambient pressure. In general, this is possible because the pressure in the control capacities can be adjusted to a level higher or lower than ambient.
b) If the gap between wall edges is optimized for the maximum gain, the pressure in the control capacities is fixed generally to a value lower than the outside pressure. We can lower the level of the ambient pressure in the filst stage by separating this zone from the atmosphere and by suitably loading the bleed.

We could verify that two amplifiers having mass flow gains of 50 and 10 with outputs to atmosphere gave a mass flow gain of 500 when staged (Fig. 6).

Channel decoupling

Thn 3 -channel receiver, with central vent, has an interesting characteristic; when both active channels are fed, a load change of one of them modifies only very slightly the mass flow through the other one. This decoupling may be advantageous in practice.

Different: al sensor operation

The jet bending inside the control capacities is always very small, the deflection angle being determined by the overpressure zones existing at the exit of the convergent edges. The result is that the
pressure difference between the jet sides in the amplifier is also small. Then if we join the control capacities to two reservoirs by very low loss pipes, we can detect a slight pressure difference between them. The control flow is blown or sucked according as the mean level pressure in the reservoirs is higher or lower than the pressure in the control capacities without control flow. This device is very sensitive to differential pressure ($\Delta \mathrm{p}=1 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$) and, in a relatively wide region, insensitive to the mean value of the pressure ($=400 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$).

The output signal is a mass flow change which can be amplified in a pure fluid regulating system.

In such an application it appears that the power jet behaves like a fluid membrane; the function of which is read by a differential flow.

CONCLUSION

It has been shown that introducing small geometrical differences in a conventional amplifier yields a new tyve amplifier having quite different operating characteristics. In the new device, momentum balance plays a minor role and mass flow is actually controlled through viscosity effects, so that it is probable that it will operate successfully even in tiny modules. Moreover, the behavior of the device is very sensitive to slight changes in convergent wall shape, so that a large range of operation possibilities including bistable can be contemplated. The rather good dynamic characteristics are felt to be due to the simplicity of its design. For the present it must be considered that the device acts as a mass flow amplifier, providing a gain in the range 10-100, inclusive.

FLOW AMPLIFIER DEVICE

Experimatal model
ME. 1

POWER JET CONFIGURATION

DYNAMIC RESPONSE

min tade


```
2mat
Cumat mumyer
mant


\title{
BISTABLE FLUID JET AMPLIFIER WITH LOW SENSITIVITY
}

\section*{TO RECEIVER REVERSE FLOW}

\author{
by William S. Griffin
}

Lewis Research Center
Cleveland, Ohio

TECHNICAL PREPRINT prepared for
Third Fluid Amplification Symposium sponsored by the U.S. Army Materiel Command Washington, D. C. , October 26-28, 1965

\title{
BISYABLE FLUID JET AMPLIFIER WITH LOW SENSITTIVITY
}

TO RECEIVER REVERSE FLOW

\author{
by William S. Griffin \\ Lewis Research Center \\ National Aeronautics and Space Administration \\ Cleveland, Ohio
}

ABSTRACT
A selected bistable fluid jet amplifier is presented which exhibits low receiver-interaction region coupling and which lso has reasonable receiver power recoveries and control signal pressures and flows. The receivers are specifically designed to handle load reverse flow such as might be delivered by a piston. If the control signal pressure is increased approximately 50 percent above that necessary to switch the power jet into an unblocked receiver, the jet may be switched into a receiver pressurized at 40 percent of supply.

\section*{INTRODUCTION}

In 1959 and 1960, Diamond Ordnance Fuze Laboratories (now HDL) introduced a series of fluid signal processing devices which were called fluid amplifiers or fluid interaction devices. Unlike the more conventional fluid signal processing devices available at that time, fluid interaction devices possessed no moving mechanical parts and relied instead on the interaction of streams of fluid for their operation. Their simplicity, ruggedness, and lack of moving parts made them appear quite reliable and suitable for use in extreme environments. Potential applications included the use of fluid interaction devices as control components in the vicinity of a nuclear rocket engine, on jet engine inlet and engine controls, and in hot gas servosystems. Considerable interest was aroused in their application and a number of companies and government agencies became active in the field.

Unfortunately, the practical development of useful fluid amplifier circuits proved more difficult than had originally been supposed. The fluid amplifiers of that time were often unstable or noisy when their receivers were blocked, and load-amplifier interactions occurred which were not well understood and degraded system performance. A particular loadamplifier interaction effect which proved quite troublesome was the coupling between a fluid jet amplifier and a blocked, highly capacitive load such as a piston or a bellows. In practical servosystems, however, bellows or piston loads are quite common and their destabilizing effects on fluid jet amplifiers tended to hinder the development of fluid ampifier servosystems.

This paper presents a NASA developed, bistable fluid jet amplifier which was specifically designed to handle such loads and the reverse flow which they can deliver into the receivers of the amplifier. The design presented is still in the developmental stage and neede improvement; however, it is capable of driving a capacitive or reverse flowing load at high speed and with much smaller control signals than would be required of more conventional fluid jet amplifiers under similar loading conditions. It is the purpose of this paper to furnish the designer with an amplifier design which, although in need of refinement, will enable him to apply fluid jet amplifiers in systems where load-amplifier interactions have been heretofore troublesome.

\section*{DEVELOPMENT OF A FLUID JET AMPLIFIER CAPABLE}

OF HANDLING RECEIVER REVERSE FLOW
Description of the Problem
Figure 1 shows a fluid jet amplifier of conventional design driving a dead-ended, highly capacitive load such as a piston. In figure l(a) the amplifier has been driving the load for a sufficiently long time for all transient effects to die out. If, as shown in figure l(b), the power jet is switched to the right hand receiver, the volume load will start to discharge. The discharge flow forms a reverse flowing jet which impinges on the power jet in the vicinity of the interaction region. Since the reverse flow initially has a stagnation pressure equal to the maximum static pressure that the amplifier can develop when driving a blocked load, its momentum will keep the main power jet of the amplifier firmly attached to the right-hand wall. In addition, the flow delivered by the reverse flowing jet projably upsets the flow geometry of the interaction region in much the same manner as application of a control signal. Thus, to switch the main power jet back into the reverse flowing receiver, shown in figure l(c), a control signal much larger than normal must be applied.

Figures 2 and 3 show typical control pressures and flows required to switch a fluid jet amplif'er of the design shown in figure 1 into a reverse flowing receiver. As can be seen, the required control pressures and flows rise sharply as a function of the reverse flowing supply pressure of the receiver \(p_{r} / p_{s}\). Since this particular fluid jet amplifier design could develop a blocked recelver pressure of 55 percent of the amplifier supply pressure, unduly high control signals are required to assure that it will switch into a highly capacitive load. Otherwise, time must be allowed for the load to discharge to an acceptably low pressure before switching. These restrictions of control signal levels and switching speed considerably limit the usefulness of conventionally designed fluid jet amplifiers as power salves for piston or bellows loads.

\section*{Design Approaches}

Two conflicting requirements had to be fulfilled to develop a fluid jet amplifier which could handle receiver reverse flow. First, the receiver reverse flow had to be diverted away from the interaction region and, preferably, a quiet ambient atmosphere supplied to the interaction region. Second, the receiver had to develop satisfactory pressure and flow recoveries during normal, forward-flowing operation. Both changes in amplifier geometry and the interaction of flow fields could be used to accomplish this task. The former approach was chosen, primarily because of the lack of flow visualization equipment at the time of the amplifier development.

The resultant amplifier design is shown in figure 4. Figure 5 shows an expanded view of the interaction region and inlet portion of the receivers. As can te seen, the receivers in the NASA Model 7 design are pointed away from the interaction region and reverse flow exiting from them will flow out the vents \(V_{3}\). The entrance to the vent \(V_{3}\) is widened slightly so that the extra flow entrained by the reverse flowing receiver jet will be captured and diverted away from instead of into the interaction region. A separate vent \(V_{2}\) is used to provide entrainment flow to the interaction region. The baffle wall between \(V_{2}\) and \(V_{3}\) prevents receiver spillover flow or reverse flow from interfering with the entrainment flow. All vents are connected to atmosphere.

The interaction region (fig. 5) differs somewhat from conventional practice. A set of control port restrictions are used to prevent control flow from entering the interaction region. These control port restrictions have zero offset and are machined in the same pass as the main power nozzle. The use of zero offset enables small machining errors to ve self-canceling. Another benefit is that the control flow required by the control port during absence of a control signal is reduced.

Figure 6 shows hypothetical ilow patterns in the amplifier receivers during operation. In figure \(6(a)\) the amplifier is diving a conventional orifice load. One portion of the flow is delivered to the laad while the other part is exhausted throxgh the vent. \(V_{3}\). Because the baffle wall isolates the interaction region from the flow going out through the vent \(V_{3}\), the receiver may be completely blocked with little or no noise occurring on its output.

Figure 6(b) shows operation of the amplifier when one of its receivers is reverse flowing. Because the receiver is directed away from the interaction region, the load reverse flow is dumped out through the vent \(V_{3}\). Thus, little interfercice with the interaction region occurs, and the main power fet may be switched into the reverse flowing receiver by means of a small control signal.

\section*{EXPERDMENTAL PERFORMANCE OF MASA MODEL 7 AMPLIFIER}

\section*{Equipment and Test Procedures}

A series of static tests were corducted on the NASA Model 7 amplifier to determine its performance under various loading conditions. Dynamic performance, although important, was not evaluated at this time.

The amplifier (fig. 7) was machined out of an acrylic block by a pantagraph engraving machine. The power throat section was 0.101 centimeter ( 0.040 in .) wide by 0.152 centimeter ( 0.06 J in.) deep. Wall surface roughness was estimated as being equal or less than 0.0005 centimeter ( 0.0002 in. ) in the vicinity of the power nozzle and inveraction region. No particular effort was made to trim the amplifier for symmetrical performance other than exercising suitable care in machining the entire unit. It should be pointed out, however, that the performance of the interaction region is very sensitive to small manufacturing errors, and mach difficulty was experienced in tryirg to machine additional units which yielded the same performance.

Measurements of amplifier triggering pressures and flows as a function of receiver loading were conducted with the test setup shown schematically in figure 8. A servopressure controller was used to maintain either constant positive or negative pressures on one of the two receivers of the amplifier, regardless of the flow through the rece:ver. Total error in receiver pressure by this method was no greater than 2 percent of the nominal value. The other receiver was optionally loaded with a needle valve or left open to atmosphere. The point of triggering was determined by observing the point at which the trace on the X-Y recorder plot made a sudden break from the previously smeoth curve.

Control port cross-flow characteristics were measured with the test setup shown in figure 9. The servopressure controller was again used to maintain atmospheric pressure at the amplifier control port at which the flow was being measured. Thus, a flow resistor with a linear pressure drop-mass flow characteristic could te used to meavure control port crossflow without changing the ambient pressure supplied to the control port.

Receiver characteristics were measured with the setup shown schematically in figure 10. The servopressure controller was again used to maintain the pressure upstream of the linear flow element constant but at a negative pressure equal to the amplifier supply pressure of \(6.88 \times 10^{3}\) newtons per meter squared ( 1.0 psig ). Thus, measurements of receiver flow could be made at subambient pressures.

All tests of the Model 7 amplifier were conducted at a supply pressure of \(6.88 \times 10^{3}\) newtono per meter squared ( 1.0 psig ) and a temperature of \(298^{\circ} \mathrm{K}\left(75^{\circ} \mathrm{F}\right)\).

Combined nonlinearity and hysteresis of the pressure transducers and the readout devices were estimated as 1 percent full scale. The nonlinearity of the linear flow elements was also approximately 1 percent of full scale. The transducers, readout device, and the flow element, if applicable, were calibrated as a single unit and in terms of the variable being measured. Estimated calibration accuracy was 1 percent of full scale for pressure measurements and 3 percent of full scale for flow measurements. Reading errur, which occurred when switching pressures and flows were read off the \(X-Y\) recorder plots, was approximately 0.2 to 0.3 percent of supply pessures and flows to the power nozzle. Tctal instrumentation and reading error for switchirs pressures and flows is estimated as being equal or less than 0.4 percent of the amplifier supply pressure and 0.5 percent of its supply flow, respectively. Total instrumentation error for control port cross-flow characteristics is estimated as 0.2 percent of the supply pressure and 0.3 perceat of the supply filow, respectively. Total instrumentation and calibration error for the receiver outpit characteristics is estimated as 2 percent of supply pressure and 4 percent of supply flow.

A set of errors was apparently caused by nonrepeatable variations in the interral flow pattern of the amplifier. The lack of repeatability varied from a miniuium for receiver and control port cross-flow characteristics to a maximum when the amplifier was switching into a reverse flowing receiver. In scme cases, two distinct triggering pressures were observed. Ir the other cases, the lack of repeatability is included in the reading error previously discussed.

A variation in performance characteristics was noted from one amplifier to the other. This lack of reproducibility was apparently caused by machining errors and varied from a minimum for receiver pressure flow characteristics to a maximum when cortrol port characteristics were measured. Not enough amplifiers were machined and tested at the time of writing of this report to establish meaningful figures for the observed performance variations; however, preliminary observations indicated that, for carefully machined units, variations in triggering pressures and flow of approximately \(\pm 5 n\) percent or more of the nominal values could be expected. The particular errors in machiring which caused these performance variations have not been determined. No:zle and interaction region wall roughness appear to be major contrioutors. It was found that any given fluid jet amplifier could be trimmed for symmetrical performance by shaving a small amount of material off the portion of the contrcl port restriction which was in contact with the main power stream. Ey this procedure, amplifiers could be made with performance characteristics approximately equal to the amplifier reported in this paper. No experiments were perform 3 to find the sensitivity of amplifier porformance to variations resulting from photoetching type proc

\section*{DISCJSSION OF RESULTS}

Although some coupling between the rece-ver and the interaction still exists in the NASA Model 7 amplifier (figs. 11 and 12 ), it is much smaller than the coupling present in an amplifier of more conventional design. A control pressure of cnly 9 percent of supply pressure was required to switch the particular amplifier tested into a receiver pressurized at 100 percent of supply pressure. The more converitional unit, on the other hand, is practically inoperable after the reverse flowing receiver pressure is above 40 percent of the supply pressure to the main power nozzle. If the receiver pressure into which the main power jet is flowing is increased, the jet attachment becomes more stable and harier to switch (fig. 13). This behavior exists for receiver pressures up to 100 percent of supply and is not typical of amplifiers of the type shown in figure 1.

Figure 14 shows the effects of a "worst possible case" in which the receiver on which the power jet is attached is blocked and the opposite receiver is reverse flowed. As can te seen, a control pressure of 15 percent of supply pressure is adequate to switch the amplifier into a reverse flowing receiver pressurized at 100 percent of supply. In practical situations, it is quite doubtful if such a combination of receiver flows and pressures could be achieved by a damped, second order load such as a piston.

Unfortunately, although the NASA Model 7 fluid jet amplifier has been made relatively insensitive to the effects of receiver return flow, its switching characteristics are strongly affected by a negatively pressurized receiver. Figure 15 shows that a negative receiver pressure of only 15 to 20 percent of supply pressure is sufficient to cause the jet to switsh into that receiver. This triggering sersitivity to negative receiver pressure will become important when the amplificr is used to drive a piston. If the amplifier is driving the piston ard the piston velocity builds up to a maximum value, the piston could corsume a flow of approximately 110 percent of the flow supplied to the main jet power nozzle (fig. 16). However, if the amplifier is switched to the other side to decelerate the piston, the piston will, for a short period of time, contirue to draw the same amount of flow out of the receiver. The experimental receiver performance curves shown in figure 16 indicate that a flow of \(1(0)\) percent of supply out of a receiver will cause a negative pressure of 40 percent of supply if the main power jet is directed towards the other receiver. This negative receiver pressure is sufficient to cause the main power jet to switch back and again accelerate the piston to maximum velocity.

Fortunately, this reverse switchins may be avoided if a steady pressure is maintained on the amplifier control ports. Figure 17 shows the control port pressures and flows required to switch the main power jet away from a negatively pressurized receiver and the minimum pressures and flows to keep the jet from switching back (called reverse switching in the figures). As is shown in figure 17, if the negative receiver pressure is less than 50 sercent of supply, the control pressures and flows necessary to switch the jet away from a negatively pressurized receiver are more than enough to keep it away. A negative receiver pressure of 50 percent of supply will
correspond to a fiow greater than the amplifier was capable of delivering to the piston load and hence is not likely to be encountered in a nonresonant load. Consequently, if the driver stage used to drive the Model 7 amplifier maintains continuous pressures and flows in the amplifier control ports, the Model 7 amplifier would not be expected to switch because of the negative receiver pressures created by pistca deceleration.

Figure 17 also shows the presence of two distinct triggering pressures. The pressure at which the mplifier would switch appeared to be a function of how rapidly the control signal was applied.

A combination of recelver loads nct investigated was a negative receiver pressure on the side or which the jet was attached and a positive pressure (hense implyfing reverse flow) on the side toward which the jet was being swi¿cred. However, cmission of this combination of loads is not expected to be serious since koth are not likely to occur at the same time. If a piston liad is being driven by the amplifier, maximum receiver pressure will te developed only when the piston is moving very slowly and hence drawing very little flow. Conversely, maximum flow will be drawn by the piston only when the pressure differential across it is a minimum. Hence the conditions of most difficult switching are probably given by either figares 11 and 12, or figure 1?.

The control port cross-flow characteristics of the amplifier are shown in figure 18. As is seen, flow entrainment into the control port is low during the absence of a control signal. Control port cross flow does not start to become significant until a control pressure in excess of 5 percent of supply is applied to the cpposite control port. A control port pressure of 10 percent of supply, which is sufficient to cause the amplifier to switch ander practically any piston load, causes a control port cross flow of valy 4 percent of supply. This value of cross flow is quite low and can probably be handled without difficulty by most passive or active fluid logic elemer.ts of coiventional desig. (cf., fig. l).

\section*{CONOLUSIONS}

It is corcluded that a bistabie fluid jet amplifier with reasonable receiver pressire and flow recoveries can be made which exhibits greatly reduced sensitivity to receiver loading effects. The design is particularly gooi at hardilig receiver retirse flow, such as might be delivered by a piston and jellows, and shoild fird application for such loads. At the supply pressure testec ( \(1.0 \mathrm{p}=\mathrm{g}\) ), application of continuous control pressures and flows of 15 and 10 percent of supply, respectively, are sufficient to erable the amplifier tested to drive a piston load under most conceivable modes of speration.

The design is not yet optimized, and it is concluded that the performance of the interaction regicin is sensitive to small manufacturing errcrs. Any particular amplifier may be trimmed to give symmetrical performance,
after which it will continue to give reproducible results. However, a new interaction region design must be developed which will give the necessary jet deflection angles, have short length, and exhibit reduced performance sensitivity to the manufacturing process. One possibility is the more conventional interaction region shown in figure 1.

The design presented in this paper is basically incompressible and will not work well at supply pressures approaching critical or greater. Work should be done to develop an amplifier with a supersonic nozzle which can operate at more useful supply pressures.

\section*{NOMENCLATURE}
\(D_{j}\) width of main power nozzle, \(m\) (in.)
\(h\) height of channels in fluid jet amplifier, m (in.)
In mass rate of flow, \(\mathrm{kg} / \mathrm{sec}\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{sec}\right)\)
p pressure, \(N / m^{2}\left(1 b_{f} / i n .{ }^{2}\right)\) gage
Subscripts:
c control
r receivers
- supply conditions
v vent
Superscript:
- angle, deg

\section*{BI BLIOGRAPHY}

Abbey, P. L., et el.: "Fluid Amplifier State of the Art. Vol I - Research and Development - Fluid Amplifiers and Logic," NASA CR-1O1, October 1964.

Bowles, R. E.: "State of the Art of Pure Fluid Systems," Fluid Jet Control Devices, ASME, 1962, pp. 7-22.

Brown, F. T., ed.: "Fluid Jet Control Devices," ASME, 1962.
Gray, W. A.; and Stern, Hans: "Fluid Amplifiers - Capabilities and Applications," Control Engrg., February 1964.

Kampass, E. J., et al.: "Perspective on Fluid Amplifiers," Control Engrg., September 1964.

Warren, R. W.: "Wall Effect and Binary Devices," Proceedings of the Diamond Ordnance Fuze Laboratories, Washington, D. C., Fluid Amplification Symposium, Vol. 1, Nov. 15, 1962, pp. 11-2C.

Warren, R. W.; and Pepero.le, S. J.: "Fluid Amplification. 1. Basic Principles," Diamond Ordnance Fuze Laborator'es Report TR-1039, August 1962.

Warren, R. W.: "Interconnection of Fluid Amplification Elements," Proceedings of the Harry Diamend Laboratories, Washington, D. C., Fluid Amplification Symposium, Vol. 3, May 1964, pp. 53-72.
"Proceedings of the Diamond Ordnance Fuze Laboratories, Washington, D. C., Fluid Amplification Symposium," Vol. 1, Nov. 15, 1962.
"Proceedings of the Harry Diamond Laboratcries, Washington, D. C., Fluid Amplification Symposium," Vo?. 3, May 1964.


Figure 1. - Performance of standard design bistable element with various recelver laadings.


Figure 2 - Control pressures required to switch conventional fluid jet into reverse flowing receiver. Other recelver \(l\), vented to atmosphere


Figure 3. - Control flows required to switch conventiond fluid jat amplifier into reverse flowing recelver. Other recelver is vented to amosphere.


Figure 4. - MASA Model 7 fluld jut amplifier.


Figure 5. - Imersetion region of MASA Madel 7 fluld jot amplifier.

(a) Normal, lorward flowing opertion.

(1) Operation when receiver is reverse flowing.

Figure 6. - Performence of the MASA model 7 huid jet amplifier under various lowing conditions.


Figure 7. - NASA Model 7 fluid jet amplifier.


Figure 8. - Schematic of test to measure control port switching pressures and fiows.


Figure 9. - Schematic of fest to measure control port crossflow charecteristics.


Figure 10. Scheinailc for test to measure recelver characteristics.


Figure 11. - Control pressures required to switch conventional and MASA Model 7 fluid jet amplifiers into reverse flowing recelvers. Other recelver is vented to atmosphere.




 eney from messurized recolver. Other recetwor is wentel to anmeshere.

(a) Control pressure aginst receiver pressure.

(b) Control flaw against receiver pressure

Figure 14 - Control pressures and nows requirce to swilich MASA Model 7 fluid jat amplifier into ieverse flowing recelver. Owher recelver is Diocied

(a) Control pressure against receiver pressure.

(b) Control flow against recelver pressure.

Figure 15. - Control pressures and flows required in gwith MASA Madel 7 fluid Je andilier Into a negatively pressurized recelver.


Figure 16 - NASA Model 7 fluid jet amplifier receiver presiur-flow characteristics.

(a) Control pressure agalnst recdiver pressure.

(b) Control flow against recelver pressure.
figure 17. - Cortrol pressures and fiows required to swlich MASA Moset 7 fluid let amplifior awey from negatively pressurizes recelver.


Figure 18. - MASA mated 7 lluid jet amaniler control port cross flow characteristics.

\author{
DEVELOPMENT OF A PURE FLUID NORGATE \\ And A \\ NORLOGIC BINARY TO DECIMAL CONVERTER by \\ T. W. BERMEL \& W.R.BROWN \\ of \\ CORNING GLASS WORKS
}

\begin{abstract}
:
A review of the empirical approach to the design and fabrication of an active, two-input, pure fluid OR-NOR Gate is presented. Performance criteria and testing methods for this device are discussed relative to a discrete standard breadboard-type component.

The breadboard assembly of a binary to decimal converter using these gates is reviewed and finally the reduction of this breadboard circuit to a three-dimensional circuit module is discussed.
\end{abstract}

An active, two input, pure fluid \(O R-N O R\) Gate is a digital logic element with a supply pressure input, \(O R\) and NOR outputs, and two control pressure infuts. A unit having a constant supply pressure will normally generate a pressure signal from the NOR leg. If, however, a sufficient control flow is transported to either, or both, control channel inputs, the output signal will switch to the OR leg. When all control signals terminate the output will return to the NOR leg.

As non-bled fluid amplifiers must be properly sized to function in a system, thus rendering them difficult if not impossible to breadboard, only OR-NOR Gate designs incorporating bleeds at the interaction area are investigated. Closed, or non-bled, systems must be uniquely designed to accommodate specific flows and characteristics of interconnected components, therefore by incorporating bleeds in fluid element design, units of the same size and utilizing a common power source can be combined into functional systems.

Possibly the most difficult facet of designing and fabricating breadboard units, whether they be pure fluid elements or any other device utilized in logic or control circuits, is establishing and meeting certain minimum standards. The major desirable operating characteristics of an OR-NOR Gate are:
a) Fan-out capability, i. e. the ability to drive several units.
b) Load insensitivity, i. e. switch points remain constant as load is changed.
c) Operation over a broad range of supply pressures.
d) Balanced control switching characteristics.
e) Complete shutoff in the inactive output.
f) Fast response.

A number of devices were fabricated for each of the designs discussed and only typical curves are shown. Most of the data accumulated during this study have been omitted from this paper for the sake of clarity. Although substantial flow-pressure and operating range information was accumulated, it was found that these characteristics changed only slightly as the designs were changed. The recovery pressure vs. switch pressure relationship was most indicative of design parameter variations, therefore only the se curves are presented.

All devices were fabricated in Fotoceram glass cerarnic and cover plates of the same material were thermally fused to the etched images.

\section*{PARAMETER STUDY}

It was decided that a bistable element could be altered to function as a twoinput OR-NOR Gate by (a) geometrically biasing the power stream to a given attachment wall, such that in the absence of a control signal the stream would normally attach to that wall, and (b) installing a two-input control configuration adjacent to the given wali. The method of geometrically biasing a bistable unit is shown in Figure 1.


Figure 1


FIGURE 2

A program was initiated to increase the control width dimension " \(A\) ", and adjacent wall setback, dimension " \(B\) ", thereby increasing the tendency of the power jet to attach to the opposite wall.

The first design study is shown in Figure 2. The design of the two-input control configuration was completely arbitrary, and the OR wail offset, dimension " \(A\) ", was varied in an attempt to establish an optimum bias operating condition. The effect of bleed area, dimension "B", on recovery preesure was also investigated at this time.

When designs 1 thru 9 were tested it was found that none of the elements exhibited bistability unless a substantial control differential existed. It then became quite obvious that the ratio of control width to wall length was too great to allow bistable operation. In an effort to obtain data on recovery and switching characteristics the bottom control channel was blocked, thus reducing the effective control area on the NOR side causing all of the units to biat \(J\) the proper wall and function as inverters. Typical switch curves for the top control of each design are shown in Figure 3.

The following conclusions were drawn from these curves:
a) The NOR side control area was too large (proportioning occurred when no control signal was present).
b) The greater the OR side attachment wall offset, dimension " \(A\) ". Figure 2, the higher the switch pressure and the greater the tendency to proportion

SIVITCH PRESSURE CURVES
RECOVERY PRESSURE, PR VS CONTROL PRESSURE, PC LOWER CONTROL BLOCKED ~ SUPPLT PRESSURE, \(P_{J}=3\) PSIA output loads on NOR lEG \(=\infty\), 3 NOZzLE, 44 NOzzle


42
Refer fig. 2 for
FIGURE 3
from the "set" wall to the opposite wall during switching.
c) The bleed design did not appear to be efficient in removing all of the excess flow at high loads. Note, Figure 3, that all of the units "flood out" at the various loads. It can also be noted that the \(.020^{\prime \prime}\) wide bleeds caused extreme flood-out at high loads while there is little difference between the . \(030^{\prime \prime}\) and \(.040^{\prime \prime}\) wide bleeds.

Design \#10, Figure 4, was then initiated, with the bleed design being patterned after designs discussed in a paper by R. W. Warren entitled "Bistable Fluid Amplifiers", and a two-input control again arbitrarily chosen. A typica! switch curve is shown in Figure 5. The data indicated:
a) Fairly good load stability, i. e. no "nood-out" and relatively load insensitive.
b) Upper control swith pressure was high and far out of balance with lower.
c) The hysteresis loop was extremely large.

From these data it was apparent that adequate venting had been achieved, but that the control imbalance and the large hysteresis loop required further study. The switch pressures, in particular that of the upper control, were high enough to severely limit "fan-oist"; and the return presslres were low enough to indicate that minor variations in manufacturing techniques or slight

now "spill-over" of interconnected units could result in bistability. It was decided to adjizet both attachment wall locations through the ranges shown for designs 11 to 14, in Figure 6, in order to establish what effect, if any, the relative distances between the attachment walls had on the witching and return pressures. All four design yielded approximately the ame switching characteristics, as shown by the typical curve presented in Figure 7. It was concluded that the distance between walls has little effect on the a witch points of this particular bistable device design and no further study is contemplated in this particular area at this time.

The most undesirable feature of design 10 is obviously the relatively high pressure required in the upper control in order to effect switching. The switch preseure level of the lower nozzle, although not optimum, was felt to be adequate; and for this reason it was decided to concentrate effort on bringing the upper control into balance with the lower, rather than decreasing the average of the two.

In an attempt to show visually the interaction of the control dows with the power atream now, an experiment was conducted utilizing a double size image of design 10 with a transparent glase coverplate attached over the image. A container filled with smoke was then inserted in the exterior control line and a control flow passed through the container to the upper and lower controle reapectively. Switching of the power stream by each control was observed. Figure 8 depicte the smoke residue formed on the transparent coverplate with vortex currente also inserted to illustrate what was believed to have been


taking place in the critical areas. This vortex action does not appreciably effect the lower control but greatly effects the upper by apparently increasing the effective resistance at the point of impact with the power stream and allowing a relatively large amount of "waste flow" to pass out the inactive bottom control. In an attempt to minimize the effect of this phenomena three new designs were processed.

Design 15, Figure 9, moved the intersection of the two controls closer to the power stream in the belief that such a move would tend to balance the switching points. However, as noted on the curve in Figu:e 10, the upper contro: pressure actually increased, and it would appear that the closer the lower control channel to the vortex region, the mare efficient it becomes in venting the control flow from the upper channel; hence the higher the pressure required to obtain enough fow to witch the power stream. Design 16. Figure 11, decreased the angle of approarh between the top control channel and the power stream. From the curve in Figure 12 it is obvious that the controle were balanced rather well but that both switching points increased, indicating that the effective resistance due to the vortex phenomena in this design effected the lower control as well as the upper. The third design, "17, Figure 13, was made in an attempt to decrease the effective resistance of the control opening by removing a small amount of material from the corner between the control opening and the attachment wall. It was reasoned that this would decrease the resistance at the point of impact of the power stream and control stream by streamlining the fow at this point. The curve shown in Figure 14 not only indicates that the desired reaults of balancing the controle were attained but also suggeste




that the return pressure is increased thus decreasing the hysteresis loop.

\section*{INTERCONNECTION}

Having achieved what was felt to be a reasonably stable device for use in breadboard circuits, proof of its ultimate potential required fabrication of a reasonably complex multi-layer, diffusion bonded circuit. Although the interconnection of fluid devices introduces many unique problems, most of these problems can be avoided if the circuit is designed well within the operating capabilities of the basic devices used, or conversely, if the circuit design is such that the devices included are required to operate under any marginal conditions, unexpected pressure inconsistencies combined with marginally performing gates might well result in erratic operation.

In order to establish the validity of this reasoning it was decided to design the circuit well within the capabilities of the NORgate, while, in effect, making no effort to design around potential interconnection problems. With this in mind, the following design parameters were established:
1) Fan-out - although the gate, as designed, could generally be expected to actuate six similar devices, fan-out was limited to four, to assure stable operation.
2) Complexity - the circuit should have a minimum of ten gates in a minimum of ten plates.
3) Size-all gates would have 0 010" wide power nozzles, and the plates would be designed to have vertical symmetry, thereby simplifying artwork preparation
and venting.
4) External connections - there would be no test taps, and as many devices as possible would vent into common sumps, thereby minimizing external porting. In addition, all devices would be fed from a common supply port.
5) Components - only two input OR-NOR gates would be included in the circuit in order to avoid malfunctions not directly attributable to the component being tested.

At the time this test was being formulated several circuits were being developed, and from these, the one selected as being most readily adaptable to the previously stated conditions was the binary to decimal converter.

\section*{BINARY TO DECIMAL CONVERTER LOGIC DESIGN}

There are, of course, many basic logic designs which will accomplish the conversion from a binary number to a decimal number, one of which is that shown in Figure 15. This particular design was chosen because it utilizes only two input OR-NOR Gates with a maximum fan-out of four. The eighieen gates included could easily be laid out on ten plates.

The design is obviously negative nor logic, with the eleven gates in line representing the ten decimal numbers, plus a reset, and the seven gates in line connected to represent the four possible combinations from the one and two counters, and the three combinations required from the four and eight counters.


Figure 15


Figure 16
Figure 16 shows the converter as breadboarded prior to final design, with the counter below the manifold and the converter above, while Figure 17 shows the same layout with the converter priduced in module form. The counter part of the circuit was not included in the block to avoid other than nor logic.


Figure 17

\begin{abstract}
ASSEMBLY DESIGN
The assembly was designed with the gates placed in the same relative position on each plate, as shown in Figure 18. Although it is readily apparent that there is considerable wasted space on each plate, this design technique greatly simplifies artwork preparation and venting, and is felt to be justified until such time as size and weight become critical.
\end{abstract}

The four plates running clockwise from the top contain the seven gates which receive the signals from the counters, and the remaining five plates show nine of the eleven reidout gates. One active plate and the coverplate are not shown. The device pic'ured in the lower left-hand corner is a standard NORgate of the type used in assembling the breadboard circuit.

\section*{CIRCUIT PERFORMANCE}

Two converters were fabricated and stacked as shown in Figure 19, and both of them performed as intended, up to approximately 100 cps . This would certainly seem to indicate that the NORgate, as developed, is adequate for circuit fabrication as long as it is not required to function under marginal conditions. It is quite probable that this same device would malfunction if included in a circuit requiring a fan-out of five, even though designed to fan-out to six, because it is certainly not unreasonable to expect one slightly sub-standard device out of eighteen, and the fabrication techniques used do not permit replacement. Figure 20 presents the input and output characteristics of the converter.



Pressure Out vs. Flow OUt
CONTROL PRESSURE VS CONTROL FLOW


Figure 20

\section*{CONCLUSIONS}

It would appear that an effective method of geometrically biasing a bistable unit incorporates both a slight wall offset and an enlarged control area. Once this is accomplished and an input control width is established, \(010^{\prime \prime}\) in this case, the operating characteristics of the unit become relatively fixed for various changes in attachment wall distances and two-input configurations. Possibly the most aignificant accomplishment was recognizing the apparent interaction of the control stream with the power stream and the rather elementary solution of streamlining the flow at the critical area.

The final analysis of the value of the NOR gate described will not be available until data are obtained relating the fan-out of the NORgate to selection. However, the binary to decimal converter did demonstrate that fabrication of reasonably complex NOR-logic circuits in multi-layer, diffusion sealed blocks, can be accomplished.

\section*{REFERENCES}
1. Warren, R.W.
- "Interconnection of Fluid Amplification
\[
\begin{aligned}
& \text { Elements" - Fluid Amplifier } \\
& \text { Symposium, May } 1964 .
\end{aligned}
\]
2. Van Tilburg, R.W. - "Production of Fluid Amplifiers by Optical Fabrication Techniques" Fluid Amplification Symposium, October 1962.
3. Warren, R.W.
- "Biacable Fluid Amplifiers" - Fluid Ampification Seminar, June 1964.

> HARRY DIAMOSD LABOUATGRIES WASHINGTON, D. C. 20438

A PNELMATIC TAPE-READER

> by

NOPMAN A. EISENBERG

\section*{TMMODCTIC}

Oas large clase of tape-readers are those that decode paper tapes punched with holes; 1.e., the pattern of holev in the tape is tranelated into a typed meseage. Both electrical and paevatic syateme are avilable conmercially to perform thio function. The tape-readar described in this paper uses flueric devices.

Pneumatic tape-readers have been available for many years. The main use of these machines is the typing of duplicate leters. Thus businesemen are able to send apparently individually typed letters at a much lower cost than letters individually typed by a human typist. These tape-readers use a piano-roll type tape with hole positions corresponding to each character or control instruction; i.e., there are about 50 hole positions in a tape.

Likewise electrical tape-typewriter syatems have been extant for many years. The electric machines are also used to dupilicate letters. In addition, the electric machines are capable of processing standard forms upon which duplicate information is to be typed together with some apecial information on each form; in other words, the electric machines can insert apecific bits of typed information at the desired locations in a standard form. The electrical machines may also be tied in with more sophisticated business ayptens, which ase electronic digital computers. These tape readers use an eight-hole tape; each cha:scter or control function has a combinatorial code using six bits. One hole position is used for a parity check
and the reeniniag pooition is used for the carriage return.
The aysten described in this paper combines the reliability of preunatice with the flexibility of the electric ayoten.

\section*{}

The tape-reading ayoten (fig. 1) comprises two interlocking subsyotens, the main logic subsyotei and the control oubeystem. The primary task of tranclating the tape fallo to the main logic subsyetem, which converte the pattern of holes in the tape into paeumatic aignale, amplifies these aignals, feede the amplified oigals into decoding elemente, and actuates the typewriter.

The control subsysten allows the operator of the tape-reader to regulate the translation procees. This ubsystem is responsible for advancing the tape across the reading head at the proper apeed and syochronizing this motion with the main logic subsystem. Pigure 2 is photograph of the rear of the system.


Figure 1. Block diagram of the tape-reader syatem


Fiaure 2. Rear view of assembled tape-reader system

\section*{Tis Mat Locic surs}

The first stage of the main logic oubaystem is the reading head (fig. 3), which cogsists of two sets of eight orifices. The orifices are cut into two opposing plates between which the tape movee. The specing of the holes in both plates corresponds to the apecing of hole positions in the paper tape. The region behind the upper plate is pressurised so that the upper set of orificee emits air jete. The orifices in the lower plate are individually connected to eight transmission tubes. As the tape moven between the plates, depending on whether or not a hole appears in a given tape position, either the transmiseion tubes receive a presoure step derived from the dynamic pressure of the emitted air jets passing through the hole in the tape, or the end of the tranemianion tube in the reading head is cloced off by the paper sepe.

The combinatcrial logic that decodee the tape requiree two types of eignals: (1) sigas thet are high when there is a hole and low when there is not and (2) signals that are low when there is a hole and high when there is not; that is,the logic aystem requiree a algal indicating both the presence and absence of a hole. To produce these two types of eiganls and also to amplify the aigals originating in the reading head, the eight tranomisaion tubes from the reading head are connected to a set of eight flueric flip-flops.

Bech tranomisaion tube is connected to one control port of a flip-flop and the other control port is left open to atmoapheric pressure. When the tape position correspoading to a given flip-flop hat no hoie In it, the transmiseion tube is closed at the reading head and. Secause


Figure 3. Schematic oi che reading head
the flip-flope used are of the type in which sealing off a control port while the opposite control is open to atmosphere switches off the unit, the absence of a hole in the tape will cause the flip-flop to owitch to the side connected to the reading head.

On the other hand when a hole appears in the tape position corresponding to a flip-flop, if the pressure producing the air jets in the head is sufficiently high, the pressure received in the transmission tube will cause the flip-flop to awitch to the opposite side. Hence the outputs of the flip-flops are the Boolean functions \(X\) and \(\overline{\mathrm{X}}\), where X is defined as follows:

1 if there is a hole in the Xth tape position \(x=\)

0 if there is not a hole in the Xth tape pesition
\(\bar{X}\) is of course the Boolean complement of \(X\).
With these two Boolean functions available for each of the aight tape positions, it is possible to produce all the combinations of inputs making up the code. The code used is one of the etendard Friden Flexouriter codes. The eighth tape position is used only for the carriage return, and the fifth position is the parity bit; thus to eimplify the decoding circuitry, the eighth and fifth positions were ignored and a six-bit decoding circuit was built. The parity bit is used to make an odd number of holes in the code of any character. Many erroneous codes in the tape can be detected by checking to make aure that the number of holes for any code is odd; that is, checking the parity. A parity checking circuit was not built into the present system, however, because it was not believed necescery for demonstration purposes.

Although the Boolean functions available from the flip-flope would permit the use of either AND or MOR elements for decoding, turbulence amplifiers (NOR elements) were chosen as the decoding elements (fig. 4). When there is no ixput to the turbulence amplifier, the output recovers a dynamic pressure from a laminer jet; when an input is received, the Jet becomes turbulent, and, because of the difference in energy diesipation between lamimar and turbulent flowe, a much lower pressure is recovered by the output. The turbulence amplifiers used have eight input terminale. Since the turbulence amplifier behaves as a NOR element, for inputs \(Y_{1}\), the output 2 is
\[
\begin{equation*}
z=\overline{Y_{1}+Y_{2}+Y_{3} \cdots+Y_{k}+\cdots} \tag{2}
\end{equation*}
\]

However, since the code for a character is a Boolean AND function, a Boolean algebraic manipulation must be made to determine the inpute to the turbulence amplifier necessary to produce the proper reaponse. The code for A, for example, has holes in the first, sixth, and seventh positions. Hence ignoring, as previously stated, the fifth and eighth positione
\[
A=1 \cdot \overline{2} \cdot \overline{3} \cdot \overline{4} \cdot 6 \cdot 7
\]


Figure 4. A single turbulence amplifier

Now, an extension of DeMorgan's Rules shows that if
\[
\begin{equation*}
F=U_{1} \cdot U_{2} \cdot U_{3} \cdot U_{4} \cdot U_{5} \cdot U_{6} \tag{3}
\end{equation*}
\]
then
\[
\begin{equation*}
F=\bar{U}_{1}+\bar{U}_{2}+\bar{U}_{3}+\bar{U}_{4}+\bar{U}_{5}+\bar{U}_{6} \tag{4}
\end{equation*}
\]
where, as is customary, - is the Boolean AND operation, + the Boolean OR operation, and - is the Boolean inversion.
A comparison of (2), (3), and (4) shows that if \(F=U_{1} \cdot U_{2} \cdot U_{3} \cdots\)
than the variables \(\overline{\mathrm{U}}_{1}, \overline{\mathrm{U}}_{2}\), and \(\overline{\mathrm{U}}_{3}\). . . must be supplied to the inputs of a turbulence amplifier so that its output will be \(F\).

Since the same variables are required as inputs to several Non elements, fanouts are necessary at the outputs of the flip-flops. The fanouts used are manifolds in which the supply and output ports are mounted exially in order to reduce losses. Each fanout has 30 outputs through \(0.032-\mathrm{in}\). I.D. brass tubes about 4 in . long.

Appendix I shows that if the supply pressure to the flip-flops is greater than \(57.4 \mathrm{~cm} \mathrm{H} \mathbf{H}_{2} \mathrm{O}\), then the steady-state operation of the main logic circuit is essured. (The dyaamic problems will be traated shortly.) Thus, whenever a particuler code appears in the reading head, the corresponding turbulence amplifier delivers an output pressure signal.

The remaining task of the translat'ng systen is the conversion of this pressure output into the movement of the typewriter keys. Because the primary objective was the demonstration of flueric logic devicus in a complex system, the development of pneumatic-to-mechanical transducers was not considered. Instead provision was made to utilise an existing system.

The existing 50-hole tape reading system contains actuators requiring a vacuum supply. In this syatem the control port of the actuator is connected directly to the reading head; thus as the pianoroll tape rides over the reading head the holea in the tape allow the control port to be exposed to atmospheric pressure. When a control port is connected to atmospheric pressure, the actuator activates a typewriter key through a series of levers. The compatibility of this actuating system with several popular models of typewriters made its use in the main logic subsystem very desirable.

Because the output of the turbulence amplifiers is a pressure step above atmosphere and the input to the actuators is the partial release of vacuum, bellows-controlled orifice arrangement (fig. 5) was used to couple the two sets of devices. When the orifice is uncovered the actuator connected to it will pull a key on the typewriter

down. When the orifice is covered the key is released.
All the dymanic probleas center around the ayachronisation of the pacumatic input aignale to the NOM elements. The requirement is that all inpute to all mon elemente must change aimultaneously for proper operation of the aystea described above.

Since changes in the various inputs to and element canot be made to arrive aimultaneously, a mana of eliminating the traneient errore mes developed. Because oaly aix of the eight inputs to the MOR units are used for decoding, one of the remaning inputs is used to receive a blanking pulse. A pulse of air delivered to a NOM unit will prevent it from firing; thus a blanking pulse delivered to all the NOR units, during the time that the inputs are atill changing, will prevent errors caused by the transition. The blanking pulse would be required to arrive at the NOR element a short time before a change occure and to ceave a ohort time after all changes in the inputa are completed; in other worde, the blanking pulse would completely mask the transition pariod. Because the blanking pulse must be aynchronised with the tape motion, the pulse originates in the control circuit and passes through a fanout to all the decoding MOR alemente.

\section*{THT CONTROL SUBSYET M}

The central component of the control subsystem is a two-output fluaric trigger (fig. 6). The two outputs of the flueric trigger (8T) are Boolean complements of each other. When the input to the 8T reaches a threshold level, the normally high output becomes low, and the normally low output, high. When the input reaches some lower threshold level, the outputs return to normal. The normally high output is sometimes called the low side, and the normally low output is called the high side: i.e., the outputs of the ST are named for their condition in the activated state. This type of device hes been identified by the nonstandard nomenclature OR-NOR.

The ST's used in the control subsystem have integral \(\%\) connectors In the control and two outputs. The davice was designed by tilting the power jet of a bistable unit (flip-flop) until it became monostable. The device has a built-in fanout of two, but the use of external \(Y\) connectors fermits a fanout of five.

The control subsystem must advance the tape and provide a sychronized blanking pulse to the translating ayatem. Because of its purposes, the control subsystem naturally separates into three main parts: (1) a central oscillator, (2) the blanking circuit, and(3) the advancing circuit. The advancing circuit containe both moving-part and no-movingpart pneumatic componente, whereas the oscillator and blanking circuits are entirely flueric.

The central oscillator is a resistance-capacitance, feedback type. Varying the value of the feedback resistor with a needle valve varies the frequency of oscillation. The frequency can be varied continuously from 5 to 11 cps . The output of the oacillator is a square

wave. Since it is desirable to be able to stop the system at any time, an input is provided to lock the oscillator in one position. The output of the oscillator is fed into the tape advance and blanking circuite. The tape advance circuit amplifies the clock pulse fron the oscillator and uses it to drive a piston. The piston drives a tapeadvancing aprocket through a pawl and ratchet assembiy. The blanking circuit contains a variable time delay, an adjustable single-shot multivibrator, and a pulse power output (fig. 7). The variable time delay is necesary to compenaate for the many delays in the advancing circuit. Adjustment of the variable delay will cause the blanking pulse to coincide with the change of tape position. The variable delay is effected by passing the output of the oscillator through a series tank and-valve combination into an ST. Adjustment of the valve varies the time delay, because the time required for the pressure in the tank to reach the switching pressure of the ST depends on the series resistance.

The adjustable single-shot multivibrator (SS) varies the on-time of the periodic step-function output. This feature is necessary, because the duration requirement for the blanking puise changes with frequency. If the blanking pulse is vo short, the NOR \(\log\) ic will erroneously decode the transient input states, since not all the transient states will be blocked. If the blanking pulse duration is too long, the NOR elements will not have enough time to come to fully on-state. and the bellows-orifice mechanisms will nct actuate, because of the lack of sufficient pressure.


Input


Equivalent Pneumatic Circuit
Figure 7. The blanking circuit

The adjustable SS uses three ST's and series valve-tank combination. SI 3 has inputs from the high side of ST 2 and the low side of ST 1. In the quiescent state, with no input from the delay circuit to ST 1 , the low side of ST 1 has an output, so that ST 3 is in the activated state, and no output oscurs on its low side. When an input comes into ST 1 , the low side no longer has an output and ST 3 goes to an unactivated state with an output on the low side. Since the high side of ST 1 is connected to the input of ST 2 through a valve-tank combination, ST 2 switches to an activated state after a time delay depending on the valve setting. When ST 2 switches, it deactivates \(\operatorname{si}\) 3. Thus the low side of ST 3 has an output that starts when there is an input to ST 1, and stops after a delay time dependent on the valve setting. Thus a variable pulse width is achieved without affecting frequency. By choosing one or another of the outputs of ST 3, pulse widths of 5 to 95 percent of the period of oscillation are available.

The output of the SS is fed intoan ST with a higher power jet pressure than the ST's in the SS. This power anplified signal is then delivered to a fanout that feeds all the NOR elements. Adjustments of pulse width and time delay are made while observing simultaneously the output of the masking pulse fanout and the other inputs to the NOR decoders. In this manner the blanking pulse is adjusted to the proper width and the correct time relationship to the changing inputs.

\section*{PERFORMANCE}

In general the performance of the tape-reader was good. Tapes could be read at about ten characters per second with few errors. This is about twice the speed of existing pneunatic tape readers and about the normal operating speed of electric tape readers. The causes of the errors are known.

One type of error occurs when the carriage is returned. The time for the carriage to return is greater than the period of oscillation, especially for long lines of type. At 10 cps , the carriage recurn for a full line of type takes about four periods. Hence, while the carriage is still in reverse motion, the initial letters on the next line will be typed, causing them to appear erroneously in the middle of the page. To eliminate these errors the tape must not advance while the carriage is returning. An obvious solution is to lock the oscillator for a few periods by a signal from the eighth (carriage return) flipflop. This solution will not work because the delay between the oscillator and tape advance ratchet is greater than \(i\) period of oscillation; hence, even if the oscillator were shut down, the signal stil: in the lines would make the tape advance. Another possible solution is to pre-sense the carriage return hole by a separate reading head and thereby shut off the oscillator enough in advance so that the stopping of the tape-advancing sprocket will coincide with the return of the carriage.

Another type of error occurs when a double letter is coded. The action of the bellows-orifice arrangements, although fast enough for effective single operation at high speeds, is not fast enough to
respond to two consecutive aignals. Nothing short of redesigning the bellows-orifice arrangemente will solve this problem. However, if the reading apeed is reduced alightly, the present arrangements will respond fast enough.

\section*{A PPENDIXI}

\section*{COITION YR FITHCTV STKAN-STAXS CPKATION}

The flip-flop, fan-out, turbulence amplifier circuit is as follows:


This circuit can be represented schematically as follows:

where \(P_{1}, R_{0}\) is the equivalent circuit for the output of the flip-flop ( \(P_{1}\) is either a constant pressure dependent on the supply pressure to the flip-flop or is zero pressure when the flip-flop is witched off, and \(R_{0}\) is a square law resistance.

The \(R_{1 i}\) are the resistances of the separate branches of the fanout. The \(R_{21}\) are the input resistances of the turbulence amplifiers. Both the \(R_{11}\) and \(R_{21}\) are inner reaiatances.

Now the circuit must be arianged so that when the flip-flop is on, \(P_{3}\) is large enough so that the turbulence amplifier is shut off. Figure Al shows that although the turbulence amplifier never shuts off entirely, a suitably low output pressure level is reached when
\[
P_{\text {in }}=.25 P_{0}
\]
\[
\begin{align*}
P_{\text {in }}= & P \text { input pressure } \\
& \left(\mathrm{cm} \mathrm{H}_{2} \mathrm{O}\right)
\end{aligned} \quad \begin{aligned}
&  \tag{1}\\
& P_{0}= \text { output pressure } \\
&\left(\mathrm{cm} \mathrm{H}_{2} \mathrm{O}\right)
\end{align*}
\]

Figure A2 shows that
\[
\begin{equation*}
P_{0}=.319 P_{8}-3.19 \quad 20 \leqq P_{8} \leqq 55 \tag{2}
\end{equation*}
\]
where \(P_{G}\) is the supply pressure.
Since it is desired to have as hígh an output as possible from the turbulence amplifiers without sacrificing stability, \(P_{\text {s }}\) is set nominally at \(50 \mathrm{~cm} \mathrm{H}_{2} 0\). Thus \(\mathrm{P}_{\mathrm{o}}=12.75 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}\), and for effective operation \(\mathrm{P}_{\text {in }} \geq 3.19 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\).

The circuit components must then be adjusted to effect this condition. Since \(R_{0}, R_{1 i}\), and \(R_{2 i}\) are all fixed, \(P_{1}\) is the only adjustable parameter. \(P_{1}\) may be changed by varying the supply preasure to the flip-slop. From figure A3 it is seen that
\[
\begin{equation*}
P_{1}=.533 P_{j} \tag{3}
\end{equation*}
\]
where \(P_{j}\) is the supply pressure of the flip-flop.
Steady-state equations for the circuit can be written by applying the resistance laws and the continuity equation for one-dimensional incompressible flow.
Figure Al. Output and input pressures for a turbulence amplifier with different supply pressures.


```

\beth

```
IRare 13. Output and supply prestures for elip-ind.


Since
and
\[
\begin{aligned}
& R_{11}=R_{12}=\ldots \ldots . \ldots \ldots . . . . . \\
& R_{21}=R_{22}=\ldots \ldots \ldots \ldots \ldots \ldots=R_{2 i}=
\end{aligned}
\]

We may write
\[
\begin{aligned}
& P_{31}=P_{32}=\ldots \ldots \ldots \ldots \ldots \ldots . . \\
& Q_{11}=Q_{12}-\ldots . . . \ldots . . . . . . \\
& Q_{21}-Q_{22} \ldots \ldots . . . \ldots \ldots . . . .
\end{aligned}
\]

Thus it is possible to speak oi \(R_{1}, R_{2}, P_{3}, Q_{1}\), and \(Q_{2}\). The
resistance laws give
\[
\begin{align*}
& P_{1}-P_{2}=Q_{0}{ }^{2} R_{0}  \tag{4}\\
& P_{2}-P_{3}=Q_{1} R_{1}  \tag{5}\\
& P_{3}=Q_{2} R_{2} \tag{6}
\end{align*}
\]

The continuit:y equation yields
\[
\begin{align*}
& Q_{1}=Q_{2}  \tag{7}\\
& Q_{0}=N Q_{1} \tag{8}
\end{align*}
\]
where \(N\) is the number of fan-outs.
Combining (5), (6), and (7)
\[
\begin{equation*}
P_{2}=Q_{1}\left(R_{1}+R_{2}\right) \tag{9}
\end{equation*}
\]

Combining (9), (4), and (8)
\[
P_{1}=N^{2} Q_{1}{ }^{2} R_{0}+Q_{1}\left(R_{1}+R_{2}\right)
\]
or
\[
N^{2} Q_{1} R_{R_{0}}+Q_{1}\left(R_{1}+R_{2}\right)-P_{1}=0
\]
hence
\[
\begin{equation*}
Q_{1}=\frac{-\left(R_{1}+R_{2}\right) \pm \sqrt{\left(R_{1}+R_{2}\right)^{2}+P_{1} N^{2} R_{0}}}{2 N^{2} R_{0}} \tag{10}
\end{equation*}
\]

Obviously the positive root should be taken, hence
\[
\begin{equation*}
Q_{1}=\frac{-\left(R_{1}+R_{2}\right)+\sqrt{\left(R_{1}+R_{2}\right)^{2}+P_{1} N^{2} R_{0}}}{2 N^{2} R_{0}} \tag{11}
\end{equation*}
\]

Combining (11), 6, and 7
\[
\begin{equation*}
\left.P_{3}=\frac{\sqrt{\left(R_{1}+R_{2}\right)^{2}+P_{1} N^{2} R_{0}-\left(R_{1}+R_{2}\right)}}{2 x^{2} R_{0}}\right\rangle_{R 2} \tag{12}
\end{equation*}
\]

Substituting the appropriate values in equation 12
\[
\text { N = } 35 \text { (an upper bound for the fan-out of a single }
\]
variable for the code used; see figure 3)
one concludes that for proper operation
\[
P_{1} \geqq 30.6 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}
\]
hence by relation (3)
\[
P_{j} \geqq 57.4 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}
\]
\[
\begin{aligned}
& \mathrm{P}_{3} \geqq 3.19 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \\
& 3 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} \\
& R_{1}=3.3 \times 10^{-2} \frac{2}{\mathrm{cc} / \mathrm{min}} \\
& R_{2}=8.0 \times 10^{-2} \frac{\mathrm{~cm} \mathrm{H}}{2} \mathrm{O} \\
& R_{0}=1.61 \times 10^{-6} \frac{\mathrm{~cm} \mathrm{H}_{2} \mathrm{O}}{(\mathrm{cc} / \mathrm{min})^{2}}
\end{aligned}
\]

\section*{}

\footnotetext{
The assistance of Frank Weiser in the construction of this tapereader is gratefully acknowledged. Mr. Weiser designed and built many of the mechanical parts of the tape reader. His akill and experience vere invaluable in the apeedy fabrication of many complicated devizes.
}

\section*{PUID STATE HYBRID CONTROL SYSTENS}

\author{
by \\ P.A. Orner \\ Giannini Controls Corporation Malvern, Pennsylvania \\ and \\ J.N. Wilson \\ University of Saskatchewan Saskatoon, Saskatchewan
}

\section*{ABSTRACT}

This paper assesses the simultaneous use of both proportional and bistable fluid state devices in synthesizing closed loop control systems. In particular, the desirable features of systems using proportional devices in the power amplifier and actuator sections of the system and digital devices in the feedback and compensating sections are presented. The advantages of typical systems are evaluated with respect to accuracy, speed of response, compensation, stability, impedance matching, and efficiency. Preliminary experimental results are reported.

A Paper Prepared For
The Third Fluid Amplification Symposium Harry Diamond Laboratories, Washington D.C.

\title{
FLUID STATE HYBRID CONTROL SYSTEMS
}
by

\author{
P.A. Orner - Giannini Controls Corporation Malvern, Pennsylvania \\ J.N. Wilson - University of Saskatchewan Saskatoon, Saskatchewan
}

\section*{INTRODUCTION}

Past and present research and development in fluid state devices has resulted in several types of proportional and bistable fluid amplifiers with widely varying ferformance characteristics. While initial efforts were directed towards development of individual elements, more recent investigations have been concerned with synthesis of practical systems. The inherent advantages of f luid state devices immediately suggest applications to closed loop control systems.

However, when one encounters the design of control systems employing exclusively fluid state devices, a number of decisions must be made,viz.:
1. How can the controlled variable be monitored with sufficient accuracy over the maximum expected excursion?
2. How can the command or reference information and perhaps adaptation information be reliably and accurately read into the system?
3. How can the system best be compensated to meet stebility and dynamic design requirements?
4. How can the power amplification and mechanical actuation functions in the forward loop be executed most reliably and efficiently?

Considerations such as those noted above lead the authors to believe that hybrid fluid state systems employing bistable and proportional devices in appropriate portions of a control system
offer severa\& advantages.

At the present level of development in fluid state technology, it is worthwhile to examine the most advantageous applications of fluid state devices (both proportional and bistable) in the various parts of the control loop.

\section*{TRANSDUCTION AND COMPUTATION}

First, let us examine the problem of measuring the controlled variable. The main advantage of using digital transduction is the capability to measure large excursions of the controlled variable and yet preserve resolution. Coupled with this is the fact that digital logic elements are relatively insensitive to noise. Consequently, noise generated in the transduction process is not transmitted through the system. Another advantage of digital transduction is the insensitivity to reference variations and parameter changes.

A good example of the case in point is the pneumatic gauge (essentially a flapper valve used for analog position meas urement). Such a device is capable of measuring position accurately, providing the controlled variable executes nly small excursions from the null point. In addition the device's performance characteristics change with variations in operating pressure, geometrical design, and fluid properties. Admittedly, not all analog transduction devices operate on the pneumatic gauge principle but it is felt that sensitivity to reference variations and parameter changes are two characteristics of nearly all analog transduction means which tend to degrade control system performance. No doubt, applications exist in which analog transduction may be the only means possible due to economic or practical considerations.

Turning now to the feedback and computational portions of the system, one desirable feature of using digital devices is their inherent insensitivity to noise. Large noise-to-signal ratios, which proportional devices at the present state-of-the-art are prone to exhibit \({ }^{1,2}\), tend to result in saturation and reductions in sensitivity especially if several stages of amplification are used. One further drawback to the use of proportional devices in the feedback and computational portions of the system is their rather high sensitivity to geometry (introduced during fabrication), often resulting in asymmetrical or nonlinear operation \({ }^{2}\).

There are, however, certain features of the use of proportional amplifiers which are superior to digital devices so far as
feedback and computation are concerned. The first is their frequency response. Proportional devices have a response time an order of magnitude faster than digital devices. Furthermore, in many control systems, the number of proportional elements used will he considerably less than the number of bistable devices to accomplish the same function. In other words, it appears that fluid state analog systems possess the potential for considerably faster operation than digital systems.

\section*{COMMAND INPUTS}

A very important aspect of the use of digital devices for the computational parts of the system is the ease with which command information can be read into the system. As an example, command information could be read into a fluid state digital system on punched tape or as a train of fluid pulses. For very high performance continuous systems, the analog reference signal generators would have to generate signals to an accuracy at least as high as that expected of the system. This could be a feat in itself, especially for variable set-point systems.

\section*{DYNAMIC COMPENSATION}

The compensation of control systems generally reduces to one of designing suitable lead-lag networks or combinations thereof. For integration, proportional devices have been shown to be sensitive to asymmetries in geometry \({ }^{3}\) which results in unpredictable reset rates as well as drift. While a counter will perform the integration function very effectively digitally, it does require more elements and invariably will have a limit on the maximum rate of integration due to the dynamics of the digital amplifiers.

In regard to lead circuits, the most undesirable feature of proportional devices is their tendency to generate noise 1,2 an undesirable signal to pass through any differentiator. Digital differentiation, though possible, adds to circuit complexity and results in essentially a sampled data subsystem. Gaither and Taft \({ }^{4}\) have developed an interesting technique of digital lead compensation which appears particularly attractive for use with fluid state digital devices. Two features of this technique which are claimed superior to conventional lead compensation are (a) the magnitude and duration of the compensating signals can be easily controlled with a minimum of \(\operatorname{logic}\) as well as be gated in or out at will and
(b) the lead compensation does not amplify noise produced in the main control and is independent of the level of the D.C. error signal. Although this technique has been implemented with electronic circuitry, it has not as yet been evaluated with fluid state digital circuitry.

\section*{POWER AMPLIFICATION AND MECHANICAL ACTUATION}

In general, the power amplifier must accept a low power level signal from a high impedance source (i.e. a signal amplifier), and in turn deliver relatively large amounts of power to the mechanical actuator. Since fluid amplifiers are essentially "open-center" devices, some pneumatic servosystems utilize fluid amplifiers for computation, but employ conventional spool valves for power amplification. When standby power consumption is of overwhelming importance, this approach seems valid. If all the advantages of a true "no moving parts" approach are to be fully realized, however, the power amplification should also be achieved with a pure fluid device. The optimal pure fluid amplifier would therefore possess an infinite control input impedance, and a sufficiently low output impedance to properly mate with the actuator.

If the actuatur is a piston device, a vane motor, etc., its static (zero load velocity) input impedance is infinite, but its dynamic input impedance is finite and variable, the magnitude and sian depending on the instantaneous load velocity. "Blocked load" and flow reversal instabilities often arise when coupling high power level proportional fluid jet devices to such loads. An impulse turbine presents a relatively low input impedance, independent of the mechanical load behavior. A turbine-type actuator is thus desirable from the amplifier loading viewpoint. Further, if the pneumatic supply source for the fluid jet power amplifier is power-limited, a low pressure-high flow turbine actuator will require no more source power than an equivalent-power-output high pressure-low flow positive displacement motor.

\section*{PROTOTYPE SYSTEM}

In order to evaluate the performance and relative merits of fluid state devices for control system applications, the authors undertook the initial stages of development of aluid state incremental digital position control system at the Case Institute of Technology, Cleveland Ohio 5,6 . A block diagram of the complete system is presented in Figure 1. The portions of the system described


FIGURE 1. BLOCF DIAGRAM OF FLUID DIGITAL CONTROL SYSTEM


Subtended Slot Angle \(\gamma_{s}\)

FIGURE 2. SCHEMATIC OF FLUID QUANTIZER
herein are the power amplifiers and actuator of the forward loop, the digital position transducer, the feedback, and the computational sections. The design and the evaluation of the digital-analog comerter which closed the control loop is discussed in another report \({ }^{7}\).

The scheme of digital position transduction used was the slotted disc quantizer reported previously \({ }^{8}\). A schematic of the device is shown in Figure 2. The geometry of the device investigated experimentally is shown in Figure 3. Typical normalized receiver load characteristics, considered to be one of the most important performance criteria of the device, are depicted in Figure 4. (Note the saturation effects for both small and large values of the slot displacement or area of common communication between the supply nozzle and receiver.) This method of quantization using a fluid as the information transmission medium is very effective. The accuracy or resolution obtainable is determined by two physical considerations - the widths of the slots which will be limited by manufacturing techniques and the radius at which the slots are located. Even a relatively crude device with a slot width of 0.010 inch at a radius of one inch gives the capability of measuring angular position (or any controlled quantity which can be expressed as an angular position) to \(l\) part in more than 600 .

The direction sensing circuit, which determines the polarity of the controlled variable, is shown in Figure 5. The technique used in implementing this circuit is similar to that employed in corresponding electronic systems, viz.: two supply nozzle-receiver sets are located \((n+1 / 2)\) slot widchs circumferentially to introduce a phase difference between the two receiver signals. Logical gating may then be used to generate signals indicative of the direction of rotation of the controlled variable.

The circuit for the four-stage binary bidirectional counter, the comparator of the system, is depicted in Figure 6. The asynchronous mode of operation was adopted because of the circuit simplifications afforded \({ }^{5}\).

The feedback and computational parts of the system operated reliably at over 100 cycles per second. (Supply pressures to active elements ranged from 8 to 20 inches of water. Supply nozzle widths were nominally \(1 / 32^{\prime \prime}\).) This frequency is not considered an upper limit for a system of this type. Miniaturization of devices, refined designs, and increased supply pressures would all contribute to an increase in speed of operation.


FIGURE 3. SUPPLY NOZZLE, RECEIVER, AND QUANTIZER DISC


FIGURE 4. NORMALIZED RECEIVER LOAD CHARACTERISTICS

FIGURE 5. SCHEMATIC DIAGRAM OF DIRECTION SENSING CIRCUIT


The power amplifier is shown in Figure 7. The operating principle is the forced separation of a two-dimensional power jet from a curved surface \({ }^{6}\). The control signal is the separation-inducing flow through a number of slots on the curved surface. The average power gain was approximately \(80: 1\) over the dyamic range from zero to maximum output flow. Nearly infinite input impedance operation was attained over reduced dynamic ranges by specific designs of the control flow slots, resuiting in incremental power gains on the order of 1500: 1 .

The actuators were small, two-stage, axial-flow impulse turbines with a maximum output of approximately one-tenth horsepower when coupled to the power amplifiers. A pair of power amplifierturbine packages was used in the push-pull circuit shown in Figure 8. An analog loop was closed with conventional beam deflection amplifiers, resulting in a rotary position servo with better than one cycle per second bandwidth at a system supply pressure of \(3 \mathrm{psig}^{6}\). The digital loop was implemented by removing the analog feedback valve, input amplifier, and feedback summing amplifier; and replacing them with the quantizer, bidirectional counter, and digital-analog converter. The performance of the digital loop is presented in the paper by Turnquist and Taft \({ }^{7}\).

\section*{SUMMARY AND CONCLUSIONS}

This paper has assessed, from a control system viewpoint, the use of fluid state digital and proportional devices in feedback circuits. Based on the present knowledge of the performance of fluid state devices, it appears that several advantages are to be gained by using digital feedback and computation in the system, and allowing the power amplification and actuation functions to be analog. It also appears that the compensation can be achieved digitally with several attendant desirable features.

Preliminary experimental data obtained during the development of a complete incremental digital position control system, employing exclusively fluid state devices, demonstrate the feasibility of fluid state digital measurement, feedback, and computation; and also demonstrate the practicality of an analog power amplifier and turbine actuator combination.


FIGURE 7. BOUNDARY LAYER POWER AMPLIFIER


FIGURE 8. ANALOG CLOSED LOOP POSITION CONTROLLER (SHOWING TURBINES AND POWER AMPLIFIERS)

\section*{ACKNOWLEDGMENTS}

The development of the quantizer, feedback, and computational parts of the system was sponsored by the Harry Diamond Laboratories under Contract Number DA-49-186-AMC-79(D).

Portions of the development of the turbine actuator were sponsored by the Aro Corporation (Bryan, Ohio) and the Rotor Tool Company (Euclid, Ohio).

The work was conducted under the supervision of Professor C.K. Taft, Engineering Design Center, Case Institute of Technology. The authors would also like to thank Mrs. M.R. Greenberg for the patient and skillful typing of this report.

\section*{REPERENCES}
1. Jet Interaction Noise
F.A. Moynihan

Proc. Fluid Amp. Sym. Volume I, May 1964.
Harry Diamond Laboratories, Washington D.C.
2. The Staging of Pressure Proportional Amplifiers to Provide Stable, Medium Gain, Dual Control, Single Gutpur Pure Fluid Systems
W.L. Cochran and R.W. Van Tilburg

Proc. Fluid Amp. Sym. Volume II, May 1964.
Harry Diamond Laboratories, Washingron D.C.
3. Experiments in Analog Computation with Fluids
S. Katz, J.M. Goto, and R.J. Dockery

Proc. Fluid Amp. Sym. Volume II, May 1964.
Harry Diamond Laboratories, Washington D.C.
4. Disital Lead Compensation of Pulse-Data Control Systems
P.H. Gaither and C.K. Taft

Report. EDC 1-63-17, 1963.
Case Institute of Technology, Cleveland Ohio.
5. A Fluid Analog-Digital Conversion System
J.N. Wilson

Report EDC 7-64-4, September 1964.
Case Institute of Technology, Cleveland Ohio.
6. A Fluid Amplifier Controlled Pneumatic Turbine Servomechanism
P.A. Orner

Report EDC 7-64-5, October 1964.
Case Institute of Technology, Cleveland Ohio.
7. Fluid State Digital-to-Analog Converter
C.K. Taft and R.O. Turnquist

Proc. Fluid Amp. Sym., October 1965.
Harry Diamond Laboratories, Washington D.C.
8. A Fluid Encoding System
C.K. Taft and J.N. Wilson

Proc. Fluid Amp. Sym. Volume IV, May 1964.
Harry Diamond Laboratories, Washington D.C.

\title{
a FINID STATE DIGITAL TO AHALOO CONVERTE
}
by

Dr. Charles I. Taft
Ralph 0. Turnquiet

Case Institute of Technoleg
Cloveland, Chis
a FLUID STATE DIGITAL TO ANALOG CONVERTER

Introduction
Research in Rluid state system at Case Institute of Technology is concarned with the design of searvos using pure fluid elements. Part of this research has been concerned with the application of fluid state devices in the design of a complete fluid state digital pulse data control system. The deaign of this kind of control syaten was undertaken because it provides a suitable vehicle for evaluation of the applicability of Iluid atate devices io the following wide range of control syatem design problens:
1. Digital moasurament
2. Digital data handiling
3. Digital to analog conversion
4. Prearplification
5. Powar amplification
6. Pnoumatic-mechanical energy conversion
7. Input data handling
8. Compensation

The research resulte for items 1 and 2 have been published by wison(1,2), and the fpeearch results for items 4,5 , and 6 have been published by Orner 3,4 ). This paper presents the research results for item 3 and also presents typical test results for the complete fluid state digital pulee data control aystem.

\section*{Function of a Fluid State D/A Convarter}

To understend the function which a Nuid state \(D / A\) converter most parform, refer to the block diagram of the fluid state digital pulee data control system shown by Figure \(l^{* *}\) In auch a ayatem, the statet of the bidirectional counter is an indication of the orror in the system. At a givon instant of time the difference between the actual counter state and some refarence counter state (sot point) is the number of quanta by which the angular rotation of the output shaft of the aystom is in arror. By dofinition, one qantum is the angular rotation of the output shaft required for the quantizer to generate successive foedbeck pulses.

TCounter etate is the binary number represented by the state of the \(T\) (or trigger) elements which serve as the memory bits of the fluid state counter. Flow at one specified outlot of the \(T\) mamory element is designated as the "In state. No llow at this outlet is deaignated as the "O" state.
**Figures appear on pages 121 through 130.

However, the syaton arror represented as a binary number by the state of the counter is not userul information to the systom in this form. The binary number nust be converted to an analog fluid aignal which can comand the aystom prime mover to drive the system output shaft (in the appoopriate direction) so that when an error exists, it will be reduoed to a minimu as quickly as posaible. Transforning the binary numbers ropreseated in the counter by a combination of flowe ("In's) and no flowe (mon'g) into an analog fluid pressure is the function of the fluid atate digital to analog convarter. Specifically, the magnitude of the output pressure of the digital to analog converter should increase whon the binary number ropresented by the state of the countar increases. Because the counter and preamplifier both operate at "elpnal" pressure lovele (lose than 1 psis), the Puid otate D/A converter ahould also operate at "aignal" pressure lovels.

\section*{Dosign Requiremonts for a Fuid State Digital to Analog Converter}

Having described the function wich the D/A converter must perform es part of the complote ayotem, it is now maningful to present the design requirements which were astablished for this device.

\footnotetext{
1. Should produce an output pressure (while "driving" the control part of a proportional apilifier) which is a function of the binary combination of fluid signals (oither "In's and/or monis) which oxist at the "l" outlote of the I emary elements of the Ruid atate counter.
2. Stould operate using aignale only from the "l" outlote of the counter I memory elements. This siplice tro uve of monostable (MCR) type elements in the \(D / A\) convarter. Thus only one connecting line is required from the outlet of each T mamary elemont to the D/A converter.
3. Should operate directiy with fiuld elanals of equal macnitude from all countor 7 mamory elements. No adaritional eplifying elements should be required between the counter and the \(D / A\) converter. If aignals are of equal magnitude, the loading effects by the \(D / A\) convarter will be the same for all I memory eloments.
4. Should have aatisfactory dynanic response at oparating speeds of fluid atate counter.
5. Should have no mechanical moving parte.
6. Should be readily manufactured rillising matorials and techniques commonly employed for fluld etate aytome.
}

\section*{Choosing a Deaifon Consietent with Design Requiromonte}

Initially two techniques commonly used for olectranic digital to analos couvarsicn mare studied to doterndr: if their fuld analoge could be ifplemented. These techaiques are the ourrgpt source ledder notwork(5) and the roltage source ladder networi. (5) Howerer, these tochaiques require that the impedance" of the load bing "driven" be either infinite, or else vary high. The lond driven by a Muid atate \(\mathrm{D} / \mathrm{A}\) comverter is the control port of a proportional "bean doflection type" amolificrwich bas a relatively low laput impedance. Therefore, it was considered mifoasible to implemant the fluid analoge of the electronic \(D / A\) techniques. Instead, fluid flow devices capable of driving low irpedance loads ware considered for use in fluid state dicital to analog conversion and a alightily difforent tjpe of D/A convertar echeas was dovised.

A flow dovice saitable for fluid state D/A coaversion is shown by Fipure 2. It includes a Fiow collector, input atages conaisting of identical monostable type elements, and a single oatput. Evary input etage either dolivars "IIOW tow or receives "flow from" the Now collectce. It provides "flow to" the collector if the T mancry olement wich controle it is in the "l" atates "Iow from" if the T memacy olement maich controle it is in tho "O" atate. The binary veighting factor \(\left(2^{0}, 2^{1}, 2^{2}, \ldots .2^{0}\right)\) asseciatod with each \(T\) mamery oloment in the comiter is incorperated into the \(D / \Lambda\) dovice by uring ane ariflice of area 17 in the stage controllod by the I mancey olemant of arolent" \(2^{0}\); two oriflces of area \(\Lambda_{1}\) in the atage controlled by the \(I\) merory element of "meicht" \(21_{3}\) ote.

This schene for fiuid state \(D / A\) convaraica sinply acoopts a eet of fiuld control signals (or abeence thereof) vaich represent a biaery number, and from this information preduces a aingle output preseure which is proportional to the binary number.

A ceneral expreasion for calculating the diecrete theorotical otatis outpot prespures of this fluid state D/A coaverter as a function of counter atate (binary a) can be obtained from flow conIInuity considerations if the following assmptions are ueed.
1. That the receiver preasures of all stages are binary in nature, 1.0. oither \(P_{r}{ }^{-P_{r}}\) when andtched "onn or


\footnotetext{
F In electronic dovices static impedasce rofors to resistanee, that is \(\bar{I}\). In Fiuid state dorices, atatic irpedance is defined as resistance
to the flow of the working fluid and my be expreaced mothematically ac Q/P.
}
2. Incompressible flow. This is valid because pressure differences used are less than 1 paig.
3. The flow diacharge coefficients of receiver outlet orifices and the load orifice are equal. This is valid because all receiver outlet orifices are of the same diameter.

The general expression is

where \(P_{n}^{*}=P_{n} / P_{2^{s} . .1}\) and \(P_{0}^{*}=0\)
\(n=1,2,3, \ldots\left(2^{5}-1\right)\)
- - number of input atages
\(A_{1}\) - Area of receiver outlet orifice in input stage \(2^{\circ}\)
4 = Area of load orifice
The sixteen discrete theoretical static output pressures \(P_{*}{ }^{*}\) for a four input stage fluid state \(D / A\) converter are shown as a function of counter state by Figure 3. Even though the flow-pressure characteristics of all receiver outlet orifices are nonlinear, the static output pressure characteristic \(P^{*}\) is reasonably linear with respect to counter state. It is particulariy fortunate that \(P^{*}\) is linear for the counter states \(6<n<12\). This is true because the set point counter state of a pulse data control system will be within this range. Therefore, the \(\mathrm{D} / \mathrm{A}\) output pressure (system orror) will change in steps of equal magnitude about the set point state of the system if this \(D / A\) converter design is used.

Additional study of the fluid state \(D / A\) flow device determined that it is possible to achieve a nearly linear output pressure characteristic if two changes are incorporated into the How device.
1. Use outlet orifices in each atage which have linear flowpressure characteristics.
2. Add an additional stage which always delivers flow to the flow collector, i.e. a bias stage.

Linear orjfices can be reafized in practice if the following two requirements are both satisfied(6).
1. The Reynolds No. ( \(N_{r}\) ) of the flow thru the orifice is less than 2000.
2. The minimum length ( L ) of the orifice satisfies the relation \(L=.058 \mathrm{~N}_{r} D\), where \(D\) is the diameter of the orifice.

The bias stage provides a positive \(D / A\) output pressure at a counter state of binary 0 . As shown by Figure 4, this eliminates the most non-
 the range of values of \(P_{n}{ }^{*}\). Therefore, the load orifice characteristic is essentially linear as far as the \(D / A\) convertor is concerned. This in conjunction with the linear receiver outlet orifices results in a nearly linear output pressure characteristic.

The general axpression for calculating the discrete theoretical static output pressures of this Ruid state \(D / A\) convertar design as a function of counter state is
\[
\begin{aligned}
P_{n}^{*} & =\frac{\left(2 Y P_{r_{1}}+T^{2}\right)-\sqrt{\left(2 N P_{r_{1}}+T^{2}\right)^{2}-4 r^{2} V^{2} P_{r_{1}}^{2}}}{2 V^{2} P_{2}{ }^{2}-1} \\
\text { where } Y & =n+\left(A_{B} / A_{1}\right) \\
V & =2^{2}-1+\left(A_{B} / A_{1}\right) \\
T & =\frac{R C_{d L} C^{2}}{A_{I} \sqrt{00361 p}} \\
A_{B} & =\text { Area of orifices in bias stage } \\
C_{d L} & =\text { Load orifice Now discharge coefficient } \\
A_{L} & =\text { Area of load orifice }
\end{aligned}
\]
\(A_{1}\) - Area of outlet orifice in \(D / A\) input stage \(2^{\circ}\)
\(R=32 \mu L / D^{2}\) (Mresistancen)
\(\mu=\) Absolute viscosity
\(p\) - Density
- Number of D/A input stages (not including bias stage)
\(n=0,1, \ldots,\left(2^{*}-1\right)\)
The sixteen discrete theoretical static output pressures \(P_{n}\) for a 4 input stage -1 bias stage "linear" \(D / A\) converter are shown as a function of counter state in Figure 5.

Two I Iuid state D/A converter designs have been presented. The first design uses nonlinear thin plate orifices and produces a reasonably linear static output pressure characteristic as shown in Figure 3. The second design uses linear orifices (subject to Reynolds number and L/D constraints) and a bias stage. However, it produces a nearly inear static output pressure characteristic as shown in Figure 5.

\section*{Development of Monostable Element for Fluid State D/A Converter}

In order to implement oither of the two Fludd state \(D / A\) converter designs, it was necessary to develop a monostable elenent suitable for use at the input stages wich aatisfied thece requirementss
1. When the monostable element of any input atage is switched "on"., its "on" receiver pressure \(P_{\text {a }}\) should alwars have approcinately the same constant valfo (in any input atage) regardless of changes in either \(D / A\) output pressure \(P\) or in "an" control pressure \(P_{c}\). . The output pressure \({ }^{\prime} P_{n}\) takes on a wide range of values as the counter state changes; \(P_{C}\) increases approcimately \(17 \%\) (in the oidirec tional countir design used) when counter operation changes rrom "increasing count" to "decreasing count". Also in any other binary "driver" there will be sone variations in the binary control aignals.
2. When the monostable element of any input stage is "offn*, its "off" receiver pressure \(\mathrm{P}_{\mathrm{r}}\) shouid always be approximately atmospheric (in any input stago) regardless of changes in \(D / A\) output pressure \(P_{n}\).

Fronostable olement switched "on" means that its recsiver delivers how to the flow collector.
WHonostable element "off" means that its receiver receives fow from the fow collector.
3. Control nozzle size must be small so that "on" control noszle flow \(Q_{c}\) is mall. This is necessary \(s 0\) that surficient flow remains for correct operation oí the interstage pulse forming circuits of the counter.

Pigure 6 is a drawing wich defines the monostable element developed for use at the input stages of either of the two fluid state \(D / A\) converter designs. The final configuration of the element was established from experimental test results obtained using an adjustabie test model.

As shown by Figure 7, this element can oniy spproximately satiafy the requirement that the "On" receiver pressure \(P_{r_{j}}\) of the element remain constant regardless of changes in \(D / A\) output pressure \(P_{n}\). Purthormore, the change in \(P_{r 1}\) with \(P_{n}\) increases as the number of outlet orifices increases. However, it was found that "dumb" receiver outlet orifices discharging to atmosphere could be used to make the average "on" receiver pressures from stage to stage more uniform. Thus it was possible to obtain experimental atatic output pressure characteristics closely approxisating those predicted by theory.

The effect of a \(66 \%\) change in \(\bar{P}_{c i}\) is to change \(\bar{P}_{F}\) approcinately 3.\%\%. In the actual counter used \(P_{c l}^{c 1}\) changes appronilately \(17 \%\). For this change in \(\bar{P}_{C_{1}}\), the change in \(\bar{P}_{r 1}{ }_{18}\) oniy \(1.02 \%\).

Experimental Static Test Results
Both fluid otate \(D / A\) converter designs were buill and teated. Pigure 8 shows a 4 input atage "nonlinear" \(D / \Lambda\) design and Figure 9 a 4 input stage -1 bias stage "linear" \(D / A\) design. The actual static output pressure characteristic for the 4 stage "nonlinear" unit is ahown by Plgure 10; the static output pressure characteristic for the "linear" unit by Figure 11. The static output pressure characteristic for a 5 stage "nonlinear" unit is shown by Figure 12.

Experimental Dynaidc Test Resulte
The four bit fluid state bidirectional counter designed by Wilson \((1,2)\) was used to dynanically test both fluid state \(D / A\) convertor designs.

In order to earrectiy interpret the dynade test results, it is necessary to underatand the sequential nature of the counter operaticn. Prery pulse (either input or feedback) fed into the counter goes to the I memory element of least aignificance (2 \({ }^{\circ}\) ) causing it to alwas awitch its oatilow to the opposite outlet. If the change in countar state associated with a given pulse involves the awitching of additional I memory elemente, this occurs at time intorvale of . 008 sec. per suc-
ceecing \(T\) memory element.
For example, assume that the counter state is binary 7 and increasing. The next pulse into the counter changes its state to binary 8. The sequential manner in which this change of state occurs is:
\begin{tabular}{|c|c|c|}
\hline Elapsed Time & Counter State & Comment \\
\hline 0 & 0111 & pulse arrives \\
\hline . 002 & 0110 & 20 T switches \\
\hline . 010 & 0100 & 21 T awitches \\
\hline . 018 & 0000 & 22 T awitches \\
\hline . 026 & 1000 & 23 T switches \\
\hline
\end{tabular}

Note that the counter state actually goes from binary 7 to binary 6 , then binary 4 , then binary 0 before the state binaly 8 is realized. Since the \(D / A\) converter follows the counter state closely, the \(D / A\) output pressure will have "decrease-increase" spikes whenever a change in countar state requires more than the \(2^{\circ} \mathrm{T}\) element to switch. However, the spike of greatest time width occurs when all T elements must switch (transition from binary 7 to binary 8).

If the counter state is at binary 8 and decreasing, the situation is reversed. The counter state now actually goes irom binary 8 to binary 3 , then binary 11 , then binary 15 before the state binary 7 is realized. Now "increase-decrease" spikes oscur on the D/A output pressure. Again the spike of greatest time width occurs when all T elements must switch. If these "spikes" in the \(D / A\) output pressure should be objectionable to downstream circuitry, they could be eliminated by introduction of suitable time delays between the counter and \(D / A\) converter.

One other factor which must be considered is the maximum rate at which pulses may be fed to the counter. Because the counter transitions from binary 7 to binary 8, or vice versa, require 026 seconds to complete, pulses fed into the counter must not be less than 026 secands apart. Therefore, the pulse rate to the counter must not exceed \(1 / 026\), or 38 d pulses per secand. If higher pulse rates are used, the \(2^{\circ} 9\) element will switch again before the 23 T element switches (binary 7 to binary 8 transition).

Figure 13 shows typical dynanic test results for a 4 inpat stage "ncnlinear" D/A convarter. Figure 14 shows typical dynasic test results for a 4 input stage -1 bias stage "linear" D/A converter.

\section*{Theoretical Dynamic Capability of Fluid State D/A Canverters}

Although dynasic testing is limited to pulse rates less than 38 d pps, because of the carry propogation time of the countar, it is possible
to thecretionily prediet the madman apeed of operatica frem the tranafor rasoticu. Per a aconimear D/A comverter it la not poeoible to derive a innecrised tranafer Inction becanae of the ncalisear recolver outlot criflices. Howsver, it is pesaible to derive the trenofer functica for the linear \(D / A\) ocmrertar which doccribes the change in eutput presaure fer a alngle change in cenater atate. The tranafor fraction is
\[
\begin{aligned}
& \text { where }[]= \pm 8 K_{08} K_{28} \pm 4 K_{04} K_{r_{4}} \pm 2 K_{C_{2}} K_{K_{2}} \pm K_{01} K_{21} \\
& I(n)=\frac{1}{T_{r}{ }_{C}(n) C(n)} \\
& T_{5}=\frac{R}{A_{8} B_{B}} \\
& T_{c}(n)=\frac{R \nabla_{c}}{C(n) \mu_{1} B_{0}} \\
& C(n)=\frac{R L_{2} C_{d L}}{1_{1} \sqrt{2 N_{n_{0}}}}+19 \\
& T_{\text {op }} \text { - attechmont wall eoperatien time } \\
& T_{j} \quad \text { nossle to recelver transpert timo } \\
& X_{21} \quad{\frac{R}{X_{1}}}_{1}^{2} \quad 1=8,4,2 \operatorname{or} 1
\end{aligned}
\]
\[
\begin{aligned}
& 1 \text { - } 0,4,2 \text { ar } 1 \\
& ? \\
& -\frac{T_{r}+T_{C}(n)}{2 \tau_{r} T_{e}(n) v_{n}}
\end{aligned}
\]
\[
\begin{aligned}
& u_{n}=\left[\frac{\mu \mu_{L} c_{d L}}{T_{N_{r}}(n) c(n) L_{1}\left(2 x_{n 0}\right)^{2 / 2}}\right]^{2 / 2} \\
& =-\frac{32 N_{L}^{2}}{D^{2}}
\end{aligned}
\]
-if oveluating the materal frequency in and the damping ratio F , it
 somverter. Fer the mit docionod the calculated valnos are
\[
\begin{aligned}
& v_{n}=2880 \mathrm{rad} / 000 \\
& \mathrm{~g}^{2}=12.7
\end{aligned}
\]

Subotitutiag these valmes into the dencudnator of the tranafor function anc factoring sives the two real roote
\[
(8+81)(s+43.900)
\]

The offect of the largeot root en overall dyandes will be axtromely
 approcinated by a flisst ceder tranafar function as follows
\[
\Delta P_{n}(0)=\frac{\left.\left.X(n)-\left(T_{0 p}+T_{j}\right) e\right]\left(\rho_{0}\right)-\rho_{0}\right)(s)}{82(T(x+1)}
\]
weore \(T=\frac{1}{61}-0123\) scconds \(=\) doudrent time constant
It is difficult to doternaine the mudina oparating apeed of the \(D / A\) convertar eince this deposeds on the docised analog mavafore. Hewever, for a dendnant time constant of 0123 secionde, the output pressure of the linear Iluid atate D/A converter built will becom atteauated and dolayod for counter operating apeede greater than \(1 / 0123\), or 81 ppe. This is illuatrated in Figure 15 there two types of bidirecticanal counter boharior are ecrandiad and the offcote of \(D / A\) dyanice are notod. In Pigure 15a it is assured that a palce train of ceantinnt frequenoy eater: the "up" line of the bidirectional comater and a second price tering, \(90^{\circ}\) out of phace, entere the "down" line of the bidircetional comater. This situation is a common one during steadystate operation of a prise data oystom in reaponce to a racp input. The offoct of the aritching and trangpert delay \(I_{\text {op }}+F_{1}\) is to delay

the "ripple" in the \(D / A\) converter output pressure. As \(T / T\) the ratio of bidirecticaal counter oseillation period to \(\mathrm{D} / \mathrm{A}\) tim constant approsches sero, the output ripple e. approaches zoro. Thus for this bidirectional counter behavior the offoct of increasing \(T\) is to reduce output ripple.

If the bidirectional counter atate is increasing at a constant rate as shown in Figure 15b a diffarent offect is dioplayed. In this oase a puise date aystem and the postulated bidirectional counter bebavice coald repreaent the situation where, at the start of the tranaiont, no foedback pulses heve been generated. If the bidirectional counter state is decomposed into a rap and a ripple, it can then be shown that the \(D / A\) coavertor dynanics cause its ortppot to lag behind the rapportion of the bidirecticaal counter atate by an anount equal to the lag \(\mathrm{I}_{\mathrm{s}_{\mathrm{p}}}\). If plus the \(\mathrm{D} / \mathrm{A}\) time constant I . It is obvious that this will havi a distabilising effect on the pulse data control syoter where this combination of bidirectional counter and \(D / A\) convertor is uoed. In fact it is difficult to deterndse the maximan allowable rate at which the bidirectional counter can change state based on the \(D / A\) convertor dynamice, because this depende on the meveforn of the countere atate changes.

The D/A converter dyandes, however, contribate directly to the stability of a puise data control syster which usee this element. In general this offect depende an the topology of the particular syatem in question, but if the \(D / A\) convarter output is used as the control, then D/A comverter dyanies can be combined with the dyanics of the subsequent syetan stages to dotormine atability. Siace atability vill dotermine overall aystem gain and bidirectional counter capacity, and gain will determine the maxdman aystem oparating rate, \(D / A\) converter dynanica can detarndine the madrum system operating rate indirectly. However, for the present state of the art, the bidirecticnal counter is the lindting factor in deternining mardmanatem operating rate.
anticipating the deaign of bidirectional countors with higher operating apeede it is of interest to detervine if this fuid state D/A converter design can be modifled such that attenuation of its output pressure oecure only for countar operating epeeds greater than the 81 pps previously cited.

The porinant tivo constant \(T\) is a function of 5 and \(\nabla_{n}\), both of which are sunctions of the receiver volume \(\nabla_{r}\) and the flow oollector volues \(\nabla_{c}\). If the flow collector volume of the deaign built is decreased by a factor of three fourths, the dondnant time constant becomes .0067 seconds. Now the output pressure of the \(D / A\) coaverter will only become attenuated for counter operating speods greater than \(1 / .0067\), or 150 ppe. Even bigher counter operatiag apoeds before attonuation occurs could be obtained by decreasing the receiver rolum of the input stages. Howvar, this would have to be accomplished without changing
the recelver loading characteristies (Soe Figure 7).
There is one additional factior which should be considared in predicting the madmum speed of operation of the linear fluid state \(\mathrm{D} / \mathrm{A}\) converter. This factor is the magnitude of the supply jot separation time \(\mathrm{T}_{2}\) and the magnitude of the supply jot to recoiver tranaport time \(T_{j}\) of the monostable element input stages. For the monostable eleasai design used, the sum of the two was experimontally masured to be on the ordar of 008 seconds. Tnis, therefore, 11 inds maximum operating apeed of the deaign built to approximately \(1 / 2008\), or 125 pps. However, miniaturization of the monostable elemant input atages woald allow a aignificant increase in this value.

Systom Tost Results
Pigure 16 shows the oparation of the 1 inerr \(D / A\) coaverter in the prototype fluid state didital pulse data ecntroi systen. A step input vas applied to the systom by reaotting the counter fram its sot point state (binary 8) to binary 0. Each feedback pulse goneratod by the quantiser increases the counter state by oas until the set point otate is reached. Note the reduced overshoot and increased stability when digital lead compensation is incorporated.

\section*{Concluaions}

Design requirements were eatabliabod for a fluid state \(D / A\) converter to be used in a fluid state digital pulee date control syeton. Two \(\mathrm{D} / \mathrm{A}\) converter dealgns satisfying these requirements ware built and tested. One design used simple nonlinear thin plate orifices and produced a reasonably iinear atatic output pressure characteristic. The other deaign used linear orifices and a bias stage and produced a linear atatic output pressure charactariatic. Both desians ware tested statically and dynarically. Static rest rescilte mare in good agreomont with those predicted by theary. Dymande teating mas lidited to fairly low oovater pulse rates, but it mas possible to prodiot the drnando capability of the ilnear orifice dealen from ite transfer function. It is anticipatod that the dyande capabilities of the noalinear orifice design will not be aignificantly diffirent. Both designe parformed satiefactorily in a complete fluid state digital pulse date control aystoz.

\section*{Rofarences}
1. Wileon, J. N., "A Fuid Analog to Digital Copreraion Systen", Doetcer of Philonophy Theais, Cleveland: Case Institute of Iechnologe, 1964.
2. Misca, J. Mo, "Muid Analog to Digital Cenveraion Syaten", Fuid Arpllfication Ropert No. 13, Harry Diemoad Laboratories, Washington, D. C.
3. Ormer, Y. A., "A Fuid Aplifier Coatrolled Pnownatic Turbine Servomechanisin, Doctor of Philosophy Tboale, Clevolend: Case Institute of Technology, 1964.
4. Ornar, P. A., Taft, C. I., "Dovelopment of a Pure Fluid Powar Amplifior", Predeedinge 1965, Joint Antomatic Control Conformace.
5. Susaldind, Alfred K. (ed.), Whotes on Analog-Digital Coaversion Techniques", New Torks John Wiley and Sone, 1957.
6. Langhaar, H. L., MSteedy Fow in the Iranalition Leagth of a Stradget Tuben, Jeurnal of Applied Mechanies, Vo1.9, pf 55-58, 1942.

Pigue 1 nock Diagran of Mudd State Digitel
Price Data Centrol Syatem

Monostablo Elemont Input


Mencery Portions of I Momory Elemonte Lecatod
In Bidfrecticaal Counter

Pigure 2 Fuid State D/A Converter


Pigure 3 Thecretical D/A Output P:essure Characteriszic


Pleure 4 Erfeet of \(D / A\) Dlas Stage



Fisure 6 Memootabio memont for Fived state D/A cenverter


Phere 7 Revoivor Leeding Cmarcoteriotice


PLume 0 Mealimere D/A Converter


Pigure 9 "hinear" D/A Cenverter


well with all three capacitances. Figure 14 is a plot of flow output as a function of control flow input. The solid line represents change in output flow without any screw (blas) adjustments. This curve shows that the jet does not split equally between the two outputs. The dotited line is the same curve taken after the screws on the oscillator have been adjusted to obtain a flow balance. From the detted graph it is evident that a proportional flow gain of about 500 is obtained. The pulsating flow was measured by using two minimum orifice-type flow meters, one placed at each output. Hence a change in output flow due to change in control flow could be constantly monitored.

A laboratory rucket model was built (fig. 15), and the whole system was placed in it. Ari autopllot of the bank and climb type was obtained and connected directly to the system. The guroscope output is in the form of a proportional signal for any deviation from a preset position. The whole missile was free to rotate about its center of gravity. Whenever a change in its preset position xcurred, the gyro commanded the pneumatic system to exert thrust in a direction opposite to the missile displacement. The two knobs on the stand were provided for manual control by ellminating the gyroscope from the circuit. The input signal in the manual control was provided directly from the atmosphere since the pressure in the control port is beiow atmosphere.

At this particular time the wark is being directed toward using the system as a control for a ballistic-type missile. A supersonic last stage has been developed to obtain the thrust necessary for control, and
a vortex gyroscope is in the process of development to be used as the sensor. In this manner, a whole pneumatic control system with no moving parts will be constructed.

\section*{4. CONCLUSION}

A reaction control system is quite useful for attitude control for vehicles In which ordinary control surfaces cannot be employed (ref. 3). The use of a proportional reaction-type control system is more effective than the on-off type, and higher performance can be achleved. The reaction control discussed produces a differential thrust, by means of a combination of \(d-c\) shift and pulse width modulation, that is proportional to a steady differential signal applied to the control ports. The size of the control signal in terms of power necessary to produce full deflection is 0.74 watts at 24 psig (or \(165.5 \mathrm{kN} / \mathrm{m}^{2}\) ) input pressure; the output is the equivalent of 1627 w . The pressure or flow differential at the control can come directly from a pneunatic gyroscope or a non-moving-part rate gyroscope of the vortex type. In the latter case, the pitch rate or yaw rate can be controlled by jet reactions in response to command signals from the vortex gyros sope.

\section*{5. ACKNOWLEDGMENT}

The authors are greatly incebted to John M. Delawter for having assisted in the construction of the system. The authors wish to thank Mr. George A. Gray and A. L. Notestine for providing great accuracy In the machining of the various components. The authors are indebted to W. J. Kehres who halped in setting up the apparatus for gathering data for the various tests.

\section*{REFERENCES}
1. Kadosch, M. Contribution au freinage des avions a reaction par deviation du jet propulsif. Bulletin de la Societe franca'se des Macaniciens. 1955, No. 16, pp. 41-50.
2. Campagnuolo, C. J., "A Three-Stage Digital Ampllfier,"TR-1106, Horry Diamond l.aboratories, Army Materiel Command, Washington, D.C. 23438.
3. Wai Chao, W. "Hot-Gas Systems Control Attitude In Extreme Environment," Aeruspace Engr. March 1961, pp. 65-69.



Figure 2. Schematic diagram of three-stage digital amplifier.


POWER JET PRESSUNE (FSG)

Figure 3. Input power jet flow versus input presesure for threestage digital amplifier.


Figure 4. Input power jet power as a function of input pressure of three-stage digital amplifier.

602-65
Figure 5. Load curves for three-stage digital aplifier for various power jet pressures.



Figure 9. Relaxation oscillator. 1840-64


(a)
\(p_{\mathrm{J}}=58 \mathrm{psis}\)
freq \(=40 \mathrm{cps}\)

\section*{(b)}
\[
\begin{aligned}
& P_{J}=64 \mathrm{psis} \\
& \text { freq }=50 \mathrm{cps}
\end{aligned}
\]

(c)
\(p_{j}=70\) psig
freq - 55 cps

Fiqure 11. Traces from the output flow of Re relaxation oscillator 555-65


Figure 12. First-atage of digital syaten. 1842-64



Figure 14. Differential fiow gein curvee for hybrid system.


\section*{HARRY DIAMOND LABORATORIES}

Washington, D. C. 20438

A DEVELOPMENT REPORT ON A FLUID AMPLIFIER ATTITUDE CONTROL VALVE SYSTEM by

Allen B. Holmes
John E. Foxwell

\section*{ABS [RACT:}

A aigital hot gas fluid amplifier attitude control valve system has been built at HDL. The control system consists of a fluid amplifier rea action-jet valve, four solenoid actuators, a solid-propellant hot gas generator, and a regulated control air supply. The control hariware has been packaged in a Test Instrumentation Missile (TIM) and is scheduled for flight testing at the Redstone Arsenal Missile Test Range in May 1065. This report describes the evaluation, desion, and specifications of the hybrid fluid valving system that is to be employed in this flight tert.

\section*{1. INTRODUCTION}

The HDL fluerics development section was formed in September 1964, and one of its first major missions was a flight demonstration of the applicability of a fluid amplifier valve for use in a missile attitude control system. During the previous year, a lare number of fluid nolifier valves were designed and evaluated for use in both secondaryinjection thrust vector control systems und reaction-jet control systems. These valves operated successfully at supply pressures in excess of 1000 psi and at temperatures up to \(5300^{\circ} \mathrm{F}\) (ref 1 and 2).

Based upon these studies, it was proposed that a fluid amplifier control system be built, evaluated, and flight tested on a Test Instrumentation Missile (TIM). The output reaction thrust from the amplifier would be programed to guide the missile alone a predetermined trajectory and to perform a series of in-flight mancuvers.

\section*{2. DESCRIPTION}

Two fluid amplifior valve configurations were evaluated to determine the optimum valving concept to be used in the attitude control of a spinstabilized missile. Digital devices were chosen because they provide a higher gain than do similar proportional devices. Proportional output from digital devices can be approximated by using an oscllating control signal. Ar oscillatory control mechanism was used with both valving concepts because this mode of control provides valuable data that can be applied to future flights using pulse duration modulation or similar techniques. We chose a \(30-\mathrm{cps}\) control simal frequency because it was several times higher than the natural frequency of the missile, and hence the missile could not respond to its output.

\subsection*{2.1 Dual Axis Double Nozzle Attitude Control System}

This reaction-jet system calls for two two-: ay fluid anplifier valves to provide attitude control in both the pitch and :"aw planes of a spin-stabilized missile (fig. l). In this system, both fluid amplifier valves are actuated by a \(30-\mathrm{cps}\) pneumatic control signal. This is considered to be the null or zero control condition. Control in either the piteh or yaw plane is achieved by overrlding the \(30-c, 3\) zero control signal with an appropriate d-c pneumatic signal of time duration \(\Delta t\) in seconds. The magitude of \(\Delta t\) is determined by the amount of control desired (fig. 1).

A. ZERO CONTROL CONDITION.


OUTPUT SIGNAL


NCTE THE OC OVER.FIDE SIGNAL IS APPLIEO FOR LATERAL CONTROL PO THE LEFP WIIEN APY OUTPUT IS AT OR PAST \(\frac{\pi}{4}\) RADIANS AR. TERMINATES WHEN THAT OUTFUT REACHES \(\frac{3 \pi}{4}\) RADIANS

FIGURE 1. ITSSTIF, CRESSECTIDIAL SCHEMATIC SHOWING TMAISTTION FKOM \% H) COTR L CODJTIO TO COMTRO. IN TM YAW ILANE FOR A DOUHLF NOT.ノ.: ATTITVD CCOTROL SYDT\&M.

Since control in the pitch plane is exactly the same as control in the yaw plane, it is oufficient for a system efficiency analysis to consider control in the yav plane only. Maximum yaw plane control to the left, for example, occurs when the d-c override signal is applied to any output when it reacher 'ise \(\pi / 4\) position and terminated when that output reaches the \(3 \pi / 4\) position. At exactly this moment, the "following" output will be at the \(\pi / 4\) position and a d-c override signal will be applied to it (fig. 18). In this manner, there will always be a minimum of 0.707 of the output thrust T of one amplifier value directed laterally to the left, independent of the rate of missile spin.

Integration between the 11 mits \(\pi / 4\) and \(3 \pi / 4\) shows that 90 percent of the output thrust and/or impulse of the amplirier is avallable for lateral. control to the left. The entire output energy of the noncontrol amplifier is wasted. These two conditions limit the maximum theoretical operating efficiency \(n_{T H}\) of the two two-way fluid amplifier system to
\[
\begin{equation*}
n_{\text {TH }}=(1 / 2)(0.9)+(1 / 2)(0)=0.45 \tag{1}
\end{equation*}
\]

A two-way fluid amplifier valve operates at an efficiency approximately 65 percent of the theoretical isentropic thrust and/or impulse available. This limits the actual operating efficiency \({ }^{n_{A C F}}\) of the two-way amplifier system to
\[
\begin{equation*}
n_{A C T}=(1 / 2)(0.9)(0.65)+(1 / 2)(0)(0.65)=0.292 \tag{2}
\end{equation*}
\]

\subsection*{2.2 Dual Axis Single Nozzle Attitude Control System}

A novel four-output fluid amplifier valye was conceived and built at HDL during the preliminary testing stages of the above double nozzle attitude control system ir an attempt to eliminate the low system operating efficiency and to significantly reduce packaging and balancing problems.

The four-output fluid amplifier valving system utilizes a single supersonic nozzle flowing into a fluid amplifier with four equally spaced output ducts. If no control signal is aiven to the four control ports, the amplifier output flow splits equally among the four output ducts and the directed thrust and/or impulse is zero. A zero control condition can also be obtained by cycling any two opposing control pu.us (fig. 2A and 2B). The do'ble nozzle control procedure is also used for the single nozzle attitude control syntem.

If the amplifier flow is directed to output duct \(A\) in figure \(2 C\), th is is some flow equally dirided in ducts \(B\) and \(D\). The magnitude of this uncaptured flow is approx:-ntely 15 percent of the total flow through

A. ZERO CONTROL CONOITION

\begin{tabular}{|l|l|}
\hline\(A\) & \\
\hline\(B\) & \(\sqrt{\square}\) \\
\hline\(C\) & \\
\hline\(D\) & \(\square \square\) \\
\hline
\end{tabular}
B. ALTERNATING ZERO CONTROL

\begin{tabular}{|l|l|}
\hline\(A\) & \(\square\) \\
\hline\(B\) & - \\
\hline\(C\) & - \\
\hline\(D\) & - \\
\hline
\end{tabular}
C. FULL CONTROL

FIGURE 2. ILLUSTRATION OF ZERO ANO FULL CONTROL CONDITIONS FOR A DUAL
the amplifier. The directed thrust and/or impulse resulting from thi: uncaptured flow is zero because the directions the flow assumed are opposite and the magnitudes are equal. Therefore, systemefficiency calculations must take into account that only 85 percent of the amplifier flow is available for directed thrust and/or impulse.

As in the double nozzle system, only 90 percent of the avallal le impulse is available for lateral control, but there is no noncontrol emplifier flow waste. The maximum theoretical operating efficiency \(n_{T H}\) of the four-output fluid amplifier system is therefore 0.9 . The isentropic efficiency of the four-output valve is approximately 0.65 . The actual operating efficiency \({ }^{n} A C T\) of the vale is now
\[
\begin{equation*}
n_{A C T}=(0.9)(0.65)(0.85)=0.497 \tag{3}
\end{equation*}
\]

All of the above calculations were made for a preprogrammed flight. If an error signal is used to control the missile flight path, there will be an additional error on a spinning missile caused by the amplifier system. The correction for this additional error will slightly recice the system operating efficiency.

\subsection*{2.3 System Selection}

Comparison of the above systems shows that the single noz zle system is over 1.7 times as efficient as the double nozzle system. This primary consideration led to the selection f the four-output amplifier for use in the flight evaluation. The four-output amplifier also had the advantages of simplicity of design and case of packaging.

\subsection*{2.4 System Herdware}

Figure 3 shows the four-output fluid amplifier valve, the solenoid actuators, and the gas generator housing. The power jet nozzle and amplifier housing were fabricated from 304 stainless steel. The output ducts were formed from 1-1/4-in. 304 stainless steel tubing with a wall thickness of \(0.063 \mathrm{in} ; 1 / 4-1 \mathrm{n}\). 304 stainless steel tubing with \(0.035-1 n\). wall was usec to interconnect the actuator components. The nozzle was secured to the gas generator with eight l/4-20 stainless steel cap screws and sealed with a 1/8-in. copper gasket. The power nozzle and the amplifier housing were held together with screws and sealed with vacuum grease. Gaskets were not required since an excellent seal was obtained without them.

A heavy-duty reuseable generator housing ior system checkout tests was fabricated from existine parts, and a special housing (15-1b) was designed and built for the flight test. A lighter housing could have been built but because of the cost and development time required to reduce the weight by a few pouncs, it was decided that the \(15-1 b\) model would be acceptable. An existing ignitor was found to be compatible with this system.


The control jet actuators are four twoway normally closed solenold valves, equipped with heavy-duty fast-action coils and a balanced poppet orifice design. The four-output amplifier can be switched on atmospheric pressure if the contivl ports are made large enough to pass the required flow. Heswever, no solenoid valves could be found with the required \(1 / 2-1 \mathrm{n}\). straigt: through port that would cycle at 30 sps. Using much smaller solenoid valves to aehieve the required cycling rate means that a high pr esure musc be provided upstream of the solenoid valve to enable it to pass the required flow. It was found that a \(3 / 32-i n\). crifice diameter was the minimum size that sould be used with the actuator supply system.

The actuator supply system (fig. 4,5 ) was designed to deliver a constant flow and pressure through the regulctor to the actuator valves and, upon command, to the fluid amplifier. In this system, high pressure eir or nitrogen is stored in a \(300-1 n .^{3}\) receiver. The volume of the receiver was determined by the space allotted to it in the TIM and the type of receiver thet was commercially available.

The pressure-reducing dome regulator is designed to maintain a constant reduced pressure to the actuator valves regardless of the pressure drop in the receiver. The dome regulator is loaded directly from the inlet supply line inrough an internal loading tube. The output pressure is controlled by the adjustaent of the loading and venting needle valves in the regulator. This system vas designed to provide a constant flow of 60 scfin for a maximum operating time of 10 sec .

\section*{3. SYSTEM SPECIFICATIONS}

The followirg list of specifications details each component in the sys:em.

\subsection*{3.1 Air Receiver}
\begin{tabular}{ll} 
Capacity & \(300 \mathrm{in} .^{3}\) \\
Dianeter & \(9 \mathrm{in} .(\mathrm{OD})\) \\
Working pressure & 3000 psi \\
Proof pressure & 5000 psi \\
Brush pressure & 6600 psi \\
Ambient temperature range & \(-65^{\circ}\) to \(+275^{\circ} \mathrm{F}\) \\
Gas & Air or \(\mathrm{N}_{2}\)
\end{tabular}

\subsection*{3.2 Dome Regulator}
Inlet pressure \(\quad 1250\) to 3200 psi

Out let pressure \(\quad 1150: 25 \mathrm{psi}\)
outlet flow
\[
00 \mathrm{scm}
\]


FIGUPE 4. ACTUATOR SUPPLY CIRCUIT SCHEMATIC


FIGURE 5. ACTUATO: SUPPLY CIRCUIT

\subsection*{3.3 Sclenoid Actuators}
\begin{tabular}{ll} 
Pressure rating & 3000 psi \\
Operating voltage & 28 v dc \\
Coil current & 2.8 amp \\
Cycle rate & 30 cps \\
Orifice diameter & \(3 / 32 \mathrm{in}\)
\end{tabular}

\subsection*{3.4 Gas Generator}

Solid propellant Operating pressure
Theoretical chamber temp
Propellant weight
Ignitor welght
Ignitor voltage
Field test housing weight
Flight test housing weight

SMU 101
800 : 50 psi
\(2505^{\circ} \mathrm{F}\)
7.8 Ib

8 GRAINS
28 v dc
20 1b
15 lb

\subsection*{3.5 Fluid Amplifier}

Operating pressure
operating temp Operating time Output tlirust Weight

600 to 900 psi \(2500^{\circ} \mathrm{F}\), maximum 10 sec, maximum 45 lb , nominal 8.01 lb

\section*{4. AIR TESTS}

The basic aerodynamic design parameters for the hot gas fluid amplifier valve were derived from a hrief series of high-pressure air tests. These tests were conducted to:
(1) Prove the feasibility of the four-nutput fluid amplifier valve concept.
(2) Define the operating pressure range.
(3) Verify the output thrust levels.
(4) Verify the operation of the complete system.

Both systems were tested using compressed air and solid propellant gases. Since the single nozzle system was adopted early in the test program, extensive testing of the double nozzle system was omitted.

The first model of the four-output valved exhibited operating characteristics compatible with the proposed system. Measurements were made of operating pressure, output thrust, and control flow. Upon completion of the preliminary air tests, a set of system specifications was drawn up, for design and fabrication, and submitted to the Solid Rocket Propulsion Laboratory at Picatinny Arsenal. The actuator supply system was designed to deliver a constant flow and pressure through the actuator
valves for 10 sec . This flow rate is determined by the jegulated supply pressure and the actuator port design. The actuators were selected for orifice size and response time. It was found that orifice size is directly proportional to response time and response time is inversely proportional to solenoid coll current.

The actuator circuit was then assembled and checked out on a fullscale system air flow test (fig. 6). The test procedure consisted in:
(1) Pressurization of the air receiver to 3100 psi ,
(2) Presetting the dome regulator output pressure to 1150 psi ,
(3) Setting the fluid amplifier input pressure from 700 to 850 psi ,
(4) Recording the resultant thrust of each amplifier output,
(5) Recording the regulated control pressure, and
(6) Plotting the output thrust and control pressure as a function of operating time.

The results of these tests are summarized in table \(I\).

\section*{5. HOT-GAS GENERATOR PROGRAM}

The Solid Rocket Propulsion Laboratory at Picetinaj Arsenal completed work requested by the Harry Diamond Laboratories in support of this project. The purpose of this program was to:
(1) Design and build hot gas generators for both static and rlight tests.
(2) Conduct four fully instrumented firings on two fluid amplifier lesigns.
(3) Fabricate one flight-weight gas generator housing.
(4) Fabricate one heavy-duty gas generator housing.
(5) Provide 13 propellant grains and 30 igniter squibs.

Work was initiated at Picatinny Arsenal on 6 May 1964. The gas generator requirements as specified by HDL are summarized in table II. SMU-101 Iropellant, a low flame temperature ( \(2500^{\circ} \mathrm{F}\) ) double-base propeliant with mesa burning rate characteristics and unsually clean exhaust priducts, was selected for the fluid amplifier tests. An igniter previously designed for use with a similar grain design was selected to initiate the system. Heavy-duty hardware for static tests was designed using existing parts compatille with the program requirements.

A multicomponent thrust stand at Picatinny Arsenal was adapted for measuring the output thrust developed by the fluid amplifier control system. Due to a relatively low resonant frequency of the test stand, the cycle rate was below 1 cps for all tests. High-pressure nitrogen was used as the control gas (fig. 7).

Four preliminary static firings with heavy-duty hardware and blasttube nozzle desion were conducted to verify the gas generator performance and to check out test procedure and measurement techniques. These tests were followed by four additional tests with heavy-duty hardwa.: using nozzle assemblies fitted with fluid amplifiers. Motion pictures of the four valve tests indicated clearly the high temperature zones in the amplifier output ducts.

\(P_{C}=\) CONTROL STATIC PRESSURE PSIG
\(P_{0}=\) AMPLIFIER SUPPLY PRESSURE PSIG
\(P_{S}=\) CONTROL SPHERE STATIC PRESSURE PSIG
\(F_{N}, F_{S}, F_{E}, F_{W}=A M P L I F I E R\) DIRECTED THRUST LB
tione 6. test symbols and notation
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(P_{0}\) & \(F_{N}\) & \(F_{S}\) & \(F_{E}\) & \(F_{W}\) & \(P_{C}\) & \(P_{S}\) \\
\hline \(7 B\) & \(L B\) & \(L B\) & \(L B\) & \(P_{S I G}\) & \(P S 1 G\) \\
\hline 750 & 50 & 7 & 45 & 46 & 1100 & 3000 \\
\hline 800 & 46 & 46 & 47 & 49 & 1100 & 3000 \\
\hline 850 & 48 & 46 & 47 & 49 & 1100 & 3000 \\
\hline
\end{tabular}

TABLE-I TEST RESULTS AIR FLOW EVALUATION


FIGURE 7 HOT-GAS FLUID AMPLIFIES TEST SET UP

HOT GAS GENERATOR REQUIREMENTS
\begin{tabular}{lc} 
Thrust & Requirements \\
Pressure & 133 lb \\
Nozzle Thront Diameter & 700 Psig \\
Propellant Flame Temperature & \(0.282 \mathrm{in} . *\) \\
Maximum Diameter & \(2500^{\circ} \mathrm{F}\) \\
Maximum Length & \(8 \mathrm{in}\). \\
Maximum Weight & \(12 \mathrm{in}\). \\
\end{tabular}

\footnotetext{
Based on a requirement of 40 lb from each of two fluid amplifier units with a 60 -percent thrust efficiency.
}
*"Based on a requirement of 0.125 in. \(^{2}\) for combined throat area. **"For flight-weight assemblies.

A lighter version of the heavy-duty hardware was designed for flight test purposes. The metal parts weight of the flight motor is approximately 15 lb . The propellant grain weight is approximately 7.8 lb . Therefore, the filght motor assenbly, including igniters, is approximately 23 lb . This motor does not represent the optimum weight, but. rather an inexpensive modification of the heavy-duty unit to approach to \(20-1 b\) weight limitation of a flight-weight unit. This procedure was considered acceptable at this stage vi the program even though the weight limitation was exceeded. One motor was fabricated to this design.

Tvo successful complete system captive flight tests were conducted at the HDL Test Ares on 29 and 30 April 1965. The system was returned to HDL for final inspection and wis shipped to Redstone Arsenal for flight testing il May 1965. The -ystem was successully flight tested on 11 June 1965. Preliminary data from the Test and Reliability Evaluation Laboratury at Redstone Arsenal indicated that the trajectory carried the missile near the progiammed flight path. Telemetry reception was good and indicated thet the miseile was controlled as planned.

\section*{6. RECOMMENDATIONS}

Upon evaluation of th? tel-aetry and optical tracking data from the TIM Ilight at Redstone Arsenal, it is recommended that anotrer flight be scheduled with the aim of replacing the mechanical control astuators with a pure fluid system. The pure fluid system would consist of RC feedback-type fluid osciliator, a three-stage low-pressure fluid amplifier, and a high-pressure supersonic poser amplifier. Such \(\varepsilon\) system requires that a low-level pneumatic output signal from a sensor be modulated, amplified, and delivered as a varia le reactive thrust output. The sensor required for this system could be of conventional form or the pure fluid rate sensor now being developed at HDL could be used.

\section*{REFERENCES}
1. Holmes, Allen B. and Foxwell, John E. "Supersonic Fluid Amplification with Variou:s Expansion Ratio Nozzles," Proceedings of the Fluid Amplification Syaposium, Volume IV, pp. 123-146, May 1964.
2. Foxveli, John E. and Holmes, Allen B., "Proportional Fluid Amplification for Rocket Thrust Vector Control," Proceedings of the Fluid Amplification cymposium, Volume V, pp. 43-57, May 1964. Confidential.

\title{
HARRY DIAMONO LABORUTORIES
} WASHINGTON, D. C. 20438

\section*{APPLICATION OF FLUERICS TO MISSILE ATTITUDE CONTROL}
by
CARL J. CAMPAGNUOLO
JOWN E. FOXWELL
ALLEN B. HOLMES
LEONARD M. SIERACKI

\section*{ABSTRACT}

This report describes the design, development, and evaluation of - control and thrust gemerating system consisting of an RC oscillator. - three-stage amplifler, and e supersonlc single-stage power amplifier. These amplifiers were comolned into a single four-stage fluid amplifler. The three-stage subsystem provides modulated oscillatory control signal that enables the digltal supersonic amplifier to deliver a proportlonal thrust output. The overall system has a power geln of \(1 \times 10^{6}\) and a flow gain of \(1.3 \times 10^{4}\) and dolivers ameximum thrust of 70 pounds.

\section*{INTROOUCTION}

The application of fluld Intersction dovices for reactlon-jot control and chamber bleed thrust vector control has been demonstrated at HDL using comprossed alr and both solid and liguid propeliants (rof (-3). Subsequent work at hol in the fleld of fluid sensors, logic clircults, and empliflers has led to the covolopment of e pure fluld missile control system.

The intorent advantage of such a control system is that it contalne no mechanical moving parts or electronic components and is belleved to be lapervious to radiatic and vibration thet impose Ilimitatlons on conventional missilo-control systems. Since it is mecossory that a smell signal trom the fluld sensor be emplified and modulated to provide e useble thrust output, it is important to tormulate reallstic dosign eriterie by investigoting sealed leboratory models.

Experiments were conducted on a laboratory model of a control end thrustegonorating system conslsting of an RC osclllator. - threostage digital ampilfior, and e suporsonic pever amplifler. A complote analysis of the AC osclilator and low prossure modulating system is discussed in reference 4. and besic design erlterle for the power emplifler are discussed in reference 2.

For anssile control system, it is usually desirable that the corrective force be proportional to the error signal emitted trom e sonsor. The AC oselilator enables the four-stage digital amplifior
to have e proportional thrust output. When no orror signal is present. flow remeins in each roection-jet duct for the same amount of time. and the not thrust of the system is zero. Introduction of en error signal causes a proportlonel change in the time thet the flow remelns In each output duct. it is this change that produces on output thrust proportlonal to the error slgnel.

SUSSYSTEM DESCRIPTION
The RC oscilletor and the first three digitel units of the fourstage amplifler are referred to as the subsystem, which amplifles small sensor signels and provides enough flow and pressure to control the supersonle powar amplifler.

The RC oscliletor conslsts of a high geln digltal amplifler supplled with e resistance-capacltance feedback loop (flg.l). By means of aset of moveble screws in the output ducts of the RC oscillator, it is possible to belence the flow output of the entire system. There ere two methods of changing the bese frequency of the subsystem. Small changes (10-20 cps) are obtalned by adjusting the blas screws: lerge changes ( \(60-300 \mathrm{cps}\) ) are obtalned by verying the size of the RC network. The base frequency of the system is approximately 80 eps.

The flrst stage of the subsystem is provided with a dual sot of controls (fig. 1). The controls nearest the power jet ere fed from the osciliator, while the other set is fed by a jroportional signal enltted from a pnoumetic sensor. To melntaln high goln, both sets of controls are located within the entrolnment bubble of the power jet.


Pigure 1. Pour-stage fluid aupliflier assembly

The three digltal elements of the subsystem have common power Jot pressure and are cascaded In ascending order. High power and flow gains are achieved since each nozzle area is 10 times the nozzle eree of the preceding stage. The first two stages of the subsystem are memory units and tend to stabllize the entire system; they have their spiltters 18 (nozzle wldths) downstruam of the power jet, catcher openings of 4 . and a two-dimensional nozzlo aspect ratio of 4 to 1 .

The third stage of the subsystem is a nonmemory unlt with its splitter placed In the core region (6w) of the power jet and has catcher openings of \(1.4 w\). In inis combinetion, the nonmemory unit enobles the entire subsystem to have algh pressure recovery, while the memory units make the systen falriy insensitive to the extreme Iow pressure (l-3 psie) exlsting et the control ports of the power amplifier. Each stage is motched into the succeoding stages by using vortox transfer technlques.
3. PONER AMPLIFIER DESCRIPTION

The power section of the four-stage amplifler is e high pressure digital supersonic unit designed to operate from typlcal solldpropellant hot gas generator. Thls single axis power anplifier was designed to operate with the colld propellent graln SMU-101 to provide reactive thrust output which is proportioned by means of the subsystem. Cold gas tests show that a thrust of 70 ib is attainad et power jet pressure of 700 psig.

> The power amplifler has econical stainless steel nozzle, control or amplifier section, and a palr of \(1-1 / 4-1\) d ametor output ducts (fig. 1). The subsystem is metched to the control section of the power amplifler by means of the vortex tubes.

> The high pressure input flow overaxpands and separates from the walls of the interaction region. When both confrol pressures are low, the output flow distrlbutes itselt equally about the splltter. Switching is accomplished by raising the pressure In one of the vortox tubes to cause further separation of the power jot from one wall and attechment to the opposite wall.
4. TEST IMSTRUMENTATION AND CONTROL DEVICES

All tests on the high pressure power amplifler and the complete system were made on e three-component thrust stend, comprising e framowork in which load cells are located in the flexures to determine the improssed loads. The flexures behove offectively as pinned jol-is but provide high compliance in all lateral directions. They have sufficient tensile and compressive strength and colum stiffness to wlthstarid 500 it of exlal loading and 200 ib of lateral looding. The flexures were designed so that the spring constralnts they lapose do not contribute measurably to the forces beling maesured (fig. 2).

A single lasd cell was mounted in the horizontal plane to meesure the net thrust output of the unlt. The loed cell was e 350-onm resistive bridge type, with four active elements. Callbration was achleved by applying known loods \(W_{1}\) and \(W_{2}\) statically along


FIGURE : THE POWER AMPLIFIER SHOWN INSTALLED
ON A THREE-COMPONENT THRUSTSTAND
the thrust axls of the emplifier. A resistor that simulated the combined resistence changes of the ective bridge elements for the applied calibration lood was keyed ecross one element of the transducer bridge. All measurements wore mode roletive to the reforence signal. The power-nozzle and control-jet compressed eir flaws and pressures were metered through the use of dome regulators. The flow rates were measured periodically during each test run (fig. 3). When the threestage fiuld amplifier was adeptort to the high prossure amplifier and muunted on the test stand, the feed prassure to the threenstage device was regulated through an additional dam regulator. Two types of input control actuators were used to meter the control flow into the oscillator controls. The first provided a digital differential Input signal to the osciliator, end the second produced time variant pressure slgnal. The response of the system to modulated input control flow was determined by applying a time veriant pressure signal to the uscillator controls and masuring the net ostput thrust as a function of the differential input control pressure. The control flow through the actuators was entrained directly from the atmosphere du-ing all tests.

\section*{5. TESTS}

The compressed air tests were conducted to detenmine the prem dominant operating characteristics of both the powar amplifier stage and the complete four-stage system. The power amplifler test serles


FIGURES FLOW SCHEMATIC FOR POWER AMPLIFIER TESTS
wes designed to evaluote the emplifler under two seperate operating conditions: In the flirst, the opposing or nonactuated control port was seeled during switching; in the second, the nonectuated control port was open during switching, allowing e static pressure of 14.7 psle in that region. The second operating condition wes designod to slmulate system conditions where constant pressure and flow oppose the epplied control signel. The procedures used for these tests were es follows.

Tost 1 (fig. 3)
(1) Power nozzle pressure was preset ot \(\mathrm{P}_{4}\)..
(2) Control valve 8 was closed.
(3) Control pressure \(P_{C}\) was applied through valve \(A\).
(4) Pressure \(P_{C}\) was recorded.
(5) Flow rate \(O_{c}\) was recorded.
(6) Steps 1, 3, 4, and 5 were repeated with control valve 8 full open to allow e statle prossure of 14.1 psia to exlst in that region.

The curves in flgures 4. 5, and 6 correspend to the unlt beling fully switched into output B, produeling amaximum thrust \(F\). TEST I RESULTS

The flrst pert of tast I Illustrates the typlcal charscterlstic flow and pressure curves for apersonic fluld amplifier under normal operating conditions (flg.4-5). An enelysis of the flow phencmene Involved in the gemeration of these curves is given in reference 2.


FIGURE 4 CONTROL PRESEURE ATPULL SWITEN ASA FUNGTION OF POWER NOZZLE PRESSURE


FIGURE 5 MEASURED CONTROL FLOW RATE AT FULL SWITCH COMPARED WITH CALCULATEO ISENTROPIC POWER FLOW RATE ASAFUNCTION OF POWERNC:ZLLE PRESSURE

The second part of test I lilustrates that the flow galn (deflned es the ratio of the power nozzle fiow to the control flow is reduced by a factor of approximately 2.5 under simulated system conditions. However. since the normal flow gain is relatively high (20-25), the reduction in galn does not significantly decrease the effectiveness of the power amplifler. This test wes performed at a blas pressure of 14.7 psia, but o blas pressure of 20 to 25 psla could reduce the galn to e polnt where the power amplifler would cease to operate. The isentropic thrust efficiency of the power amplifier was altered only silightly when the non-actuated contro: port was open during switchling (fig. 6).

There will always be blas flow (corresponding to the nonactusted control port belng open during switchling) when the subsystem Is connected to the power amplifier. Thls blas flow results from the extremely low etatic pressure in the interection region of the power amplifler. However, the pressure assoclated with the bles flow can be reduced by the use of vortex transfer tubes. If the output flow and recovered pressure of the subsystem is excessively high, the goln of the power amplifler will be reduced. Thus, proper matching of the subsystem to the power amplifier is essential.

The purpose of the second and third test serles was to verlity the analytica! analysis that preceded the design and assembly of the entire four-stege system. Tests were conducted to determine the varlations between component performence and complete system perform-


FIGUREG CALCULATED ISENTPOPIC THPUST EFFICIENCY PLOTTED AS A FUNCTILV OF POWEN NOZZLE PRLEYURE
> ance. The parameters of main interest were power amplifler operating pressure and system output thrust recovery. The procedure used in the second test serles was es follows.

TEST 11 (fig. 7, 8)
(1) Subsystem supply pressure was proset.
(2) Solenold actuator valves \(R\) and \(L\) vere aiternately cycled at approximately I CpS.
(3) Power amplitier supply pressure \(P_{4}\) was applled at a rete of \(25 \mathrm{psi/sec}\).
(4) Output thrust was recorded as a function of \(\mathrm{Pa}_{4}\).
(5) Maximum actuator control flow \(Q_{c}\) was measured.

\section*{TEST II RESULTS}

Test II showed that the power ampllifer operating pressure range was 200 to 800 psig . When the power amplifler was operating at a pressure of 700 psig, a system flow galn ldeflned es the rotlo of the power emplifler flow rate to the oscilletor control flow rate) of 13,000 wes achleved.
```

TEST 111 (flg. 7. 9)

```
(I) The subsystem low pressure supply IIme was removed. Under thls conditior., the supply alr flow to the subsystem was entralned directly from the etmusphere.
(2) Steps 2 through 51 test 11 were repeated.

\section*{TEST 111 RESULTS}

Thls experiment was perfonmed to demonstrate the feaslblilty of opernting the subsystem without an auxillary power supply. The re-


FIEURE 7 SCHEMATIC VIEW OF TET SET UP FOR TESTS 2,3 AND 4
TEST CONDITIONS AND DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TEST NO & Pomia & Piman & \(P_{\text {s isial }}\) & \(P_{\text {atana }}\) & \(P_{\text {che }}\) &  & \(\mathrm{P}_{\text {S }}^{14}\) & Fecm & FLLer & hctuator \\
\hline 2 & 14.7 & 14.7 & 14.7 & 14.7 & 0-700 & 14.7 & 14.7 & 40-80 & 40-30 & sol. Valve \\
\hline 3 & 84.7 & 54.7 & 54.9 & 34.7 & 0-800 & 14.7 & 14.7 & 0-80 & 0-80 & SOL.VALVE \\
\hline 4 & 34.7 & 54.7 & 84.7 & 54.7 & 640 & 14.7 & 14.7 & 0.60 & 0.60 & NELDLE Vay \\
\hline
\end{tabular}


FIGURE E THRUST OUTPUT VERSUS POWRR AMPLIFIER PRESSURE AT A SUESVSTEAI FEEO PRESSURE EQUAL TO 40 PSIG.


FIGURE \(\triangle\) THRUST OUTPUT VERSL OWER AMPLIFIER PREESURE ATA SUASYSTEM FEEO PRESSURE EQUAL TO 14.7 PSIA.
sults Indicated that this mode of operation is teesible, but the Ilmited amount of entralned air and the assoclated pressure dreps through the subsystem reduced the power amplifler operating pressure range to 500 to 600 psig. Wlth lerger pesseges in the subsystem, it eppeors thet this renge could be extended. TEST IV (flg. 7, 10)
(1) Subsystem low pressure supply was proset.
(2) Power amplifier prossure wes proset.
(3) Control pressure to the osclllator was vorlod by means of needio volves.
(4) The olfferentiel prossure oxisting in the oscilletor controls wes measurod.
(5) The osclilator control flow was measured at system maximin thrust output.
(6) Not output thrust wes moasured.

\section*{TEST IV RESULTS}

This test serles was conducted to deteraline the IIneer operating regimes of the tour-stage emplifler. Slace these regimes are doe pendent upon varlous comblnatlons of subsystem and power amplifler pressures, onlye typlcal curve of differential control prossure versus net output thrust is presented in figure i0. This eurve tes generated using esubsystem power jet pressure of 40 psig and a power amplifler pressure of 650 psig. The results of this test Indicated


FIGUREIO NET -HRUST OUTPUT VERSUS DIFFERENTIAL OSCILLATOR CONTROL PRESSURE
that the entire unit was not balanced and did not perform In a Ilnear manner. By correctly balancing the emplifler or forcling the curve through zero, it is possibla to increase the gain and the I inear operating range of the ystem (ref. 4). Further tests are necessary to determine whether the lerge step in the curve is on inherent cheracterlstic of the amplifier or was caused by power jot misalignment, dirt in the subsystem, a machining error, or som other comoination of asymmetries. The curve also indicates that it is possible to obtain a thrust output that is proportional to the input signal.
6. CONCLUSION

The results of this testing demonstrate that low pressure and supersonic elements moy be cascaded to obtain high tlow and power gains. Although the subsystem and power amplifier operated over wide range of pamer jet pressures, 40 pslg for the subsystem and 650 psig for the power amplifier scemed to provide the most desirable rasults. The subsystem tended to reduce the gain of the power amplifler but did not appreciably change its overall operating characteristics.

Three important conclusions may be drawn from these tests:
(I) Digital operation was achieved over a wide operating range of the power amplifler (200-800 psig).
(2) An output thrust was obtained that was proportional to the input control signal.
(3) 1t was possible to operate the entire system using otmospherlc pressure to supply the subsystem.

These results are not consldered optimm but are intended to Illustrate the feasibility and adepteblility of the four-stage emplifler. Further work is needed to lmprove the IIneerlty and galn of the system.

\section*{REFERENCES}
1. Foxmell, John E. and Holmes, Allen 8. "Proportional Fluid Ampllflcation for Rocket Thrust Vector Control," HDL Proceedings of the Fluid Ampliflcation Symposium, Vol V. pp. 43-57, May 1964, Confldential.
2. Holmes, Allen B. and Foxwell, John E., "Supersonic Fluid Ampllflcetion with Verlous Expension Ratio Nozzles," HOL Proceedings of the Fluld Ampliflcetion Symposium, Vol IV. pp. 123-146, May 1964.
3. Lehman, W. F. and Cromile, F. T., "Feasiblility Study of Fluld Amplification Control for Exhoust Jot Doflection," Slxth Llauld Propulsion Symposium, sponsored by the Inter-Agency Chemlcal Rocket Propulsion Group. 23-25 Sept 1964.
4. Campagnuolo, C. J. and Slerackl, L. M., "A Digital-Propertional Fluld Amplifler for a Missile Control "jystem," HDL Proceedings of the Fiuld Amplification Symposium, Oct 1965.

\title{
A SECOND GENERATION OF FLUID SYSTEM APPLCATIONS
}

\section*{by}

Dr. R. E. Bowles \& E. M. Dexter
Bowles Engineering Corporation
\[
R-7-23-65
\]

\section*{A SECOND GEPYERATION OF FLUID SYSTEM APPLICATIONS}

During the past three years, Pure Fluid Systems have progressed to the fabrication of integrated controls and some operational experience has been accumulated. These controls are more than breadboard eamples; they have been bullt for specific applications. The manner of their execution is the result of a evolution. The first step in this evolution was to select applications which, on the surface at least, were compatible with Fluid Systems. Secondly, we would like to belleve that the evolution represents a collective best judgment at each step. Each development approach is the result of a consideration of the best way.

The objective of this paper is to review some applications which represent the average or mean rather than the extremes (what is being done rather than what might be done) in an attempt to divine the future complexion of Fluid Systems. We have selected five of these middle-of-the-road applications. We think they cover a fair sampling of present day work and, therefore, are suitable to deduce some general characteristics of the applications of Fluid Systems. These five selections are: 1) a boller control system; 2) a speed control; 3) a pressure discriminator for process control; 4) a course control for a torpedo; and 5) an automistic sequencing control system. For each of these we will describe the sasic function of the control and point out some of the sallent features of the end item hardware.

BOILER CONTROL
The application of Pure Fluid Systems to boller control seems natural because of the compatability of the input and output signals with fluid computation. Bollers are currently operated by pneumetic systems, the air is available, the sensors and various parts of the loop are pneumatic, and the output actuators are pneumatically driven.

The boller control regulates the air, fuel, and water to the boller to maintain steam pressure (which is the reference signal) and boller drum water level. Measurements of the alrflow, we flow, water level, steam flow and fuel flow are feedback signals. This system is shown in block paragraph form in Figure l. There are four major blocks. The first function of the control system is to sum the feedback signals and provide the desired attenuation and gain. The second major blocks are the airflow controller, the minimum signal selector for the fuel s!gnal, the fuel controller and the water flow

The information contained in this paper is derived in part from the following contracts: Boller Control, BuShips, Contract No. Nobs 88625; Speed Control, ONR, Norr 4033 (00); Torpedo Control, BuWeps, Now 65-0252f; V/STOL Study, U. S. Army Aviation Materiel Labs., DA 44-177-AMC-202 (T).
coritroller. With the exception of the minimum signal selector, the control su'sircuits are relatively straightforward. Due to the slow response of the airflow loop during transients, the fuel flow must be limited to prevent the occurrence of a fuel-rich mixture. The minimum signal selector causes fuel fiow to follow the demand established by steam flow and steam pressure error or the airflow feedback signal, whichever is the smaller. The four major circuits are shown in Figure 2.

Without considering any of the major subcircuits in any detail, it is interesting to note that the number of elements and tina size of the circuit plates are very similar. The units have seven or eight elements and each is constructed with elements of .040-inch depth. The circult plates are approximately 5 inches by 9 inches. In each case the circuit has with it an associated manifold and adjustable blasing restrictions. The circuits shown are of cast epoxy. Development work was performed using Optiform. The cast epoxy circuits provide long-term stability.

It is important to note that each of these nodules rrovides a function. The breakdown is not dictated by the size of the plates, manufacturing restrictions, or a desire to implement a circult from standard strips of amplifiers. Each of these are put together to fulfill a function.

Figure 3 is a schematic and silhouette of the minimum signal selector. The operation of this circuit is as follows: The two primary input signals are from the airflow feedback signal and the demand signal circuits. The function of the selector is to determine which is the minimum signal. Each input is divided, one being transmitted to the powier input of an OR gate and the other to the input of a two-stage analog amplifier. The input signal to the amplifier shown in the lower portion of the flgure is the difference between these two signals. The output drives a flip flop. The maximum signal determines which side the output of the flip flop is on and drives the switch with the maximum signal to the off position. The maximum signal selector, therefore, sees only the minimum input signal. This signal is transmitted to the output two-stage amplifier to bring the circuit to the desired gain; in this case, one. In addition to demonstrating the interplay of both analog and digital elements the circuit displays the use of a completely non-standard element, the maximum signal selector. Fluid circults offer a great opportunity for special purpose elements for functions that would normally, in electronic equipment, be made up of an assembly of standard elements. This is a growing trend.

\section*{SPEED CONTROL}

Another application worthy of note is the speed control which was demonstrated in breadboard form some time ago but which promises to find an application in the near future. This control is shown in schematic form together with the fluid circuit silhowettes in Figure 4. This governor functions by measuring the difference in frequency between a tuning fork reference, which is set at approximately 840 cycles per second, and a shaft speed frequency measurement made by interrupting a jet stream. The shaft speed signal is normally 800 cycles per second. This difference frequency is subsequently demodulated and passes through a stabilizing lead-lag network to drive the output actuator. In the figure the size of the elements is about half of the actual size in the demonstration model. There are two basic circuit elements, a frequency subtractor, which is a two-element circuit, and the diocriminator and stabllizing network, which was made in a \(9 \times 12\) circuit plate comprising 11 elements.

Note that the division of these circuit plates is on a functional basis. The frequency subtractor, located near the speed measurement, provides the function summation and the larger plate provides the demodulation and stabilization network. The circuit plate has an associated manifold, tanks and lines to provide necessary time constants. In many of the analog circuits, the required tank volumes are not compatible with the size of the circuit plate and are, therefore, executed externally.

\section*{PRESSURE DISCRIMINATOR}

A good example of an application for fluid systems in process control is the amplifying and discriminator circuitry sLown in Figure 5. The function of this Pressure Band Gate is to amplify an air gage, or other process measurement, to the normal 3 to 15 psi band used in current recorders, and in addition to provide a signal when the process is beyond tolerance. In this case the tolerance band can be adjusted to \(\pm .2\) psi, referred to the 3 to 15 psi range, or up to 6 psi band width. In most cases the output of this will be used in the controller or the band signal will be used to stop a process or give a warning signal that the system is not functioning properly. Note that the input signal is the fluid being used in the computer, which is air, and that the output is a pneumatic signal driving a pneumatic controller of a pneumatic actuator.

The circuit elements, both digital and analog, are . 015 inches
deep. The circuit plate was about \(2 \times 4\) inches and contains 10 elements, 5 of which are digital and 5 analog. The circuit is injection molded. Most of the difficulties and cost of this device are associated
with the manifold. This observation dictates a trend to incorporate more of the manifold functions, such as fixed restrictions, in the circuit plate.

TORPEDO COURSE CONTROL
The fourth application is a torpedo course control system based on the vortex rate sensor. The rate sensor provides two pressure outputs which are both above ambient pressure level and which vary in opposite direction as a function of rate of turn. The integration of this signal is provided by converting these pressures to comparatle frequencies and then maintaining a continuous totaling of the number of cycles from each output during the run. The difference in total count is a function of the course error.

The basic circuitry, Figure 6 , shows the rate sensor, the two pressure controlled oscillators, which convert the signals to frequencies, and the two counter strings with conversion networks. These counter strings are shown schematically in Figure 7 . The integration function is provided in two steps. The first circuit provides an analog signal proportional to the deviation in the total number of counts in the first four stages. The final three stagus are handled by more coarse technique by simply recognizing which counter string is ahead of the other and providing a saturating signal when this occurs. Therefore, if the count is less than 16 , the cirsult gives a proportional control signal and if the counter grror exceeds 16 , a saturating signal will maintain a constant output until this error is reduced. Notice that the torpedo control system desires to run at a zero count error so that normally only a minor count difference will exist. Also the process of chenging course is provided by inducing error count into one of the ccunter strips.

The course control system is shown in Figure 8 on the rate table with an oscilloscope display of the PCO outputs. The course system includes: a fan and plenum to supply pressure to the rate sensor and circuitry; the rate sensor; pressure-controlled oscillators; oscillation output amplifiers; and three circuit assemblies. The circult assemblies are: (1) the four-bit network with analog output; (2) the two-bit count circult to distinguish if the count error exceeds 32 ; and (3) a reset circuit.

The first two circuits, Figure 9 , are composed of four circuit plates mounted back to back on two manifolds. This back-to-back arrangement is appropriate because the subtraction function requires a stage by stage comparison. An example is the four-stage count circuit shown in Figure 10 . The circuit plates are mirror images with interconnections through the manifold as indicated in the figure by common letters.

Each circuit of this pair is approximately 4 by 7 inches, and has a complement of seven .040 -inch elements and the passive adder circuit. The material is a metal-filled epoxy. The second circuit is a pair of plates of about the same size assembled in the same manner. These two circuits are not symmetrical pairs. One has nine elements and the other eight. The third circuit, the reset function, has a single circuit plate and manifold. The circuit is 4 inclies by 6 inches and has 7 elements.

These circuits are divided by function. For example, the first module and the third module can be used together to provide a useful combination.

It is not, ble that the circuit, exclusive of the reset function, could be combined on a single manifold using two circuit boards. The circuit, however, was divided to isolate the development problem and test procedures.

\section*{AUTOMATIC SEQUENCING SYSTEM}

The function of this control system is to provide the logic for proper manipulation of a storage process. This system is not characterized by functional blocks. It is a long train of interconnecting logic sequences to prevent improper manipulations. More than 100 logic functions are involved in this control. The subdivisions were defined by categorizing modules that appeared repetitively and which have outputs in useful positions so that stacks of modules can be interconnected easily. The assembly is shown in Figure 11.

The six basic modules defined in this sequencing system are shown in Figure 12 . These modules are \(6 \times 9\) inche and have circuit elements of .040 Inch . A module and an assembl with manifold are shown in Figure 13. In the upper left the module is shown from ine manifold side, and at the right from the circuit side. Having the inputs and outputs as shown allows simple interconnecting with the modules staggered as shown in Figure ll

The circuit modules in this example were dictated by a desire to standardize rather than incorporate all the logic for a particular function. Some of the modisles appear to have general application.

\section*{THE OPPGRTUNITY FOR FLUID SYSTEMS}

Intuitively it appears that Fluid Systems offer potential improvements in size, weight, reliability and cost. Generally we see improvements in all these areas, although it depends on the specific application particularly when considering a one-for-one substitution for conventional pneumatic controllers or conventional transistorized electronic equipment. The most prominent potential improvements are in rellability and in cost reduction of systems where it is advantagecus to compute in the working fluid.

An example which we have studied quite exhaustively was that of a control system for a helicopter or short take-off and landing aircraft. This control system, shown in block diagram form in Figure 14 is made up of a short period stabilization system, which we expect will be hydraulic, and a long period attitude control, which will probably be pneumatic. The study indicates a comparison in weight, power and reliability shown in Figure 15. The values are given for a hypothetical Pure Fluid System and an operational electronic system. It should be recognized, of course, that these figures for the fluid System represent today's state of the art. First we note that the numbers are very similar in weight and power. Howaver, reliability appears to be much better for the Pure Fluid System. The table of Figure 16 shows that the apparent reliability of Fluid Systems may be limited by the reliability of the actuator itself.

At the present time there is really not enough evidence to completely define the rellability of Fluid Systems. At Bowles Engineering we have accumulated approximately 30,000 hours of recorded test time after burn-in. What we have noticed in our computations is that the reliability of Fluid Systems will be significantly affected by the connections much more so than by the fluid circuit. This prompts us to consider the reliability on the basis of the connections rather than on the basis of the fluid elements themselves. For example, the potential rellabllity from Fluid Systems has been related to that of a gasiketed assembly which has be n shown to have failure rates on the order of .03 per million hours of operation. This ieflects a fallure mode due to leakage which we belleve will be the primary type of fallure. On the other hand data collected for hydraulic lines indicates, in the most optimistic cases, . 59 fallures per million hours for the hose alone. Failure rates for fittings have comparable values. This results in a possible fallure rate of 1.5 per million hours in aircraft use. Although these figures may not be strictly applicable, it is apparent that integrated circuitry will be the trend in improving rellability.

What of fallure induced by wear-out or performance degradation? We don't know of ar:y wear-outs except under high stress conditions.

What of cost reduction? It is too early to be specific. At the present time there are many conflicting examples. A one-for-one substitution for pneumatic controllers does not show a major reduction in price. The cost, however, is not in the fluid circuit; it is in the manifold and adjustments. For cost reduction we look to applications that eliminate the need to translate fluid information to electrical signals and vice versa.

\section*{CONCLUSIONS}

We belleve that integrated circuits, grouped on a functional basis, will be the trend in Pure Fluid Systems. It appears that many functions are performed with approximatelv 10 elements. If we assume that ga:s circuits will use elements of .015 -inch depths and an aspect ratio of 2 , which seems to be the most desirable size, the circuit plates will be about 3 inches by \(41 / 2\) inches.

Reliability considerations will induce the designe: to incorporate the maximum number of interconnections in the module. Cost considerations will tend to increase the functions provided by the circuit plate.

Overall, the major contributions of fluid circuits will be in applications which eliminate the need to translate information from one medium to anciner.


Fig. 1. Boiler control, control block diagram




Fig.2. Boller control, four major eilrcuit assemblies


Fig. 3. Boiler control, minimum signal selector silhouette
1/2\%


Fig. 4 . Speed control, circuit silhouette and schematic diagram


Fig.5. Amplifier and pressure level discriminator, circuit plate and manifold assembly


Fig. 6. Course controi schematic diagram


FIG. A


FIG. \(B\)
Fig.7. Course control, counter circuit schematic diagram


Fig.8. Course control system; fan, rate sensor and circuitry. Oscilloscope trace shows outputs of pressure controlled oscillators


Fig. 9. Course control system; circuit assembly


Fig. 10. Course control, counter circuit sllhouette


Fig.11. Sequence control assembly


Fig. 12. Sequence control, silhouettes of circuit modules


Fig. 13. Sequence control module assembly showing front view, rear view and a representative circult board


\section*{PURE FLUID VERSUS ELECTRONIC SYSTEMS NON REDUNDANT SINGLE AXIS}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Pure \\
Fluid System*
\end{tabular} & Electronic System & Ratio of Pure Flutd to Electronic System \\
\hline \multicolumn{4}{|l|}{Weight (pounds)} \\
\hline Inner Loop & (10.1) & 8.6 & 1.18 \\
\hline Outer Loop & (17.25) & 13.3 & 1.30 \\
\hline Total & (27.35) & 21.9 & 1.25 \\
\hline \multicolumn{4}{|l|}{Power (watts)} \\
\hline Inner Loop & (690) & 470 & 1.47 \\
\hline Outer Loop & 100 & (185) & 0.54 \\
\hline Total & (790) & 655 & 1.20 \\
\hline \multicolumn{4}{|l|}{Rellability} \\
\hline Inner Loop & . 9999 & (.9956) & \\
\hline Outer Loop & . 9990 & (.9890) & \\
\hline Maintainability (hours/ hour of operation) Total & \[
\begin{gathered}
\text { Less Than } \\
0.1
\end{gathered}
\] & Greater Than (0.1 to 0.2) & \\
\hline
\end{tabular}

Fig. 15 . Alrcraft control system, comparison of a pure fluid control and an electronic system

\section*{STABILITY AUGMENTATION SYSTEM FAILURE RATE COMPARISON}
\begin{tabular}{lcc}
\hline \hline & Electronic System & \begin{tabular}{c} 
Pure Fluid \\
System
\end{tabular} \\
Computing/Sensing & \((2161)\) & 25 \\
Actuation & -39 & \(\underline{39}\) \\
& TOTAL & \((2200)\) \\
\hline \hline
\end{tabular}

Fig. 16. Aircraft control system, reliability comparison of a pure fluid system and electronic system

\title{
ASTROMECHAUICS RESEARCH DIVISION Giannini Controls Corporation Malvern, Pennsylvania
}

A FLUID STATE abSOLUTE
PRESSURE RATIO COMPUTER
by

\section*{Charles A. Belsterling}

A Paper Prepared For
The Third Fluid Amplification Symposium, Harry Diamond Laboratories, Washington, D.C.

October 1965

\begin{abstract}
This paper describes a pneumatic Absolute Pressure Ratio Computer with no moving parts (fluid state). It covers the concept and design of the components and circuits and includes an evaluation of the resulting demonstration system. The performance of the breadboard Fluid State Ratio Computer firmly establishes the feasibility of the concept. It demonstrates that sophisticated analog computing components can be developed to operate on fluid-state variables. It also illustrates that complex fluid state components can be interconnected into a useful system by means of straight-forward aralytical techniques.

\section*{1. INTRODUCTION}

\subsection*{1.1 Background}

The purpose of this paper is to describe a pneumatic computer with no moving parts developed by the Astromechanics Research Division of Giannini Controls Corporation for the computation of the ratio of two absolute pressures (or flows). An operating demonstration Computer has been assembled successfully and recently delivered to the Air Force.

Several attempts had previously been made elsewhere to detect or compute the ratio of two absolute pressures with fluid state devices. without success. A more promising approach was made possible by the development by Giannini of new analog computing components, that is, the computation of ratios by straight-forward mathematical processes. Recognizing the potential for such a system in the computation of air data and the feedback control of jet engines, the Air Force Flight Dynamics Laboratory provided support for initial development of a demonstration computer, under Contract AF 33(615)-1534. Mr. Harry Snowball was the Air Force Project Officer.

\subsection*{1.2 Objectives}

The functional requirements of the Fluid State Ratio Computer were 1) it should accept two variable absolute pressures, 2) compute the ratio of the absolute pressures, and 3) deliver an output proportional to the ratio at a power level adequate to drive instrumentation and be amplified with fluid state devices to any higher level.

\section*{2. SYSTEM DESIGN GOALS}

\subsection*{2.1 Mach Sensor Requirements}

The application which was selected to demonstrate the feasibility of a Fluid State Ratio Computer was Mach number sensing in a supersonic transport aircraft. The system was designed to accept static pressure and total pressure from conventional probes and compute the ratio of absolute pressures. As shown in Figure 1 this ratio can be converted to a signal directly proportional to Mach number through a
\end{abstract}


FIGURE 1 - DEMONSTRATION APPLICATION OF FLUID STATE RATIO CONF UTER
fluid state function generator, if so desired. The output can be used in pilot displays, air data computers, and engine controls.

\subsection*{2.2 Operating Envelope}

The application selected defines an operating envelope for the Fluid State Ratio Computer as show by the crosshatched outine in Figure 2. It is bounded by altitudes of 5000 and 53000 feet, pitot pressures of 25 and 50 inches of mercury and Mach numbers of 1.0 and 3.0 . The dotted envelope is typical for cruise operation of a supersonic transport. This illustrates that the choice of operating envelope is a realistic and representative one.

\subsection*{2.3 Dynamic Range of Variables}

With reference to the operating envelope shown in Figure 2, the dynamic range of the variables (ratio of maximum to minimum) accommodated in the demonstration Fluid State Ratio Computer are defined as follows:
\begin{tabular}{lll}
\multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{ Absolute Range } & Dynamic Range \\
Static Pressure \(P_{0}\) & 2.4 to 24 in Hg & 1 to 10 \\
Total Pressure \(P_{t}\) & 25 to 50 in Hg & 1 to 2 \\
Pressure Ratio \(P_{0} / P_{t}\) & 0.083 to 0.53 & 1 to 6.4
\end{tabular}

\subsection*{2.4 Performance Goals}

Although no requirements for performance were specified for the demonstration system, goals were defined at an early stage of development to serve as design guides. For the demonstration system these goals were 1) static accuracy better than \(5 \%\) and 2) transient response less than 1 second.

\section*{3. RATIO COMPUTER DEVELOPMENT}

\subsection*{3.1 System Design}

A block diagram of the Fluid State Ratio Computer is shown in Figure 3. Note that the computation is simple and straight-forward, employing two key fluid state components: a function generator and a multiplier.

Total pressure \(P_{f}\) from the pitot probe enters the Computer through a passive network wiich conditions the signal for the next stage. The resulting signal representing \(P_{t}\) is sed to a fluid state function generator, programmed to compute the function \(y=1 / x\). A signal containing \(1 / P_{\text {. appears at the output of the function generator and is }}\) applied to one input of a fluid state multiplier. Static pressure \(P_{0}\) from a static probe enters the Computer through a passive network which conditions the signal for further computation. The resulting signal


FIGURE 2 - RATIO COMPUTER OPERATING ENVELOPE
minn
is fed to a linear amplifier. The output is an amplified signal proportional to the ratio of the absolute pressures \(P_{0} / P_{t}\).

The circuit diagram of the Fluid State Ratio Computer is shown in Figure 4. The circuit is laid out to correspond to the block diagram of Figure 3. The entire network is powered by air supplied at approximately 22 psia. The return is common to all units in the computer and is to be regulated at (or slightly above) sea level atmospheric pressure, 14.7 psia.

Total pressure \(P_{t}\) detected with a pitot tube enters the Computer diagram at the upper left side. It is biased to the proper level by a network of linear restrictors and the resulting signal sent to a fluid state Function Generator (Inverter). The Inverter conputes the function \(y=k / x\) and so the output is a pneumatic signal proportional to \(1 / P_{t}\). This signal is properly biased by the addition of a fixed flow from the supply and applied to one input of a two-variable fluid state Multiplier.

Static pressure \(P_{0}\) enters at the lower left of the circuit diagram of Figure 4. It is properly biased in a specially designed non-choking network of passive restrictors and the resulting signal fed to a fluid state Subtractor. In the Subtractor, the signal representing P is subtracted from a constant, so the output varies in proportion t8 - \(P\) (note that the sign change is only necossary to satisfy the input Yequirements of the Multiplier). The Subtractor output is then biased and fed to the second input of the Multiplier. The Multiplier continuousily computes the product of the absolute value of the two inputs, \(1 / P_{t}\) and \(P_{0}\), to deliver an output pressure which contains a signal proportional to the product, \(\mathrm{P}_{0} / \mathrm{P}_{\mathrm{t}}\).

\subsection*{3.2 Component Development}

To implement the Ratio Computer network shown in Figure 4, it was necessary to accomplish three significant advances in the state of the art, the development of 1 ) a non-choking restrictor network, 2) a fluid state function generator and 3 ) a fluid state multiplier of two variables.

\subsection*{3.2.1. Non-Choking Restrictor Network}

The input network for static pressure \(P\) must raise the signal to a level compatible with the Subtractor. This is a difficult problem considering the fact that the Subtractor operates above 15 psia and the static pressure can go as low as 1.2 psia. Because of the high ratio of absolute pressures, choking is certain to occur in any of the passages between the two. Choking is a phenomenon wherein, if the downstream absolute pressure is less than half the upstream pressure, and if the downstream pressure is reduced, the flow will not increase. If this condition were to occur in the static pressure input lines, it would be impossible to detect a change in \(P_{0}\). The problem
was solved in an extremely straight-forward manner, simply by breaking up the restrictors in the static pressure network so that the absolute pressure ratio across any one section never reaches the critical number for choked flow.

\subsection*{3.2.2 Fluid State Function Generator (Inverter)}

A fluid state component is required to compute the reciprocal of the variable pressure \(P_{t}\); that is, generate the analog function \(y=K / x\). In the course of the project a number of experimental devices were developed to do this successfully. The design selected for the demonstration Ratio Computer is the ultimate in simplicity. It employs two impinging jets which, in combination with proper wall shaping and receiver placement, is capable of generating the hyperbolic function ( \(y=K / x\) ) (shown in figure 5) over a wide dynamic range.

\subsection*{3.2.3 Fluid State Multiplier of Two Variables}

The Ratio Computer also requires a component fur multiplying two variables in the fluid state. Note that an ordinary amplifier multiplies one variable times a constant; that is \(\mathrm{P}_{0}=\) \(K_{1} P_{i n}\) as shown in Figure 6(a). The constant is the amplifier gain. If the gain can be changed by means of a second variable then \(P_{0}=\) \(\mathrm{K}_{2} \mathrm{P}_{2} \mathrm{P}_{\mathrm{in}}\). Thus a multiplier is simply a controlled gain amplifier with a famíy of characteristics shown in Figure 6(b). The multiplier developed for this project is basically a Double Leg Elbow Amplifier modified for controlled gain and closed-vent operation. Late in the development program, a second miltiplier was developed of radically simplified configuration but ic was too late for application in the demonstration system. Hovever, the work resulted in a simplified, smaller and more powerful unit.

\subsection*{3.2.4 Linear Restrictors}

In addition to these more interesting accomplishments we were also faced with the mundane problem of building linear restrictors. Linear restrictors are required at many places in the Ratio Computer network (see Figure 4) to convert pressures to flows (and vice-versa) without changing scale factors. Because of the wide and unusual range of sizes required, it was necessary to develop our own techniques for fabricating linear restrictors to satisfy the immediate requirements of the Ratio Computer program. As a result the linear restrictors in the breadboard Computer are constructed as follows.

Bastc stock is a quantity of 4 -inch lengths of \(10-\mathrm{mil}\) ID stainless steel hypodermic tuting. This length is sufficient to drop nearly 10 psi with laminar flow (that is, the resistance is constant up to nearly 10 psi). The proper number of \(4-\) inch tubes is selected to give the necessary resistance, they are bundled together and spirally wrapped with black vinyl electrical tape. The end connect


FIGURE 5 - PERFORMANCE OF FLUID STATE FUNCTION GENERATOR

a) TRANSFER CURVE OF TYPICAL AMPLIFIER
b) TRANSFER CURVE OF TYPICAL MULTIPLIER
sections are formed by choosing vinyl plastic tubing with an ID which requires some stretching to slip it onto the end of the tube bundle and over the tape.

Linear restrictors used in the Ratio Computer circuit range from 0.175 psi per millipound per second ( \(\mathrm{psi} / \mathrm{mlb} / \mathrm{sec}\) ) requiring 613 tubes to \(45 \mathrm{psi} / \mathrm{mlb} / \mathrm{sec}\) requiring only 9 tubes.

\subsection*{3.3 Syatem Integration}

In system integration, the fullest advantage was taken of the most advanced analytical and graphical matching techniques. For example, input characteristics, transfer characteristics, and output characteristics were recorded for each circuit. In this way each one could be designed for proper matching with those connected to it. As a result of this approach it was possible to avoid the cut and try approach and achieve ratio computation the first time the system was connected together.

The demonstration Fluid State Ratio Computer is shown in Figure 7. The system is laid out exactly as the circuit diagram of Figure 4 for ease in tracing the flow of information and in identifying components. It is enclosed in a suitcase-sized Plexiglass case for ease in handling. It should be obvious that there was no attempt to minimize the size.

The Computer is fitted with its own input and output meters so it is a completely self-contained demonstrator. After this photo was made, the meter scales were altered to reau inputs in absolute pressure units and outputs in pressure ratio as well as Mach number.

\section*{4. RATIO COMPUTER PERFORMANCE}

\subsection*{4.1 Ideal Performance Curves}

Prior to evaluating the performance of the breadboard Fluid State Ratio Computer, it is first necessary to generate a set of ideal performance characteristics.

Ideally, the Ratio Computer is an analog divider of two variables, \(P_{t}\) and \(P_{0}\). It is dividing static pressure \(P_{o}\) by total pressure \(P{ }^{\text {. }}\) Thus, the output pressure is to be proportional to \(P / P\) and Fits performance can be described by a set of curves as shown, Figure 8. In this case we have chosen to plot the output as a function of \(P\) with \(P\) as the parameter. Then for a given value of \(P\) the oukput is \(K_{j}^{\cap} / P_{f}\); that is, the curve is a hyperbola. Note that when \(P_{f}\) is doubled, Ehe output must decrease to half its initial value. If \(F_{t}\) is fixed and \(P_{0}\) varied, the output is \(K_{2} P_{o}\); that is, the output increases linearly with \(P\). Note that when \(P^{2} O_{i s}\) doubled the output increases to twice the initial value. Thus we may generate the characteristics of an ideal Ratio Computer as a family of hyperbolae,

FIGURE 7 - DEMONSTRATION BREADBOARD RATIO COMPUTER
each curve separated by a distance proportional to its value (equally spaced) as shown in Figure 8.

The breadboard Fluid State Ratio Computer is designed to operate within the envelope illustrated in Figure 2. The resulting limits imposed on the variables are superimposed on the ideal characteristic in Figure 8.

\subsection*{4.2 Actual Performance Curves}

The performance of the breadboard Fluid State Ratio Computer illustrated in Figure 7 is shown in Figure 9 for direct comparison with the ideal curves in Figure 8. Note that over the major portion of the operating envelope the Fluid State Ratio Computer is calculating the ratio of two absolute pressures within a few percent. However as either input pressure approaches the lower end of its range, the accuracy of the computation decreases. As described later these errors are primarily due to nonlinearities in the input networks because of the wide variation in air density. In future designs, suitable compensation will be included to eliminate these errors.

\subsection*{4.3 Transient Response and Noise}

The delivered breadboard Fluid State Ratio Computer contains a "MAGNEHELIC" differential pressure indicator to provide a visual displey of the computed ratio. With this meter in the system the dynamic response is inferior to that of the basic system alone as shown in the table below.

TRANSIENT RESPONSE
(Seconds to reach \(63 \%\) of final value)
\begin{tabular}{ccc} 
Variable & Without Meter & With Meter \\
\(\mathrm{P}_{\mathrm{o}}\) & -2.0 & 1.6 \\
\(\mathrm{P}_{\mathrm{t}}\) & 0.2 & 1.0
\end{tabular}

The basic system without the visual output indicator has a high (100:1 or better) signal to noise ratio over most of its operating envelope. However, there are a few regions near the extremes where the ratio decreases to about \(10: 1\).

\section*{5. PERFORMANCE EVALUATION}

\subsection*{5.1 Static Accuracy}

In Figure 10, we illustrate the static accuracy of the breadboard Fluid State Ratio Computer by two contours superimposed on the ideal characteristics. Note that the accuracy is within the \(5 \%\) design goal over the major portion of the operating envelope. At the lower extremes of total pressure and static pressure the errors are somewhat


greater. In a region near the center of Figure 10 the errors are never higher than \(2 \%\).

The errors are primarily due to nonlinearities in the passive input networks. Because the impedance of the restrictors is inversely proportional to the average pressure, it increases rapidly as the static pressure input signal approaches 1 psi absolute. Since these are predictable errors which can be compensated for, we estimate that the optimized design will have no more than \(1 \%\) static error over the entire operating envelope.

\subsection*{5.2 Transient Response and Noise}

The transient response of the Fluid State Ratio Computer without the output meter is 0.2 seconds. This is far better than the original design goal of 1.0 seconds.

The major time delays in the 0.2 -second response appear to be in the total pressure and static pressure input networks. They are the refult of the combination of very high network impedances (to minimize input signal flow requirements) and volumes associated with the Function Generator and Subtractor. These time delays can easily be reduced by designing for low volume between the input networks and the Subtractor and Function Generator. Therefore we predict a response time of less than 0.01 second in the optimized design.

The most significant source of noise in the output signal is the Multiplier. Because of the low velocity of \(t\), air stream, the output contains some very low frequency components and therefore requires high-time-constant filtering. In future designs using simplified configurations and high velocity jets, the low frequency fluctuations can be eliminated. On this basis we predict that the optimized design will have a signal-to-noise ratio better than 100 to 1 over the entire operating envelope.

\section*{6. CONCLUSIONS}

In summary, demonstration of the feasibility of the Fluid State Ratio Computer has been accomplished. The performance of the breadboard Computer has met or exceeded most of its design goals. Moreover, the demonstration system has pointed out areas where additional effort should be devoted to optimize the performance of future fluid State Ratio Computers. Therefore, it is a significant advance in the state of the technology of fluid state analog computation.

\section*{HARRY DIAMOND LABDRATORIES \\ WASHINGTON, D. C. 20438}

A TEMPERATURE CONTROL SYSTEM USING PLUERIC COMPONENTS
by
RICHARD N. GOTTRON
WILMER GAYLORD

\section*{RBSTRACT}

An all pneumatic system developed recently at the Harry Diamond Labcratories exhibits a pressure or flow output that is a function of the temperature of the gas in the sensing system.

Laboratory tests from \(21^{\circ}\) to \(120^{\circ} \mathrm{C}\) showed the \(d-c\) output level to be proportional to trequency over this range. The trequency, In turn, is proportional to the gas temperature. The differential output prisssure change was about 150 millibars.

\section*{1. INTRODUCTION}

The temperature-sensing pneumatic oscillator (ref 1 and 2) has been utilized to generate a system having a pressure or flow output that is a function of temperature.

The frequency output of the system as a function of temperature is based on a difference in frequency of two pneumatic oscillators. The two oscillators are supplied air at the same temperature. The oscillators are similar in all respects except for temperature sensitivity; thus a difference frequency as a function of temperature is generated as temperature varies. The signals from the oscillators are mixed to yield sum and difference frequencles. The derlvation of the difference frequency is necessary to lower the frequency to the response capability of the digital logic components. The range is approximately 100 CDS for the unit described.

The sum and difference frequencies from the mixer are applied to an acoustic-to-pneumatic convorter. A pneumatic signal for the purposes of this report is a signal that is not acoustic. The converter output is a pneumatic pulse, which has a repetition frequency identical with the applied oscillator difference frequency. The pulses from the converter are operated on by the digital logic circuit to yiold a pulse of constant amplitude and duration, regardless of frequency.

These pulses are integrated to obtain a "d-c level" of flow or pressure that is a function of frequency and, hence, temperature.

This d-c level is amplified by staging of proportional amplifiers. The amplified (d-c) output, 0 , course, may be applied to a servovalve (or equivalent device) to regulate fuel flow to an engine or to regulate exhaust area, etc.

\section*{2. OISCUSSION}

The components of the system \(m\), be classified functionally as: sensing, coupling, mi ilng, acoustlc-to-pneumatic conversion, digital logic function, and amplifying network. A diagram of the control system is shown in figure l. Addition of the components shown in phantom (brjken lines) would complete the control loop.

\subsection*{2.1 Tomperature Sensing}

Temperature is sensed as a frequency by two tamperature-sensitive pneumatic oscillators (ref 1, 2). The frequency of the oscillators is necessarily above the response capability of the digital logic devices; a single oscillator cannot be used, since an oscillator of low enough frequency would be extremely large.


The temperature then is sensed as a difference in frequency of the two oscillators. The difference in frequency of the oscillators as a function of temperature results from a difference in sensitivity. From reference 1, the change in frequency with temperature over a temnerature range \(\frac{\Delta t}{\Delta T}\) is given for a particular oscillator by
\[
\begin{equation*}
\frac{\Delta t}{\Delta T}=\frac{f_{0}}{T-T_{0}}\left[\left(\frac{T}{T_{0}}\right)^{1 / 2}-1\right] \tag{1}
\end{equation*}
\]

It can be seen from this expression that the sensitivity over a range \(\Delta T\) is a function of the frequency to at reference temperature \(T_{0}\). To achieve a difference in sensitivity, the oscillators were designed to oscillate at a difference of 35 cps at \(21^{\circ} \mathrm{C}\). The cavity length required for each oscillator to produce its assigned frequency was determined from
\[
\begin{equation*}
f=\frac{(R T)}{42}^{1 / 2}(\operatorname{ref} 1) \tag{2}
\end{equation*}
\]
where
\(R=\) gas constant for gas of interest
\(T=\) ratio of specific heats
\(f=\) cavity length
The difference in frequency as a function of temperature is determined by
\[
\begin{equation*}
f_{1}-f_{2}=\frac{K T^{1 / 2}\left(\ell_{2}-\ell_{1}\right)}{\ell_{1} \ell_{2}} \tag{3}
\end{equation*}
\]
where
\(f_{1}=f\) requency of oscillator 1
\(f_{2}=\) frequency of oscillator 2
\(K=\frac{\sqrt{R}}{}\)
and \(l_{1}\) and \(l_{2}\) are the lengths of the cavities of the oscillators. A general relationship between the frequencles of the oscillators and temperature is shown in figure 2.


\subsection*{2.2 Coupler}

The coupler is shown in figure 3. This device "extracts" the oscillator signal (ac) from the combined signal (ac +dc ) out of the oscillator. It is desirable to admit no d-c flow from the osclllator to the acoustic-to-pneumatic converter. This d-c flow, of course, would bias the converter and affect its output. The d-c flow extracted with the a-c signal was hardly measurable. The amplitude of the extracted a-c signal was a function of the supply pressure to the converter. For our case it was in the range of 10 to 30 percent of the amplitude of the signal from the osclllator.

\subsection*{2.3 Mixer}

The mixer is shown in figure 4. Its purpose is to provide a region for mlxing or adding the acoustic signals from the oscillators, to produce the difference frequency (flg. 2) on which the system functions.

\subsection*{2.4 Converter}

The converter (fig. 5) converts the beat frecuency from the mixer to a pneumatic signal of equivalent frequency. This means that the converter generates pneumatic pulses at a frequency that is a function of temperature as given In equation (3).

\subsection*{2.5 Frequency-to-Analog Conversion}

The frequency-to-analog conversion system (fig. 6) comprises two distlinct parts: (l) the digital logi: setup (two digital amplliters and a NOR unit), which puts out a pulse of constant duration and fixed amplitude for each input to the logic system, regardess of the trequency of the input pulses; (2) a tank to level out the pulses to a constant (d-c) flow and several stages of proportional ampllfication to increase the power of the d-c flow to a useable magnitude.

The input, (1) in ilgure 6, consists of the oscillatory pneumatic signal from the converter. The output of the first amplifier is a square wave with frequency equal to that of signal 1 . Signal 2 is divided, with one signal (3) being utilized as the input of a passive NOR element. The other part of signal 2 (shown in flgure 6 as signal 4). is used to control the second amplitier, which is used to provide z delay. The output of the second amplifler (signal 5) is utilized as the control of the passive NOR element. Since this control should be of small ampl'tude, signal 4 is made small by utilizing a large

COUPLER
FIGURE 3



ACOUSTIC-TO-PNEUMATIC CONVERTER
FIGURE 5


Figure 6. Frequency-to-analog conversion system.
resistence as sham in figure 6. The tank smooths out the output of the passive NOR, resulting in a d-c signal whose ampilitude depends on the frequency of signal 1.

The time difference between signal 3 and 5, \%, is constant, since it depends entirely on the time response of the second amplifier. The amplitude of signal 3 (designated A) is constant since it is a function of P+ (input pressures to the first amplifier) and the resistance as previously duscribed. Thus if \(f\) is the frequency of signal 1 , the d-c level from this tank will be ideally fAt. Attenuation and losses due to the passive NOR unit will result in a somewhat smaller signal, which is proportional to tAt.

If it is small, the magnitude of the d-c signal from the tank is small. Since a passive NOR unit is used, losses in pressure make \(A\) small also. Thus this d-c pressure is small. Therefore to utilize the the signal in an application where dower ir essential, stages of procortional amplification are required.

\subsection*{2.6 Amplifying Network}

As shown in figure 1, the preset point is located in the ampllitying network. This preset point is the bias control of the first stage of proportional amplification. By adjusting this bias, control begins at a predetermined temperature, without affecting the difference trequency of the two oscillators.

\section*{3. DESIGN CONSIDERATIONS}

The proportional temperature control system was developed from components that were available at HDL and did not necessarily yield the optimum overall system performance. Observation of the system performance indicated, however, which design considerations are more important in generai.

In a practical application of the system, the most important characteristics are: system sensitivity, frequency resoonse, control ranae and system outdut.

These are dependent on the individual components. Sensitivity and control range are directly related; and both are geverned by the maximum frequency response of the system. The effect of these characteristics on the system will become apparent from a separate discussion of each.

\subsection*{3.1 System Sensitivity}

The system sensitivity is designated as the change in difference trequency, \(\dagger_{1}-\dagger_{2}\), with respect to change in temperature. An indication of the effect of design variable manipulation on sensitivity
can be seen from the relationship of design and operational parameters in equation (4).
\[
\begin{equation*}
t=\frac{K T^{1 / 2}}{\ell} \tag{4}
\end{equation*}
\]

The sensitivity of a single oscillator at any temperature is
\[
\begin{equation*}
\frac{d f}{d t}=\frac{K}{22 T^{1 / 2}} \tag{5}
\end{equation*}
\]

The system sensitivity is then the difference in the sensitivities of the two oscillators.
\[
\begin{equation*}
\frac{d f_{1}}{d t}-\frac{d f_{2}}{d T}=\frac{K\left(\ell_{2}-\ell_{1}\right)}{2 \ell_{1} \varepsilon_{2} T^{1 / 2}} \tag{6}
\end{equation*}
\]

It can be seen from equation (6) that the system sensitivity may be varied by manipulating \(\ell\), and 2 . it can be seen also that the sensitivity is inversely proportlonal to the one-half power of temperature, so the temperature range over which the system operates affects the sensitivity.

The maximum sensitivity the system can utllize depends on the temperature range and the frequency response of the system. Since the frequency difference increases with temperature, the sensitivity should be adjusted to accommodate the maximum temperature the system will experience.

\subsection*{3.2 Frequency Response}

The frequency response of the sustem is governed by the response of the digital logic system. The devices in this portion of the system are avallable with \(300-70-400\) cps response capability.

\subsection*{3.3 Control Range}

Given two oscillators of cavity length \(l_{1}\) and \(i_{2}\), the control range can easily be determined from the equation
\(T^{1 / 2}-T_{0}^{1 / 2}=\frac{\ell_{1} \ell_{2}}{K\left(\ell_{2}-\ell_{1}\right)}\left[\left(f_{1}-f_{2}\right)_{T}-\left(f_{1}-f_{2}\right)_{T_{0}}\right]\)
where \(T\) is the maximum temnerature to be controlled. \(T_{0}\) is the initial control temperature, ( \(f_{1}-f_{2}\) ) is the oifference frequency at \(T\), and \(\left(f_{1}-f_{2}\right)_{0}\) is the difference frequency at \(T_{0}\). These difference frequencies \({ }^{\text {must }}\) be made compatible with system sensitivity and response requirements.

The controlled range can be made extremaly broad by an aporopriate choice of \(\ell_{1}\) and \(\ell_{2}\). Control of temperatures to well over \(1000^{\circ} \mathrm{C}\) is teasible as can easily be shown by the use of equation (7).

The preset poifit can be utilized to reduce the maximum range of control as was previously discussed. The lower temperature limit \(T_{0}\) can be adjusted by adjusting this preset point.

\subsection*{3.4 Systom Output}

The system output (pressure or flow) is determined by three major factors: (1) the output of the acoustic-to-pneumatic converter: (2) the characteristics of the digital logic system; and (3) the gain of the stages of the proportional amplifying network.

The output of the acoustic-to-pneumatic converter can be regulated Dy varying setback and splitter distance. These can be adjusted to yield a maximum output for a givan applied acoustic signal. Obviously, the separate units of the digital loqic system and the amplifying network should also be adjusted for maximum gain, to inerease system qain.
4. TEST RESULTS

Laboratory tests were conducted to deternine the practicability of a fluidic temperature control system and to compare experimental results with theoretical considerations. The tests were conducted to \(120^{\circ} \mathrm{C}\) using the system just described.

Figure 7 shows the frequency variation with temperature from \(21^{\circ}\) to \(120^{\circ} \mathrm{C} ; f_{1}-f_{2}\) is the difference frequency of the two oscillators over the same temperature range. This difference frequency was also monitored by ubserving the pulse frequency out of the digital logic system.


Figure 7. Oscillator frequencies and difference frequency
as function of temperature.

Theorgtically, the trequency of each oscillator can be determined using equation (2). Fowever, experimentally, the frequency did not vary as the 0.5 power of temperature. Results show that the exponents were 0.553 and 0.537 for the higher frequency and lower frequency oscillators, respectively. Theoretically, \(f_{1}-f_{2}\) at \(120^{\circ} \mathrm{C}\) should be 38 cps, but because the oscillator with the higher exponent had the higher sensitivity, \(\boldsymbol{f}_{1}-\mathbf{f}_{2}\) increased from 32 to 56 cps over the total range of temperatures tested. Exponents greater than 0.5 are attributed to the circulatory flow in the oscillators, which results in a pulse speed greater than that given by equation (2).

Figure 8 is a plot of the differential pressure (blocked output) at the output of the last proportional amplifier as a function of the temperature. This difference pressure was nearly directly proportional to the difference frequency.

Additional tests were conducted to determine the range of operation of the converter. The results quoted are representative of one system tested. The results varied with changes in impedance and input pressures. The resistance shown in flgure 6 was adjusted to obtain the maximum analog output. Any variation in this resistance will reduce the output flow and pressure.

Figure 9 shows oscilloscope traces of the acoustic beat input and the digital system output. Reflections occur in the digital pulses as shown in the figure.

Figure 10 is a plot of the differential pressure output of the last stage of the four-stage proportional amplifler as a function of the difference frequency. The output was linear from 30 to approximately 95 cps . For beat frequencies above 95 cDs , the digital logic system sklpped pulses, since the response of the digital units used was approximately 95 cps. Thus the output leveled off and then dropped as the input frequency was increased further.


Figure 9. Oscilloscope Traces.

output as a function of the difference frequency.

A proportional temperature control system has been assembled at HOL using fluidic logic elements and proportional amplifiers. The output of the system is a differential pressure that is a function of the temperature of the input gas to the oscillators. This no moving-mechanical-parts system is rugged and simple. To maintain generality, no emphasis has been placed on the controlled mechanism. The output could be utilized to perform a number of functions, such as controlling a nydraulic valve, a fuel valve, or reactor arm.

The system tested was limited to a low (l00-cps) frequency response. Since existing hardware, was utilized to bulld this system, no emphasis was fiaced on optimizing the individual units. This limitation would not exist if digital elements with high frequency response were utilized.

As shown in equation (6), the system sensitivity decreases with increasing temperature. This sensitivity can be increased sighlficantly for a given control range by increasing \(\dagger_{1}\) - \({ }^{\dagger} 2\). Another interesting phenomenon that increases the system sensitivity became apparent during the tests. The temperature exponents given as 0.5 in equation (6) were in fact not 0.5 but of slightly higher value and were different for each oscillator. As reported in section 4, one exponent was 0.553 and the other was 0.537. If the higher exponent oscillator is used as \(\mathrm{f}_{1}\) (the nigher frequency), the sensitivity is increased since the difference frequency is greater than the theoretically calculated value. Thus, as shown in figure 8, \(\Delta D\) as a function of temperature is nearly linear.

The system should be tested to higher temperatures before the exponents can be determined accurately. Tests should also be conducted to determine the method by which these exponents can be manipulated.

Another method that will enhance the sensitivity is the use of a constant frequency oscillator that may or may not be pneumatic. After having assumed a desired temperature range, ( \(\left.f_{1}-\dagger^{\prime}\right)^{\prime} \mathrm{T}_{\mathrm{e}}\) is chosen so 'hat the maximum \(\left(f_{1}-f_{2}\right)_{T}-\left(f_{1}-{ }^{\dagger}\right)^{\prime} T_{0}\) can be obtained. Thus the sensitivity of the system will be the same as that of the temperature controlled oscillator. This, however. will limit the range of control. since, as stated previously, (f) - f \()^{\prime}\) cannot exceed 400 cps.

\section*{REFERENCES}
I. Gottron, R., and Gaylord. W., "A Temperature Sensing Pneumatic Oscillator," TR-1224, Harry Diamond Laboratories, 4 May 1964 (Contidential).
2. Gayiord, W., and Gottron, R., "Design Considerations of the HOL Pneumatic Temperature Sensor," TP-1273, Harry Diamond Laboratories, 10 Feb 1965 (Confidential).

\section*{FLUID TIMER DEVELOPMENT}
S. B. Martin - Sandia Corporation
E. R. Phillips - Univac, Division of Sperry Rand Corporation

\section*{INTRODUCTION}

A fluid timer has been developed by UNIVAC, Divisio.s of Sperry Rand Corporation to the apecifications of Sandia Corporation. A preliainary report of this developent was presented at the 1964 Pluid Amplification Symposium. 1 Development has resulted in an integrated modular design which utilizes no tubing interconnections. Major functional modules are assembled to combination anifold and base plate which contains all channels necessary to interconnect the modules. This feature makes posaible a compact unit with efficient space utilization which is environmentally rugged. This cimer was designed to operate from \(-65^{\circ}\) to \(+165^{\circ}\) F and to met typical shock and vibration requirements.

A photograph of the timer is shown in Pigure \(1 . *\) A fluidmechanical oscillator provides the time bese. All counting and logic functions are performed by pure fluid digital circuits. A total of 35 active elements and 85 passive elements are used. The timer has two variable-time channels which may be preset with a selector switch from 10 to 59 seconds in 1second increments. Four fixed-time outputs of \(0.20,0.82\), 1.00, and 1.37 seconds are also provided. Output of the timer is the closure of normally open electrical contects.

At the time of submittal of this paper, three units are in varioue stages of asscably. Compatibility of major subassenblies has been established, but final testing of the complete components remains to be done.

1 "Developent of Two Pure Fluid Iimers," by G. V. Ledmon and E. R. Phillipe, Proceedings of the Pluid Aplification Syposiun, May 1964, Vol. II, P.481, ff.
*Figures appear on pages 279 through 287.
II. LOGIC

A digitel interval timer requires a tim base or frequency ource, a counter, a mechanim to select the deeired time, a mothod of etarting the tining function, a decoder to deternine when the desired time has elapsed, and an output device.

The logic of the present fluld timer is based upon flip-flope, aplifier-invertere, paesive AND sates, and pasaive 0, sates. A block diagre of the locic circuit is obown in Mgure 2.

The clock to provide the neceseary atable ties bese is aluid oscillator syachroaised by a torsioal opring-ases systen. The 32-cpe output of the clock drives a 12-stage binary counter. Each stase of the binary counter is dealgned to give an initial "eero" output when powar ts applied. Thing begine when power is supplied to the unit. Thue, Binary Counter (BC 1) wil Initially tura to the "one" atate at \(1 / 32\) second, BC 2 at 1,16 second, BC 3 at \(1 / 8\) second, etc. This ayete is followed through BC 9, wich turne to the "one" state at 8 secoads. Eowever, BC 10 Le initially turned to "one" at 10 econds to allow use of a setting ewitch with anite and tens selector. A decade converter is used to comvert the pure binary number to a binary-coded decimal number. Baically, the decade converter drivee SC 7 at the normal \(1 / 2-c p\) rate of BC 6 until 8 eccoade have elapaed. Batween 8 and 10 seconde, the decade coaverter drives \(\operatorname{BC} 8\) at 2 cps. Thus, the first alne counter teages are recycled every 10 seconde to provide the units aignal. The last three atases, which initially give outputs at 10,20 and 40 eeconde, reapectively, provide the tene aignal.

Dacoding is a Eltiple AND logic function. The outputs of the proper binary countere are AMDed together to sive the deaired outputs to aet mory flip-flops. the mory flip-flops convert the pulsed outputs of the decoder into steady-atate outputs. These steady-state outpute ectuate pressure owitches to close electrical contacts. It is aimple meter in the case of the four fixed-time channele to permanently interconnect the proper counter outputs. Bowever, in the case of the two variable-time chanale, the interconnection proble is more couplex. the outpute of EC 6 through BC 12 are individually Oned with an output fron the selector awitch for each chanael. The selector suttch is eseantially a group of valver which control flow from the
aupply maifold. Flow is aupplied from the eelector suitch to each on gate whose corresponding binary-counter iaput is not included in the desired time setting. The ecrea Olod signale are then Almbed to give an output when the deeired combieation of binary cosnters is in the 1 or oll atate. The output frem the series of AND gates is mplified to actuate the output emory. The two variable-time output memories are laterlocked using an OR and an AMD gate so that Chamel A alvaje actuatee before Chanel 8 .

\section*{II. OSCILLATOR}

The Sandie Tleor developed by the UIIVAC Division of Sperry Rand Corporation is used to indicate the passage of a predeternined tim laterval by mane of countins the pulses from a fluid oecillator. Since the accuracy of the time interval depeads on the constancy of the pulse rate, a device (see Figure 3) for controlling the frequency of the pulees wae added to the basic fluid circuitry.

This device, which is essentially an oscillating mass-spring eyate whose period of oecillation is depeadert on the value of the mase and oprins rate, aullifies the effects of varying pressures and temperatures on the elaple pure fluld oscillator. By use of the proper materials, the mechanical propertion of the ajsten reain approximately constant with varying teqperature and pressure. The mase oncillatins at the aystem's natural frequency interrupts a fluid jet and produces in turn fluid pulses occurring at precise intervals. In this case a toralonal mese-spring eyeten (Figure 4) wae chosen because of ite reletive imunity to vibration.

Ahe eimple oecillator could have been aployed directly to drive the counter assembly but because of the posaibility of vibration and shock affecting the mechanical syotem, it was decided to use the output pulse as a ayachronisiag eignal for the pure fluid oecillator. So lons as the mechailcal eyeten is oscillating, the pure fluid oscillator will oscillate at the same frequency as the mehanical oyaten. Bowever, should the eechanical syste fail, the pure fluid oecillator will continue to operate and drive the counter asecmbly. When operating without ayachroaisins pulses, the pure fluid oscillator operates at a pulee rate decernined by the gae teaperati: and pressure. It is the fluid oscillator output, not the fluid
output of the mechanical syetem, that drives the counter asseably and produces the power to operate the mechanical oecillating eyatem. (Refer again to Mgure 3)

The signal from the clock, or oscillator, aseembly is a two-phase pulse operating at 32 pulses per second. The pure fluid oscillator operating at this frequency requitee 0.6 cubic inch of apace. The aynched oscillator allow the timer to perform within the time accuracy specified with inlet preseures ranging from 2.0 to 6.0 pei.

Testing on a breadboard assembly of the fluid oscillator ayachnd with a torsional oscillating mess indicated only a 0.3 -perceat drift in frequency over a temperature range of \(155^{\circ} \mathrm{F}\).

\section*{10. BASIC TLUID ETEISNT}

A fluid blatable element or flip-flop was chosen as the fundemental fluid element because of its many edvantagee where a counting function is to be performed. Since a bistable device poscesses memory, fower elements are required for parforming the counting function, and this conserves power nad package spece. This basic element was utilired exclusively in the fabrication of the counter asemblies and decoding logic circuite.

The power nozzle of the flip-flop is 0.014 inch wide by 0.022 inch deep and operater with supply pressures ranging from 1 to 5 psi. The basic device was developed with a two-input AND gate driving eignal. inputs on each aide of the power jet. The AND gates are desizned to incorporate isolation, and the presence of only one signal at either input \(t\), the AND gats has no effect on the power jet of the flip-flop and will not load the "OFF" AND gate input, a characteristi ; which allows for simple, trouble-free interconnection. Th/: AND gate nozzles are 0.008 inch wide by 0.022 inch deap and are the amallnet nozzles found in the Ifwer. A sketch of the flip-flop with and gate inputs is shown in Pigure 5.

The device hes a eaximum "fan-out" of eight devices from either output channel which results in a pressure gain at this loading condition of more than 2. Pressure gain is defined ae the output preasure d'vided by that presaure at the inputs of the AND gate
necessary to cause the flip-flop to change strte. Thus the gein figure guoted includes the loss incurred in the passive AND gate. If the passive gate and accompanying venting are eliminated, the pressure gain can approach 20 with a fan-out of 5. The high fan-out capabilities and resulting gain margin make the device extrealy attractive where space utilization and mininum power are paramount.

One important result of the flip-flop program to date has been the excellent manufacturing yield. Circuit plates with several doren elements will not be possible unless the basic element can be reproduced with high yield. It is obvious that circuit plates cannot be reproduced economically if the basic device itself has, say, only on 80 per cent yield. To date, UNIVAC has used production equipment, operated by production personnel, to mold over 1000 flip-flops from the sme die without a single defective flip-flop. These results indicate that if consideration of the manufacturing process is factored into the design of the digital element, excellent reproducibility can cesult. While the data are not conclusive, the indications are that complicated circuit planes, eploying high performance fluid elements, can be molded on etandard production presees and that extremely low cost fluid circuits can be nanufactured.

\section*{V. THE BINARY COUNTER CIRCUIT}

The binary counter circuit makes use of two flip-flops each employing two input AND gatas. (See Figure 6.) The circuit design \(i s\) such that no deleys are required and, consequently, pulses of any duration can be accepted. The performance of the circuit with regard to fan-out and gain makes intermediate amplifiers between stages unnecessary.

Basically, the purpose of each of the two flip-flops in a counter stage is to earve as memory device for the other. While one flip-fiop is switching, the other flip-flop provides the memory necessary for eliminating the custonary tining proble. The size of binary counter stage is 1.7 inches by 3.0 inches by 0.060 inch. It is probable that a \(50-p e r\) cent reduction in counter volume can be achieved by improved apace utilieation.

A typical eix-stage counter was tested to deteralne the mexime oscillator frequency for use in the Tiner application.

Figure 7 shows an oscilloscope photograph of aix-stage binary counter stack responding to an input frequency of 500 pulees per second. The sweep is actually the electrical sumation of the outputs of both the second and aixth stages. The aine weve 1s a 60 -cps reference signal. The maxime frequency has yet to be deterained, but it is asoumed that the maxime frequency will be leas than 1000 pps.

\section*{VI. VARIABLE THAS SELECTION CIRCUIT}

Of the 6 time channels within the timer, 2 chenocls may be preset to any time from 10 to 59 seconds. Figure 8 shows schentically how this is accouplished. The decoding occurs in what is called the Variable Decode plate, which is a series of AND-OR davicas in cascade. For an output to exist, a signal anst be present at alther of the inputs to each of the seven 0 a gates. Thus, at least seven inputs are needed to produce ea output. The inputa to the of gate can com from aither the binary counter aseembly or the Selector Switch. Sech of the seven of gates is associated with one binary increment, that is, 1 sec., \(2 \mathrm{sec} ., 4 \mathrm{sec} ., 8 \mathrm{sec} ., 10 \mathrm{sec} ., 20 \mathrm{sec} .\), or 40 sec . If the number 10 is to be decoded, the fluid inputs to the Variable Dacode for the numbers \(1,2,4,8,20\), and 40 will originate at the manual Salector Switch and are present from time eero. The number 10 ( 10 sec.) aignal will be generated by the Binary Counter Assembly. When the Binary Counter Assembly produces the number 10, all seven inputs will be present (aix from the Salector Switch and one from the Binary Counter), and an output will be produced. Similarly, the numer 59 would require inputs orisinatins in the Binary Counter Assembly for the numbera \(40,10,8\), and 1 , which total 59 . The reaining three signale, 2, 4, and 20, vould be produced by the Selector Sultch. The Selector suitch inputs are maually preset by adjustins the suitch thumb wheels prior to etarting the Timer.

The Selector Suitch also performa decade-to-binary conversion; the wheel readout is represented in typical decade fachion, but the fluid aigalal from the awitch is applied to the Variable Decode plate as a binary aigaal.

Since the mechanical equipeent within any fluid circuit presente the greatest reliability problea, an effort was mede to obtain the bect fluid valving scheme for the Selection Sortich. A
moving disc or card which relles on the sealing of a passage or hole appeared least desirable alnce slidins would be necessary and contanination could occur. Sealing between the eliding part and the bole could also represent a problen in ainiature circuite where near eezo leakage would be required. Therefore, a moncontacting jet interrupter achem was finally chosen; this scheme involves merely opening or nlosing a fet traveling between a nozie and a recovery hole. The interrupter operates freely without contactias either the nozale or the recovery bole.

Two identicel circulte within the Timer provide two eeparate variable time channels. Both channels are driven by the seme blaary counter output, and elther channe may be set to any numer from 10 to 59 seconds. Figure 9 showe a photograph of two Selector Switches (one for each channel) fabricated within the same bousing. It is necessary to include one Variable Decode plate for each time channel.

\section*{VII. \\ FIXED TMME DECODING}

Of the alx time channels, four of thees, labeled the Fixed Decode Channels, are not adjustable; the decoding logic is permanently interconected. These four fixed times (In eeconde) are \(0.2,0.82,1.0\), and 1.37 . Figure 10 shows the logic necessary for decoding the four chaanele. Maximun use was aede of the standard AND-drive flip-flop with the exception of one three-input AND flip-flop. Each of these flip-flop clements also served as amory for each of the time channels, and once the logic is complete, each flip-flop awitchea and remelns awitched. When awitched, each of the four flip-flops in the Fixed Decode energizes a pressure awitch; this action is the ultimate function of all the fluid time channels.

\section*{VIII. START-LP AND CLEAR}

Since the Theer must begin at time zero with a count of zaro, each element in every counter stage met turn or so the zero state. This may be accomplished by introducing a separate clear aignal which "forces" the elemente to start-up in the proper state. This approach would require considerable cirsuitry and power to "clear" the 12 binary counter atagen, which total 24 elements.

This Timer wae developed by voe of a clear cechnique which requires no separate clear sisnals. While the flip-flopa are geonetrically eymetrical and do not prefer oae side or the other, it was found that coatrol of the downetrean geometry, ainaly the resistance and capacitance ss seen by each flipflop output lag, can cause the device to switch to the state dealred when power ls applied (see Figure 6). The Ther, as designed, reliably cleare to the sero state during start-up, and no auxiliary circuits or elements are required.

The start-up and reaultins "clear" do not require any special type of tura-on procedure, and all biatable elements in the Timer clear automatically when power is applied.

The present design of the binary counter stages prevented 100-percent incorporation of this approach in the current Meer hardware. The stages now provide this mothod of clearing for only the first flip-flop in each counter plate, l.e., only half of all the active elements. However, clearing this flipflop does produce a clear condition on the second flip-flop due to the manner in which the interconnection 1 made. At the tine of this writing on production-type counters with 16 elements, testing has yielded three to five errors per thousand starts. With the incorporation of the concept to all circuit components the turn-on reliability should be several orders of magnitude bigher. Even with the clear applied to only the first flip of each stage, sone counter circuits with 16 flip-flops have cleared without error for 2000 starts.

\section*{IX. DINARY TO DRCADE COMVERSION}

To simplify the construction of the manal Selector Switch, - conversion from binary to binary coded decimal count for counters BC 6 through BC 9 becane advisable; as a result, the counter was separated into two sections, one section counting the units and the other producing the tens. For counters arranged in this manner the count could be decoded by observing aimitaneously the unit counters (O through 9) and che tens counter: \((10,20\) and 40\()\) and then by adding the units to the tens.

A noral binary counter will count from 0 to 15 and will require four councer stases. To convert a binary four-stack
to a decade four-stack, it is merely necessary to force all four stages to the 1 or 0 state just prior to the count of 10. After counting to 10 (actually, the decade counter in the Ther has counted to 320 oscillator pulses prior to recycling), the units counters revert to the eero or clear etate.

Figure 11 shows the necessary \(\log i c\) to acconplish the conversion. Beseatially, counters BC 7 and BC 8, representing the counts of 2 and 4 , respectively, are cycled at four tines the normal rate between the 8 count and the 10 count to allow all the counters to be in the 1 or \(O\) state just prior to a normal count of 10 . To do this, either of two gate circuits can drive counters BC 7 and BC 8. One circuit represented by NDD-ND device No. 1 is driven by the 1 counter (BC 6) between the 0 and 8 counts. the gate in this instance is the sero side of the counter BC 9, which represents the 8 count. At the count of 8 the gate changes from AND-ANP device 1 to AND-ANP device 2 by gating with the 1 aide of counter BC 9; thus, the sating merely depends on whether the count is above or below the count of 8 seconds, which \(i\) s represented by the state of counter BC 9. Many echemes for binary to decade conversion exist; however, this scheme appears to be the most relleble from tialng consideration.

\section*{X. PRESSURE-ACTUATED ELBCRICAL SWITC:}

The ultimate function of each time channel is the closing of a pair of electrical contacts. Considering the extrenely low pressure sigaala available at the minimun Timer supply pressure, as well as shock, vibration, and terperature extreme, the design requiremats for such a pressure switch becase quite severe.

The hardware which resulted from the final design operated considerably beyond the requirenents of the specifications and bes become an extrealy important research instrument as a digital indicator. The only moving elemant, e very thin, stretchad Embrane, \(0.75 \mathrm{in}^{2}\), containe the electrical contact. The other contact is adjustable with respect to the atretched membrene for section the closing pressure. The ewitch is shown in Tigure 12.

After asembly and test, the switches are encapaulated in epaxy, and no further adjuatment is posisble or required.

Switches have operated for billions of cycles with less than a is-percent change in the pressure necessary to effect closing. Oae package of six switches was aubjected to the complete specification test procedure, includins temerature, shock, and vibration with a change in pressure of lese than 0.5 inch of vater required for closing the awitch.

With regard to frequency response, the avitches have been operated at a rate of 3000 pulese per second. The awitches operate without detectable bounce. Operation with an electronic counter, where bounce causes considerable error, is an accurate readout technique.

\section*{XI. MANURACTURIMG TECRONIQUES}

All bistable elemats vere transfar-molded by use of production presses and were made from Dhallyl Phthalate, a thermoseting plastic. The dies vere made by standard alling techaiques, and one die produced over 1000 elements without detectable change in the performance for the total number nolded. The flip-flop was designed to aliow maxime manfacturing tolerances and it was possible to build circuite and indiscriminately mix the flip-flops molded from three dies with excellent resulte. The alaime radius of all corners and dividers within the flip-flop seometry was 0.007 inch. The absence of sharp edges appears to allow digital circuits an ease of manufacturability not normally found in proportional-type aysten. All circuit plates were fabricated by pantoalling on the molded flip-flop blanke the interconnections required. Templates were mede for all pantomilling to reduce aschining time.

The circuit plates were sealed by booding the bottom of one plate to the top of another. As many as 12 plates were bonded in this manaer in oae assembly; usually all bonding for a 12-plate stack was accomplished at the same tiac. A typical steck is shown in Pigure 13. Pressure and temperature were required for curins the adhesive, a tharmosetting plastic. the adhesive vae applied to the 12 plates making up the assembly and boad-cured aimultaneously on all plates in a heated platen press. Results from the procese were excellent with increasingly higher yields as the tachaique becem perfected. Bondiag of the \(0.008-i n c h-w i d e\) nozzlee represented no problea, and it was belleved that 0.002 or 0.003 -inch-wide noseles could be boaded with siailar resulte.

While the techniques which had to be developed proved quite satisfactory, areas for inprovement exist with regard to better space utilization, more efflcient power distribution, and sore complete interstage isolation. With regard to packaging density, it appeare certain that a 50 -par cent raduction in apace can be realised with zore effective circuit deeign without reducing the alse of the basic flipoflop element. Bowever, because of the ease with which the flip-flops were manufactured, a reduction in the aiz of the flip-flop elemat also appears possible; this mould ultimately lead to a coneiderable reduction in the package sizc.

\section*{XII.}

INIIRCONASCIIONS BETWEEN MAJOR ASSERBLIES

Eech of the subasecmblies, such as the fluid oscillator and fixed decode, was asembled into one of three stacks of circuit plates. One stack included the fluid oscillator, fixed decode, and binary counters 1 through 6. Once the stacks were assembled, it wes neceseary to channel eignale from one asecmbly to other ajor assemblies and to supply all the stacks with fluid power. This wes accomplished by the aster manifold which is an assembly of four plates with all the necessary chenneling and holes for interconnection rad power distribution. Two plates of the manfold are shown in Figure 14 ; this anifold assembly also served as a mounting plate for the stacks and as the means for mounting the Timer. All assemblies, including the mechanical oscillator, the Selector Switch, pressure switch, and all logic stacks, were physically mount ad to the mater manifold.

\section*{XIII.}

CONCLUSIONS

Substantial advances beve been demonstrated in the use of fluids to perform timing functions since the first breadboard timer was constructed.
1. The volume has been reduced by a factor of 60 .
2. The number of active lements has been reduced fram 100 to 35.
3. Power requirements have been reduced by actor of 4 .
4. Over one thouaand flap-flops have been manufactured.
5. The present unit was designed to be environmentally ruesed.

Dowever, there are still several areas where additional work will be required before fluids are utilised for ordnance timers.
1. A satisfactory power supply has yet to be demonatrated.
2. Packagias musc be improved further.
3. Element size must be reduced.
4. Additional environmental test and reliability data must be obtained.

This developent effort has, in a relatively short time, advanced fluid timers to the point where taey can begin to compete with conventional ordnance timers. With further development it is anticipated that fluid timers will be used in ordnance appilcations.


333-11

Figure 1. Sandia Fluid Timer

Figure 2. Sandia Timer, Block Diagram


Figure 3. Oscillator, Schematic Diagram


Figure 4. Mechanical Oscillator


Figure 5. Fluid Flip-Flop Element


Figure 6. Binary Counter Fluid Circuit


Figure 7. Six-Stage Binary Counter (500 pps Input Frequency)


Figure B. Variable Decode Time Channel, Schematic Diagram


Figure 9. Selector Switches


Figure 10. Fixed Decode, Block Diagram


Figure 1l. Binary-to-Decade Converter, Block Diagram


Figure 12. Pressure Switch


Figure 13. Binary Counter Stack


Figure 14. Master Manifold Plates

\title{
by
}

Tom Morton
Research Engineer - Fluid State Technology Aviation Electric Limited, Montreal, Quebec, Canada.

\section*{1. INTRODUCTION}

For the past two years, McGill University (Montreal, Canada) has been firing upper atmosphere probes (1) from a modified 16-inch naval gun installed on the island of Barbados in the British West Indies. As a part of this High Altitude Research Program (HARP), the air currents at altitudes of up to 400,000 feet are studied by releasing a stream of reactive liquid and observing the distortion of the resultant trail over a period of 15-30 minutes. Both continuous and interrupted trails are used - the interrupted trail having the advantages of vertical as well as horizontal wind shear determination plus an extension of the altitude range over which the observations can be made with any one shot.

The very high accelerations experienced during gun launch, and the reactive characteristics of the liquid used to produce the high altitude trail create special problems for the valve designer and offer special opportunities for the application of fluid state devices. This paper describes the design and performance of an intermittent stream release valve using tri-methyl aluminum (TMA) as its working fluid and operating over a pressure range of 200-50 psig to deliver 35 puffs per minute at approximately 100 cc per puff.

A sketch of the vehicle used to display the TMA trail is shown in Figure 1.* This vehicle, which has been designated by McGill University as the MARTLET II, carries a \(10-1 \mathrm{~b}\) charge of reactive liquid.

Tracking is facilitated if it is possible to focus on a single puff rather than one part of a continuous trail and also allows the detection and measurement of vertical air currents in addition to the

\footnotetext{
*Figures appear on pages 299 through 307.
}

\section*{1. (continued)}
horizontal variety. Finally, since the vehicle payload is limited, interrupting the trail would have the effect of lengthening it (i.e. the same as an increase in payload). This cannot be accomplished by decreasing the rate of continuous flow since there is a rate below which the trail is no longer visible.

The ruggedness and simplicity of fluid amplifiers made them particularly attractive for use in this stream release valve. The fact that the vehicle was to be fired from a gun at an initial acceleration of \(10,000 \mathrm{~g}\) made the design of an electromechanical interrupter somewhat difficult, especially since the vehicle was very simple and carried no on-board power source.

\section*{2. DESIGN DESCRIPTION}

The final valve design incorporates a bistable fluid amplifier which uses the TMA as both a power and a control source. The fluid element alternately switches the TMA fow into a storage volume and then to atmosphere, while the fluid in the storage volume is being dumped overboard. The valve is completely self-contained, requiring no power supply, exterior control, or even a start signal. It is screwed into the rear of the rehicle and automatically begins releasing an intermittent stream when the high pressure TMA is admitted. A spool valve controlled by a pure fluid element operates to ensure complete cut-off of the TMA flow and also serves to keep the flame from the burning TMA from working back into the valve components during the cut-off portion of the cycle. Because of the requirement for complete cut-off, use of a vented fluid element was not practical.

The complete valve (shown in Figure 2) is of cylindrical: ape, 4 inches in diameter by 3 inches long and weighs 3 lb . Th outside diameter is threaded to facilitate fitting into the rear of the vehicle. The disassembled unit is illustrated in Figure 3, the main components being the valve block, fluid element plate, the end plate, the piston, the valve spool and the spring. All fluid passages are inside the valve body. The valve parts are made of aluminum with the body being anodized to prevent sticking of the piston and spool. The "O" ring seals are made of a special material "Viton A" which does not react with the TMA liquid. The piston has a di-

\section*{2. (continued)}
ameter of 2.5 inches and a stroke of 0.84 inches, giving a displacement of 4.1 cubic inches. The force necessary to compress the spring is 65 lb , requiring a pressure of 15.5 psi below the piston.

The fluid element is milled into the element plate, the power and control nozzles being 0.030 in . wide by 0.080 in . deep. Output and control passages are 0.187 in . wide and lead through the connecting passages to different units in the valve block. The fluid element has an offset of 0.015 in . aild a boundary wall angle of \(12^{\circ}\).

\section*{3. VALVE OPERATION}

A schematic diagram of the fluid circuit is shown in Figure 4. The main components are a fluid element, a storage volume, and a spool valve. Some 50 seconds after launch, an interval which is deferivined by an explosive time delay valve, the high pressure TMA is allowed to flow into the power jet of the fluid element. If flow initially starts in leg \(A\), pressure is applied to close the spool valve, and the flow is fed into the storage volume. The output leg recovery pressure lifts the piston against the force of the spring above it and when the piston reaches the top of its travel, a small port is uncovered allowing the liquid to flow along Channel \(C\) to the left-hand control jet of the fluid element. The element then switches to output \(B\) and pressure in this leg opens the spool valve, allowing the spring to force the fluid in the storage volume out through the outlet vent. The volume at the top of the piston is also filled, but as it is relatively small, the total flow from the power jet cannot be accommodated. The stability of the fluid element is, how ver, sufficient to keep the main flow attached to outlet \(B\), while the extra flow is spilled at low pressure into output \(A\), where it passes into the storage volume and out into the outlet vent with the rest of the fluid.

When the spring has forced the piston to the bottom of its travel, a port is opened in the small volume above the piston. This allows the liquid to flow along passage \(D\) to the fluid element which is switched back to output A. This causes the pressure in output leg A to rise which, along with a drop in the pressure in leg \(B\), moves the sponl valve to the closed position, stopping the output. This
completes the cycle and the storage volume commences to fill again.

\section*{4. DEVELOPMENT HIS TORY}

Development testing of the element was conducted on a high pressure fuel test stand (see Figure 5) using JP-4 test fluid, the density and viscosity of which approximate those of TMA.

The valve 'input supply pressure variation was theoretically determined on the basis of both adiabatic and isothermal expansion of the pressurizing nitrogen gas in accordance with the equations:

Isothermal expansion
\[
P V=P_{i} V_{i} \cdots-\cdots-\cdots(1)
\]

Adiabatic expansion
\[
\left.P V^{8}=P_{i} V_{i}^{8}------12\right)
\]
where \(P=\) nitrogen pressure
\[
V=\text { total nitrogen volume }
\]
\[
P_{i}=\text { initial nitrogen pressure (200 psia) }
\]
\[
\left.V_{i}=\text { initial nitrogen volume (144 in }{ }^{3}\right)
\]
\[
X=\text { ratio of specific heats. }
\]

The resulting nitrogen pressure variation as a function of percentage of TMA expelled is illustrated in Figure 6.

Assuming that the isothermal expansion more closely approximates the actual nitrogen gas expansion process, the relationship between the TMA volume expelled and time may be determined as follows:

Equation for isothermal expansion of the nitrogen
\[
\begin{equation*}
P\left(V_{i}+V\right)=P_{i} V_{i} \tag{3}
\end{equation*}
\]

Velocity of TMA expelled through the valve orifice ( \(0.030^{\prime \prime} \times 0.080^{\prime \prime}\) fluid amplifier power jet nozzle) assuming a discharge coefficient of 1.0 and zero ambient pressure at the altitude of TMA release:
\[
\begin{equation*}
V_{e} I_{1}=\sqrt{\frac{2 g P}{\rho}} \tag{4}
\end{equation*}
\]
where Vel = TMA velocity
\(g=\) acceleration due to gravity
\(\rho=\) TMA density
but \(\quad d V=V \wedge d i\)
where \(A=\) orifice area

Substituting equations (3) and (4) into equation (5)
\[
d V=\sqrt{\frac{2 g P_{i} V_{i}}{P\left(V_{i}+V\right)}} \quad A d t
\]

Therefore
\[
\begin{equation*}
\sqrt{\text { erefore }} \sqrt{V i+V} V^{\frac{2 g}{\rho} P_{i} V} A d t \tag{6}
\end{equation*}
\]

Int egrating equation (6) results in
\[
{ }_{3}^{2}\left(V_{i}+V\right)^{\frac{3}{2}}=\sqrt{\frac{2 g}{\rho} P_{i} V_{i}} A t+C
\]
where \(C=\) constant of integration
\[
\text { When } t=0 ; V=0
\]

Therctore \(\quad c=\frac{2}{3}\left(V_{i}\right)^{3 / 2}\)
Hence \(t=\frac{\frac{2}{3}\left(V_{i}+V\right)^{3 / 2}-\frac{2}{3}\left(V_{i}\right)^{3 / 2}}{A \sqrt{\frac{2 g P_{i} V_{i}}{\rho}}} \cdots-\) (7)
The resultant variation of TMA released and nitrogen pressure as a function of time is illustrated in Figure 7.

Accordingly, experimental fluid ampiifier elements were tested on an incompressible fluid test stand as shown schematically in Figure 5 with the power jet supply pressure variable from 200 psig to 35 psig .

Preliminary tests were conducted to determine the stability and output characteristics of a bistable fluid arnplifier design when operating with the incompressible test fluid (JP-4 fuel) over the anticipated supply pressure range. The utilization of vents on the output legs of the amplifier in order to attain impedance matching through the accommodation of excess mass flow under high load conditions, is precluded on the basis of the requirement for complete cut-off of valve outlet fluid flow during the "OFF" portion of the cycle.

Early experimental fluid amplifier models which were milled from \(0.080^{\prime \prime}\) thick plastic and clamped between heavy cover plates, used the conventional jet wall attachment method to attain stability coupled with a pointed splitter (uncusped). Experimental results as illustrated in Figure 8 indicated that the amplifier stability progressively decreases with increasing power jet pressure until unstable oscillatory operation resulted at supply pressures of approximately 220 psi. The data quoted was determined with low amplifier output impedance loads. Back pressure switching occurred at supply pressures as low as 100 psi as the amplifier output load was progressively inc:cased towards infınite impedance.

It is likely that the power jet wall reattachment point moves progressively further downstream with increasing amplifier supply pressure (i.e. increasing power jet momentum), thereby
progressively reducing the amplifier stability margin.
Fluid amplifier water tunnel flow visualization studies, based on the reflection of monochromatic light from aluminum particles suspended in the water, demonstrated that the amplifier stability could be maintained over a wide range of operating pressure through the inducing of a vortex at the jet interaction cavity. The introduction of a vortexgenerating cusp on the splitter resulted in a much higher stability level over the full operating range but a higher switching pressure was required as indicated in Figure 10. Progressive modification to the cusp configuration resulted in an amplifier design which demonstrates stability over the full range of supply pressures with the active outlet completely blocked and both control jets closed.

The infinite impedance load pressure recovery was higher than \(50 \%\) over the full operating range.

Tests indicated that increasing the load on the active outlet leg o.dy had a second-order effect on the flow rate through the amplifier power nozzle. As the active leg was loaded, the back pressure built up, spilling the excess mass flow out through the unloaded inactive leg, while maintaining the power jet attached to the active outlet side. The simultaneous loading of both outlet legs resulted in a substantial increase in the amplifier interaction region static pressure and a corresponding decrease in the amplifier power jet flow rate.

The valve circuit is designed so that the amplifier active leg impedance is high (i.e. when the power jet is attached to leg B) only when the inactive leg impedance is low. The variation of valve flow as dependent upon the amplifier load conditions is thereby avoided.

The performance characteristics of the resultant bistable amplifier design were determined using the test circuit, as illustrated in Figure 9. The performance characteristics over the full operating range are given in Figure 10, the results being determined with both control jet valves closed and anticipated valve circuit loading conditions simulated.

As evident from the graph, the necessary condition of the ampli..
fier switching pressure being between the active and inactive leg pressure has been attained. Additionally, the close correlation between the inactive leg pressure and the inactive side control jet pressure indicates the absence of any entrainment bubble on this side of the amplifier.

The complete experimental valves were tested extensively on the incompressible fluid test stand facility (Figure 5). The valves operated satisfactorily and without adjustment from 35 to 250 psi input pressure, typical valve characteristic test results being given below:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Supply \\
Pressure \\
\(+\mathrm{psig}\)
\end{tabular} & \begin{tabular}{l}
Cycles per \\
Minute
\end{tabular} & Cycle 'On' Duration seconds & Volume per puff cu. in. & Flow Rate cu. in/sec. \\
\hline 200 & 48 & 1.25 & 6.92 & 5.54 \\
\hline 175 & 45 & 1. 33 & 6.92 & 5.19 \\
\hline 150 & 42 & 1.43 & 6.92 & 4.85 \\
\hline 125 & 39 & 1.54 & 6.92 & 4.50 \\
\hline 100 & 36 & 1.67 & 6.65 & 3.92 \\
\hline 75 & 34 & 1.76 & 6. 42 & 3.37 \\
\hline 50 & 27 & 2.22 & 6.08 & 2.74 \\
\hline
\end{tabular}

The TMA volume ejected per cycle and the 'ON' cycle duration remains relatively constant as may be expected considering that the valve circuit is based on a constant volume accumulator. The variation of cycle frequency and the corresponding average flow rate result directly from the decrease in valve supply pressure during the vehicle flight.

\section*{4. CONCLUSIONS}

An intermittent stream valve incorporating a bistable fluid amplifier has been designed for modulating a stream of liquid ejected from a gun-launched high-altitude vehicle. The adaptation of fluid amplifier techniques results in an intermittent valve which is lightweight, simple and extremely rugged. The valve is completely self-contained in that only the supply of the prossurized stream fluid is required to operate the valve. The valve operates over a wide range of input pressures and has a wide environmental tolerance band.
(4) (continued)

The principle of the valve circuit appears adaptable to other applications where the modulation of ancompressible fluid stream is required and where the inherent size, cost and environmental tolerance features of fluid devices may be of advantage.

\section*{REFERENCES}
(1) Development of Gun-Launched Vertical Probes for Upper Atmosphere Studies - Dr. G.V. Bull - CASI Journal - October 1964.


FIGURE 1
GUN-LAUNCHED HIGH-ALTITUDE BALLISTIC
VEHICLE


FIGURE 2
IHT ERMITTENT STRFMM VALVE
EXTERML CONFIGURATION


FIGURE 3
DISASSEMBLED VIEN OF INT ERMITTENT STREAM VALVE SHOWING FLUID AMFLIFIER ELEMENT


FIGURE 4
SCHDEATIC DTAGRAY INTEPATTTENT



1


 \#........................ ש, ,
弱 ॐ,
(904) 34115s30d 5NIMJIMS B3IIINNN


BISTABLE FLUID AMPEIFIER TEST CIRCUIT


FIGURE 10
PERFORMANCE CHARACTERISTICS
CF VALVE FLUID AMPLIFIER

An Evaluation of a Fluid Amplifier, Face Mask Respirator

\author{
Henrik H. Straub*, M.S.E. and James Meyer**, M.D.
}

\section*{1. INTRODUCTION}

At the second fluid amplifier symposium last year, a paper (ref l) was presented by the Harry Diamond Laboratories describing four fluid-amplifier-controlled medical devices. One of these was a respirator (fig. 1) having no moving parts and slightly smaller than a cigarette pack. In spite of its lack of moving parts, it is able to perform complex respiratory functions. It can function, for example, as an assistor for those patients needing support or as a controller in the absence of spontaneous respiration.

Breathing gases are supplied to the respirator through the power nuzzle, forming a turbulent jet. Uneven gas entrainment from the two control nozzles, one connected to the face mask and the other open to atmosphere, causes the power jet to attach to one of the walls. When the jet is exhausting to the left receiver, the breathing gas is forced into the face mask and lungs of the patient. The face mask pressure increases, causing flow through the feedback line to the left control nozzle. At a predetermined mask pressure, the jet entrainment on the left side of the power jet is satisfied, and the jet is switched to the right wall. The power jet then exhausts to the atmosphere through the right receiver, allowing the patient to exhale. The pressure in the feedback line now decreases below atmosphere due to entrainment of gas from the face mask until the control pressures are sufficiently unbalanced to switch the jet from the right to left receiver. This switching occurs in the absence of an inspiratory attempt by the patient.

The respirator operates to assist respiration since the inspiratory effort of the patient reduces the pressure in the left receiver and feedback line below atmosphere, switching the power jet into the left receiver and thereby initiating inspiration. Consequently the operation of the respirator is synchronized with the breathing of the patient.

\section*{2. ENGINEERING TESTS}

On a lumped parameter system basis, the human breathing circuit can be represented as a series combination of resistance and capacitance. Tanks and airway resistances of various values have been used in the engincering laboratory to simulate the range of breathing impedances. Flow rates, cycling pressures, and irequencies are controlled in the respirator by adjusting setscrews in the passages to the control orifices and the input pressures to the power nozzle.

Figure 2 shows the flow requirements in liters per minute for various power nozzle pressures.
*Harry Diamond Laboratories, Nashington, D. C.
**Walter Reed Army Institute of Research, Washington, D. C.

\footnotetext{
† Figures appear on pages 312 through 315.
}

Figure 3 is a graph of the face mask cycling pressure for various input pressures for one position of adjustment of the controls. Respirator input pressures above 2.5 psig would normally not be used on patients.

Figure 4 summarizes the performance of the respirator when cycling into tanks of various compliances. The curves were unaltered when a \(20-\) \(\mathrm{cm} \mathrm{H}_{2} 0 / 8 / \mathrm{sec}\) ailway resistance was inserted between tank and respirator.

\section*{3. MEDICAL TESTS}

The respirator was tested on dogs weighing about 35 lb . All animals were anesthetized, intubated, and ventilated with oxygen from 1 to 5-1/2 hr. The respirator performed well both as a controller and assistor, the mode of operation depending on the condition of the animal. Average arterial blood gas samples registered \(\mathrm{p}_{2}\) of 392 mm Hg and \(\mathrm{pCO}_{2}\) of 30 mm Hg , indicating good pulmonary ventilation.

The respirator was also used for periods up to 15 min on various human patients. In all cases it performed well both as an assistor and controller.

\section*{4. UISCUSSION}

Several of these respirators have been distributed to hospitals interested in participating in the evaluation of this new resuscitative tool. Most of the evaluators reported that cycling functions were generally adequate; however, high expiratory resistance impeded the quick and comfortable expiration of the breathing gases. Tnis resistance creates a high mean pressure in the lungs and impedes the flow of blood returning to the heart.

To decrease the expiratory resistance and still retain all the other desirable functions of the fluid amplifier respirator, a special breathing valve was constructed, which consists of two meving parts and fits directly between respirator and race mask. During inspiration the valve is closed to atmosphere, and all breathing gases flow into the lungs of the patient. At the beginning of expiration, the val \(e\) opens and the patient quickly exhales until the pressure in the face mask becomes atmospheric. At that instant the valve closes due to the entrainment characteristic of the left receiver of the fluid amplifier. The pressure in the face mask decreases due to entrainment to some preset negative cycling pressure, and the fluid amplifier then cycles back into the load. A set screw in the right receiver of the fluid amplifier acts as an adjustable exhaust load, decreasing the entrainment in the left receiver during expiration and providing a sufficient expiratory pause. Comparative pressure traces of the respirator cycling into a 76 -liter tank without and with a breathing valve are shown on figures 5 and 6, respectively.

\section*{5. CONCLUSION}

A small fluid amplifier respirator has been evaluated. Results indicate that the respirator performs well on both animals and humans. High expiratory resistance, a characteristic of the device, is overcome with the addition of a specially designed breathing valve that can be eliminated, if necessary, for certain types of patients with respiration difficulties requiring higher-than-normal mean lung pressures. The e'imination of moving parts in the respirator itself makes this device extremely reliable, easy to operate, and inexpensive to manufacture.

\section*{KEFERENCE}
1. Woodward, K.; Mon, G.; Joyce, J.; Straub, H.; and Barila, T., "Four Fluid Amplifier Controlled Medical Devices," Proceedings of the Fluid Alwifification Symposium, May 1964, Volune IV.


Figure 1. Army emergency respirator.


Figure 2. Gas flow requirement


Finury 3. Respirator cyclirg pressured


Figure 4. Respirator performance oharacteristics


Figure 5. Pressure trace - without breathing valve


Figure 6. Pressure trace - with breathing valve

\section*{by}

\author{
Charles H. Yeyer - New York Central System \\ Richard S. Gluskin - Sperry Rand Corp. Univac Division
}

The modern diesel railroad locomotive is essentially a mobile electric generating plent utilizing diesel fuel to produce direct-current power, which in turn energizes traction motors to turn the drive axles. Control of direction, speed and torque accomplished by opening and closing electric relays and power contactors to apply current of the proper direction and magnitude to the traction motors. One of the most prevalent causes of delays. loss of power and reduced utilization of locomotives is control-circuit failures ranging from dirty or burned contacts to shock and vibration damage.

In the interest of improved efficiency through higher utilization time of equipment, and therefore improved customer service as well as increased operating profit, the New York Central System has initiated a number of development programs leading toward both modification of present equipment and inclusion of these modifications in specifications for future purchases. Among these programs, the most radical departure from convention is the application of fluid logic to the traction motor control circuits in locomotives. The first phase of this prugram was initiated late in 1964. In March of 1965. a contract was awarded to Sperry Rand's Univac Division, and by May 15. 1965 the first fluid logic equipped locomotive was operating in normal road-freight service. The objective of this paper is to briefly describe normal electrical control of this locomotive and to review the development steps leading to a : accessful installation of fluid logic control.

The locomotive selected for this program was an Electro-Motive Diesel Type GP-9, rated at 1750 horsepower, weighing approximately \(245,000 \mathrm{lbs}\). . and equipped for freight service up to speeds of 65 MPH . This type of unit was chosen because the Central has a great number of GP-9 locowotives which are not yet approaching retirement, and thus will be considered for similar modification.

The electrical system consists essentially of a 600 -volt D.C. generator coupled direcily to the \(\mathrm{V}-16\) diesel engine \(t 0\) provide current to four axlemounted traction motors. The motors are series wound with contactors in the field circuat to either reverse the direction of current flow or weaken the fleld by shunting part of the current around the field coils, or both. Further control is sccomplished by selectively connecting two motors in either series or parallel across the generator voltage. The normal sequence of motor connections. known as "Transition", consists of four steps: Series-Parallel. Serics-Parallel Shunt. Parallel, and Parallel Shunt. These terms indicate that in the first step, which is the starting connection, two motors are series connected to operate in parallel with two other series-connected motors. In the second step a shunt is placed across the field of each motor to reduce the field strength. In the third step the shunts are removed and all four motors are connected in parallel. Finally, in the fourth step with the locomotive up to speed and power requirement reduced, the shunts are again placed across the motor fields. These steps are shown schematically in Figure \(1^{*}\). The closing of either ' \(P\) " or " \(S^{\prime \prime}\) contacts connects the motors for parallel or series operation, while closure of FS contacts shunts part of the motor current around the series field. Proper sequencing of these contactors is the function of the transition control.

Transition is eccomplished automatically by means of voltage and current sensing relays which operate at pre-set values. These relays activate solenoid valves which admit high pressure air to power cylınders to drive power contactors. Forward transition, already described, takes place during acceleration from start to high speed, while backward transition takes place automatically in the event of speed reduction due either to lower throttle setting or to increased load such as is encountered on on uphill grade.

\footnotetext{
*Figures appear on pages 327 through 333.
}

Speed ajjustment is accomplished by governor which sets diesel engine speed in eight steps from 275 rpm to 835 rpm in increments of 00 rpm , the governor being controlled by manually operated drum switch. The drum switch signals activate electric solenoids located in the governor where their positions are converted to the desired speed setting.

The greatest single problem in railroading is traction. When drive wheel begins to slip on the rail, tractive effort is lost. fuel is wasted, the wheels are overheated, and the rail suffers burned spots. One solution to this problem is application of sand to the rails. However, it is also necessary to atomatically recognize wheel slip immediately and reduce excitation until the slipping wheels have recovered their traction on the rail. This is accomplished by comparing the currents drawn by two motors and reducing excitation on the main generator when these currents suddenly become unequal.

While ihe foregoing is intended to be very brief, it would be incomplete without mention of the "Train Line", the 27 -conductor circuit running from end to end of every locomotive. When two or more locomotive units are operated In "Consist", their control circuits are all connected iogether through 27 conductor jumper cables between units so that all are controlled by the operator from the lead unit. Thus, all diesel engines will respond to throttle position by operating at the same speed, but each unit will make transition and will control temperature and wheel slip independently. All locomotives owned by the railroad, regardless of age or manufacture , must operate in Consist with any other unit.

Past experience has shown that by far the greatest number of equipment failures resulting in either delays or loss of equipment utilization or both are electrical in origin. Typical problems begin with dirty or broken control circuit contacts, or other relay failures. If the fallure occurs on the road and the crew attempts to make repairs, the problem may be made more serious. If road repairs are not attempted, delay in service is the minimum penalty to the railroad.

In the event that the problem does not cause a road failure, but instead is discovered during oeriodic inspection, repairs may often be made without excessive cost or delay. In this cese, however, trouble shooting and repairing one circuit may create previously non-existent problem in another circuit through accidental damage in the shop. These secondary problems may not show
up until the locomotive is ready to leave the shop. in which case it must be re-scheduled for the additional tests and repairs.

Because of these problems, the New York Central System has actively sought a means of replacing present electrical equipment with a control system more suitable to locomotives. It was recognized that functions such as controlling direction of heavy current flow would still require contacts. However, the control of power contactors could be accomplished in several ways, the most promising of which appeared to be fluid logic.

The most appealing attribute of fluidic control was the complete lack of moving parts, and thus freedom from the potential hazards of the shock and vibration on a locomotive. Thus, devices might be expected to better survive the environment. Another significant benefit would result from use of a circuit in which neither crew nor careless service personnel could cause abnormal operation (such as by closing relays with aflag stick) or induce new problems in the course of trouble shooting.

Expected low cost for Fluidic controls added the appeal that the above objectives could be accomplished at a cost saving and with the further advantage that complete replacement of controls would be cononically justified if maintenance did become necessary.

The benefits of Fluidics in loconotive control were apiarent almost from the start, but an early decision was needed on the scope of the first conversion which would provide adequate feasibility data in as short a time as possible. Obviously full fluid control would provide complete operating experience, but it also presented major interface problems such as a temperature to air flow transducer, wheel slip to gentrator excitation, etc. Therefore, in the interest of rapid accumulation of operating experience. it was decided to modify only the transition control as the first phase of the program. This permitted taking a rumber of relays out of service, using fluids for a large segment of control, and avoiding the interface probloms which irainline circuits would introduce.

Figure : is a parifal schematic diagram of NYC Locomotive \(\$ 5950\) showing all circuits involved in transition control. but without many of the other functions such as temperature, speed, battery charging, lighting and signalling. Figure 3 is further simplification in that only the transition logic circuits are shown.

Step-by-step operation of the transition control circuit depends upon the main generator voltage and current which are sensed by three relays-FSF. FTR and BTR. These are the Field Shunting Relay, Forward Transition Relay, and Backward Transition Relay, respectively. FSR and FTR respond to generator voltage to control all steps of forward transition and backward transition from the shunting positions (i.e. 4 to 3 and 2 to 1 ). BTR responds to generator current to control backward transition from the parallel position. Normal operation starts only after the reversing contiol has been moved to either "Forward" or "Reverse". This energizes the transi:ion control circuits shown in Figure \(\mathrm{J}^{2}\), closes Series Contactors \(\mathrm{S}_{13}\) and \(\mathrm{S}_{24}\), and allows the locomotive to start in its low speed/high torque connection. With the throttle in the highest position the locomotive will accelerate and the generator voltage will increase with the speed. At approximately 965 volts the FSR picks up and closes the field shunting contactor FS. This causes the traction motors to draw more current, reducing the generator voltage and continuin, acceleration of the locomotive. Again the voltage increases, and at 965 volts the FTR picks up, this time dropping out the FS contactor and the Series Contactors, and connecting all four motors in parallel through contactors \(P_{1}, P_{2}, P_{3}\), and \(P_{4}\). The fourth step is also initiated by FSR, and the ;ocomotive reaches top speed with the motors operating in parallel-shunt.

Backward transition takes place either under normal speed reduction or as a result of slowing due to hills, and is initiated by reduction of voltage on the coil of FSR. If load cuntinues to increase. BTR will respond to the increasing current, and transition to the next step down takes place.

Standard controls include additional features such as time delays to prevent hunting, but these were not changed on \(\$ 5950\).

After reduction of the circuits under study to those of figure 3. the logic equations of Figure 4 were derived as a starting point for the fluidic circuit design.

In the interest of having at least two different fluid transition controls for performance analysis, it was decided that one system would be designed and fabricated by Central and another system would be designed and fabricated by UNIVAC. The two systems were to be completely interchangeable with regard to fluid inputs and fluid outputs. Thus, comparative tests would require merely removal of one control module and replacement by lle other. The interface devices, consisting of solenoid valves, bellows-type pressure switches
and diaphragm-activated air valves, were to be installed in enclosures separate from the fluid logic systems, and thus would become a viriual part of the locomotive rather than part of the fluid system under study.

A major factor in the decision to use standard industrial hardware as interface devices was the desire to begin acquiring operating data as soon as possible. An optimum design could have taken many months of development. where the above approach provided working system within about ten weeks after purchase of the first part. It was recognized that these devices added potential trouble to the system, but this hazard was considered negligible when charged against the benefits of acquiring early information on actual operation of fluid logi: control system.

Another factor in the interface problem was the "Train Line" requirement that would permit 85950 to operate in "Consist" with any other locomotive on the system as either lead unit or trailing unit. As explained earlier, all communication between units is electrical and therefore the experimental unit had to operate with electrical input and electrical output information. Relaxation of this requirement will be discussed later.

From this point. UNIVAC and Central worked independently to produce s: stems meeting the performance requirements and operating as specified by the equations of Figure 4. The resulting designs are shown schematically in Figures 5 and 6. The transition control unit, built at the UNIVAC facility, uses NOR logic exclusively, and is made up of 24 NOR gates. These elements. developed by UNIVAC personnel, have been used extensively in many pure fluid applications, including the UNIVAC \({ }^{\bullet}\) Fluid Computer. The devices have a fan-in and fan-out of four. They are provided with four input terminals-a signal into any one of the four inputs will switch the device "OFF". The output is divided and channeled into four output terminals so that four identical NOR elements can be controlled by one. The logic for the UNIVAC control is shown in Figure 6. Both the UNIVAC transition unit and the NOR element are shown in figure 7.

The two transistion controls mount interchangeably on a panel inside the existing control cabinet. Available space was in excess of one cubic foot. but both units were considerably smaller than this. The small size of the three major fluid assemblies - input interface, control, and output interface permitted location of the complete transition control system including pressure
( Registered Trademark of the Sperry Rand Corporation.
regulators and air filter in the control cabinet in a manner that did not block access to other equipment, and left the outward appearance of the locomotive unchanged.

Installation required merely disconnecting electrical contacts and coils being taken out of service, taping unused wire terminations, and removal of interlock contacts and solenoid valves from power contactors to provide mounting space for diaphragm valves. Air interlocking was provided by miniature plunger valves to give pneumatic indications of contactor position, but this is beiny replaced by grooves in the piston rods to provide the same function with no additional moving parts. All connections were made with color-coded vinyl tubing. The two controls were provided with identical connections and mountings so that change-over would consume minimum amount of time.

After the installation was completed and all circuits checked, the air was turned on and the locomotive was run through simulated trinsition by inserting appropriate signals into the control circuit. Satisfactory operation was confirmed, and 5950 was dispatched to yard service in Cleveland, Ohio.

After one week of local service by itself. the locomotive was put into "Consist" with two other units and released to normal road freight service. This duty continued for nearly a month without further attention until the next periodic inspection date arrived. As of this writing, there is no evidence of dirt build-up in the system and no indicatior that severe service will reveal new difficulties in the application.

The early performance of the Fluidic transition control was completely successful and proved that fluid logic was indeed well sulted to the sclution of circuit problems in the environment of railioad locomotive. However, as indicated earlier, the system installed in locomotive \(\mathbf{5 9 5 0}\) utilized standard industrial valves and switches to solve interface problems as an expedient to gaining experience. The next major phase of the project was to devise ameans of converting electrical information to fluid flow and back again. In addition, many control problems capable of Fluidic solution were sifll to be investigated.

Thus, it was decided that a second locomotive would be converted to fluidic control. This unit is to be equipped with transition control identical with that on the first unit, but in addition is to serve as working laboratory for the development of additional Fluidic systems. Still to be considered
are control of engine remperature, engine speed, and axle speed, as well as transition interface devices. This phase of the ject is currently in progress, and will hopefully be ready for reporting in the near future.

Meanwhile, it may be of interest to mention other specific areas of rallroad operation in which fluid devices may play an important part in the future.

The first item is arother locomotive apilication. Upon completing the conversion of individual locomotives to fluid control. the next project will be to change the 27 -conductor Train Line fromelectrical to fluid power. With
 interconnect multiple units. Previous attempts at pneumatic intercomection have failed. They were based on pressure level coding of information and suffered problems of variable restrictions and time lag. The speed and stability of fluid logic systems pronise to provide the ideal medium for processing pulse-coded information between locomotive units and thus eliminate the troublesome jumper cables.

Another potential application of inmediate interest, and one wich actually can provide a much greater saving to railroads than can locomotive conversion, is the wayside interlocking plant. At every turnout or crossover involving the maln line of the railioad, a complex electrical circuit is installed in a permanent building to perform such functions as: informing the Central Traffic Control operator of the location of trains, reporting on the setting of tho track switch and signals, prevention of switch operation until all.trains are clear, and checking routes to prevent trains fron proceeding until safety from collision is assured. The basic component of this system is the railroad safety relay-a heavy-duty glass-enclosed assembly develuped over the years to render the most reliable service possible In spite of severe ambient conditions ranging from heat and humidity to extreme cold, lightning, and dust storms. Safety relays cost from \(\$ 75\) to several hundred dollars each, and may be as large as a shoe box. They process information received from electric contact closures or resistance changes on the track. energize electric motors to move the track switches, light signal lamps, and transmit verification of these operations to Central Traffic Control.

In the interest of simplifying the design and construcion of interlocking plants. New York Central prepared a complete specification for a iypical
interlocking plant that would meet the requirements of better than \(90 \%\) of existing and planned junctions. The input and output functions were specified along with logic to be performed, reliability criteria to be met, and environmental conditions to be considered as minimums. However, the medium of this system was not specified. Thus, both electro-mechanical relays and solid-state electronics have been considered for the system. Now it is possible that Fluidics can out-perform either relays or electrorics in this application. The power supply could be a small air compressor instead of a battery charger: the power storege divice, an air reservoir instead of a batiery; the track switch operator, an air cylinder instead of an electric motor. Some elecirical systems would remain. such as signal lamps and communicatiun with Centrdl Traffic Control. A fluid operated system would be capable of fulfilling the performance specifications, and perhaps at significantly less expense. Certainly the interlocking plant should be considered to be an excellent application to utilize the advantages of fluidics.

Other potential railroad applications are less impressive but would perhaps be worthy of attention because they offer the opportunity of immediate field testing. These include:

Tank Car Filling
Fueling of Locomotives
Track Level Gauging
Freight Car Weighing
Track Occupancy Indication
In review, the decision \(t o\) investigate fluid logic controls for locomotives was based upon the following potential advantages:
1. Insensitivity to environmental conditions of shock. vibration. dirt and electrical transients.
2. Anticipated reduced maintenance time via complete replacement due to low cost.
3. Smail space requirements.
4. Promise of greater reliability.

All of these lead ultimately to both higher utilization time and lower investment. Thus, with assistance from the Sperry Rand Corporation's UNIVAC Division, the New York Centra! System has accepted initial successes in fluid controls as a challenge to carry this development further with the expectation that the ultimate objective-increased profitability-will be realized.


Figure 1. Simplified Main Power Circuit Showing Motors, Fields, and Power Contactors


\[
\begin{aligned}
& P_{1}=\overline{S_{13}} \cdot(T R+B T R) \\
& P_{3}=\overline{S_{13}} \cdot(T R+B T R) \\
& P_{2}=\overline{S_{13}} \cdot \overline{S_{24}} \cdot\left(P_{1}+P_{2}\right) \\
& P_{4}=\overline{S_{13}} \cdot \overline{S_{24}} \cdot\left(P_{1}+P_{2}\right) \\
& S_{13}=\overline{P_{1}} \cdot(F S+\overline{T R}) \\
& S_{24}=\overline{P_{1}} \cdot \overline{P_{2}} \\
& T R=\overline{B T R} \cdot[(F S \cdot F T R)+T R] \\
& S F=\overline{W S_{24}} \cdot \overline{W S_{13}} \cdot\left[\left(S_{24} \cdot S_{13} \cdot \overline{T R}\right)+\left(P_{4} \cdot T R\right)\right] \cdot \overline{G R} \cdot(\overline{F S}+F S R) \\
& A W S=\overline{S F}\left[\left(S_{24} \cdot S_{13} \cdot \overline{T R}\right)+\left(P_{4} \cdot T R\right)\right] \cdot \overline{G R} \cdot(\overline{F S}+F S R) \\
& B F=\overline{W S S} \cdot S F
\end{aligned}
\]

Figure 4. Transition Logic Equations for GP -9 Locomotive Based on Circuits of Figure 3

Figure 5. "OR/NOR" Fluid Schematic

Figure 6. UNIVAC Fluid "NOR" Gate Schematic


Figure 7. Transition Control Unit and UNIVAC "NOR" Gate

AREA EXPERIENCE IN MODERATE

\section*{VOLUME FABRICATION OF PURE FLUID DEVICES}
by
R. W. Van Tilburg
of

CORNING GLASS WORIS

\begin{abstract}
A discussion of the background of Fluid Amplifier development leads into the decisions on production organization. Specifications in their most phenomenal sense are covered and the logic behind the specifications is explained briefly.

Production experience is summarized with facts on selections of specific devices produced to specific specifications.

Conclusions indicate that Fluid Amplifiers have selection criteria similar to other control components. Other conclusions are drawn.
\end{abstract}

\section*{INTRODUCTION}

During the period of time when the basic phenomena of pure fluid devices, as they are known today, were under investigation at the Diamond Ordnance Fuze Laboratories, there was considerable concern that the emergence of this new technology from a laboratory curiosity to an established product might be substantially delayed by the lack of effective manufacturing methods. Because this was truly a new technology, vastly different from any then in existence, there were no comparable products in volume production anywhere in the world, and as a result of this fact, there was no sound basif for predicting costs, selections, required capital equipment, or actually whether or not they could be made at all at high selection to reasonable specifications.

The potential value of these "no moving parts" control and sensing devices rapidly became appazent, to the degree that many organizations, both military and industrial, undertook the development of devices and circuits confident that fabrication techniques could be developed. In the relatively short period of three years, both of these objectives have been accomplished to the degree that functional pure fluid control circuits are being used effectively in a truly amazing variety of applications.

However, although many organizations do not publicize their work in this field, and their degree of accomplishment is not generally known, there are very few cases where either devices, or circuits, have been reproduced in quantity, and no information has been made public regarding the fabrication of a relatively large number of devices of widely varying function and degree of
complexity.

Public acceptance of the concept of fluid logic has increased to the point that it is now not only possible, but necessary, to fabricate devices, and relatively simple circuits, in quantities of thousands or more. This is not significant ir terms of numbers as such because these are still small numbers, but it is significant in terms of product when the quantities required become great enough to preclude the exclusive use of experienced engineering and technical personnel in the manufacturing area.

Although many different types of fluid amplifiers, and almost as many manufacturing techniques, have been developed in the ast two years, some concern is still evident. It is generally accepted that these devices can be made functional, in limited quantities, but it has yet to be proven that an increase in demand can result in the improved performance and the decreased costs which must be achieved before pure fluid circuits can approach their full potential.

As a result of demand for breadboard components, and a decision by the Corning Glass Works to offer fluid devices as a standard product line, the step from laboratory curiosity to product has been taken and the responsibility for manufacturing has been transferred at Corning from the technical staff, which was organized around fluid amplifiers, to plant personnel, the majority of whom, as recently as three months ago, were aware of the existence of this product only because of a sign on the door of the development laboratory.

\section*{SIGNIFICANT DECISIONS}

Of the multitude of basic decisions which were required before this step could be taken, there are several which are felt to be of more than passing significance to the ever increasing number of organizations exhibitiag interest in this technology.

Primary, of course, is the decision to manufacture. Although progressive organizations routinely invest Research \& Development funds in promising new products and processes, which either threaten to obsolete existing prodict lines or show sufficient potential as new items, the decision to divert profitable manufacturing effort and equipment to an, as yet, unproven market, is substantially more complex. Accepting the fact that the ability to fabricate the product to some high quality level has been established, the most important considerations are market size and unit cost. These two factors exhibit a complex interrelationship which could not adequately be developed withan the scope of this discussion.

Further evidence of the growing industrial confidence in the future of fluid devices and circuits can be seen in the decision by the Imperial Eastman Corporation to market fluid products in their established distribution network. This decision was also based on careful market and product analysis, and lends further credence to the fact that there is a future for these devices in the military and industrial world.

In a more practical veir, accefting the decisinn to manufacture, it became necessary to choose the correct course of action relative to the establishment
of a non-technical, line-level operation. It was reasoned that the immediate establishment of a manufacturing group using only plant people would result in the best long-term efficiency, since development people are not usually production oriented, and to divert their efforts in that direction would result in a substantial decrease in the rate of product development and improvement Among other things, this forces the development of specification concepts and quality detail frequently overlooked by development operations. Although the latter course of action has resulted in many short-tern problems, it is significant to the Fluid Amplifier Industry in that it has been proven that these devices and circuits can be made by non-technical people, who, being subjected to seniority regulations, change jobs with production level variations. Specifically, Fluid Amplifiers are out of the laboratory and into the factory, in the strictist sense of the word. They are in production at increasing rates and at high levels of quality.

\section*{PROCESS}

The process used by Corning to fabricate these devices is that developed for the manufacture of Fotoform glass and Fotoceram glass ceramics. This process was discussed in detail in a paper delivered at the 1963 DOFL Symposium, and these details need not be repeated at this time. Fabrication steps consist of artwork preparation, optical exposure, thermal development, chemical machining, and thermal diffusion bonding. Each one of these operations is critical, to some degree, in some cases more so on one type of product than on another, and in almost every case, substantially more so as the size is decreased.

\section*{PRODUCTS}

The primary reason that it was felt that this discussion might be of interest to the Fluid Amplifier industry as a whole lies in the fact that, although all of the designs are basically HDL configurations, a rather broad range of product function has been covered, and some data are available relating selections and performance to product type and size.

The product types to be discussed are as follows:
A) Digital
1) Bistable
a) Load sensitive (. \(010 \times .040\), and \(.020 \times .080\) power nozzle).
b) Load insensitive \((.010 \times .040\), and \(.020 \times .080\) power nozzle).
2) Monostable
a) AND Gate (. \(010 \times .040\) power nozzle).
b) NOR Gate (. \(010 \times .040\), and \(.020 \times .080\) power nozzle).
3) Bistable \& Monostable
a) Binary Counter (. \(010 \times .040\) power n'szzle \()\).
B) Proportional
1) Without Center Dump (. \(010 \times .025\), and \(.020 \times .050\) power nozzle).
2) With Center Dump (. \(010 \times .023\), and \(.020 \times .050\) power nozzle).

\section*{TEST PROCEDURES}

In every casc above, it was necessary to establish several basic performance criteria before manufacturing operations could be initiated. Specifically, it is a relatively simple matter to define each of these devices in general terms, for the sake of discussion. For example, a two-input NORgate could be defined as a device in which a relatively high energy fluid stream is diverted from one of two outputs the other by the presence of either or both of two relatively low energy fluid streams, and remains in the diverted position as long as, and only as long as, either or both of the relatively low energy fluid streams are present.

However, definition of a two-input NORgate for quality control purposes becomes substantially more complicated, in that such terms as relatively and diverted must be expressed numerically, and an effective set of test conditions under which these numbers apply must be establisned. This situation is further complicated when a number of different kinds of devices are included in the product line, and each must be functionally compatible with the others. In addition, these performance criteria must be carefully established in a manner which will not preclude, or even cornplicate, the development of new producte and their inclusion in the overall product line.

Taking the NORgate (. \(010^{\prime \prime} \times .040^{\prime \prime}\) Power Jet) as an example, the following are sone of the variables which must be defined:
A) Power Jet
1) Operating range - all devices muat function in a satisfactory
\[
\begin{aligned}
& \text { manner at any power jet pressure between } 1.5 \text { psig } \\
& \text { and } 15.0 \text { psig. } \\
& \text { 2) Size - the size of the power nozzle shall be such that, } \\
& \text { when subjected to a } 1.5 \text {-psig pressure differential, it } \\
& \text { will pass between. } 070 \text { SCEM and. } 072 \text { SCFM. Since } \\
& \text { power nozzle width is fixed by the negative, this is a } \\
& \text { direct control over depth and etch ratio. }
\end{aligned}
\]

There is a basic significance to the choice of 1 . 5 -psig powe: jet pressure for the above test. Digital devices of this design, which are fabricated in the previously defined manner, continue to function as digital devices at power jet pressure levels substantially in excess of the 15 . 0 -psig maximum indicated. The l. 5 -psig minimum is, however, approaching a functional limit. In the early stages of manufacturing, it was deemed necessary to establish the performance of each device fabricated, on a \(100 \%\) basis, using definitive, meaningful tests. It was decided tnat such tests for a digital device would establish the relationship between the controls and the outputs, at a given power jet pressure; 1.5 psig was chosen because it had previously been proven that marginal devices were more apt to malfunction at the lower power jet pressures. Specifically, if a digital device of a given design will switch sharply and completely at a power jet pressure of 1.5 psig, it will continue to do so at pressures up to, and substantially beyond, the 15.0 psig specified as maximum.
B) Control Jets
1) Switching range- the switching range of all devices was again defined in terms of pressure, as follows:
a) Level - with one control open to ambient, the power jet fixed at 1.5 psig, and the outputs loaded in a manner to be defined in a later section, the other control must cause the device to switch, and permit it to return while the pressure level in that control is in the range of \(.010 t_{0.05} \mathrm{psig}\).
b) Rate of ch nge - since momentum is a factor in the performance of these devices, and since the effects of volume must be fixed so that a fixed pressure relationship exists between the nozzle under test and the point of read-out, the length and diameter of all interconnections are specificd, and the maximum rate of change of control jet pressure has been established at 0.06 psig per second.
C) Outputs
1) Loading - in all devices, including those described as load insensitive, the output flow pressure relationship, and therefore the amount of pressure recovered in the output, is a function fthe amount of resistance encountered by the stream. For this test the outputs are loaded with the equivalent of the sum of the areas of three of its control nozzles.
2) Recovery - when loaded as defined above, the outputs must recover a minimum of 0.25 psig when activated, and a maximum \(u^{\circ} \neq .02\) psig and a minimum of -.02 psig when not activated.
3)

Hysteresis - within the limits of switch pressure previously specified, the hysteresis band must be at least 0.0125 psig \(\Delta P_{C}\) in the positive direction, and the maximum pressure change permitted in the output just prior to switching in either direction is 0.04 psig .

As indicated, these numbers and procedures apply specifically to the smaller of the two NORgates, but they are, in general, used for all digital devices, of both sizes. There are exceptions to this rule, of course, as with the ANDgate in which case the fixed control must be held at a pressure slightly in excess of the maximum acceptable switch pressure. Also, the binary counter operates at a 3-psig minimum power jet level and must receive a pulse input to function properly.

Proportional devices do not have a critical minimurn power jet pressare, and 5 psig was arbitrarily chosen as the fixed value fur that variable. Loading was fixed at an area equivalent to one control nozzle, and the test bias level was set at \(0 \%\) of the power jet pressure. Limits were set on minimum pressure gain, linearity, stability, and zero balance.

PERFORMANCE

Although actual selection figures are genersilly proprietary, some extremely
interesting relationships were developed during the course of this manufacturing effort, and it is felt that a difcussion using some actual numbers might be of more than passing interest to device designers.

Information presented here was obtained from routine test data taken on over 15, 000 devices, made from six basic designs, five of which were fabricated in the two power nozzle widths lieted previously.

The average of the selections of the eleven groups represented was \(50 \%\). Although this is not a number which is particularly impressive to manufacturing oriented people, it was felt to be reasonable for early stages of production. Of the total made, less than \(10 \%\) did not function in the intended manner, and the majority of those were from one design. As an example, the. \(010^{\prime \prime}\) power nozzle load sensitive flip-flop selection was \(50 \%\) for a first order quantity of 400 . Of the 800 devices made to select the 400 required, only \(2(0.25 \%)\) did not switch as intended, the remaining 398 being rejected about evenly for low recovery (low fan-out), high switch point (low fan-in) and low \(s\) witch point (too sensitive). All of these devices, except the two which were set, would function in a satisfactory manner in any multi-component circuit in which the fan-out was held to a maximum of two.

The case of the \(0.010^{\prime \prime}\) power nozzle NORgate will help to emphasize what is felt to be an extremely importart point. A low selection figure necessitated the fabrication of large numbers of devices to recover the required number
of acceptable units. At first glance it would seem that this design could never be used in a multi-component circuit and yet ten experimental binary to decimal converters were fabricated, and fusion sealed with 17 NORgates of this design in each unit, and all ten performed in a satisfactory manner. The reason for this can be seen in an analysis of the rejects which showed the average switch pressure of the upper control of this design to fall almost exactly on the upper limit. Because of this, half of the devices fabricated were rejected for high switch pressure (low fan-in). The majority of the remaining rejects exhibited a negative hysteresis (Oscillation at the \(s\) witch point) or tended to proportion within the specified switching range. Again, less than \(1 \%\) of these devices failed to perform the NOR function, and these were set to the OR side. With the exception of the set devices, the only rejects which would cause a multi-component circuit to malfunction were those which switched high, and then only if the device feeding that control were fanned out excessively.

The significance of this is that the circuit designer who knows the limitations of hie components and designs away from these limitatiors can expect a reasonably complex ( 25 component) circuit to function in an acceptable manner.

The effect of size was quite noticeable also, in that designs fabricated with power nozzles. \(020^{\prime \prime}\) wide averaged high selections, while the same designs reduced to one-half that size averaged \(50 \%\) lower selections. The fact that the larger devices performed more consistently is to be expected, since
some of the process variables are relatively independent of size, but the amount of the difference is somewhat surprising. This would seem to indicate that further reduction to. \(005^{\prime \prime}\) power nozzles would result in excessively low selections, and data available from small lot testing tend to verify this indication. There are, however, instances where designs have been reduced to. \(005^{\prime \prime}\) power nozzle size and have functioned well, so it would appear that ministurization to that degree will prove difficult but not impossible.

In addition to the effect just discussed, size can have a profound effect on devices of marginal design, as attested by the fact that the highest sedection rate was obtained with the \(.020^{\prime \prime}\) load insensitive flıp-flop, whereas the lowest selection rate was obtained with the exact same device optically reduced to one-half that size. Althoug' the large size device performed beyond expectations, the small devices did not perform the intended function at all. In every other case, all but about \(1 \%\) of the devices were useable (sore under restricted conditions), whereas, in this case, the rejects wer: either set to one side, or they were not bistable. This admittedly is only one use infive, but it does prove that a device which performs well at one size and set of conditions may actually be marginal to the degree that it cannot be directly miniaturized.

Buth proportional designe proved to be substantially less sensitive to the effects of size reduction than any of the digital designs. The non-center dump design for example, selected at a rate of \(45 \%\) for the \(.020^{\prime \prime}\) power
nozzle size, and \(42 \%\) for the \(010^{\prime \prime}\) power nozzle size. As in most of the other cases, the rejects were functional devices which performed the proportional function in an adequate manner, but which were not quite up to the capability of the design. Small lot experience indicated that a gain (pressure) of 7.0 was reasonable for this design, if a \(30 \%\) selection level were acceptable. Under the assumption that performance would improve as people and procedures were deve. ped, a pressure gain minimum limit was established at 7.0. Obviously, the difference between a device with a gain of 7.5 (acceptable) and one with a gain of 6.5 (rejectable) is simply one of degree, and in most cases the difference is negligible.

\section*{CONCLUSIONS}

In general, the transition from small quantities fabricated by skilled technical people to relatively large quantities manufactured by production oriented people with no prior fluid amplifier experience was succeseful. The average selection for all designs of \(50 \%\) in early stages of production is encouraging.

Selections of \(50 \%\) or less do not preclude the use of designs in multicomponent circuits, because, in almost every case, the percentage of devices that do not perform the intended function is less than \(1 \%\).

In every case, the \(v\).riation in performance was greater in the smaller sizes, a!though must less so in proportional designs.

It is possible for a design to perform well at one sire and not perform at all at one-half that size.

\section*{DOCUMENT CONTROL DATA-RRD}

\begin{tabular}{|c|c|c|}
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Harry Diamond Laboraturies, UNCLASSIFIED
Washington, D. C. 20438
\(2 \cdot\) nou
3. NEPOAT TITLE

PROCEEDINGS OF THE FLUID AMPLIPICATION SMMPOSIUM--Volume III, October 1965


\begin{tabular}{|c|c|c|}
\hline C. AEPONT DTE
October 1965 & 70. VOTAL NO. OD PaOEP & Thameonate \\
\hline -0. cominact on enantmo. & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-0. onomatomes mepont mumentas}} \\
\hline - mmeseer mo. Da-1 P010501a001 & & \\
\hline \begin{tabular}{l}
- AMCMS Code 5011.11.71200 \\
c. HDL Proj No. 31100
\end{tabular} & \multicolumn{2}{|l|}{} \\
\hline 19. AVAlLADILITY/LImitation motices & & \\
\hline
\end{tabular}
11. SUPD EmEntany note
12. SPowsomine militant act mitr

Hq. AMC
I8 AESTRACT
This document is the third of five volumes, covering the October 1965 symposium on fluid amplification at the Harry Dlamond Laboratories. These volumes include 55 papers, prepared by personnel from various Government agencies. universities, and indus,rial firms.```

