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2
The immense stream of data from mobile devices during recent years enables one to learn more about human 3
behavior and provide mobile phone users with personalized services. In this work, we identify clusters of 4
users who share similar mobility behavioral patterns. We analyze trajectories of semantic locations to find 5
users who have similar mobility “lifestyle,” even when they live in different areas. For this task, we propose a 6
new grouping scheme that is called Lifestyle-Based Clustering (LBC). We represent the mobility movement of 7
each user by a Markov model and calculate the Jensen–Shannon distances among pairs of users. The pairwise 8
distances are represented by a similarity matrix, which is used for the clustering. To validate the unsupervised 9
clustering task, we develop an entropy-based clustering measure, namely, an index that measures the homo- 10
geneity of mobility patterns within clusters of users. The analysis is validated on a real-world dataset that 11
contains location-movements of 50,000 cellular phone users that were analyzed over a two-month period. 12
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1 INTRODUCTION 22

Mobile phones play an integral part in our lives, as we carry them everywhere we go. A mobile 23
device can track its own location at every moment by various means, such as GPS, Wi-Fi, and 24
triangulation algorithms of cellular base stations. Location data are being sent and accumulated 25
by mobile-phone operators and third parties that gain access to the phone’s data (e.g., through 26
smart-phone applications). Many companies currently have the ability not only to capture the 27
locations of the user but also to give semantic meaning to those locations using online applications 28
of reverse geocoding, points of interest (POIs), and the user’s own personal data. The extraction 29
of semantic locations from raw geographic data is a complex process that has been well described 30
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in previous works [19, 29, 48]. Such semantic locations data provide a unique foundation for the31
learning of human mobility behavior and can serve as an important indication of users’ lifestyles32
and other personal behavioral features.33

This new capability of understanding human behavior can play an essential role in the future34
evolution of “smart cities” [5, 36, 42], in which new technologies use digital data to increase the35
wellbeing of citizens and reduce costs, pollution, and resource consumption. The more data these36
technologies have on the citizens’ lifestyles, the higher the personalization potential of various37
public services for the citizens. These services can be coupled with other personalized services and38
applications, such as telematic-based car insurance (determining a personalized insurance cost for39
each driver based on his or her lifestyle and behavior), smart homes, and user segmentation for40
marketing purposes [2]. These trends have gained huge popularity in recent years by many orga-41
nizations that support location-based services, which offer users various services that are related42
to their geographic locations [6]. With the identification of a user’s lifestyle, as proposed in this43
study, some of these personalized services can be modified to support also “pattern-based services”44
that are not necessarily related to the user’s geographic location but rather to his mobility patterns45
and lifestyle. For example, a similarity can be established between two people that live in different46
cities yet exhibit similar mobility behavior by starting and ending their workdays early 3 days47
per week, staying at home 2 days per week, and travelling out of town on weekends. Personal-48
ized delivery times and convenient time-windows to call these users are two obvious examples for49
life-style mobility applications that are not directly related to their geographic location.50

This work is focused on the task of clustering mobile phone users based on their mobility pattern51
behaviors, i.e., their movements between semantic locations during different time periods. By using52
semantic locations instead of geographical points, clusters of users can represent, for example,53
similar behaviors of users regardless of their physical locations. Therefore, one can identify people54
with the same lifestyle even when they live in different areas. Following Ye et al. [50], we assume55
“lifestyle similarity” among people when they have the following:56

(1) Do not necessarily share the same location at the same time;57
(2) Share a similar frequency of semantic (not necessarily geographic) locations;58
(3) Share similar mobility patterns when moving between these locations.59

Note that most of the previous works in this area considered users to be similar when they shareQ3
60

the same location at the same time and used the various methods, such as the popular Longest61
Common Subsequence (LSC) method for sequence alignment, PCA for dimensionality reduction62
and Mixture Models [52]. However, none of these methods address the second or third assumptions63
that are listed above. It was previously shown in [46] that user behavior exhibits strong periodic64
patterns and that given the current time and location of the user, one can predict his next location65
with a relatively high probability using various data mining methods. In this work, we identify66
those patterns for each user by profiling the individual’s behavior using a stochastic Markovian67
model. We show that applying a simple first-order Markov model to mobility patterns of users is68
computationally tractable yet enables us to capture main patterns among adjacent time intervals in69
the user’s trajectory. When using probabilistic profiling, the distance between two users is evalu-70
ated based on the distance between their corresponding Markovian transition probability matrices.71
For this purpose, we apply the Jensen–Shannon (JS) distance, which is well known in information72
theory and based on a symmetric implementation of the Kullback–Leibler divergence to a pair of73
multidimensional distributions. Using the JS distance results in a pair-wise distance matrix among74
the users on which we can apply known clustering algorithms. Three clustering methods, namely,75
K-medoids, hierarchical clustering and spectral clustering, are evaluated and compared to find the76
most suitable clustering method for the abovementioned “Lifestyle-Based Clustering” (LBC) task.77

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 45. Publication date: July 2019.



TKDD1304-45 ACMJATS Trim: 6.75 X 10 in July 31, 2019 17:3

Clustering Users by Their Mobility Behavioral Patterns 45:3

As shown later, in a series of experiments it is found that the agglomerative hierarchical clustering 78
is the most efficient clustering method for the considered task over several clustering metrics. 79

To compare the proposed LBC method to other approaches that use different metrics, and hence 80
do not fit the LBC task, we introduce a metric-independent index that measures how well the 81
clustering outcomes fit the second and third “Lifetime-Similarity” assumptions listed above. 82

The contribution of the article is fourfold. The first one is related to the addressed challenge, 83
namely, the introduced LBC that groups users with similar mobility patterns over semantic (and 84
not necessarily geographic) locations, hence, enabling to cluster people with the same lifestyle 85
even when they live in different areas and move in different times. The second contribution is the 86
proposed methodology that models the users’ mobility behavior by Markov chains (starting with 87
a simple Markov model and up to a non-homogeneous Variable-Order Bayesian Network (VOBN) 88
modeling that is shortly discussed later), apply the JS distance measure between each pair of users 89
to obtain a distance matrix, on which a clustering algorithm can be executed. The proposed method 90
introduces an entropy-based validation index that is metric independent. Moreover, the procedure 91
is shown to be computationally tractable with respect to other conventional methods. The third 92
contribution is the unique dataset that was studied—a real dataset that contains the mobility data 93
of tens-of-thousands of users over two months. This size of the dataset is unique with respect to 94
previous works that usually contain only tens or hundreds of users. The final contribution is the 95
considered “smart city” application that analyzes the distribution of different segments of users, 96
where each segment represents a different mobility behavior, over five different cities. Such an 97
analysis is shown to be correlated with socio-demographic scores and found to be valuable to 98
several “smart-city” services that are discussed in the article. 99

The rest of this article is organized as follows: Section 2 presents related work. Section 3 intro- 100
duces the LBS method for clustering users by their behavioral mobility patterns. Section 4 presents 101
the metrics for evaluating the LBS results. Section 5 analyzes and validates the obtained results. 102
Section 6 concludes the work and discusses future research directions. 103

2 RELATED WORK 104

In this work, the input to the user mobility behavior model is a trajectory of semantic locations of 105
the user in a specific time period. Thus, the user profile is represented as a sequence of locations, 106
which indicate a path that the user traveled in a specific time interval or, alternatively, very often. 107
Unlike the conventional location-based profiling, by which the user profile is based on the location 108
distribution, the proposed modeling approach considers the time period (the hour in the day) in 109
which the user is present at each location and the patterns of locations that she traverses when 110
moving from one location to another. 111

There are different ways to extract a trajectory from the user’s location history. Most proce- 112
dures are based on identifying places in which the user did or did not move, by spatiotemporal 113
constraints [1, 55], clustering the places into a small number of locations [3] and even finding the 114
semantic meaning of each place using third-party data [43, 49]. For example, Ashbrook et al. [3] 115
first addressed the task of finding significant places in the user’s movements. They suggested that 116
the most logical way to find points that the user might consider significant is to look at where 117
the user spends her time. It is unlikely that the user would consider somewhere where she never 118
stopped (e.g., the middle of the highway) worth consideration. They used this concept to find 119
what they call “places.” They defined a place as any logged coordinate with an interval of time of 120
length t = 10 seconds between it and the previous point. Next, they created clusters of places using 121
a variant of the k-means clustering algorithm. They called the resulting clusters “locations” and 122
used them instead of places. Yan et al. [49] used another layer on top of locations that annotates 123
the stopping episodes of a trajectory with information about suitable POIs from a different dataset 124
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that maps the area. Examples of POIs are restaurants, bars, shops, and movie theaters. Next, they125
designed a Hidden Markov Model (HMM)-based technique for inferring the semantic annotations126
of stops.127

For the task of finding similar trajectories of users, there are two main ways to treat a trajectory:128
one is “as it is,” i.e., as a deterministic sequence of locations, and the other is to build a stochastic129
model based on a set of observed trajectories. We will present both approaches and for each one,130
discuss several methods that were used in the literature.131

2.1 Deterministic Models and LCSS Similarity132

The most common approach for mining similar trajectories is to define a distance metric between133
pairs of sequences and apply a clustering algorithm to the precomputed distances.134

The longest common subsequence (LCSS) is a similarity measure that is frequently used in tasks135
of clustering trajectories. It is a special case of the Edit distance in which dissimilarity is measured136
only as the number of insertions and deletions (without substitution) that are required to make two137
sequences match. Since the LCSS is heavily used to measure distances among location trajectories,138
the next subsection reviews a few research works that use this similarity measure and its variants.139

Valchos et al. [45] utilized LCSS to find similar multidimensional trajectories (our initial focus140
is on a single-dimensional case): Let A and B be two trajectories with sizes n and m, respectively,141
where A = (a1,a2, . . . ,an ) and B = (b1,b2, . . . ,bm ). For trajectory A, let Head (A) be the sequence142
Head (A) = (a1,a2, . . . ,an−1).143

Definition 2.1. Given an integer δ and a real number 0 < ε < 1, LCSSδ,ε (A,B) can be obtained144
by a dynamic programming calculation that is defined as follows:145

⎧⎪⎪⎨
⎪⎪
⎩

0 i f A or B is empty
1 + LCSSδ,ε (Head (A),Head (B)), i f |an − bm | ≤ ε and |n −m | ≤ δ
max(LCSSδ,ε (A,Head (B)),LCSSδ,ε (Head (A),B)), otherwise

The constant δ controls the time stretching, i.e., how far in time one can go to match a given146
point from one trajectory to a point in another trajectory. This means that the significance of the147
time interval is important, but an exact match is not necessary for two trajectories to be similar.148
The constant ε is the matching threshold—implying that one allows matching of close-enough149
values and not only exact matches.150

Definition 2.2. The similarity function S1 between two trajectories A and B, given ε and δ , is151
defined as follows:152

S1(δ , ε,A,B) =
LCSSδ,ε (A,B)

min(n,m)
.

Given the similarity between two trajectories, which is represented as a real number from 0 to153
1, the distance between the trajectories is simply as follows:154

D1(δ , ε,A,B) = 1 − S1(δ , ε,A,B).

The LCSS has been used in other works for the task of finding similar users; variations of this155
calculation can be found in [26, 30, 31, 44, 47, 51, 54].156

A completely different approach is to use matrix factorization to lower the dimensionality of the157
data and learn the latent patterns in them [9, 32]. This approach was taken by [15], who addressed158
the problem of predicting a user’s future activity based on his previous activity. They represented159
the behavioral structure of the user’s trajectories by a set of characteristic vectors, which they160
have termed eigen behaviors. In their model, an individual’s behavior over a specific day can161
be approximated by a weighted sum of her primary eigen behaviors. By conducting a principle162
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component analysis (PCA) on their data with different numbers of components, they managed to 163
obtain promising results for predicting user location and classifying users into predefined classes. 164
By analyzing a person’s behavior in the first half of the day, they were able to predict the day’s 165
remaining behaviors with 79% accuracy. Using only 6 components, they obtained more than 90% 166
classification accuracy in the classification task they considered. When using 15 components, they 167
reached an accuracy of over 99%. While there are many techniques for creating predictive models 168
that can generate a sequence of future data after training, eigen-decomposition differentiates itself 169
in an important alternative: The main advantage of this model is its ability to capture patterns of 170
users in non-adjacent timestamps. For example, for many subjects, sleeping late in the morning 171
is coupled in the same eigen behavior with going out that evening, a pattern that is highlighted 172
when generating an individual’s characteristic behavior spaces. This advantage exists only when 173
a substantial amount of data on a specific user is available, and it will not work well when one 174
does not have enough sequences since the model will not learn the dependence between the 175
(divided) hours. Although the task in this work was not to predict the user’s locations at specific 176
hours (but rather to cluster similar users based on their mobility behavior), we did use PCA in 177
order to reduce the dimensionality of the data before clustering the users. Nonetheless, one must 178
consider that when conducting PCA on the entire dataset of trajectories, some of the benefits of 179
the model are lost since the variety of patterns among users makes it difficult to recognize specific 180
dependencies among non-adjacent hours. In addition, PCA is inhomogeneous over time. Thus, in 181
many cases, it cannot find similar users if their calendars do not match in time. 182

2.2 Stochastic Models 183

Stochastic models make a probabilistic assumption on the data [10] and usually define each tra- 184
jectory as a multidimensional point in space, where each dimension represents a time interval of 185
the trajectory. They often assume that each trajectory is produced from a mixture of Gaussian dis- 186
tributions cluster. To find those clusters, they often use an Expectation–Maximization algorithm. 187
Although such a model uses a probabilistic assumption, it assumes that the probabilities of the 188
instances (time intervals) are independent of one another and, thus, loses an important aspect of 189
the trajectory information. 190

A similar approach was taken by Ferrari et al. [18], which used Latent Dirichlet Allocation 191
(LDA) to cluster semantic trajectories of a user’s mobility. They used a method in which each 192
day is viewed as a mixture of “topics” (i.e., clusters) z, where topics are distributions over words 193
that represent a location at a specific time label (i.e., each topic can be represented by the list of 194
locations and time labels that are associated with these probability p (x |z). For each trajectory i , the 195
probability of a word x is given by p (x ) =

∑K
t=1 p (x |zk )p (zk ), where K is the number of topics and 196

p (x |zk ) and p (zk ) are assumed to follow multinomial distributions. LDA uses the EM algorithms 197
to learn the model parameters. A similar model was used by Farrahi and Gatica-Perez [17], which 198
applied an LDA-based model to discover sequences of location that dominantly occur in a user’s 199
mobility patterns. LDA finds more than one topic for each user; hence, it does not fit exactly the 200
considered task of associating each user to a single cluster. In comparison, this work implements 201
a mixture model that assigns each user to a single cluster; thus, it might be considered a particular 202
case of the LDA. 203

In summary, the main gap that we identify between the proposed approach and previous 204
works is that most of the suggested procedures do not consider semantic locations and depen- 205
dencies among different time intervals in the users’ trajectories. Hence, they cannot identify non- 206
continuous complex patterns in the user mobility behavior (as indicated in by the above third 207
assumption). Methods that address this issue define users as similar only if their calendars match 208
exactly (or very similarly) over time. In the next chapter, we address the task of clustering users 209
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Fig. 1. Lifestyle-Based Clustering procedure.

based on similar transitions that are not necessarily time-identical. This is done by introducing the210
proposed LBC approach.211

3 PROPOSED APPROACH: LIFESTYLE-BASED CLUSTERING (LBC)212

The LBC method takes as input a set of semantic locations that represent the mobility traces of213
users and outputs a cluster label for each user. This LBC follows a three-phase procedure (see214
Figure 1):215

(1) Profiling each user by a stochastic first-order Markov model (transition matrix); where216
later we consider also higher order or Variable Order Markov models;217

(2) Calculating the JS distance for every pair of users over their transition matrices and rep-218
resenting it in a pairwise distance matrix;219

(3) Executing a known clustering algorithm on the pairwise distance matrix, where the Hi-220
erarchical Agglomerative clustering is found as the preferred method.221

In the following sections, we present the three phases of the LBC method.222

3.1 User Profiling223

The first step in the proposed clustering framework is to represent the deterministic set of loca-224
tion sequences that are associated with each user over a given time period by a stochastic model.225
In particular, the user mobility behavior, as captured by the location sequences, is described by226
a conditional distribution function of visited locations given the user’s past locations. To capture227
the dependencies among locations in different time intervals, a first-order Markov model is used228
to model each user. Although the mobility behavior of users often depends on variable higher229
order models, as proposed in Ben-Gal et al. [7, 8], a simple first-order model can be used to em-230
phasize important patterns in the user’s behavior, while maintaining a relatively lower compu-231
tational complexity. Let Xt ∈ {xt } be a random variable that represents the user location at time232
period t . Then, the conditional probability of the user location at time period t + 1 given the pat-233
tern of past user locations is approximated in this case by a first-order Markov chain, namely,234
Pr(Xt+1 = x |X1 = x1,X2 = x2, . . . ,Xt = xt ) ≈ Pr (Xt+1 = x |Xt = xt ). Note that the set of locations235
is semantic and finite. Thus, based on GIS layers and mapping techniques, each location is tagged236
by the most likely functionality of that location, such as “home,” “work,” “shop,” or “road” [4, 11].237
Figure 2 illustrates a mapping of a user’s daily sequence of locations at an hourly resolution, where238
the hourly location is defined by the mode over all visited locations in that hour, to a first-order239
Markov chain.240

The matrix columns’ headers represent the locations of the user at hour t + 1 while rows repre-241
sent the locations of the user at hour t . The matrix entries are the conditional probability Pr (Xt+1 =242
x |Xt = xt ). For example, note that the user visited the “road” location twice that day—at 8am, fol-243
lowed by the semantic “work” location at 9am, and at 6pm, followed by a sematic “shop” location244
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Fig. 2. Construction of a first-order Markov model based on hourly location sequences.

at 7pm. Accordingly, the third row of the transition matrix of the first-order Markov chain shows a 245
0.5 transition probability from the “road” location to the “work” location and a 0.5 transition prob- 246
ability from the “road” location to the “shop” location. Similarly, given that the user is at work, the 247
probability of her hitting the road in the next hour is Pr(Xt+1 = road|Xt = work) = 1/9 = 0.11. 248

In addition to the Markov model, we also show the steady-state probability vector, namely, 249
Pr(X ), which indicates the marginal probabilities of the semantic locations, which are measured 250
by the relative frequency of each location for the specific user in a specific time period. Note that 251
the same type of mapping is applied to obtain a Markov model that represents a set of daily location 252
patterns over longer time periods. 253

A natural extension of the proposed modeling is the replacement of the first-order Markov 254
model by higher order Markov models (that were found to be overfitting in many cases) or by a 255
VOBN [8]. In contrast to the simple Markov model, where the memory order is equal to one and 256
identical for all the locations over all the hours and all days, in VOBN modeling, the memory order 257
can vary for each location, based on the learned patterns. For example, the conditional distribution 258
of the user’s location at 6am given is location at 5am does not necessarily depend on his location 259
at 4am (e.g., in most cases, if the user was at home at 5am he was there at 4am as well). Thus, in 260
6am the required memory order can be limited to 1-hour only. However, usually the conditional 261
distribution of the user’s location at 6pm given is location at 5pm does depend on his location at 262
4pm and, therefore, a model order of 2 or higher is required for this time slot. Another extension 263
of the VOBN is the modeling of non-sequential patterns in the data. Namely, patterns where, for 264
example, the location of the user in 9am affects his location in 5pm but not necessarily his location 265
at 10am (e.g., if the user is in the Gym in 9am he often stays at work at 5pm, yet he is often at work 266
in 10am regardless of his location at 9am). The exact construction algorithm of the VOBN in the 267
context of mobility behavior patterns is long and detailed and, therefore, it is out of the scope of 268
this article and the subject of a future paper. 269

3.2 Calculating Pair-Wise Distances Among Users 270

Once each user has been modeled by a Markov model, the distance between two users’ models 271
can be calculated as a distance between the corresponding two transition matrices. In particular, 272
the Kullback–Leibler distance, which is also known as the “relative entropy” [24], is a quantity, 273
known in information theory, that measures the difference between two probability distributions. 274
The KL distance between two probability distributions P and Q is defined as follows: 275

Dkl (P | |Q ) ≡
∑
x ∈X

P (x )loд
P (x )

Q (x )
,

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 45. Publication date: July 2019.



TKDD1304-45 ACMJATS Trim: 6.75 X 10 in July 31, 2019 17:3

45:8 I. Ben-Gal et al.

where P (x ) is the probability of x by distribution P andQ (x ) is the probability of x by distribution276
Q · Dkl (P | |Q ) is not a formal metric (e.g., it is not symmetric) and can be viewed as a measure of277
the “information loss” when P is used to approximate Q .278

The KL distance can be used to measure the distance between two users, who are represented by279
their respective Markov models. The Markov model is treated as a joint probability of two succes-280
sive locations Xt and Xt+1, where Pr (Xt ,Xt+1) = Pr (Xt ) · Pr (Xt+1 |Xt ). Those two last arguments281
are calculated in the modeling stage, as described above, and their parameters are estimated for282
each user based on his location log. The KL measure for the relative distance between two joint283
probability mass functions, namely, P (X ,Y ) and Q (X ,Y ), can be partitioned into two terms, with284
one term representing the distance between the conditioning random variables and the other rep-285
resenting the distance between the conditioned random variables [25]:286

Dkl [P (X ,Y ) | |Q (X ,Y )] ≡
∑
x ∈X

P (x )loд
P (x )

Q (x )
+

∑
x ∈X

P (x )
∑
y∈Y

P (y |x )loд
P (y |x )

Q (y |x )

The KL distance is a non-symmetric measure, i.e., DK L (P | |Q ) � DK L (Q | |P ), and can take on287
an infinite value, e.g., if for some location x , Q (x ) = 0. This can damage the clustering results288
since many of the known clustering algorithms require a formal distance metric and will achieve289
worse results when symmetry does not hold. To obtain a metric measure, we use the square root290
of the JS divergence [28], which is a symmetrized and smoothed version of the Kullback–Leibler291
divergence:292

D J S (P | |Q )1/2 ≡
(

1

2
Dkl (P | |M ) +

1

2
Dkl (Q | |M )

)1/2

where M is defined as293

M ≡ 1

2
(P +Q ).

The square root of the JS divergence, which is henceforth referred to as the JS distance, enables us294
to use a formal metric for measurements in the final clustering phase [17], which is described in295
the next section.296

Note that from a computational complexity respective, the construction of a Markov model per297
each user is of the order O (J (l2 +m)), while the complexity of computing the distance between all298
pairs of models is of the order O (J 2m2), where J denotes the number of models (users’ sequences)299
that can reach tens of thousands of users in a neighborhood; l denotes the number of possible300
locations’ labels, i.e., the alphabet size of the location variable, that is limited in this study to tens301
of location or less; and m denotes the length of the sequence of locations per user that is limited302
to hundreds of locations, depending on the analyzed time windows and the sampling frequency.303
Thus, the most computationally expensive step in the LBC procedure is the construction of the304
pairwise distances matrix, and the parameters that significantly affect the computational times305
are the number of modeled users and the length of the sequences. This is also the complexity of306
the benchmark LCSS model. One way to apply the method in a computationally tractable manner307
is to parallelize the process over different neighborhoods or areas. For example, analyzing a neigh-308
borhood with 50,000 user models, 12 possible semantic locations and sequences of 120 locations309
per users can take approximately 8–10 hours on a Pentium i-7 6-Core 4.0GHz CPU and can be310
reduced further by using a GPU server and a fully parallel computing scheme.311

Once the pairwise distances matrix is given, both the LBC as well as the LCSS and other methods312
can use a known clustering algorithm that can fit big-data analytics requirements. For example,313
a K-means known heuristic algorithms, such as Lloyd’s algorithm, can achieve an average linear314
complexity of O(d J ), where d is the number of clusters and J is the number of clustered users.315
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Fig. 3. Simple example of four users’ activities.

Fig. 4. Pair-wise distances for the simple example using the LCSS and JS metrics.

3.3 Clustering 316

The final step in the LBC procedure is to cluster the users according to mobility pattern similarity. 317
After calculating the JS distance between each pair of users and obtaining a pairwise similarity 318
matrix, one can perform cluster analysis using various known clustering algorithms. In fact, there 319
are several clustering algorithms and various clustering methods and objectives that can be used. 320
With the understanding that there is no “right” clustering algorithm theoretically for the consid- 321
ered case, but rather a more suitable algorithm for the specific obtained data and the considered 322
application, we applied several known algorithms to find the most suitable one for this study based 323
on real-world data. Each algorithm is based on a different doctrine and relies on different assump- 324
tions. The final three selected algorithms, after removing at least dozen methods that were found 325
ineffective, were the K-medoids algorithm [22], the spectral clustering algorithm [35], and the 326
agglomerative clustering algorithm [13]. Our validations on these three clustering algorithms in 327
chapter 5 show a clear advantage for the agglomerative clustering method, which is recommended 328
for use in the LBC case. 329

3.4 Illustrating Example 330

Let us refer to a simple example to illustrate the use of the JS distance by the proposed LBC frame- 331
work, in comparison to the commonly used LCSS method. In this small example, we analyze the 332
mobility behaviors of four users over a single day, as shown in Figure 3. 333

Each line represents a user’s mobility pattern over 24 hours. When clustering these four users 334
into two clusters, one would most likely include user 1 and user 2 in the same cluster as they exhibit 335
similar mobility behavior: both drive to work in the morning and go to the gym immediately after 336
work when driving back home in the evening. User 3 and user 4 will probably be associated in 337
same cluster since they live close to their workplaces, go shopping immediately after work and 338
return home without a long drive. 339

The distance matrices in Figure 4 present the distances between every pair of users that are 340
obtained using both the LCSS and JS metrics, respectively. The matrix entries are not normalized 341
(this operation is performed later during the clustering process) to give a sense of the distance 342
scales that are used. As expected, the LCSS finds the first two users to be closer to each other, as 343
well as the last two users. The JS metric does the same. However, one can observe its strength as 344
it finds users 1 and 2 to be almost identical (the distance between them is less than 0.005); while 345
the same occurs for users 3 and 4. 346
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Fig. 5. Time-shifting example.

Fig. 6. Pair-wise distances based on the LCSS and JS metrics for the time-shifting example in Figure 3.

Fig. 7. Decreasing-work-time example.

Recall from our first assumption that we demand that the used similarity metrics be able to347
define users as similar even if their calendars do not match exactly over time. In other words,348
the used metric in such a stochastic case should be robust enough and the sensitivity to tempo-349
ral changes should not be too high. Therefore, for illustration purposes, in Figure 5 we shift the350
mobility behaviors of user 2 and user 4 forward by 3 hours, while keeping all the rest identical to351
Figure 3.352

Thus, according to the first assumption, a robust similarity metric should still place users 1 and353
2 in the same cluster and users 3 and 4 in another cluster. Figure 6 shows the LCSS and the JS354
distance matrices following the considered time-shifts.355

This small example shows one of the most important properties of the JS distance: it is less356
sensitive to the exact time at which each activity occurs if the mobility patterns over the locations357
are stable or, in other words, it is relatively robust over time. In contrast, the LCSS metric is sensitive358
to time shifts and reverses the clustering order; now it finds users 1 and 3 to be similar, as well as359
users 2 and 4.360

The second property that we examine is the proposed metric’s sensitivity to activity length. If,361
for example, one finds two users to be similar because they both go shopping after work and then362
return home, it should be relatively robust to the scenario in which one of them works slightly363
less/more than the other. In the following illustrative example, we decrease the work times of User364
2 and User 4 by 2 hours, as shown in Figure 7.365

Accordingly, we expect that a robust metric will not change the relative distances among users366
following a minor change in the length of a long activity.367

Figure 8 shows the distance matrices of both the LCSS and JS distances following the activity368
length change. Once again, the JS distance is more robust than the LCSS measure, namely, in this369
case, the LCSS distance does not indicate an exclusive similarity between the first two users and370
the last two users. In contrast to the LCSS metric, the JS distance is relatively less sensitive to371
the change in the activities’ lengths—the distance values of the JS distance matrix change, but372
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Fig. 8. Pair-wise distances of the decreasing work-time example.

by relatively small amounts, such that the final clustering is not affected: users 1 and 2 are still 373
clustered together, as are users 3 and 4. 374

4 CLUSTERING EVALUATION 375

This experimental section applies unsupervised learning to an untagged real-world dataset of hu- 376
man mobility patterns that does not contain the lifestyle labels of the users. An important objective 377
of the study is to find “interesting” clusters in the data, including ones that were unknown prior to 378
the clustering process. Accordingly, when validating the obtained clusters, we use internal validity 379
indices. Those indices evaluate the clustering based on the distribution of the entities within the 380
clusters rather than the distribution of the labels among the clusters (external validity indices). 381

The used clustering indices are divided into two main classes: 382

(1) Metric-dependent indices: known clustering indices that are used to evaluate the cluster- 383
ing algorithm given a distance metric (LCSS or JS). 384

(2) Metric-independent index: a newly proposed index that does not depend on any metric 385
but rather on the mobility data patterns themselves. 386

Both types of indices are discussed next. 387

4.1 Metric-dependent Indices 388

It is known that there is no single clustering measure that outperforms all the other measures. 389
Therefore, in many cases, several measures are used together. For example, see [53, 33], in which 390
different clustering measures are discussed. Accordingly, in this study, we use three known mea- 391
sures that are commonly utilized in the clustering literature: the Silhouette index [39], the Dunn 392
index [14], and the Connectivity index [24]. All these indices can be considered different mea- 393
sures of the compactness and the separation of the clusters. These internal validity indices, which 394
are metric-dependent, are applied to evaluate the obtained clusters by using either the JS or the 395
LCSS metric. They are further compared in the evaluation section by using the Hamming distance 396
measure, as explained below. 397

4.2 Metric-Independent Indices 398

There are two common challenges when using metric-dependent indices to evaluate clustering 399
results. The first is that these indices do not indicate the suitability and “correctness” of the clus- 400
tering output, but rather whether the obtained clusters form a reasonable shape in the space. The 401
second challenge is that each of these indices is computed based on a specific metric, thereby mak- 402
ing comparison of the different clustering algorithms impossible. Moreover, even if one selects a 403
single distance metric for all the indices, it is often unclear whether this metric is suitable for the 404
considered clustering application. In fact, it has been shown that different metrics can result in 405
opposite clustering ranks, even when the same clustering algorithms are executed [37]. Therefore, 406
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a new index measure is proposed here that does not rely on a specific distance measure but rather407
is based on the mobility data patterns themselves.408

4.2.1 Proposed Entropy Clustering Measure. Entropy is viewed as a measure of the uncertainty409
in the data. The entropy measure can be considered an external clustering evaluation that measures410
the purity of the clusters’ class labels [12, 37, 38, 40]. Thus, if all clusters consist of objects with411
a single class label, the entropy will be zero. However, when the class labels of the objects in a412
cluster vary, the entropy increases. To compute the entropy of a dataset, the class distribution of413
the objects in each cluster must be computed as follows:414

H (Ck ) =
∑
i ∈Ik

pik log

(
1

pik

)
,

where H (Ck ) is the entropy of the kth cluster, pik is the probability of the ith class label (i.e.,415
location) in the kth cluster, while the sum is taken over all the class labels (all locations) that416
appear in that cluster and belong to the set Ik . Accordingly, the total entropy for a set of clusters417
is calculated as the weighted average of the entropies of all clusters, i.e.,418

H (C ) =
K∑

k=1

nk

n
H (Ck ),

where nk is the total number of data points in cluster k , K is the number of clusters, and n is the419
total number of data points in the analyzed dataset over all the clusters. In practice, small clusters420
and outliers can be neglected when computing this measure. However, a different measure should421
be used when one would like to measure the clustering purity over unsupervised datasets, as the422
goal is to find new and interesting clusters in the data. Therefore, one needs to measure the entropy423
based on the data patterns themselves rather than any given class label that is not part of the given424
dataset.425

Shannon [40] himself considered the above challenge by proposing a model for measuring the426
entropy of the English language. He first evaluated the frequencies of every letter, pair of letters,427
triple of letters, and so on. Given the frequencies of letters, it is possible to measure the entropy428
of the population for letter sequences of any size. As one increases the length of the sequence, the429
entropy often grows since there are more combinations of sequence types. However, if the text430
is not random, one often observes interesting reoccurring patterns in the text. For example, it is431
known that for an English-language text, given the letter “q,” the probability that the next letter432
is “u” is higher than the probability that it is any other letter.433

We use the above concept to measure the entropy of a dataset that represents a sequence of434
semantic locations, each of which can be considered a symbol in the location alphabet. The first-435
order location entropy is simply the entropy of single locations in the cluster. Thus, it is based436
on the marginal probability of all the locations, regardless of the sequence and time. To measure437
the location entropy in the clusters, the first step is to slice each trajectory into its locations, as438
illustrated in Figure 9.439

Once the trajectories have been separated into their building-block locations, each cluster can440
be represented by the distribution over the locations from all its trajectories. The entropy of the441
kth cluster, which is denoted by H (Ck ), is calculated as indicated above. A higher entropy value442
implies that the probability distribution is more equiprobable with respect to the set of locations.443
Thus, the associated users spend their total time more equally over the different locations. Since444
the entropy measure is aggregated over all the users and all their trajectories, the probability being445
evenly distributed over the locations does not necessarily imply that all the users are similar, nor446
that each of them spends equal time in each location. Theoretically, the minimum value of the447
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Fig. 9. Separating a sequence trajectory into its locations.

entropy is zero, which is obtained only when the users in the cluster stay in the same location the 448
whole time. In practice, we notice that the entropy value increases as more users and trajectories 449
are added to the cluster since the distributions over the different locations gradually become more 450
even. This is why the entropy decreases as the number of clusters increases, since fewer more- 451
similar users can be clustered together, separately from other more-different users. 452

In this section, we formalize our notation, assuming that each user is represented by an hourly 453
location trajectory, as shown in Figure 7, and these trajectories are the elements that should be 454
clustered. Let us denote by nj the number of time-step (i.e., hourly) locations in Tj , which is the 455
trajectory of user j that represents his mobility behavior during the analyzed time period. We 456
assume that all trajectories are of the same length. Hence, allnj are equal. For clusterCk ,nk denotes 457
the total number of time-step locations that are associated with the cluster, i.e., nk = |Ck | · nj , 458
where |Ck | represents the number of users or time-step sequences in the cluster. Finally, n is the 459
total number of time-step locations in the data, i.e., n =

∑K
k=1 nk , assuming there are K clusters. 460

We denote by Ni, j the number of appearances of location i in the trajectory of user j · Ni,k is the 461
total number of appearances of location i in cluster k , and Ni is the total number of appearances 462
of location i in the data. The entropy of the data without any clustering is denoted as H (X ) and 463
can be calculated by 464

H (X ) = −
∑

i

Ni

n
log

Ni

n
.

The entropy of clustering C is calculated by the weighted sum of the clusters’ entropy: 465

H (C ) =
∑

k

nk

n
H (Ck ) = −

∑
k

nk

n

∑
i

Ni,k

nk
log

Ni,k

nk
.

Note that the clustering itself, as seen below, reduces the entropy by definition. This is of impor- 466
tance since it reduces the uncertainty related to mobility patterns in large geographic areas. 467

Proposition 4.1. H (X ) ≥ H (C ) for every clustering C . 468

Proof (based on [27]). 469

H (C ) = −
∑

k

nk

n

∑
i

Ni,k

nk
log

Ni,k

nk
= −

∑
i

∑
k

Ni,k

n
log

Ni,k

nk
.

≤ −
∑

i

(∑
k Ni,k

n

)
log

∑
k Ni,k∑
k nk

= −
∑

i

Ni

n
log

Ni

n
= H (X ).

The inequality follows from the log-sum inequality [12]. 470

The location entropy measures how well a clusterinalgorithm can group users, sharing the same 471
location distribution, i.e., the users who spend similar amounts of time at the same locations re- 472
gardless of the patterns or the times of day. Therefore, lower entropy for a specific clustering 473
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Fig. 10. Separating a trajectory into its pairs of successive locations.

implies that the trajectories of users in each cluster are more similar to one another. Accordingly,474
we aim to show that the sum of the KL divergences of every trajectory distributionTj with respect475
to its cluster distribution, with j ∈ Ck , is proportional to the clustering location entropy.476

Proposition 4.2. Lower location entropy results in a lower sum of KL divergences between every477
trajectory and its cluster distributions.478

Proof.479

∑
k

∑
j ∈Ck

DK L (Tj | |Ck ) =
∑

k

∑
j ∈Ck

∑
i

Ni, j

nj
log

Ni, j

nj

Ni,k

nk

=
∑

k

∑
j ∈Ck

∑
i

Ni, j

nj
log

Ni, j

nj
−

∑
k

∑
j ∈Ck

∑
i

Ni, j

nj
log

Ni,k

nk

= −
∑

k

∑
j ∈Ck

H
(
Tj

)
−

∑
k

∑
i

(∑
j ∈Ck

Ni, j

nj

)
log

Ni,k

nk

= −
∑

j

H
(
Tj

)
−

∑
k

∑
i

Ni,k

nj
log

Ni,k

nk
= −

∑
j

H
(
Tj

)
−

∑
k

|Ck |
∑

i

Ni,k

nj |Ck |
log

Ni,k

nk

= −
∑

j

H
(
Tj

)
−

∑
k

|Ck |
∑

i

Ni,k

nk
log

Ni,k

nk
= −

∑
j

H
(
Tj

)
+

∑
k

|Ck |H (Ck )

=
∑

k

nk

nj
H (Ck ) −

∑
j

H
(
Tj

)
=

n

nj

∑
k

nk

n
H (Ck ) −

∑
j

H
(
Tj

)
=

n

nj
H (C ) −

∑
j

H
(
Tj

)
. �

∑
j H (Tj ) is the sum of the entropies of all the trajectories in the data. It is defined by the data480

and does not rely on any clustering. The value of n
nj

is also constant and does not depend on the481

clustering. Thus, one is left with H (C ), which is the location entropy of the clustering and the only482
value that can affect and decrease the sum of the KL divergences. The KL divergence between483
distribution Tj and its cluster distribution, when j ∈ Ck , is the amount of information that is lost484
when one approximates the distribution Tj by the distribution Ck . Thus, a lower location entropy485
of the clusters implies that the KL divergence is lower, and a more homogeneous clustering is486
obtained. This is exactly the objective of the proposed clustering procedure.487

Higher order pattern entropy. The location entropy can be considered a “zero-order” Markov488
measure (i.e., without memory) that indicates whether the clusters contain users with similar dis-489
tributions over the same semantic locations. One can use a similar approach to measure the entropy490
of patterns of higher order Markov models in the resulting clusters. The concept is similar, with491
one main difference that each trajectory is now divided not into single locations but into a set of492
pairs of successive locations, as seen in Figure 10.493

By measuring the entropy of location pairs in each cluster, one can learn whether the clusters494
contain users that not only have similar time distributions over the same locations but also have495
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similar conditional distributions over the same locations, which indicates that they follow similar 496
location patterns. Note that in a similar way, one can measure higher order patterns by using the 497
entropies of triplets, quadruplets, and quintuplets, and so on, of locations. 498

5 REAL DATA RESULTS 499

5.1 Data 500

Our evaluation and analysis were conducted on real-life dataset of a mobile phone provider. This 501
section describes the process of extracting the raw data and transforming them into semantic 502
trajectories of users. The raw data contain the mobility data of 50,000 anonymous cellular users 503
over a period of two months. The users’ data was sampled from Radio Network Controllers (RNCs) 504
that cover a relatively large city and its surrounding area and contain hundreds of thousands of 505
users. In the first stage of the study, from security and regulation reasons, we were allowed to 506
track and model the individual mobility patterns of 10% of the users (5,000 users) and segment 507
them accordingly. However, in the second stage of the study, we were allowed to associate the 508
entire set of extracted users with segments that were learned in the first stage of the study. Thus, 509
providing an analysis on a larger scale of a neighborhood or a small city. 510

The first step of data preprocessing was to group single records into a session record that con- 511
tains features such as the global index, date, start time, end time, X coordinate, and Y coordinate 512
[11]. 513

In the next step, locations were clustered into tagged “important places” in the user’s life by 514
their geographic location and time indices. This step is important for filtering noise from the ge- 515
ographical sample, as well as to reduce the resolution and help assign semantic meanings to the 516
locations in the next step. 517

The third step assigns semantic meanings to various recorded places. Since there was no use of 518
external data, the sematic tag indicates the frequency of each location for the user in descending 519
order. Thus, each location was ranked by the amount of aggregated time (normalized by the total 520
recorded time) in the schedule. The most frequent location was assigned the label “A,” the second 521
one “B,” and so on, up to the letter “E.” Letter “F” was used to indicate the situation of no signal at 522
a specific hour. 523

Following such a coding system, the geographical location of “A” for one user is different than 524
the location of “A” for another user. Similarly, the semantic meanings of each label are not nec- 525
essarily equal for different users—for one user, “A” can indicate “home,” whereas for another user 526
“A” can represent “work” (if he spends more time at work than at home, which is in fact quite rare 527
in the given dataset). 528

We used two months of data that were separated between weekdays and weekends to increase 529
the probability of identifying repetitive patterns in the schedule. 530

The first analysis that was performed on the numerical data was to reduce its dimensionality 531
by using PCA as proposed in [15]. The analysis revealed that over 50% of the variance in the data 532
can be explained by the first six principle components (PCs), as shown in Figure 11. In fact, the 533
first PC explains 23% of the variance, the second PC accounts for 14%, the third and fourth PCs 534
account for 4.5%, and so on, dropping to a long tail of non-significant PCs. 535

Some of the properties in the data could be revealed by using the obtained PCs. 536
For example, Figure 12 shows a sample of users ordered by their first PC value. Every row 537

represents a single user while every column represents an hour in weekdays (Sunday to Thursday). 538
The most frequent location is colored by dark brown, the second frequent location is colored by 539
light brown, and so on. One can see that the first rows (with PC values around −1.76) contain a 540
set of users that stay most of their time at home, while the second set of users spend more time 541
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Fig. 11. The explained variance ratio of principle components based on mobility data of 5,000 anonymous
cellular users.

Fig. 12. A sample of the data organized in the range of the first PCs value.

in their work place. Finally, as one continues to users with higher PC values (7 and above) he can542
find users with inverse colors, implying that they spend more time at work than at home. Thus,543
one can interpret the first PC as “Time spent at work,” since low values in this PC dimension mean544
that the user spends shorter time of the day at his work place.Q4

545
Even though the first PC represents a core mobility behavior, using the PCs to cluster the users546

was found to be impractical in real dataset, specifically when trying to obtain clusters that rep-547
resent different users’ mobility behavior. Figure 13 shows the mobility data over the dimensions548
of the first and the second PCs. Note that the first PC has a large variance, yet it is not trivial to549
separate the data into natural clusters based on it alone. The second PC contain some variance550
but most of the data-points have a low value in this dimension. The figure shows 2 clusters (red551
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Fig. 13. A scatter of 5,000 users over the first and second PCs dimensions.

and blue) that were extracted by the DBSCAN algorithm, while the white points were labeled by 552
the algorithm as noise. Note that the DBSCAN algorithm is based on data density and, therefore, 553
it allows flexible clustering shapes as well as the presence of noisy data. Despite this flexibility, it 554
was hard to find a natural interpretable clustering based on this dimension-reduction approach. 555
The fact that this approach is inhomogeneous, where every time-interval is treated as an inde- 556
pendent feature makes it even harder for such an analysis. Similar challenges were obtained when 557
using other PCs for the analysis, making it difficult to cluster the data accordingly. Note that if the 558
objective was to learn a single user behavior, as done in [15], such a data reduction method can 559
lead to excellent results. But for learning and clustering thousands users or more, the variance of 560
the temporal-based patterns in real-world data is simply too high, resulting in PCs that are very 561
hard to interpret as seen above. 562

5.2 Evaluation of the Clustering Procedures 563

In this section, we apply the LBC process with three state-of-the-art clustering methods. Thus, 564
four clustering methods are considered: 565

(1) LBC clustering: This is the proposed LBC, as presented in Section 3. 566
(2) LCSS clustering: This process is similar to the LBC procedure, except that it uses the LCSS 567

distance metric on the deterministic trajectories instead of the JS distance over stochastic 568
Markov models. We applied a similar analysis to the LCSS distance to select the best clus- 569
tering algorithm and found that Agglomerative clustering [41, 23, 21] is the most suitable 570
method for the considered data. 571

(3) PCA clustering: In this process, we use the PCA method to perform dimensionality re- 572
duction on our data. We used a Euclidean distance for the computation of the pair-wise 573
distance matrix and then executed a clustering algorithm. Again, we found the Agglom- 574
erative clustering to obtain the best results. The number of PCs was chosen based on the 575
described evaluation indices. The best results were obtained for seven PCs. 576

(4) EM clustering: In this process, we assume that each trajectory is a multidimensional point 577
in space that is produced from a Mixture Model that represents its cluster. To find the 578
clusters, an Expectation-Maximization algorithm was used following [34]. 579

The evaluation and comparison of the four clustering procedures are based on three aspects of 580
mobility behavior as follows: 581
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Fig. 14. Silhouettes scores of the four clustering procedures over the Hamming-distance space. The x-axis
represents the number of clusters and the y-axis represents the Silhouettes scores.

(1) Users from the same cluster go to the same locations at the same time;582
(2) Users from the same cluster have similar location distributions;583
(3) Users from the same cluster share the same patterns among locations.584

These three measures are correlated with our initial assumptions and each is related to a different585
set of applications, as discussed next.586

Users who share the same locations at the same time. To evaluate whether the applied clustering587
approach can cluster users who are present at the same location at the same time, we measure588
the obtained clusters with metric-dependent indices. In particular, the Hamming distance [20] is589
used as a metric that simply counts the number of hours in which the two mobility sequences of590
two different users do not match. Each mobility pattern vector represents the location type of an591
associated user at a certain hour on a specific date (see Figure 2). The entry-wise Hamming distance592
value of “0” implies that the two users share the same location type (e.g., “home” or “work”) at the593
same time. Hence, a perfect matching between the two sequences results in a Hamming distance594
value of zero. The goal is to measure the pair-wise Hamming distance for every pair of users,595
thereby resulting in a “Hamming space” over all users. In this space, users are distant from one596
another when they have un-matched locations over time.597

To further measure the compactness and separation of the obtained clusters, we use metric-598
dependent validity indices (e.g., Silhouettes, Dunn, and Connectivity) over the Hamming distance599
matrix.600

Figure 14 shows the Silhouettes scores of the four clustering procedures for every chosen num-601
ber of clusters, from 2 to 100. The results show that the LCSS clustering procedure obtains a supe-602
rior Silhouettes score for most numbers of clusters; the PCA process has the second-best scores,603
the LBC process is third and the EM algorithm obtains the poorest result for this objective. The604
results imply that when the application requires users that share the same locations at the same605
times to be clustered together, for example, in carpool applications, a wise choice of clustering606
algorithm will be based on the LCSS or the PCA method, depending on the number of required607
clusters as proposed in the literature.608
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Fig. 15. Location entropies of the four clustering procedures. The x-axis represents the number of clusters
and the y-axis represents the location entropy measure.

Users who have similar location distributions. In this section, we use the proposed location en- 609
tropy as our clustering measure for the same four clustering procedures. The maximum location 610
entropy of the data is found to be 1.17 bits (measured when all users are grouped in a single clus- 611
ter). As we increase the number of clusters, the entropy of the population decreases, while the 612
minimum entropy is reached when every user is in his own cluster and is equal to 0.57 bits (this 613
is the average entropy of the users’ trajectories in the population). The maximum and minimum 614
entropies are shown in Figure 15 by the upper and lower straight lines, respectively. 615

According to the location entropy measure, the proposed LBC procedure clusters the users in 616
the best way with respect to the location distribution. The next-best procedure is the PCA, fol- 617
lowed by the LCSS and the EM, which obtain similar results with a small advantage to the LCSS 618
procedure. These results imply that when the application requires users that share the same loca- 619
tion distribution to be clustered together, for example, in location-based mobile coupon planning, 620
a wise choice of clustering procedure will be based on the proposed LBC clustering. 621

Users that share the same patterns among locations. To learn more about the mobility patterns of 622
the users, we apply a higher order pattern entropy measure for the same clustering procedures. In 623
particular, we consider the pattern entropy of pairs of successive locations in the data, as shown 624
in Figure 16. 625

The same hierarchy that was obtained in the zero-order location entropy graph appears in the 626
pattern entropy graph of paired locations. The only difference is that the gap between the proposed 627
LBC and the other clustering procedures is slightly wider and more significant since the LBC 628
captures well the pair patterns. Similar results were obtained for location triples. 629

A T-test was performed over the results and found that the entropy of the LBC procedure is 630
significantly lower than the entropy obtained from other procedures when using series of 2, 3, 4, 631
5, and 6 time intervals, as shown in Table 1. 632

A trivial extension of the proposed LBC approach is a replacement of the first-order Markov 633
model by a higher order model, e.g., a second- or third-order Markov models that can potentially 634
capture higher order (longer) patterns. Note that such an extension has several limitations. First, 635
it increases the computational complexity, particularly during the construction of the JS distances 636
matrix. Second, the data contains fewer longer patterns as a support set per each tuple of locations 637
that are represented by the higher order Markov models. Third, it was found in the experiment 638
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Fig. 16. Patterns’ entropy of the four clustering procedures. The x-axis represents the number of clusters and
the y-axis represents the pair-location entropy measure.

Table 1. P-values of T-tests Between the LBC Entropy
Scores and the Other Methods

that, in fact, the first-order Markov model outperforms the higher order Markov models that are639
often overfitted, as seen in Figure 17. The figure shows that the patterns’ entropy of an LBC-based640
clustering procedure increases when using higher order Markov models to represent each user.641

Note, however, that despite the above, in many cases higher order patterns of three or four642
semantic locations appear in the data, although they appear in specific time periods. To address643
the order-variability, while enabling a higher order model only for specific patterns, we suggest644
to apply the VOBN [8] that was proposed originally for DNA analysis and was never applied to645
mobility pattern analysis. In contrast to the simple Markov model, where the memory-order is646
fixed to one and identical for all the locations, over all the users, all the hours, and all the days, in647
VOBN modeling, the memory order can vary for each location, based on the learned patterns.648

Finally, in a series of experiments different clustering methods were compared in order to select649
the most suitable algorithm for mobility pattern clustering. Several clustering methods, including650
the K-medoids, the Spectral clustering and the Agglomerative clustering were evaluated by several651
internal validity indices, including the Connectivity index the Dunn index, the Silhouettes index,652
and the Pattern–Entropy index, while ranging the number of used clusters between 2 to 100. In653
vast majority of the cases it was found that the Agglomerative clustering outperforms the other654
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Fig. 17. Patterns’ entropy of four LBC clustering procedures. The x-axis represents the number of clusters
and the y-axis represents the pair-location entropy measure.

Fig. 18. Comparison of three clustering algorithms, namely the K-medoids, the Spectral clustering and the
Agglomerative clustering. The x-axis represents the number of clusters and the y-axis represents the Sil-
houettes index scores. As seen in majority of the experiments the Agglomerative clustering outperforms the
other methods.

clustering methods. Figure 18 presents for example three clustering methods with respect to the 655
Silhouettes index score. 656

5.3 Examples of Pattern-Based Segmentation 657

The use of the proposed LBC method enables, as indicated above, to cluster different users that 658
share lifestyle similarity. This segmentation can be executed over different geographic locations 659
since their labeling is probabilistic and semantic, i.e., labels “A,” “B,” “C,” and so on are assigned 660
by their frequencies in decreasing order. 661

Figures 19(a)–19(d) show for example four users, each of which from a different segment. Each 662
row in the figure represents the hour during the day (“0” stands for midnight down to “18” that 663
stands for 6pm), each column represents a day (“1” stands for a Sunday up to “7” that stands 664
for a Saturday). As seen, each of those segments represent different mobility patterns, some 665
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Fig. 19. (a–d) Examples of mobility pattern’s diaries of four different users, each of which belongs to a differ-
ent mobility-behavior segment. Each row represents the hour during the day (“0” stands for midnight down
to “18” that stands for 6pm), each column represents a day (“1” stands for a Sunday up to “7” that stands for
a Saturday). Each entry denotes a semantic location, labeled by the letter “A” up to “F” in decreasing order
of frequency.
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Fig. 19. Continued.

quite different from each other. We name each segment by an intuitive name that provide some 666
insight for a possible qualitative description of its users. For example, the pattern exemplified 667
in Figure 19(a) is named “Home, sweet home” and shows a user that rarely leaves his home and 668
when he does so, it is usually in early afternoon hours or very late at night. Figure 19(b) is named 669
by the song “Working 9 to 5” although it shows a user who often stays at work between 10am to 670
6pm (with exceptions). Figure 19(c) is named “Travelling salesman” and shows a user who travels 671
during long working hours over various locations. Finally, Figure 19(d) is named “Commuter” 672
(or “lives out of the city”) and shows a user who lives outside the metropolitan (and this is the 673
reason that many of the entries are blanks—as location data was not recorded outside the city 674
area), works close to the city borderline (hence, no commuting is detected within the city area) 675
and starts during weekdays sharply at 8am until 7pm. 676

Note that many of the analyzed mobility-patterns are not trivial nor entirely consistent. In each 677
class, one can detect repeating mobility-patterns as well as some anomalies (marked by a black 678
ellipse). Just to show a few, in Figure 19(a), on the third Sunday–Monday sequence the user stays 679
at home along the entire 2 days, which points to a rare mobility-pattern that can indicate, for 680
example, that he does not feel well or that the phone was forgotten at home. In Figure 19(b), one 681
can see that the user often stays at home on Tuesdays, plus an anomaly is detected on the first 682
Sunday at 2pm. In Figure 19(c), location F usually follows location C or A, while in the marked 683
Sunday at 6pm it follows the B location. Finally, in Figure 19(d) a very consistent mobility-behavior 684
is detected for the commuter with some anomalies that are shown in the figure. 685

Figures 19(a)–19(d) show that the obtained mobility-behavior patterns are not trivial and 686
that they vary significantly not only between users or between different clusters of users but 687
also within a specific user itself. Note again that these mobility-patterns when aggregated over 688
hundreds of thousands of users can provide important information, for example, in a framework 689
of smart cities. Knowing, for example, which or how many users commute every morning to 690
work and from where; which users or how many users stay at home and till when; and what is 691
an anomalous mobility behavior for each user, can provide critical insights to personal security 692
systems, ridesharing plans, smart-grid and energy consumption optimization, location-based 693
services, traffic lights schemes, and many more data-driven applications. 694

Based on a sampling process of 50,000 users, Figure 20 shows the distribution of different seg- 695
ments of users, where each segment represents a different mobility behavior, over five different 696
cities, while applying the VOBN extension [8]. As seen each city has a different distribution of 697
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Fig. 20. Distribution of different mobility-behavior segments, over five different cities.

Fig. 21. Total computation time of the proposed procedure (in hours) as a function of both the sequence
lengthm = 100, . . . , 500 and the number of modeled users J = 10, 000, . . . , 50, 000.

users. To give just one example, in Lod only 14% of the sampled users followed a commuting (lives698
out of the city) behavioral pattern, while in Kfar-Saba this segment is doubled and reach 30%. Such699
a distribution was found to be statistically significant with the socio-demographic score of the700
city, indicating that there is a noticeable correlation between the socio-demographic status of the701
users and their mobility-behavioral patterns [11]. Such an analysis emphasizes again that many702
“smart-city” services, such as electric-grid optimization, traffic lights control, road-maintenance703
working times, and public transportations can rely specifically on the citizens’ mobility-behavior704
distributions in order to provide a tailored service kit per area.705

Finally, Figure 21 shows the total computational time of the proposed procedure when it is ap-706
plied to segments of users of different size, ranging from 10,000 models to 50,000 models, as a707
function of the location sequence size withm = 100, . . . , 500 locations. Note that both the number708
of clusters, d, and the alphabet size l (i.e., the possible location labels) do not affect the computation709
time significantly under the considered settings, although they are critical parameters in terms of710
the clustering quality and the obtained statistics. As indicated in Section 3.2, the total compu-711
tational time is combined from three main steps: the construction of a Markov model per each712
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user; the pair-wise distance computation between all the user models resulting in the construc- 713
tion of the similarity matrix; and the clustering procedure itself over the similarity matrix. The 714
construction of the similarity matrix is the most computationally expensive step in the proposed 715
procedure that often consumes more than 85% of the total computation time. This bottleneck step 716
is also required by the benchmark LCSS method that is computationally equivalent to the proposed 717
procedure. Note that by applying parallel computation schemes as well as other computational re- 718
duction strategies, such as stochastic search, one can further reduce the computational time of the 719
proposed method. 720

6 DISCUSSION 721

6.1 Conclusions 722

The exponential growth of available location-based data in recent years has resulted in increas- 723
ing attention of researchers to this area. New research works focus on how to obtain, cleanse, 724
preprocess, and store location data, modify it for different uses and eventually extract meaning- 725
ful information out of it. The potential of such data in the analysis of human mobility patterns 726
is significant since it can be used in many modern applications, such as smart transportation, 727
location-based services, homeland security, and marketing localization. Many aspects of knowl- 728
edge discovery from mobility data processes have been contributed in recent years by researchers 729
from both the academic world as well as the industry. 730

From the literature review, one can identify a real need to develop a new metric that can cap- 731
ture the mobility behaviors of people in a manner that represent their “mobility lifestyles.” The 732
objective of identifying similar people by their semantic-location patterns, regardless of their geo- 733
graphic locations and their specific activity times, become evident in many new applications. The 734
required LBC modeling led to a new challenge regarding the calculation of the distance between 735
mobility patterns. For this purpose, we have proposed the JS metric, which relies on the KL dis- 736
tance between the users’ Markovian models. Several clustering algorithms were examined under 737
the assumption that there is no ground-truth “correct” clustering algorithm, but rather a clustering 738
solution that fits the data well in a specific period. 739

An important contribution of this research is the proposed clustering procedures, which aim 740
at finding groups of trajectories with similar location distributions and/or similar patterns. To 741
evaluate the proposed LBC procedure, a new validation index was developed based on high-order 742
entropy measures that satisfies the research objective. The proposed entropy measure relies on 743
the data patterns themselves, as an unsupervised task, while measuring the homogeneity of the 744
location distribution and the patterns in the data within the clusters. Results that were obtained 745
from real data showed the efficiency and robustness of the LBC with respect to other clustering 746
procedures, including those that were used in the literature for mobility pattern analysis. This 747
advantage does not depend on a specific clustering algorithm or number of clusters. 748

6.2 Future Work 749

Several research directions can be considered when applying the proposed model to different data 750
and/or different objectives. 751

First, the proposed model can be validated on larger scale datasets when available. Nonetheless, 752
we show that the use of 5,000 randomly sampled users from a set of 50,000 users is enough for 753
obtaining statistical validation of the model. Second, the use of semantic labeled locations rather 754
than the user’s frequent locations appears to be promising for validation purposes and for obtain- 755
ing a true sense of human mobility behavior. For validation purposes, we would like to cross the 756

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 45. Publication date: July 2019.



TKDD1304-45 ACMJATS Trim: 6.75 X 10 in July 31, 2019 17:3

45:26 I. Ben-Gal et al.

obtained results with demographic data, which can provide important information on the types of757
users in each cluster [56].758

A natural extension of the proposed method is the generalization of the Markov model to a759
non-homogeneous VOBN [8]. This extension enables to model and extract non-homogenous and760
non-sequential patterns in the data, as discussed in Section 3.1.761

Another interesting research direction is to use the LBC model on digital trajectory data that762
represent other aspects of human behavior; for example, clustering people by their web surfing763
histories or clustering people by their actions on their mobile phones.764

Using human mobility data, several new analytic applications can be considered and addressed.765
One example is an application in which the exact times of the users’ activities and the location766
patterns are used rather than the location matching over time. Another possible approach is to767
adopt a hybrid model that uses more than one clustering procedure. Finally, several modifications768
can be suggested for extending the LBC procedure to address real-life modeling challenges, such as769
further use of VOBN models [8] for profiling users instead of using the simple fixed-order Markov770
models.771
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