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1 Introduction

If the symmetry condition in the definition of a pseudometric is deleted, the notion of a quasi-pseudometric is obtained.
Asymmetric distance functions already occur in the work of Hausdorff in the beginning of the twentieth century when in his
book on set-theory [27] he discusses what is now called the Hausdorff metric of a metric space.

A family of pseudo-metrics on a set generates a uniformity. Similarly, a family of quasi-pseudometrics on a set generates
a quasi-uniformity [60].

In 1937 Weil published his booklet on (entourage) uniformities, which is now usually considered as the beginning of the
modern theory of uniformities. Three years later Tukey suggested an approach to uniformities via uniform coverings. The
study of quasi-uniformities started in 1948 with Nachbin’s investigations (recorded in [57]) on uniform preordered spaces,
that is, those topological preordered spaces whose preorder is given by the intersection of the entourages of a (filter) quasi-
uniformity U and whose topology is induced by the associated sup-uniformity U ∨ U−1. He proved that the topological
ordered spaces of this kind can be characterized by the property that they admit T2-ordered compactifications.

The filter U−1 of inverse relations of a quasi-uniformity U is also a quasi-uniformity. Similarly, each quasi-pseudometric
has an obvious conjugate by interchanging the order of points. Hence quasi-uniformities and quasi-metrics naturally yield
bitopological spaces (in the sense of Kelly [35]), that is, sets endowed with two topologies.

The term quasi-proximity first appeared in the articles of Pervin and Steiner [59, 66]. The connection between to-
tally bounded quasi-uniformities and quasi-proximities generalizes the well-known correspondence between totally bounded
uniformities and proximities.

The work of Fox, Junnila and Kofner showed that in the class of T1-spaces the concepts of a γ-space (= a topological
space admitting a local quasi-uniformity with a countable base), a quasi-pseudometrizable space and a non-archimedeanly
quasi-pseudometrizable space are all distinct [22, 36] and that the fine quasi-uniformity of metrizable and suborderable (=
generalized ordered) spaces has a base consisting of transitive entourages [33, 38].

Császár [4] developed the theory of the bicompletion for quasi-uniform spaces that was later popularized by Fletcher,
Lindgren and Salbany [17, 63]. It satisfactorily generalizes the theory of the completion from the metric and uniform setting
to the asymmetric context. Since its underlying idea is that of a complete uniformity however, many further attempts have
been made to find other theories of asymmetric completions (see for instance the work of Deák and Doitchinov [6, 11]).

Brümmer (see e.g. [3]) was first to consider explicitly the class of all functorial quasi-uniformities on topological spaces,
although some basic work on canonical quasi-uniformities was done at about the same time by Fletcher and Lindgren.

In the last decade the interest in the study of quasi-uniform function spaces and hyperspaces increased considerably.
Partially this fact is explained by their applications in theoretical computer science (see the work of Smyth and Sünderhauf
[65, 67]).

In the spirit of Nachbin several authors tried to develop with the help of quasi-pseudometrics a common generalization
of the two well-established theories of metric spaces and partially ordered sets that would unify common classical results like
fixed point theorems and completions.

In connection with such investigations also the idea to replace the reals in the definition of a quasi-pseudometric by some
more general structure became popular (e.g. in the studies on Kopperman’s continuity spaces, e.g. [39]). In these theories a
quasi-uniformity is understood as a kind of generalized quasi-pseudometric.

Quasi-uniform structures were also investigated in various kinds of topological algebraic structures (see for instance the
recent work of Romaguera and his collaborators [55, 25]). In particular the study of paratopological groups with the help
of quasi-uniformities is well known. Furthermore the study of asymmetric norms naturally leads to a theory of asymmetric
functional analysis.

Various researchers attempted more or less successfully to extend important classical results about quasi-uniformities
to fuzzy mathematics. Based on Lowen’s theory of approach spaces [53], the concept of an approach quasi-uniformity was
introduced and investigated. In recent years more and more results about quasi-uniformities were also generalized to a
pointfree setting (for instance in the work of Picado and his colleagues [15]).
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Over the years, numerous tools from various mathematical theories like lattice theory, category theory, nonstandard
analysis and descriptive set-theory were employed with great success in the study of quasi-uniform spaces.

In this chapter we wish to introduce the reader to many of the aforementioned basic ideas. Obviously, for the more
sophisticated topics and results he/she will often be referred to the literature because of lack of space. Besides two survey
articles dealing mainly with historic aspects of our topic [1, 45] we would like to mention the two monographs [56, 19] and
the survey articles [3, 5, 6, 37, 41, 42, 43, 46]. Of course, also well-known texts (that contain sections) on uniformities
[31, 12, 28, 32] and the short articles on (quasi-)uniformities in the recent Encyclopedia of General Topology [26, 47] should
be quite useful to the interested reader.

Throughout we shall make use of the entourage approach to the theory of (quasi-)uniformities. While the theory of
covering uniformities [31] is often easier to use than the equivalent theory of entourage uniformities, a theory of quasi-
uniformities based on (pair)covers is possible [24], but often rather cumbersome. Nevertheless it should be stressed that the
latter approach has its merits in pointfree topology and bitopology.

2 Basic Concepts and Results

2.1 Quasi-uniform and Quasi-pseudometric Spaces

It is well known that for topological spaces there is no obvious way to compare the sizes of neighborhoods of distinct
points. Hence important concepts from the theory of metric spaces like total boundedness and uniform continuity cannot be
formulated for topological spaces.

Of course, one natural way to overcome this problem is to choose for a given topological space X some sufficiently large
index set I and to consider for each point x ∈ X an indexed neighborhood base {Ni(x) : i ∈ I}. However this is not yet what
we want. For instance certainly there should still be some order ≤ on the index set I so that if i1, i2 ∈ I with i1 ≤ i2 then
we have Ni1(x) ⊆ Ni2(x) whenever x ∈ X.

In fact, it has turned out to be useful to put even more structure on the index set I in order to be able to formulate a
halving condition for the chosen families of neighborhoods, which is somewhat reminiscent of the triangle inequality. We are
then naturally led to the fairly simple, but nevertheless very useful concept of a quasi-uniform space.

Definition 2.1.1 A quasi-uniformity U on a set X is a filter on X ×X such that
(1) Each member U of U contains the diagonal ∆ = {(x, x) : x ∈ X} of X;
(2) For each U ∈ U there is V ∈ U such that V 2 ⊆ U.
(Here V 2 = V ◦ V = {(x, z) ∈ X × X : There is y ∈ X such that (x, y) ∈ V and (y, z) ∈ V }. Hence ◦ is the usual

composition of binary relations.)

The members U ∈ U are called the entourages of U . The elements of X are called points. The tuple (X,U) is called a
quasi-uniform space.

Example 2.1.1 Let T be a reflexive and transitive relation, that is, a preorder, on a set X. Then the filter X × X
generated by the base {T} is a quasi-uniformity on X. For any quasi-uniformity U on X,

⋂U is a preorder on X.

Definition 2.1.2 Let [0,∞) be the set of nonnegative reals. A quasi-pseudometric d on a set X is a function d :
X ×X → [0,∞) such that d(x, x) = 0 whenever x ∈ X, and d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.

The quasi-pseudometric d−1 : X × X → [0,∞) defined by d−1(x, y) = d(y, x) whenever x, y ∈ X is a called the quasi-
pseudometric conjugate to d.

A quasi-pseudometric d on X is called non-archimedean if d satisfies a strong form of the triangle inequality, namely
d(x, z) ≤ max{d(x, y), d(y, z)} whenever x, y, z ∈ X.

A quasi-pseudometric is called a pseudo-metric provided that d(x, y) = d(y, x) whenever x, y ∈ X.
Let d be a quasi-pseudometric on a set X. For each ε > 0 set Uε = {(x, y) ∈ X ×X : d(x, y) < ε}. The quasi-uniformity on
X ×X generated by the base {Uε : ε > 0} is called the quasi-pseudometric quasi-uniformity Ud induced by d on X.

Definition 2.1.3 Each quasi-uniformity U on a set X induces a topology τ(U) as follows: For each x ∈ X and U ∈ U
set U(x) = {y ∈ X : (x, y) ∈ U}. A subset G belongs to τ(U) if and only if it satisfies the following condition: For each x ∈ G
there exists U ∈ U such that U(x) ⊆ G.

It turns out that the neighborhood filter at x ∈ X with respect to the topology τ(U) is given by U(x) = {U(x) : U ∈ U}.

Let (X,U) be a quasi-uniform space. Then τ(U) is a T0-topology if and only if
⋂U is a partial order. Furthermore τ(U)

is a T1-topology if and only if
⋂U is equal to the diagonal of X.
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Note also that given a quasi-pseudometric d on a set X, τ(Ud) is the usual quasi-pseudometric topology τ(d) on X having
all the open balls Bd(x, ε) = {y ∈ X : d(x, y) < ε} (x ∈ X, ε ∈ (0,∞)) as a base.

Observe that τ(d) is a T0-topology if and only if for all x, y ∈ X, d(x, y) = d(y, x) = 0 implies that x = y. Furthermore
τ(d) is a T1-topology if and only if for all x, y ∈ X, d(x, y) = 0 implies that x = y.

Exercise 2.1.1 Let d be a quasi-pseudometric on a set X. Show that the weights of the topologies τ(d) and τ(d−1) are
equal.

Definition 2.1.4 A map f : (X,U) → (Y,V) between two quasi-uniform spaces (X,U) and (Y,V) is called uniformly
continuous provided that for each V ∈ V there is U ∈ U such that (f ×f)(U) ⊆ V. Here f ×f is the product map from X×X
into Y × Y defined by (f × f)(x1, x2) = (f(x1), f(x2)) (x1, x2 ∈ X).

Of course the identity map on any quasi-uniform space into itself is always uniformly continuous. Furthermore the
composition of two uniformly continuous maps between quasi-uniform spaces is readily seen to be uniformly continuous.

Two quasi-uniform spaces are called isomorphic provided that there is a uniformly continuous bijection between them
whose inverse map is also uniformly continuous.

It is obvious that each uniformly continuous map between quasi-uniform spaces is continuous with respect to the induced
topologies.

Somewhat surprisingly, each topological space (X, τ) is quasi-uniformizable, that is, there is a quasi-uniformity U on X
such that τ(U) = τ. (If the latter condition is satisfied, we shall say that U is compatible with the topology τ or that (X, τ)
admits U .)

Indeed for each subset A of X set
SA = [(X \A)×X] ∪ [X ×A].

Note that SA is a preorder. We conclude that the collection {SG : G ∈ τ} yields a subbase of a quasi-uniformity on X.
This quasi-uniformity is called the Pervin quasi-uniformity P(τ) of the topological space (X, τ). One checks that indeed

it induces the topology τ on X.
Recall that an open collection C of a topological space X is called interior-preserving provided that

⋂ E is open whenever
E ⊆ C. Observe that if T is a preorder on a topological space X such that T (x) is open whenever x ∈ X, then {T (x) : x ∈ X}
is interior preserving.

We note that for the following construction some authors assume that C is also a cover of X. Obviously this is merely a
matter of taste, since it can always be achieved by just adding the set X to C.

(The Fletcher construction) Let D be a collection of interior-preserving open collections C of a given topological space X
such that

⋃
C∈D C is a subbase of X. For each C ∈ D set TC =

⋂
C∈C SC . Note that for each x ∈ X, TC(x) =

⋂{C : x ∈ C ∈ C}.
Hence it is readily checked that {TC : C ∈ D} yields a subbase for a compatible quasi-uniformity UD of X.

In fact if D consists of the collection of all finite open collections of X, then UD is the Pervin quasi-uniformity of X.

We recall that a family L of subsets of a topological space (X, τ) is called well-monotone provided that the partial order ⊆
of set inclusion is a well-order on L. The quasi-uniformity UD where D is the collection of all well-monotone open collections
of X is called the well-monotone quasi-uniformity M(τ) of X.

If U is a quasi-uniformity on a set X, then the filter U−1 = {U−1 : U ∈ U} on X ×X is also a quasi-uniformity on X.
(Here and in the following, R−1 = {(x, y) ∈ X ×X : (y, x) ∈ R} is the inverse of the binary relation R on X.)

The quasi-uniformity U−1 is called the conjugate of U . A quasi-uniformity that is equal to its conjugate is called a
uniformity.

If U1 and U2 are two quasi-uniformities on a set X, then we say that U1 is coarser than U2 (or U2 is finer than U1) provided
that U1 ⊆ U2.

The set of all quasi-uniformities on a set X ordered by set-theoretic inclusion turns out to be a complete lattice.
The smallest element of this lattice is the indiscrete uniformity I = {X×X}. The largest element is the discrete uniformity

D which consists of all reflexive binary relations on X.
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Exercise 2.1.2 [7] Let A be a nonempty subset of X and let U be the quasi-uniformity generated by the base {SA}
on X × X. Show that there is no quasi-uniformity V on X such that I ⊂ V ⊂ U , that is, U is an atom in the lattice of
quasi-uniformities on X.

Obviously the supremum of a family (Ui)i∈I of quasi-uniformities on X is generated by the subbase
⋃
i∈I Ui on X ×X.

It is easy to see that τ(
∨
i∈I Ui) =

∨
i∈I τ(Ui). It follows that each topological space (X, τ) admits a finest compatible

quasi-uniformity, which will be called the fine quasi-uniformity and is denoted by FN(τ) in the following.

In particular the union of a quasi-uniformity U and its conjugate U−1 yields a subbase of the coarsest uniformity finer
than U . It will be denoted by Us in the following.

We also note that if a function f : (X,U) → (Y,V) is uniformly continuous, then f : (X,U−1) → (Y,V−1) and f :
(X,Us)→ (Y,Vs) are also uniformly continuous.

Definition 2.1.5 A quasi-uniform space (X,U) is said to have the Lebesgue property provided that for each open cover
C of (X, τ(U)) there is U ∈ U such that {U(x) : x ∈ X} is a refinement of C.

Exercise 2.1.3 [19] Let (X,U) be a quasi-uniform space such that τ(U) is compact. Prove that (X,U) has the Lebesgue
property.

Definition 2.1.6 A quasi-uniform space (X,U) is called small-set symmetric provided that τ(U−1) ⊆ τ(U). (The
conjugate quasi-uniformity U−1 is then called point-symmetric.)

Exercise 2.1.4 [19] Let (X,U) be a quasi-uniform space such that τ(U) is a compact T1-topology. Show that U is
point-symmetric.

Exercise 2.1.5 Show that a countably compact quasi-pseudometric T1-space is compact.

Exercise 2.1.6 Equip X = ω1 with the quasi-pseudometric d(x, y) = 0 if x ≥ y and d(x, y) = 1 otherwise. Note that
τ(d) is countably compact, but not compact.

Exercise 2.1.7 A quasi-uniform space (X,U) is called locally symmetric provided that for all U ∈ U and x ∈ X, there
is V ∈ U such that V −1(V (x)) ⊆ U(x). Observe that each point-symmetric quasi-uniform space is locally symmetric. Show
that a topological space X admits a locally symmetric quasi-uniformity if and only if X is regular.

Proposition 2.1.1 [54] Let (X,U) be a quasi-uniform space satisfying the Lebesgue property, let (Y,V) be a small-set
symmetric quasi-uniform space and let f : (X, τ(U))→ (Y, τ(V)) be a continuous map. Then f : (X,U)→ (Y,V) is uniformly
continuous. (Indeed, f : (X,U)→ (Y,Vs) is uniformly continuous.)

Proof. Let V ∈ V. Choose W ∈ V such that W 2 ⊆ V. Then for each x ∈ X there is Wx ∈ V such that Wx ⊆ W and
Wx(f(x)) ⊆ W−1(f(x)) by small-set symmetry of (Y,V). By continuity of f, D = {intf−1[Wx(f(x))] : x ∈ X} is an open
cover of X. There is U ∈ U such that {U(x) : x ∈ X} refines D by the Lebesgue property of (X,U). Fix x ∈ X. Then there
exists y ∈ X such that U(x) ⊆ f−1Wy(f(y)). Thus f(U(x)) ⊆Wy(f(y)) ⊆W−1(f(y)) and hence f(y) ∈W (f(x)). Therefore
f(U(x)) ⊆Wy(f(y)) ⊆W 2(f(x)) ⊆ V (f(x)). Hence f : (X,U)→ (Y,V) is uniformly continuous. The remark in parenthesis
immediately follows from this result, since by small-set symmetry f : (X, τ(U)) → (Y, τ(Vs)) is also continuous and Vs, as
any uniformity, is small-set symmetric.

Corollary 2.1.1 A small-set symmetric quasi-uniformity U on a set X that induces a compact topology τ(U) is a
uniformity.

Proof. Consider the map idX : (X,U) → (X,Us). By the preceding result it is uniformly continuous. Therefore Us ⊆ U
and thus U is a uniformity.

There seems to be no way to explicitly describe a subbase of the infimum of a family (Ui)i∈I of quasi-uniformities in
terms of the entourages of the quasi-uniformities Ui. Also in general topological spaces do not admit a coarsest compatible
quasi-uniformity.

Nevertheless it is easy to see that conjugation commutes with arbitrary infima and suprema in the lattice of quasi-
uniformities. In particular for any quasi-uniformity U , U ∧ U−1 is a uniformity.
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Exercise 2.1.8 Let R and S be preorders on X. Consider the quasi-uniformities U resp. V on X generated by the bases
{R} resp. {S} on X ×X. Show that U ∧ V is generated by the base {C} where C is the transitive closure of R ∪ S. Observe
that {R ∩ S} is a base of the quasi-uniformity U ∨ V.

A map f : (X,U) → (Y,V) between quasi-uniform spaces (X,U) and (Y,V) is called uniformly open if for each U ∈ U
there is V ∈ V such that V (f(x)) ⊆ f(U(x)) whenever x ∈ X.

Proposition 2.1.2 Let (X,U) be a compact uniform space and (Y,V) a quasi-uniform space. Then any map f :
(X,U)→ (Y,V) that is open and continuous is uniformly open.

Proof. Let U ∈ U . There is P ∈ U such that P 2 ⊆ U. Since f is open, for each a ∈ X we find Wa ∈ V such that W 2
a (f(a)) ⊆

f(P (a)). By continuity of f and since U is a uniformity, we can consider the open cover {int(P−1(a)∩f−1Wa(f(a))) : a ∈ X}
of X. Since X is compact, there is a finite subset F of X such that

⋃
a∈F int(P−1(a)∩f−1Wa(f(a))) = X. Set W =

⋂
a∈F Wa

and note that W ∈ V. Consider x ∈ X. There is b ∈ F such that x ∈ P−1(b) ∩ f−1Wb(f(b)). Therefore f(x) ∈Wb(f(b)) and
W (f(x)) ⊆W 2

b (f(b)) ⊆ f(P (b)) ⊆ f(P 2(x)) ⊆ f(U(x)). We have shown that f is uniformly open.

Definition 2.1.7 Let X be a set and suppose that for each i ∈ I there is given a map fi : X → Yi into a quasi-uniform
space (Yi,Vi). Then there is a coarsest quasi-uniformity V on X such that all maps fi are uniformly continuous, the so-called
initial quasi-uniformity. It is generated by the subbase {(fi × fi)−1(V ) : i ∈ I, V ∈ Vi} on X ×X.

One checks that the initial quasi-uniformity V induces the coarsest topology on X such that all maps fi : X → (Yi, τ(Vi))
(i ∈ I) are continuous, that is, the corresponding initial topology. Note also that the initial quasi-uniformity V is a uniformity
if all quasi-uniformities Vi are indeed uniformities. We give two applications for the concept of the initial quasi-uniformity.

Let ((Xi,Ui))i∈I be a family of quasi-uniform spaces. Let Πi∈IXi be the set-theoretic product of the family (Xi)i∈I and
let πj : Πi∈IXi → Xj (j ∈ I) be the projection onto (Xj ,Uj). Then the coarsest quasi-uniformity on Πi∈IXi that makes all
projections uniformly continuous is called the product quasi-uniformity. It induces the product topology of the topological
spaces ((Xi, τ(Ui))i∈I .

Let (X,U) be a quasi-uniform space and let A be a subset of X. Then the coarsest quasi-uniformity on X such that the
set-theoretic embedding e : A → X is uniformly continuous is called the subspace quasi-uniformity U|A: It consists of the
entourages U |A := U ∩ (A×A) with U ∈ U and induces the subspace topology (τ(U))|A of (X, τ(U)) on A.

Exercise 2.1.9 Let (X, τ) be a topological space and let A be a subset of X. Show that (P(τ))|A = P(τ |A) and
(M(τ))|A =M(τ |A).

Let Y be a set and suppose that for each i ∈ I there is given a map fi : Xi → Y from a quasi-uniform space (Xi,Ui)
to Y. Then there is a finest quasi-uniformity V on Y such that all maps fi are uniformly continuous, the so-called final
quasi-uniformity. Observe that V is a uniformity if all quasi-uniformities Ui are uniformities.

The final quasi-uniformity V need not be compatible with the final topology on Y determined by the family of maps
fi : (Xi, τ(Ui))→ Y (i ∈ I).

Exercise 2.1.10 Let R be the set of the reals equipped with its usual metric uniformity. Consider the partition R/ ∼=
{(−∞, 0], (0,∞)} of R and the corresponding quotient map q : R → R/ ∼ . Determine the quotient (that is, final) quasi-
uniformity on R/ ∼ and compare its induced topology with the quotient topology.

2.2 Transitive Quasi-uniform and Topological Spaces

A quasi-uniform space (X,U) is called transitive provided that it has a base consisting of transitive entourages (that is,
preorders). Such a base is called a transitive base. Note that all quasi-uniformities obtained by the Fletcher construction are
transitive. Furthermore observe that if d is a non-archimedean quasi-pseudometric on a set X, then the quasi-pseudometric
quasi-uniformity Ud has a countable transitive base.

Exercise 2.2.1 Let U be a quasi-uniformity having a countable base of transitive entourages. Then U is non-archimedeanly
quasi-pseudometrizable, that is, there is a non-archimedean quasi-pseudometric d on X such that U = Ud.

Corollary 2.2.1 The topology of a topological space can be induced by a non-archimedean quasi-pseudometric if and
only if it has a σ-interior preserving base (that is, a base of open sets that can be written as the union of countably many
interior-preserving collections).
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Proof. The statement is a consequence of the preceding exercise and a straightforward application of the Fletcher
construction.

It is easy to see that the supremum of any family of transitive quasi-uniformities is transitive. On the other hand the
infimum of a transitive quasi-uniformity with its conjugate need not be transitive, as we shall see later (see ??).

The proof of the following result is crucial, but well known and will not be included here.

Lemma 2.2.1 Let (Un)n∈ω be a sequence of binary reflexive relations on a set X such that for each n ∈ ω, Un+1 ◦
Un+1 ◦ Un+1 ⊆ Un. Then there is a quasi-pseudometric d on X such that Un+1 ⊆ {(x, y) : d(x, y) < 2−n} ⊆ Un whenever
n ∈ ω. If each Un is a symmetric relation, then d can be constructed to be a pseudo-metric.

Corollary 2.2.2 Each (quasi-)uniformity U on a set X with a countable base is (quasi-)pseudometrizable (that is, there
is a (quasi-)pseudometric d on X such that Ud = U).

Corollary 2.2.3 Each (quasi-)uniformity U can be written as the supremum of a family of (quasi-)pseudometric quasi-
uniformities.

Corollary 2.2.4 A topological space is completely regular if and only if it is uniformizable, that is, can be induced by
a uniformity.

Proof. Let (X, τ) be a topological space that is uniformizable by some uniformity U . Then by the preceding corollary
U can be written as the supremum of pseudometric uniformities. Hence τ is the supremum of pseudometric topologies and
thus is completely regular.

In order to prove the converse, assume that X is completely regular. Then X carries the initial topology with respect to
the family of all continuous maps from X into the real unit interval ([0, 1], τ(m)) where m denotes the usual metric on [0, 1].
Consider the initial (quasi-)uniformity C∗(τ) on X determined by the family of these maps into the uniform space ([0, 1],Um).
Since C∗(τ) induces τ, we have shown that (X, τ) is uniformizable.

Corollary 2.2.5 Let V be a compatible quasi-uniformity on a completely regular space X. If V has the Lebesgue property,
then it is finer than the finest compatible uniformity U on X.

Proof. The continuous map idX : (X,V)→ (X,U) is uniformly continuous by Proposition 2.1.1.

Corollary 2.2.6 Let (X, τ) be a compact regular space and let U be a compatible uniformity and V a compatible quasi-
uniformity on X. Then U ⊆ V.

In particular C∗(τ) is the unique compatible uniformity on X and the coarsest compatible quasi-uniformity on X.

Proof. Consider the identity map idX : (X, τ(U)) → (X, τ(V)). It is continuous and open, so the map idX : (X,U) →
(X,V) is uniformly open. Hence U ⊆ V.

Definition 2.2.1 Let X be a set. A filter U on X×X consisting of reflexive relations is called a local quasi-uniformity
provided that for each U ∈ U and each x ∈ X there is V ∈ U such that V 2(x) ⊆ U(x). A local quasi-uniformity U on a set
X such that U = U−1 is called a local uniformity. A local quasi-uniformity such that U−1 is a local quasi-uniformity will be
called a pairwise-local quasi-uniformity.

In the same way as for a quasi-uniformity, a local quasi-uniformity U induces a topology τ(U). A topological space is called
a γ-space provided that its topology can be induced by a local quasi-uniformity having a countable base.

Exercise 2.2.2 Let (X,U) be a local quasi-uniform space and x ∈ X. Show that U(x) = {U(x) : U ∈ U} is the
neighborhood filter at x with respect to the topology τ(U).

Exercise 2.2.3 [70] Prove that a topological space (X, τ) admits a local uniformity if and only if its topology τ is
regular.

Example 2.2.1 A method to build γ-spaces that are not quasi-pseudometrizable was developed by Fox [22], answering
a question that originated in work of Ribeiro [62]. Fox and Kofner [23] constructed a γ-space with a Tychonoff topology that
is not quasi-pseudometrizable. The problem whether a γ-space satisfying some additional property is quasi-pseudometrizable
often turns out to be quite difficult.

The following positive result is not deep, but the method is often useful.
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Proposition 2.2.1 A topological space X is quasi-pseudometrizable if and only if its topology can be induced by a
pairwise-local quasi-uniformity U with a countable base.

Proof. Necessity is obvious. In order to prove sufficiency let U be a local quasi-uniformity with a countable base
{Un : n ∈ ω} for X such that U−1 is a local quasi-uniformity. Without loss of generality we may assume that Un+1 ⊆ Un
whenever n ∈ ω. Inductively we define a sequence (Vn)n∈ω of τ(U−1)× τ(U)-neighborhoods of ∆ as follows. If n = 0, choose
for each x ∈ X an n(x) ∈ ω such that U3

n(x)(x) ⊆ U0(x) and (U−1
n(x))

3(x) ⊆ U−1
0 (x) and set

V0 =
⋃
{U−1

n(x)(x)× Un(x)(x) : x ∈ X}.

If n > 0 and Vn−1 is already defined, choose for each x ∈ X an n(x) ∈ ω such that U7
n(x)(x) ⊆ (Vn−1 ∩ Un)(x) and

(U−1
n(x))

7(x) ⊆ (Vn−1 ∩ Un)−1(x) and set

Vn =
⋃
{U−1

n(x)(x)× Un(x)(x) : x ∈ X}.

An easy computation shows that V 2
0 ⊆ U2

0 and V 4
n ⊆ V 2

n−1 ∩ U2
n for each n > 0. Hence the quasi-uniformity V on X

generated by {V 2
n : n ∈ ω} satisfies τ(V) = τ(U) and τ(V−1) = τ(U−1).

Corollary 2.2.7 [70] A topological space is pseudometrizable if and only its topology can be induced by a local uniformity
possessing a countable base.

Problem 2.2.1 (for research) A lot of work has gone into the problem of characterizing topologically those topological
spaces that admit a compatible quasi-pseudometric. Numerous solutions to this problem have been suggested in the literature
(see e.g. [40, 29]). While in special cases the obtained criteria turn out to be quite useful, it seems fair to say that no known
general characterization of quasi-pseudometrizability is as useful as for instance the Nagata-Smirnov Theorem in the theory
of metrizable topological spaces.

Each quasi-uniformity contains a finest transitive quasi-uniformity coarser than U , often denoted by Ut.Of course, (Ut)−1 =
(U−1)t. Note that Ut and U may induce distinct topologies, for instance on any uniform space (X,U) with a connected topology
τ(U), the indiscrete uniformity on X is the only transitive quasi-uniformity coarser than U .

For any topological space (X, τ) we shall call (FN(τ))t the fine transitive quasi-uniformity and denote it by FT (τ). Since
each topological space admits a transitive quasi-uniformity, namely its Pervin quasi-uniformity, FT (τ) is compatible with τ.

Exercise 2.2.4 Observe that a topological space is zero-dimensional if and only if it admits a transitive uniformity.

A topological space is called transitive if its fine quasi-uniformity is transitive.
In the following example each n ∈ ω is identified with its set of predecessors, that is n = {0, . . . , n− 1}.

Example 2.2.2 [51] Let X be the set Qω (of sequences from ω to the rationals Q) equipped with the topology induced
by the quasi-uniformity U having the following countable base {Un : n ∈ ω}.

For each n ∈ ω and x ∈ X the set Un(x) is the set of all x′ ∈ X which (1) agree with x on the initial segment n, and (2)
for which the first coordinate ∆ := ∆(x, x′) in which x and x′ differ satisfies x(∆) ≤ x′(∆) ≤ x(∆) + 2−n.

In order to see that U is a quasi-uniformity, it suffices to show that for any n ∈ ω and any x, x′, x′′ ∈ X, we have that
x′ ∈ Un+1(x) and x′′ ∈ Un+1(x′) imply x′′ ∈ Un(x).

Indeed, note first that under our hypothesis x, x′, x′′ agree on n + 1. Set ∆0 := ∆(x′, x) and ∆1 := ∆(x′′, x′). We now
distinguish three cases.

Case 1: If ∆1 < ∆0, then ∆1 = ∆(x′′, x), x′(∆1) = x(∆1), x′(∆1) ≤ x′′(∆1) ≤ x′(∆1) + 2−(n+1), and thus x′′ ∈ Un+1(x).
Case 2: If ∆1 > ∆0, then ∆0 = ∆(x′′, x), x′′(∆0) = x′(∆0), x(∆0) ≤ x′(∆0) ≤ x(∆0) + 2−(n+1), and thus x′′ ∈ Un+1(x).
Case 3: If ∆1 = ∆0, then ∆0 = ∆(x′′, x), x(∆0) ≤ x′(∆0) ≤ x(∆0) + 2−(n+1) and x′(∆0) ≤ x′′(∆0) ≤ x′(∆0) + 2−(n+1),

and thus x′′ ∈ Un(x).
Let us note that τ(U) is a T1-topology, since ∩n∈ωUn(x) = {x} whenever x ∈ X.
We want to show that (X, τ(U)) is not transitive. Indeed we shall show that τ(U) is not non-archimedeanly quasi-

pseudometrizable. In order to reach a contradiction, we assume that it admits a quasi-uniformity with a countable (decreasing)
base {Tn : n ∈ ω} consisting of transitive entourages.

Then for each x ∈ X, choose k(x) ∈ ω such that Tk(x)(x) ⊆ U1(x); furthermore fix nx ∈ ω such that Unx(x) ⊆ Tk(x)(x).
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Viewing the rationals as having the discrete topology and working in the resulting space ωω, for each m, k ∈ ω we set
Am,k = {x ∈ ωω : nx = m and k(x) = k}. With the help of the Baire Category Theorem we find m, k ∈ ω such that
intAm,k 6= ∅ in the space ωω. Hence there are n ∈ ω, σ ∈ Qn and a dense D ⊆ [σ] such that, for all x ∈ D, k(x) = k and
nx ≤ n. (Here, [σ] = {x′ ∈ Qω : x′|n = σ}.)

Construct x1, . . . , x2n+1 ∈ D such that for each i = 1, . . . , 2n+1, xi restricted to n equals σ and such that for each i =
1, . . . , 2n, xi(n) + 2−n = xi+1(n). We see that xi+1 ∈ Tk(xi), because xi+1 ∈ Un(xi) ⊆ Unxi (xi). By transitivity we conclude
that x2n+1 ∈ Tk(x1) ⊆ U1(x1). But now x2n+1 ∈ U1(x1) requires x2n+1(∆) ≤ x1(∆) + 2−1 where ∆ := ∆(x1, x2n+1) = n.
However x1(∆) + 1 = x1(∆) + 2−n(2n) = x2n+1(∆). This contradiction completes the proof.

Remark 2.2.1 The first example of a topological space that is quasi-pseudometrizable, but not non-archimedeanly quasi-
pseudometrizable was constructed by to Kofner and is now called the Kofner plane [36]:

(The Kofner plane) Let X = R2. For each x ∈ X and ε > 0 let C(x, ε) be the closed disk of radius ε lying above the
horizontal line through x and tangent to this line at x. For x, y ∈ X define d(x, y) as follows: Set d(x, y) = 1 if y /∈ C(x, 1),
set d(x, y) = r if r ≤ 1, y ∈ C(x, r) and y /∈ C(x, s) for all s < r, and set d(x, y) = 0 if x = y. An application of the Baire
Category Theorem similarly to the one given above shows that the quasi-pseudometric space (X, d) is not non-archimedeanly
quasi-pseudometrizable. Hence it cannot be transitive, since this would imply that it admits a quasi-uniformity with a countable
base of transitive relations. We omit the proof that can be found in [19].

Problem 2.2.2 (for research) It is not known whether each (regular) quasi-pseudometric space (X, d) such that τ(d) ⊆
τ(d−1) is non-archimedeanly quasi-pseudometrizable.

Problem 2.2.3 (for research) No non-archimedeanly quasi-pseudometrizable (Tychonoff) space seems to be known that
is not transitive.

2.3 Bitopological Spaces

Definition 2.3.1 A bitopological space (X, τ1, τ2) consists of a set X equipped with two topologies τ1 and τ2. A map
f : X → Y between two bitopological spaces (X, τ1, τ2)→ (Y, σ1, σ2) is called bicontinuous provided that f : (X, τ1)→ (Y, σ1)
and f : (X, τ2)→ (Y, σ2) are both continuous.

Of course, it is natural to consider a topological space (X, τ) as a special case of a bitopological space, namely the
bitopological space (X, τ, τ). A lot of work has been done in extending concepts and results about topological spaces to
bitopological spaces. As expected, while in some cases such generalizations are more or less straightforward, in other cases
they are quite demanding and often highly controversial. Sometimes they also lead to completely unsatisfactory results, since
concepts that in the case of topological spaces are equivalent may extend naturally to concepts that are no longer equivalent
in the bitopological setting.

Given a quasi-pseudometric d on a set X, it is natural to study the bitopological space (X, τ(d), τ(d−1)).

Let X be a set and let A,B subsets of X. We let TA,B denote the binary relation

(X ×X) \ (A×B) = [(X \A)×X] ∪ [X × (X \B)].

In particular note that SA = TA,X\A.
In the following suppose that ξ is a collection of pairs < A,B > of subsets of X such that A ⊆ B.
If for a topology τ on X, for each ζ ⊆ ξ, we have clτ

⋃{A :< A,B > ∈ ζ} ⊆ ⋃{B :< A,B > ∈ ζ}, then ξ is called
(τ -)cushioned.

If for a topology τ on X, for each ζ ⊆ ξ, we have
⋂{A :< A,B >∈ ζ} ⊆ intτ

⋂{B :< A,B >∈ ζ} then ξ is called
(τ -)cocushioned.

If ξ =
⋃
n∈ω ξn where each ξn is τ -cushioned (resp. τ -cocushioned), then ξ is called σ-τ -cushioned (resp. σ-τ -cocushioned).

Exercise 2.3.1 Let X be a topological space. Prove that a collection of pairs < A,B > of subsets of X is cushioned if
and only if the collection of the corresponding pairs < X \B,X \A > is cocushioned.

As above, let ξ be a collection of pairs < A,B > of subsets of X such that if < A,B >∈ ξ then A ⊆ B. A pairbase for a
topological space X is such a collection ξ satisfying

(i) if < A,B >∈ ξ, then A is open, (ii) if C is a neighborhood of x ∈ X, then there exists < A,B > ∈ ξ with
x ∈ A ⊆ B ⊆ C.
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Proposition 2.3.1 (Fox [21]) A bitopological space (X, τ1, τ2) possesses a quasi-pseudometric inducing its bitopology
(that is, (X, τ1, τ2) is quasi-pseudometrizable) if and only if τ1 has both a σ-τ2-cushioned pairbase and a σ-τ1-cocushioned
pairbase, and τ2 has both a σ-τ1-cushioned pairbase and a σ-τ2-cocushioned pairbase.

Proof. Let (X, d) be a quasi-pseudometric space. Set Bd(x, 2−n) = {y ∈ X : d(x, y) < 2−n} whenever x ∈ X and n ∈ ω.
Let βn = {< Bd(x, 2−(n+1), Bd(x, 2−n) >: x ∈ X} and δn = {< Bd−1(x, 2−(n+1), Bd−1(x, 2−n) >: x ∈ X}. Then βn is both
τ2-cushioned and τ1-cocushioned, and β =

⋃
n∈ω βn is a pairbase for τ1. Also δn is both τ1-cushioned and τ2-cocushioned,

and δ =
⋃
n∈ω δn is a pairbase for τ2.

In order to prove sufficiency we shall make use of the following lemmas due to Fox:

Lemma 2.3.1 If (X, τ1, τ2) is a bitopological space where τ1 has a σ-τ2-cushioned pairbase µ and a σ-τ1-cocushioned
pairbase ξ, and where τ2 has a σ-τ1-cushioned pairbase λ and a σ-τ2-cocushioned pairbase ζ, then the hypothesis of the next
lemma is satisfied.

Proof. If β = {< A ∩ C,B ∪ D >:< A,B >∈ ξ and < C,D >∈ µ} and δ = {< A ∩ C,B ∪ D >:< A,B >∈ ζ and
< C,D >∈ λ}, then β is a σ-τ2-cushioned, σ-τ1-cocushioned pairbase for τ1, and δ is a σ-τ1-cushioned, σ-τ2-cocushioned
pairbase for τ2.

Lemma 2.3.2 Let (X, τ1, τ2) be a bitopological space, where τ1 has a σ-τ2-cushioned, σ-τ1-cocushioned pairbase β
and where τ2 has a σ-τ1-cushioned and σ-τ2-cocushioned pairbase δ. Then (X, τ1, τ2) has a compatible pairwise-local quasi-
uniformity with a countable base.

Proof. Without loss of generality we may assume β =
⋃
n∈ω βn and δ =

⋃
n∈ω δn, where βn ⊆ βn+1 and δn ⊆ δn+1, and

where each βn is both τ2-cushioned and τ1-cocushioned and each δn is both τ1-cushioned and τ2-cocushioned. We define for
any n ∈ ω,

Vn =
⋂
{TA,X\B :< A,B >∈ βn} ∩

⋂
{(TA,X\B)−1 :< A,B >∈ δn}.

Then Vn(x) is a τ1-neighborhood of x as βn is τ1-cocushioned and δn is τ1-cushioned. Also V −1(x) is a σ2-neighborhood
of x as βn is τ2-cushioned and δn is τ2-cocushioned. Given any τ1-neighborhood S of a point x ∈ X, as β is a pairbase for τ1
we may find n ∈ ω and < A,B >,< C,D >∈ βn such that x ∈ A ⊆ B ⊆ C ⊆ D ⊆ S. Then x ∈ A implies Vn(x) ⊆ B ⊆ C,
which implies V 2

n (x) ⊆ D ⊆ S. Similarly, given any τ2-neighborhood R of x, we may find n ∈ ω such that V −2
n (x) ⊆ R. It

follows that {Vn : n ∈ ω} is a countable base for a compatible pairwise-local quasi-uniformity on (X, τ1, τ2).
The assertion now follows by the proof of Proposition 2.2.1.

Corollary 2.3.1 [35] A bitopological space (X, τ1, τ2) is quasi-pseudometrizable if X is pairwise regular (that is, each
point has a τi neighborhood base consisting of τj-closed sets (i, j ∈ {1, 2}, i 6= j)) and both topologies have a countable base.

Exercise 2.3.2 Show that a topological space (X, τ) admits a local quasi-uniformity with a countable base if and only
if it possesses a σ-τ -cocushioned pairbase.

Corollary 2.3.2 A topological space is pseudometrizable if and only if it a γ-space that has a σ-cushioned pairbase.
(Note that a topological T1-space that has a σ-cushioned pairbase is called stratifiable.)

Exercise 2.3.3 (compare [19, Theorem 2.32]) Let (X,U) be a locally symmetric quasi-uniform space with a countable
base. Show that τ(U) is pseudometrizable. (Hint: Observe that τ(U) has a σ-cushioned pairbase.)

Exercise 2.3.4 Let d be a quasi-pseudometric on a set X. For fixed x ∈ X consider the function fx : X → R defined
by fx(y) = d(x, y) whenever y ∈ X. Then fx is (in the usual sense, see e.g. [12, p. 61]) τ(d)-upper semi-continuous and
τ(d−1)-lower semi-continuous.

Evidently, each quasi-uniform space (X,U) induces the bitopological space (X, τ(U), τ(U−1)). The obvious question which
bitopological spaces can be induced by a quasi-uniformity has the expected answer.

Example 2.3.1 Let [0, 1] be the real unit interval. For all x, y ∈ [0, 1] set r(x, y) = max{0, x − y}. Then r is a quasi-
pseudometric on [0, 1] and τ(r) is the so-called upper topology {(a, 1] : a ∈ [0, 1]} ∪ {∅, [0, 1]} on [0, 1]. Similarly τ(r−1) is
the lower topology {[0, a) : a ∈ [0, 1]} ∪ {∅, [0, 1]} on [0, 1].

A bitopological space (X, τ1, τ2) is called pairwise completely regular if it carries the coarsest bitopology that makes all
the bicontinuous maps f : (X, τ1, τ2) → ([0, 1], τ(r), τ(r−1)) bicontinuous (that is, τ1 and τ2 are both initial with respect to
this collection of maps and the topologies τ(r) and τ(r−1), respectively).

Proposition 2.3.2 A bitopological space (X, τ1, τ2) is quasi-uniformizable if and only if it is pairwise completely regular.

Proof. The proof is completely analogous to the proof of Corollary 2.2.4. Of course, we have to equip [0, 1] with the
quasi-uniformity Ur and its induced bitopology, and consider bicontinuous maps instead of continuous maps.
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[63] S. Salbany, Bitopological Spaces, Compactifications and Completions, Math. Monographs, No. 1, Dept. Math. Univ. Cape Town, 1974.

[64] M. Seyedin, Quasi-uniform spaces and topological homeomorphism groups, Canad. Math. Bull. 17 (1974), 97–98.

[65] M.B. Smyth, Completeness of quasi-uniform and syntopological spaces, J. London Math. Soc. 49 (1994), 385–400.

[66] E.F. Steiner, The relation between quasi-proximities and topological spaces, Math. Ann. 155 (1964), 194–195.

[67] P. Sünderhauf, The Smyth-completion of a quasi-uniform space, in: M. Droste and Y. Gurevich, eds., Semantics of Programming Languages and
Model Theory, “Algebra, Logic and Applications”, Gordon and Breach Sci. Publ., New York (1993), 189–212.

[68] J.W. Tukey, Convergence and uniformity in topology, Princeton University Press, 1940.
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