
Searching for Solutions inGames and Arti�cial Intelligence
Louis Victor AllisVersion 8.0 of July 1, 1994

Searching for Solutions inGames and Arti�cial Intelligence

ii

Voor Petra en Cindy

iv

Searching for Solutions inGames and Arti�cial Intelligence
PROEFSCHRIFTter verkrijging van de graad van doctoraan de Rijksuniversiteit Limburg te Maastricht,op gezag van de Rector Magni�cus, Prof. dr. H. Philipsen,volgens het besluit van het College van Dekanen,in het openbaar te verdedigenop vrijdag 23 september 1994 om 14.00 uur

doorLouis Victor Allis

Promotor: Prof. dr. H.J. van den HerikLeden van de beoordelingscommissie:Prof. dr. P.T.W. Hudson (voorzitter)Prof. dr. ir. J.L.G. DietzProf. dr. ir. W.L. van der Poel (Technische Universiteit Delft)Prof. dr. S.H. TijsDr. E. Wattel (Vrije Universiteit Amsterdam)
CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAGAllis, L. VictorSearching for Solutions in Games and Arti�cial Intelligence /L. Victor Allis ; [ill. by the author]. - [S.l. : s.n.](Wageningen : Ponsen & Looijen). - Ill.Thesis Maastricht. - With references. - With summary in DutchISBN 90-9007488-0NUGI 855Subject headings: arti�cial intelligence / games / search.Cover design: Rob Ferwerda

ContentsList of Tables xiList of Figures xiiiPreface xv1 Introduction 11.1 Speculations and AI : 11.2 Identifying the obstacles : 31.3 Uncovering hidden obstacles : : : : : : : : : : : : : : : : : : : 41.4 The problem statement : 51.5 Solving games : 71.6 Thesis outline : 92 Proof-Number Search 132.1 Knowledge representation and search : : : : : : : : : : : : : : 132.2 Pn-search: the algorithm : 172.2.1 The AND/OR-tree model : : : : : : : : : : : : : : : : 172.2.2 Main assumptions of pn-search : : : : : : : : : : : : : 182.2.3 Informal description of pn-search : : : : : : : : : : : : 222.2.4 The pn-search algorithm : : : : : : : : : : : : : : : : : 252.3 Enhancements : 292.3.1 Reducing memory requirements : : : : : : : : : : : : : 292.3.2 Reducing execution time : : : : : : : : : : : : : : : : : 312.3.3 Applying domain-speci�c knowledge : : : : : : : : : : 322.3.4 Transpositions : 392.4 Results : 432.4.1 Introduction : 432.4.2 The rules of awari : 43vii

viii CONTENTS2.4.3 Tournament programs : : : : : : : : : : : : : : : : : : 452.4.4 The algorithms compared : : : : : : : : : : : : : : : : 482.4.5 Comparing the performances : : : : : : : : : : : : : : 502.4.6 Test positions : 502.4.7 Results : 522.4.8 Conclusions : 592.5 Related algorithms : 602.5.1 Conspiracy-number search : : : : : : : : : : : : : : : : 602.5.2 SSS* : 612.5.3 B* : 622.5.4 A* : 633 Dependency-Based Search 653.1 Introduction : 653.2 The double-letter puzzle : 683.3 A formal framework for db-search : : : : : : : : : : : : : : : : 693.3.1 States and operators : : : : : : : : : : : : : : : : : : : 693.3.2 Paths : 723.3.3 Key classes : 753.3.4 Traversing Uk : 773.3.5 Summary : 843.4 Informal description of db-search : : : : : : : : : : : : : : : : 853.5 Algorithms : 883.6 Test results : 903.7 Applicability : 934 Qubic 954.1 Background : 964.2 Rules and strategies : 974.2.1 Rules : 974.2.2 Threats and threat sequences : : : : : : : : : : : : : : 974.2.3 Cube types and automorphisms : : : : : : : : : : : : : 994.3 Applying db-search : 994.3.1 A single-agent search in qubic : : : : : : : : : : : : : : 1004.3.2 A db-search framework for qubic : : : : : : : : : : : : 1024.3.3 Qubic-speci�c enhancements to db-search : : : : : : : 1044.4 Applying pn-search : 1074.4.1 Qubic as an AND/OR tree : : : : : : : : : : : : : : : 1074.4.2 Enhancements : 107

CONTENTS ix4.5 Solving qubic : 1094.5.1 Subdividing the game tree : : : : : : : : : : : : : : : : 1094.5.2 Statistics : 1134.5.3 Comparison with Patashnik : : : : : : : : : : : : : : : 1164.5.4 Reliability : 1185 Go-Moku 1215.1 Background : 1215.2 Rules and strategies : 1225.2.1 Rules : 1235.2.2 Threats and threat trees : : : : : : : : : : : : : : : : : 1245.2.3 Human strategies : 1285.3 Applying db-search : 1295.3.1 A single-agent search in go-moku : : : : : : : : : : : : 1305.3.2 A db-search framework for go-moku : : : : : : : : : : 1325.3.3 Go-moku speci�c enhancements to db-search : : : : : 1355.3.4 Heuristically improving the e�ciency of db-search : : 1395.3.5 Additional requirements for standard go-moku : : : : 1415.4 Applying pn-search : 1435.4.1 Go-moku as an AND/OR tree : : : : : : : : : : : : : 1435.4.2 Enhancements : 1435.5 Solving go-moku : 1485.5.1 Victoria's I/O : 1485.5.2 Subdividing the game tree : : : : : : : : : : : : : : : : 1495.5.3 Statistics : 1495.5.4 Reliability : 1526 Which Games Will Survive? 1556.1 Scope : 1556.2 Game properties : 1566.2.1 Perfect information : 1566.2.2 Convergence : 1576.2.3 Sudden death : 1586.2.4 Complexity : 1586.3 The games of the Olympic List : : : : : : : : : : : : : : : : : 1616.3.1 Qubic : 1626.3.2 Connect-Four : 1636.3.3 Go-moku : 1646.3.4 Nine men's morris : 165

x CONTENTS6.3.5 Awari : 1666.3.6 Othello : 1676.3.7 Checkers : 1686.3.8 Draughts : 1696.3.9 Chess : 1716.3.10 Chinese chess : 1726.3.11 Renju : 1736.3.12 Go : 1746.3.13 Scrabble : 1756.3.14 Backgammon : 1766.3.15 Bridge : 1776.4 Reviewing the problem statement : : : : : : : : : : : : : : : : 1796.4.1 The research questions : : : : : : : : : : : : : : : : : : 1796.4.2 The problem statement : : : : : : : : : : : : : : : : : 1816.5 Predictions : 1826.5.1 Future playing strength : : : : : : : : : : : : : : : : : 1826.5.2 The future of games : : : : : : : : : : : : : : : : : : : 183A Domain-speci�c solution to DLP 185Summary 187Samenvatting 189Curriculum Vitae 191Bibliography 193Index 203

List of Tables2.1 Pn-search algorithm. : 252.2 Most-proving node selection algorithm. : : : : : : : : : : : : : 262.3 Proof and disproof numbers calculation algorithm. : : : : : : 272.4 Node-development algorithm. : : : : : : : : : : : : : : : : : : 282.5 Ancestor-updating algorithm. : : : : : : : : : : : : : : : : : : 282.6 Pn-search algorithm (with current node). : : : : : : : : : : : 332.7 Ancestor updating algorithm (enhanced). : : : : : : : : : : : 342.8 Give-away chess results. : 362.9 Number of times an algorithm performed best of all. : : : : : 532.10 Comparing pairs of algorithms on easy positions. : : : : : : : 532.11 Comparing pairs of algorithms on hard positions. : : : : : : : 542.12 Test �gures per algorithm. : 542.13 Positions per group, per grouping algorithm. : : : : : : : : : 552.14 Positions per group, grouped by all four algorithms. : : : : : 583.1 Symbols used in db-search framework : : : : : : : : : : : : : 703.2 Main db-search algorithm. : 883.3 Dependency-stage algorithm. : : : : : : : : : : : : : : : : : : 883.4 Dependent-children algorithm. : : : : : : : : : : : : : : : : : 893.5 Combination-level algorithm. : : : : : : : : : : : : : : : : : : 893.6 Algorithm to �nd combinations of nodes. : : : : : : : : : : : 904.1 Number of positions in the qubic solution : : : : : : : : : : : 1144.2 Number of positions in qubic solution per depth. : : : : : : : 1175.1 Nodes per tree depth in go-moku solutions. : : : : : : : : : : 1516.1 Predictions for the Olympic Games in the year 2000 : : : : : 182xi

xii LIST OF TABLES

List of Figures1.1 The interdependencies of chapters : : : : : : : : : : : : : : : 102.1 and/or tree with proof numbers. : : : : : : : : : : : : : : : : 202.2 and/or tree with disproof numbers. : : : : : : : : : : : : : : 212.3 and/or tree with most-proving node R. : : : : : : : : : : : : 242.4 and/or dag with practical solution. : : : : : : : : : : : : : : 402.5 Cyclic and/or graph. : 412.6 Tree version of the graph of �gure 2.5. : : : : : : : : : : : : : 422.7 A position with legal moves A1, C4�2, D19�7, E4 and F2�4. 442.8 1: B1 f1 wins. After 1: E1? f1 south must play 2: F1: : : : : 452.9 Comparison based on grouping by �-� : : : : : : : : : : : : : 562.10 Comparison based on grouping by transpositions : : : : : : 562.11 Comparison based on grouping by basic pn : : : : : : : : : : 572.12 Comparison based on grouping by stones pn : : : : : : : : : 572.13 Comparison based on grouping using all four algorithms. : : : 593.1 Search graph after 1st dependency stage for theorem aaccadd. 863.2 Search graph after 1st combination stage for theorem aaccadd. 863.3 Search graph after 2nd dependency stage for theorem aaccadd. 873.4 Complete dependency-based search graph for theorem aaccadd. 873.5 Tree size per algorithm applied to the double-letter puzzle. : 924.1 Three types of groups in qubic. : : : : : : : : : : : : : : : : : 984.2 An 11-ply winning threat sequence. : : : : : : : : : : : : : : : 994.3 The 12 two-ply moves. : 1004.4 Cube numbers on the qubic board. : : : : : : : : : : : : : : : 1114.5 A deep winning line. : 1155.1 Threats in go-moku. : 1255.2 Complicated threats. : 126xiii

xiv LIST OF FIGURES5.3 Winning threat variations : 1275.4 White defending with multiple-stone replies : : : : : : : : : : 1325.5 White refutes a potential winning threat sequence. : : : : : : 1385.6 Global refutation of all potential winning lines. : : : : : : : : 1405.7 Black threatens to win by moves 1 through 7. : : : : : : : : : 1455.8 Replies to the threat sequence of �gure 5.7 : : : : : : : : : : : 1465.9 Deep variations : 1526.1 Estimated game complexities. : : : : : : : : : : : : : : : : : : 161A.1 Solution to instance aabdcbbdcaa of dlp. : : : : : : : : : : : : 186

PrefaceThe research presented in this thesis would have been impossible without thehelp of many persons, whom I want to recognize here.First of all, I would like to thank Jaap van den Herik for being myteacher. Jaap created an environment generously providing an abundance oflearning opportunities. His e�orts have been manifold, notably those aimedat teaching me how to write up scienti�c research as reected in this thesis.Still, any mistakes remaining are my own.Administrative complications unfortunately prevented my two auxiliarythesis advisors, Jonathan Schae�er and Bob Herschberg, from due mentionfor their essential e�orts. I would like to redress the balance. JonathanSchae�er's inuence on this thesis has several facets. His work on cn-searchforms the foundation on which pn-search has been built. During that process,his constant interest in pn-search has led to an increased understanding of thestrengths and weaknesses of the algorithm. Furthermore, his comments onearlier versions of this thesis have led to major improvements, most notably inchapter 3. Bob Herschberg has scrutinized many draft versions of this thesis.The ensuing comments and explanations, regarding all di�erent levels of theart of writing, can best be compared with a chess Grand Master introducinga young player to the many intricacies of the game. Bob's e�orts have notonly greatly improved the thesis at countless points, his guidance has shownme that much remains to be learned. For guiding me along this path, arduousas it may have been, I owe Bob Herschberg sincere thanks.Besides my three thesis advisors, I want to thank Maarten van der Meulenfor the research we did together. His contribution to the development of pn-search has been indispensable. I also want to thank my room mate DennisBreuker for always being available to discuss new ideas and for all the gameshe beat me at over lunch. I would like to thank Matty Huntjens for creatingorder in the chaos of my experiments and Loek Schoenmaker for creating theX-interface for our go-moku program. I want to thank Patrick Schoo for ourxv

xvi Prefacecollaboration on the qubic program. Many thanks also go to Barney Pell.Our email discussions, as well as the times we met in person have been asource of inspiration. I would like to thank my colleagues at the Departmentof Computer Science of the University of Limburg, for making me feel athome. Furthermore, I would like to thank my colleagues from the ai-groupat the Vrije Universiteit, who enabled me to �nish this thesis. Moreover, Iwould like to thank the Foundation for Computer Science Research in theNetherlands (sion) and the Netherlands Organization for Scienti�c Research(nwo) for their �nancial support.Besides the e�orts of my thesis advisors, the �nal version of thisdissertation has bene�ted from valuable suggestions by several people: IngoAlth�ofer, Barney Pell, Loek Schoenmaker, Mark Willems and the membersof the beoordelingscommissie.Finally, I want to thank my family and friends for their stimulatinginterest in my research. Most important of all, however, has been thecontinuous support and stimulation of my wife Petra and my daughter Cindy.Victor AllisBoukoul, July 1994

Chapter 1IntroductionIn this thesis "intelligent" games are investigated from the perspective ofArti�cial Intelligence (ai) research. In this chapter the relevance of suchinvestigations is discussed, leading to the formulation of a problem statement.1.1 Speculations and AIAll through history, mankind has been fascinated by the thought of creatingmachines to perform the most di�cult of tasks. Men of every era have dreamtof and speculated about achievements beyond the scope of the technology oftheir time. Yet, when confronted with a machine performing tasks at anunexplained high level, many willingly believed that science and technologyhad made it possible, instead of doubting the genuineness of the machine'sresults. For example:In 1769, Wolfgang von Kempelen demonstrated his chess-playing automa-ton, the Turk, to the world (Carroll, 1975). It was the �rst machine to createthe illusion of havingmental abilities: playing chess at a high level. Among itssuccesses was a victory over the Prussian king Frederick the Great. For manyyears, large numbers of people believed that the Turk was a true thinkingmachine, even though the technology of the 18th century did not hint athow such a machine could have been created. For exactly that reason, manyothers believed that the Turk had to be a fraud. Nevertheless, the secretof the small human chess-player hidden inside the Turk was well-kept until1834.With the creation of modern computers, the �eld of Arti�cial Intelligenceemerged as a new focal point for speculations. Some of these speculations1

2 Chapter 1. Introductionhave been made by scientists working within the �eld, while others have beenmade by laymen, such as those working in the motion-picture industry. Forinstance, movies such as 2001: A Space Odyssey, Star Wars andWar Gamesfeature computers (resp. hal, r2-d2 and c-3po, and wopr) which seemto have minds of their own. The impact of these truly arti�cially intelligententities, �ctitious as they may be, on the perception of ai research by thepublic at large is considerable. Predictions presented by leading scientists inthe �eld reinforce the image created by movies and science-�ction authors. Asan example we refer to the Inaugural Lecture delivered by Van den Herik inwhich he raised the question whether computers will be able to decide issuesof law (Van den Herik, 1991). Irrespective of Van den Herik's estimation ofseveral hundreds of years necessary to create an arti�cial judge, the spin-o�of such speeches in terms of nation-wide coverage by newspapers, radio andtelevision strengthens the general public's idea that the creation of arti�ciallyintelligent entities is within close range.It is important to distinguish clearly between the state-of-the-art in ai andspeculations concerning future achievements. We present three well-knownexamples of progress in ai, each of which has led to unjusti�ed speculations:1. Newell et al. (1957) created the General Problem Solver, a new controlmetaphor for representing and solving problems. The name of theirsystem led to speculations concerning the creation of a truly generalproblem solver. More than three decades later ai has not producedanything near such a goal.2. In 1959, Samuel created his learning checkers1 program which won agame against a human master player (Samuel, 1959; Samuel, 1967).From this single game, it has been wrongly concluded by many thatan arti�cial master checkers player had been created, while some evenbelieved that the game of checkers had been "solved" (Schae�er et al.,1991). Samuel's work on learning is classical within ai but only recentlyhave programs begun to compete with the best human checkers players(Schae�er et al., 1992).3. The medical diagnostic expert system mycin determines the infectiousagent in a patient's blood, and speci�es a treatment for the infection(Shortli�e, 1976; Buchanan and Shortli�e, 1984). Despite the promise1In this thesis we shall use the name checkers for the game played on an 8 � 8 board,which is called checkers in the United States of America, and draughts in Great Britain.We reserve the term draughts for the game played on a 10� 10 board.

1.2 Identifying the obstacles 3created by successes such as mycin, the development of expert systemshas been hindered by many problems, such as the knowledge-acquisitionbottleneck (Feigenbaum, 1979). Speculations regarding machines repla-cing doctors of medicine so far lack a scienti�c basis.The three examples illustrate that ai research in the last decades ofthe twentieth century is not directly involved in creating true intelligence.Instead, many of the stumbling blocks on the road to such a goal are nowthemselves the main subject of investigation. Only when these obstacles areremoved may we start looking for the goal implicit in the name of the �eld.1.2 Identifying the obstaclesIt is believed by many scientists that the main hurdle to be cleared whencreating arti�cial experts in practical domains is common-sense knowledge(Marr, 1977). Where humans are extraordinarily well equipped to acquirecommon-sense knowledge with their �ve senses, computers are de�cient inthis area. Despite e�orts in areas such as computer vision, robotics, speechprocessing etc., no computer program exists which exhibits even a basicunderstanding of the real world (Marr, 1977). This lack of knowledge severelyhandicaps computers in becoming experts in any real-world domain, suchas medicine, law, manufacturing etc. A direct consequence is the failurein dealing with natural languages. In conversations between human beingsmany things are left unsaid without hindering the participants. The gapsare �lled by common-sense knowledge and sentences are interpreted withinthe context of our world view. Many ai researchers thus believe thatcommon-sense knowledge is a vital ingredient for natural language processing(Charniak, 1978).Another area where nature has been generous to humans is learning.Humans continuously learn from their experiences, much unlike computerprograms. Whereas learning is an automatic built-in feature of infants, it isdi�cult to realize in computer programs, despite the e�orts spent on machinelearning (Michalski et al., 1983; Michalski et al., 1986).The lack of common-sense knowledge and of learning have a large impacton what computers can and cannot do. Besides these known obstacles,we may wonder whether other, hidden obstacles hinder progress in ai.For instance, some argue that intuition is a human quality which cannotbe implemented (De Groot, 1965), while others believe that intuition issimply a name for rule-based behavior where the rules are not accessible

4 Chapter 1. Introductionto consciousness (Michie, 1982). Thus, while some consider intuition to beunattainable for computers, others stress that to implement intuition, all weneed to do is to uncover the rules at its basis. In general, it is of interest toknow as many of the main obstacles hindering progress in ai as possible. Itremains in dispute whether intuition should be regarded as such.1.3 Uncovering hidden obstaclesSome new obstacles for ai research may become visible only after wehave successfully dealt with the obstacles apparent today. Others may bediscovered by concentrating on a set of domains where known obstacles playno role of importance, such as the domain of games. Many games, such aschess, checkers, go and bridge possess the property that they create a microworld (Van den Herik, 1983), in which common-sense knowledge and naturallanguages are not relevant. Instead, a small set of rules determines all possiblestates within the micro world. And yet, in most of these games, humans are(still) superior to their arti�cial counterparts. The game of go is a strikingexample: today's strongest go programs have reached a mere novice level.By investigating a game, we envision two possible outcomes.� If we achieve a playing strength su�cient to defeat the best humanplayers, analysis of the means which led to this improvement mayuncover new ai techniques.� If the playing strength keeps falling short, even after prolongedattempts, of that of the best human players, a better understandingof the problems inherent in playing the game at a high level may beacquired.We remark that the possibility remains that the results do not lead toprogress (i.e., to new ai techniques or a better understanding of the inherentproblems). In the �rst case, the improvement may be due to entirely domain-speci�c techniques which cannot be generalized to ai techniques (Dreyfus,1980). In the second case, we may �nd that we have di�culty in isolatingthe problems from our failed attempts. Although a lack of progress mayoccur in some cases, by investigating a representative set of games in thisway the probability increases that new ai techniques are developed or insightinto problems hindering progress is obtained.If similar problems are found in several di�erent games, it may help usto uncover obstacles which are likely to exist in real-world domains as well.

1.4 The problem statement 5It could also lead to an understanding of the restrictions of the techniquesapplied. We list two examples of this last phenomenon.� After the rapid increase in playing strength of computer chess programsin the seventies and eighties, it was suggested that an increase ofthe search depth by an extra ply (i.e., a move by one player), wasequivalent to an increase in playing strength of approximately 200elo points (Thompson, 1982). Now that progress in playing strengthhas slowed down, investigations in the relation between search depthand playing strength for checkers indicate that the added strength perply diminishes for deeper searches (Schae�er, 1993b). Furthermore,positions have occurred in tournament games where a search of 60 plywould be necessary to stand up against human knowledge (Schae�er,1993b). Because such searches are by far out of reach of currenttechnology, it has become clear that added knowledge is a vitalingredient to world-champion level checkers and chess programs.� In the early days of ai research, many new weak methods (i.e., usinglittle domain-speci�c knowledge) were demonstrated to succeed ontoy problems (Winston, 1992). It was believed that through deepersearch the results on toy problems could be extrapolated to real-worldproblems. This has proved to be more di�cult than anticipated. Usingsu�cient domain knowledge, state spaces can be reduced such thatproblems become solvable. However, when vital knowledge is excludedthe explosion of possibilities makes many such problems intractable.We postulate that when investigating su�ciently complex games with thegoal of outperforming human beings, success is likely to yield new aitechniques as their products, while failure presents a better understandingof problems and obstacles encountered. This observation is the basis of theproblem statement presented in the next section.1.4 The problem statementIn this thesis, we consider games which have the following �ve properties.Examples of games which have these properties include chess, checkers, goand bridge.1. Two-player. Most games are two-player games, as opposed to zero-player games (e.g., Conway's life (Berlekamp et al., 1982)), one-player

6 Chapter 1. Introductiongames (e.g., the 15-puzzle (Korf, 1985), Rubik's cube and peg solitaire(Beasley, 1985)) and multi-player games (e.g., poker and diplomacy (Halland Loeb, 1992)).2. Zero-sum. These are games where one player's loss is the other player'sgain. The prisoners' dilemma (Hofstadter, 1985) when considered as agame is not zero-sum.3. Non-trivial. A best playing strategy should not be trivially establish-able through enumeration or mathematical analysis. Examples oftrivial games are tic-tac-toe and nim.4. Well-known. These are games which have been played by large numbersof people, resulting in the game being known in several countries. Thisexcludes many mathematical games, and obscure variations on well-known games (such as give-away chess).5. Requiring skill. Some games serve mainly as a pastime, not requiringmuch skill. The more experienced player has no real advantage in thosegames, except maybe against novices (examples are many simple cardgames played by children). The games included here should exhibit astrong relation between skill and winning chances. Such a relation alsoexists in some games which are inuenced by a chance element, suchas backgammon and bridge, which are thus included.The �rst two properties (two-player and zero-sum) are selected to ensurethat cooperation between players can be excluded from the investigations.The third property (non-trivial) is necessary for us to have something toinvestigate. The last two properties (well-known and requiring skill) ensurethat the results of our investigations can be checked (for instance againststrong human players) and evaluated.To be more speci�c, we list the set of games played at the ComputerOlympiads which ful�ll all these criteria (Levy and Beal, 1989; Levy andBeal, 1991; Van den Herik and Allis, 1992). This list of games will henceforthbe called the Olympic List.awari, backgammon, bridge, chess, Chinese chess, checkers, connect-four, draughts, go, go-moku, nine men's morris, othello, qubic, renju,scrabble.We do not claim that the �fteen games of the Olympic List are theonly games satisfying the �ve properties listed above. However, as long as

1.5 Solving games 7su�cient challenges exist for the listed games, there is no need to try to becomplete.We are now ready to present our problem statement, consisting of twoquestions.Through an investigation of games of the Olympic List,1. which new ai techniques can be developed and2. which obstacles for ai research will emerge?The goal of this thesis is to �nd an answer to these questions. To thisend, we list below three detailed research questions, distinguishing betweenperformance levels of systems which may be the result of investigating gamesof the Olympic List.1. Which games can be solved (see section 1.5) and what techniques maycontribute to the solution?2. For which games can we create programs outperforming the best humanplayers in the near future, and what techniques contribute to theirperformance?3. In which games will humans continue to reign in the near future (say,at least the next decade) and what are the main obstacles to progressfor computer programs?Our attempts to answer these three questions have guided the research e�ortsdescribed in this thesis.Before we give an outline of the thesis in section 1.6, we must clarify theterm solved in relation to games. As there is no consensus about this term,we will give a de�nition in section 1.5.1.5 Solving gamesStating that a game is solved usually indicates in common parlance thata property with regard to the outcome of the game has been determined.Even for two-player zero-sum games with perfect information (see section6.2), at least three di�erent de�nitions could be meant, which we name ultra-weakly solved, weakly solved and strongly solved. The �rst two terms havebeen suggested by Paul Colley, while the third term has been suggested byDonald Michie.

8 Chapter 1. Introductionultra-weakly solved For the initial position(s), the game-theoretic valuehas been determined.weakly solved For the initial position(s), a strategy has been determined toobtain at least the game-theoretic value of the game, for both players,under reasonable resources.strongly solved For all legal positions, a strategy has been determined toobtain the game-theoretic value of the position, for both players, underreasonable resources.We remark that the reasonable resources mentioned may be a subject ofdiscussion. The size of the resources is meant only to give an approximateindication of the time and computing equipment allowed for reproducing asolving strategy. Without these restrictions, it could be argued that, forinstance, chess could be weakly solved. As a strategy to solve chess, an�-� search through the full game tree su�ces. The reasonable resourcesmentioned should typically allow the use of a state-of-the-art computer andseveral minutes of computation time per move.The de�nition of ultra-weakly solved indicates that, at the start of thegame, it is known what the outcome of the game would be with optimal playby both sides. It is not necessarily known how either player can achieve theoptimal outcome. The game of hex, for instance, is known to be a �rst-playerwin on all diamond-shaped boards, although no constructive strategy hasbeen determined. The game-theoretic value has been established by notingthat the game does not permit draws and that having an extra move cannotbe a disadvantage. Thus, since the �rst player does not need to lose, hex isa �rst-player win. This reasoning has not (yet) led to a winning strategy forthe �rst player, which makes it of little use to practical play.It is well-known that tic-tac-toe is a game-theoretic draw. A player whohas weakly solved tic-tac-toe only needs to be able to achieve a draw, in everygame she2 plays. It is not necessary for her to win against a non-optimallyplaying opponent, when she is given a winning opportunity.The de�nition of strongly solved demands a strategy not just from theinitial position(s), but from all legal positions. Thus, against a non-optimallyplaying opponent, each mistake must be capitalized upon. Examples ofstrongly-solved games are tic-tac-toe, nim (Knuth, 1969) and many chess2In contexts where the gender of a non-neutral third person is irrelevant, we will alwaysuse "she" and "her" to avoid the more cumbersome "s(he)" and "her/his".

1.6 Thesis outline 9endgames (Van den Herik and Herschberg, 1985; Thompson, 1986; Stiller,1989).An ordering exists between the three de�nitions. Any strongly-solvedgame, is also weakly solved, while a weakly-solved game is also ultra-weaklysolved. To see the latter, it su�ces to play a single game from each initialposition of the game, with both sides played by the system which solved thegame. The outcome of such a game is guaranteed to be the best attainableby both players, equaling the game-theoretic value of the game.In any domain for ai research, evaluation of the practical performance ofthe systems produced is essential. The natural performance test of a game-playing system is a match consisting of a large number of games against arated opponent. When claiming that a program has solved a game, it seemsreasonable to require the program to exhibit skill in such a match. A programwhich has ultra-weakly solved a game does not guarantee being capable ofplaying the game at all. A program which has weakly solved a game willat least draw every match it plays (while it plays both sides equally often).Note, however, that for games where the program has shown the game tobe a win for the stronger side, it is not guaranteed to exhibit any skill whenplaying the weaker side. The guaranteed performance level, i.e., ensuringthat no single match is lost, is in our opinion su�cient to declare a gamesolved.In this thesis, we consider a game solved when it is at least weakly solved.1.6 Thesis outlineIn 1988, research performed for a Master's thesis (Allis, 1988) led to solvingconnect-four, published as (Uiterwijk et al., 1989a). Inspired by this result,we decided to start with the �rst research question, i.e., determining whichother games of the Olympic List can be solved, and identifying techniqueswhich contribute to their solution. In particular, of the fourteen remaininggames of the Olympic List (i.e., excluding connect-four), we have selectedfour which seemed eligible for solution. These games are awari, qubic, ninemen's morris and go-moku. Awari and nine men's morris are selected for theirrelatively small state-space complexity (see chapter 6), while qubic and go-moku are selected since human experience indicates that the �rst playerhas an overwhelming advantage. As Ralph Gasser has been investigatingnine men's morris concurrently with our research (Gasser, 1991), we haveconcentrated on awari, qubic and go-moku.During investigation of these games, two new search techniques have been

10 Chapter 1. Introduction
1. Introduction

2. Proof-number

search

will Survive?

3. Dependency-
based search

4. Qubic 5. Go-Moku

6. Which GamesFigure 1.1: The interdependencies of chaptersdeveloped, viz. proof-number search (pn-search) and dependency-based search(db-search). While db-search forms the basis for solving qubic and go-moku,pn-search is an important contributing factor. Although our investigationsshowed that applying pn-search to awari leads to promising results, awari hasnot (yet) been solved. The results of our investigation of the �rst researchquestion are described in chapters 2 through 5.In chapter 6 the second and third research questions are investigatedleading to an evaluation of the problem statement.The thesis is organized as follows. It consists of four parts, the �rst ofwhich is this introduction. The second part consists of chapters 2 (Proof-Number Search) and 3 (Dependency-Based Search), containing descriptionsof the two search techniques developed in the course of this research.Both techniques are presented independently of their application to games.Chapters 2 and 3 can each be read independently of other parts of the thesisand are of special interest to those researchers who would like to apply thetechniques to their own research domains.The third part of the thesis consists of chapters 4 (Qubic) and 5(Go-Moku), each describing the solution to the game under investigation.Although it is recommended to read chapter 2 before any of the game-speci�cchapters, proof-number search is not essential foreknowledge. Dependency-based search forms the basis for solving qubic and go-moku. It is, therefore,necessary to read chapter 3 before starting on chapters 4 and 5.

1.6 Thesis outline 11The fourth part of the thesis consists of chapter 6 (Which Games WillSurvive?), in which all games of the Olympic List are investigated. For eachgame, we determine the value of four game properties, describe the stateof the art in game-playing programs, list the techniques applied and theobstacles to progress. Next we evaluate our research with respect to theproblem statement. Predictions regarding the future of games conclude thechapter. The fourth part of the thesis can be read independently of thesecond and third parts, although it is recommended that the reader �rstobtains some knowledge of the contents of these parts.The interdependencies between the chapters are pictured in �gure 1.1. Anarrow from chapter A to chapter B indicates that A is essential foreknowledgefor B. A dashed arrow between chapters A and B indicates that it isrecommended, but not essential, to read A before B.

12 Chapter 1. Introduction

Chapter 2Proof-Number Search2.1 Knowledge representation and searchProblem solving is one of the corner-stones of ai research. Within problemsolving, we distinguish two subprocesses: choosing a knowledge re-pre-sentation and performing a search. We remark that the term knowledgerepresentation is meant to include analysis, conceptualization and formalisa-tion. A well-chosen representation may considerably reduce the amount ofsearch needed to solve a problem, while a badly chosen representation mayrender solving a problem (virtually) impossible. As an example we presentthe mu-puzzle (Hofstadter, 1979).A production system consisting of four rewriting rules generatestheorems consisting of the letters m, i and u. In each production,x and y denote any string of letters.1. xi ! xiu2. mx ! mxx3. xiiiy ! xuy4. xuuy ! xyThe goal of themu-puzzle is to determine whether mu is a theoremin the above system, given that mi is the only axiom.In a �rst attempt to solve the puzzle, we represent a theoremsimply by its string of letters. The rewriting rules are used toexpand nodes of the search tree, where each node representsa theorem. We are now faced with a tree-search problem: to13

14 Chapter 2. Proof-Number Search�nd a path of rewriting rules leading from the initial state mi tothe goal state mu. A suitable tree-search algorithm is selectedto perform the search, such as breadth-�rst search or depth-�rst search. To select a search algorithm, various criteria maybe applied. For instance, breadth-�rst search guarantees thatthe �rst solution found is also the shortest solution (Nilsson,1980). A disadvantage of breadth-�rst search is that it requiresmore working memory than an algorithm such as depth-�rstsearch (Nilsson, 1980). Generally, each of the applicable searchalgorithms has its own advantages and disadvantages. In case nosolution exists, these algorithms have the disadvantage that thesearch will not terminate, as the set of theorems is in�nite.Instead of concentrating on the selection of the best possiblesearch algorithm, we may �rst try to optimize the chosenrepresentation. For the mu-puzzle, a better representationinvolves an extra item of knowledge per theorem. This Booleanitem, which we name IsTripleI, indicates whether the theorem'stotal number of is is a multiple of three. We can now verifythat each of the four rewriting rules creates new theorems withIsTripleI's value equal to that of the theorem it is createdfrom. The observation that mi (false) and mu (true) have unequalIsTripleI values is su�cient to prove that mu is not a theorem.In the mu-puzzle example, it was possible to eliminate all search byenhancing the representation of the puzzle. It illustrates that choosinga representation should have the highest priority when solving problems.Choosing a knowledge representation in problem solving is mostly domain-speci�c. Even though general techniques (such as abstraction, here appliedto the mu-puzzle) exist, their successful application remains the fruit of athorough understanding of the domain under investigation.For problems more complex than the mu-puzzle, a good representationgenerally does not eliminate all search; it merely reduces the size of the statespace to, hopefully, manageable proportions. It is then important to select asearch algorithm which will �nd a solution, if it exists, in an e�cient manner.The e�cient manner is to be understood here in a broad sense, includingprogramming time, calculation time and the required amount of workingmemory. The weighting of these resources depends on the circumstances inwhich the problem has to be solved.

2.1 Knowledge representation and search 15Thus, the domain-speci�c task of �nding a suitable knowledge represen-tation is performed in combination with the selection of a search algorithmwell-suited for the state space. In the course of a considerable number ofyears of research in ai, many di�erent search algorithms have been developed.We distinguish between several categories of search problems, such as thoserepresented by single-agent trees, and/or trees and game trees (Nilsson,1971). While the category that a search problem belongs to restricts ourchoice of search algorithms, within each category several search algorithmsexist, each with its own characteristics. These characteristics determine thescope of problems for which the algorithm may be preferred over the otheralgorithms within the same category. We remark that the division into searchcategories is not strict. An example relevant to this thesis is that two-valuedgame-tree searches can also be performed by search algorithms for and/ortrees.For the category of game trees, many di�erent search algorithms havebeen developed. We name the best known algorithms and mention the typeof search problems for which we believe they are best suited:� By far the best-known game-tree search algorithm is �-� search (Knuthand Moore, 1975). It is a directional (also known as depth-�rst)algorithm, having working-memory requirements linear in the depthof the tree investigated. Knuth and Moore (1975) have shown that�-� search achieves optimal e�ciency on perfectly-ordered uniformtrees. Application of iterative deepening to �-� search ensures formany application domains that strongly-ordered trees are traversed,resulting in close-to-optimal e�ciency on uniform trees (Campbell andMarsland, 1983).� Sss* is a best-�rst search algorithm (Stockman, 1979). It will neverinvestigate a node pruned by �-� search (Campbell and Marsland,1983).The algorithm has two drawbacks. First, as with all best-�rstsearch algorithms, the working-memory requirements are linear in thenumber of nodes created, thus exponential in the depth of the tree.However, recently variants requiring less working memory have beendeveloped (Reinefeld, 1994). Second, the reduction in the numberof nodes searched compared with iterative-deepening �-� search doesnot outweigh the cost of maintaining the search tree (or open list) inworking memory for most practical applications. However, if the cost

16 Chapter 2. Proof-Number Searchof heuristic evaluation is large compared to the cost of traversing thetree, or if obtaining a good ordering through iterative deepening for�-� search is di�cult for the domain under investigation, sss* may bean alternative to be preferred.� Another best-�rst search algorithm is b* (Berliner, 1979). It dependson the availability of reliable heuristic estimates for the upper and lowerbounds on the value of internal nodes. For chess, the algorithm has beenimplemented in hitech, but it remains unclear whether for this domainsu�ciently accurate upper and lower bounds can be estimated to resultin better move selection than by algorithms based on �-� search.� Conspiracy-number search (cn-search) (McAllester, 1988; Schae�er,1989) is a best-�rst search algorithm which determines the cardinalityof the smallest sets of (terminal) nodes which must change their valuein order to change the value of the root. Once this cardinality growsbeyond a pre-speci�ed bound, it is considered unlikely that the rootvalue will change, and the search is terminated. Cn-search has shownits merits in tactical chess positions (Schae�er, 1989), but has failedin a comparison with �-� search in a tournament chess program (Vander Meulen, 1990). Cn-search has as disadvantages the large amountof bookkeeping necessary at each node, and the subsequent amount ofworking memory required to perform the search. One of the ideasunderlying cn-search is that the distribution of the values over theleaf nodes of the tree, and the shape of the tree, should inuence theselection of the next node to be investigated.The last aspect of cn-search, using the shape of the tree to guide the search,has been singled out in proof-number search (pn-search), which can be seenas a successor to conspiracy-number search. In this chapter we present pn-search, which has the exploitation of non-uniformity as its main theme. Pn-search will be presented as an and/or tree search algorithm, even thoughall applications discussed in this thesis concern game trees.We introduce in section 2.2 the pn-search algorithm for and/or trees.In section 2.3, several enhancements to the algorithm are presented. Theseinclude techniques to reduce execution time and usage of working memory,examples of the application of domain-speci�c knowledge, and a discussionregarding transpositions within pn-search. Results of applying pn-search toa practical domain, the game of awari, are presented in section 2.4, whereits performance is compared with those of sophisticated implementations of

2.2 Pn-search: the algorithm 17�-� search. Finally, section 2.5 contains a discussion of related algorithms,analyzing the similarities and di�erences between pn-search and conspiracy-number search, sss*, b* and a*. (A* (Hart et al., 1968), a single-agentsearch algorithm, has been included in this list because of its similaritieswith pn-search.)2.2 Pn-search: the algorithmIn this section we introduce pn-search for and/or trees. First, in section2.2.1 we de�ne our tree model and a precise terminology for the remainderof the chapter. Then, the main assumptions of pn-search are described insection 2.2.2 and the notions of proof numbers and disproof numbers areintroduced. Next, section 2.2.3 informally discusses the order in which thenodes of a pn-search tree should be created. Finally, an algorithm in pseudo-code for pn-search is presented in section 2.2.4.2.2.1 The AND/OR-tree modelWe de�ne our tree model as follows. In the tree, there are two types of nodes:and nodes and or nodes. We assume that each node can be evaluated,leading to one of three values: false, true or unknown. Please note thedi�erence between nodes which have not yet been evaluated (thus whoseevaluation value is not yet known) and nodes which have been evaluated andobtained the value unknown.Nodes with evaluation value unknown can be expanded. When a nodeJ is expanded, a non-empty set of child nodes is created, each having J asparent node. A node which has been expanded is an internal node. There arethree kinds of leaf nodes, i.e., nodes without children. First, a node evaluatedto false or true is a terminal node. Second, a node which has evaluated tounknown is called a frontier node. Third, a node which has not yet beenevaluated is also called a frontier node.There are two tree-creation procedures, which we name immediate evalua-tion and delayed evaluation. When applying immediate evaluation each nodein the tree is immediately evaluated upon creation. The tree is initialized bycreating (and evaluating) the root. Then, as long as the tree has not beensolved, at each step a frontier node is selected (which, since it has alreadybeen evaluated, must have value unknown), expanded and all its children areimmediately evaluated. This process of expanding a node J and evaluatingJ 's children is called developing node J . In case of delayed evaluation, each

18 Chapter 2. Proof-Number Searchnode is only evaluated when it is selected, instead of at creation. Thus,the tree is initialized by creating the root (without evaluation). Then, ateach step a frontier node J is selected (which is guaranteed not to havebeen evaluated) and evaluated. If the evaluation value of J is unknown, J isexpanded (without evaluating J 's children). Here the process of evaluatinga node, possibly followed by its expansion, is also called developing node J .We remark that the terms frontier node and developing each have a doublemeaning. However, once the tree-creating procedure has been speci�ed, bothterms are unique. This approach has been chosen so that pn-search can beexplained independently of the tree-creation procedure.The value of an expanded internal and node A is determined as follows: ifA has at least one child with value false, A also has value false; otherwise, if Ahas at least one child with value unknown, A has value unknown; otherwise Ahas value true. The value of an expanded internal or node O is determinedas follows: if O has at least one child with value true, O also has valuetrue; otherwise, if O has at least one child with value unknown, O has valueunknown; otherwise O has value false. A tree is solved if the value of its roothas been established as either true or false. A solved tree with value true iscalled proved, while a solved tree with value false is called disproved.Throughout this chapter, we depict and nodes by circles and or nodesby squares in each of the �gures. Furthermore, and nodes can be recognizedby the arcs linking their children, in accordance with standard conventionsfor depicting and/or trees.2.2.2 Main assumptions of pn-searchBest-�rst search algorithms select a best node (according to some criterion)in the search tree, develop the node and then update such information as isnecessary for the algorithm to continue. The distinguishing factor of eachbest-�rst search algorithm is the manner in which a node is characterized as'best'.For pn-search we assume that we have no knowledge regarding a prioriprobable values of nodes, nor knowledge regarding correlations between nodevalues, although this knowledge could be added to the program (see section2.3.3). Instead, only the position of a node in the tree and its possiblecontribution to solving the tree is considered.First, we formulate the assumptions of pn-search, implying the above.Second, we present some de�nitions to aid in the description of pn-search.Third, using an example, we illustrate that some nodes are better in their

2.2 Pn-search: the algorithm 19contribution to solving the tree than others. Finally, we summarize our�ndings.AssumptionsWhile searching and/or trees, we make the following two assumptions.1. The probability distribution of values (true, false, unknown) for afrontier node is unknown.2. The probability distribution of values (true, false, unknown) for afrontier node is equal throughout the tree.Even though these assumptions mean that we cannot distinguish betweentwo nodes by looking at them independently of their context, neverthelesstheir position in the tree may inuence their expected contribution to solvingthe tree.De�nitionsWhen searching and/or trees, developing a single frontier node is ofteninsu�cient to solve the tree. In most cases, several frontier nodes mustobtain the value true to prove the tree or the value false to disprove it. Thisobservation is reected in de�nitions 2.1 and 2.2.De�nition 2.1 For any and/or tree T a set of frontier nodes S is a proofset if proving all nodes within S proves T.De�nition 2.2 For any and/or tree T a set of frontier nodes S is a disproofset if disproving all nodes within S disproves T.Since it will turn out that we shall use the cardinality of proof and disproofsets, these are given names in de�nition 2.3 and 2.4.De�nition 2.3 For any and/or tree T, the proof number of T is de�nedas the cardinality of the smallest proof set of T.De�nition 2.4 For any and/or tree T, the disproof number of T is de�nedas the cardinality of the smallest disproof set of T.

20 Chapter 2. Proof-Number Search
A

B C D

E F G H I J

K L M N O P

1

2 1

1 1

1 2 1

0true 1 1 1 false 1OO

OO

OO

Figure 2.1: and/or tree with proof numbers.ExamplesTo illustrate how the context can be used to distinguish between nodes, wehave depicted an and/or tree in �gure 2.1.With each node, we have associated the proof number of the subtree withthat node as its root, as de�ned in de�nition 2.3.All frontier nodes (E, F, I, L,M, N and P in �gure 2.1) have proof number1. This follows from the fact that only the node itself needs to obtain thevalue true to prove the whole subtree (consisting of only the node itself). Aterminal node with value true (node K in �gure 2.1) has proof number 0, sinceits value has already been proved. Terminal nodes with value false (node Oin �gure 2.1), have proof number 1, since there is no smallest �nite set ofnodes which can undo the fact that the node is disproved. Internal and nodesobtain the value true only if all their children are proved. Thus, internal andnodes (B, D, G, H and J in �gure 2.1) have proof numbers equal to the sumof the proof numbers of their children. For internal or nodes it su�ces toprove one of their children, in order to have the parent obtain the value true.Thus, for internal or nodes (A and C in �gure 2.1) we establish the proofnumber by taking the minimum of the proof numbers of their children.Root A of the tree in �gure 2.1 has proof number 1. This indicates thatsomewhere in the tree a frontier node exists, which, by obtaining the valuetrue, would complete the proof of the tree. The path from the root to thisfrontier node can be found by examining the proof numbers. To prove the

2.2 Pn-search: the algorithm 21
A

B C D

E F G H I J

K L M N O P

3

1 2 0

1 1

1 1

1

0

1 1 1 0 1true falseOOFigure 2.2: and/or tree with disproof numbers.root (an or node), it is su�cient to prove one of its children. Child C hasthe smallest proof number among the three children of A. The frontier nodewe are looking for thus lies within subtree C. In the same way, node G ispreferred over node H, since G's proof number is equal to 1, while H's proofnumber equals 2. To prove node G (an and node), it is necessary to proveall its children. Child K has already been proved, thus only a proof of nodeL is needed, which is the frontier node we have been looking for.We could now proceed and develop node L, in an attempt to provethe tree. Instead, we will �rst determine which nodes may contribute toa potential disproof. In �gure 2.2 we have depicted the same tree as in �gure2.1. With each node, we have associated the disproof number of the subtreewith that node as root, as de�ned in de�nition 2.4.The disproof numbers behave analogously to proof numbers, inter-changing the roles of and nodes and or nodes, and the cardinalities 0 and1. Thus, frontier nodes (E, F, I, L, M, N and P in �gure 2.2) have disproofnumber 1. A terminal node with value false (node O in �gure 2.2) has disproofnumber 0, since it is already disproved. Terminal nodes with value true (nodeK in �gure 2.2) have disproof number1. Internal and nodes (B, D, G, H andJ in �gure 2.2) have disproof numbers equal to the minimum of the disproofnumbers of their children. Internal or nodes (A and C in �gure 2.2) havedisproof numbers equal to the sum of the disproof numbers of their children.Root A of the tree in �gure 2.2 has disproof number 3. This means that

22 Chapter 2. Proof-Number Searchat least 3 nodes must obtain the value false to disprove the tree. Analysis ofthe tree shows that it involves one of the nodes E and F, node L and one ofthe nodes M and N.SummaryThe previous paragraphs illustrate that proof numbers and disproof numberscan be used to �nd nodes within the smallest subset of frontier nodes in thetree which, by all obtaining the same value, solve the tree.From the assumptions underlying pn-search it follows that the probabilitythat all nodes in a proof set obtain the value true increases with decreasingcardinality of the proof set (except in the trivial cases that the probabilityof evaluation to true equals either 0 or 1). As a result the total numberof node developments needed to solve a tree is (on the average) reduced by�rst focusing on potential solutions involving a small number of nodes (i.e.subtrees with small proof and/or disproof numbers), before trying to �ndsolutions known to require a larger number of nodes. This expectation is thebasis for the pn-search algorithm as described in the following sections.2.2.3 Informal description of pn-searchPn-search continuously tries to solve the tree by focusing on the potentiallyshortest solution, i.e., consisting of the least number of nodes. At each step ofthe search, a node which is part of the potentially shortest solution availableis selected and developed. After the development of a node, its proof numberand disproof number are established anew. Then, the proof and disproofnumbers of its ancestors are updated. This process of selection, developmentand ancestor updating is repeated until either the tree is solved or we haverun out of resources (time or working memory).The main issue yet to be resolved is to decide (1) to select a node in thesmallest proof set, or (2) to select a node in the smallest disproof set. We willshow in the following paragraphs that, maybe surprisingly, we can always doboth at the same time. This results in the de�nition of a most-proving nodeas in de�nition 2.5.De�nition 2.5 For any and/or tree T, a most-proving node of T is afrontier node of T, which by obtaining the value true reduces T's proof numberby 1, while by obtaining the value false reduces T's disproof number by 1.De�nition 2.5 assumes that within each unsolved tree T a frontier nodeexists, which is an element of the intersection of a smallest proof set and of a

2.2 Pn-search: the algorithm 23smallest disproof set of T. A stronger claim is that each pair consisting of asmallest proof set and a smallest disproof set has a non-empty intersection.We prove this stronger claim by induction.Proof� BasisFor each frontier node J the singleton set containing J is both the onlyproof set, and the only disproof set. The intersection of these two setscontains node J and thus is not empty.� Induction stepSuppose that the assumption has been proved for all children J1, .., Jnof an internal and node J. To disprove J, only one child needs to bedisproved. Let disp(Jx) be any disproof set of Jx which has minimalcardinality among all disproof sets of children of J. Then disp(Jx) is alsoa minimal disproof set of J. To prove J, all children must be proved.Let prove(Ji) (1 � i � n) be arbitrary minimal proof sets for eachof the children Ji. Then Sni=1 prove(Ji) is a minimal proof set of J,which we name prove(J). Thus disp(Jx) is a minimal disproof set ofJ, and prove(Jx) is contained in a minimal proof set of J. As disp(Jx)and prove(Jx) are minimal disproof and proof sets of Jx, they have anon-empty intersection according to the induction assumption. Thusdisp(J) and prove(J) have a non-empty intersection.The proof for internal or nodes proceeds analogously. 2We conclude that there is no conict of strategies between trying to proveor to disprove the tree: by repeatedly selecting a most-proving node, bothstrategies are executed simultaneously, without one strategy delaying theother. How to select the most-proving node using proof and disproof numbersis illustrated with an example tree.Below each node of the tree depicted in �gure 2.3, we have depicted itsproof number and disproof number (in that order). Thus, the least numberof nodes which must be developed to prove the tree is 3. The same numberof nodes is needed to disprove the tree.First, let us analyze the e�ort necessary to disprove the tree. As node A isan or node, it will only obtain value false if both children obtain value false.In other words, both children must be solved (with value false) to disprovethe tree. Thus, in both subtrees frontier nodes exist which are part of the

24 Chapter 2. Proof-Number Search
3,3

3,2

1,3 2,2

1,1 1,1 1,1

1,1 1,1 1,1 1,1

3,1

1,1

2,1

1,1 1,1 1,1 1,1

4,1

A

B

D

J K L

O P Q

M

E

N

R S

F G H I

C

Figure 2.3: and/or tree with most-proving node R.smallest disproof set of A. Second, let us look at the least number of nodedevelopments needed to prove the tree. For an or node it is su�cient tohave one child with value true to prove the or node. In other words, onlyone child needs to be solved (with value true) to prove the tree. The proofnumber of child B (3) is one less than the proof number of child C (4). Thus,all frontier nodes of a smallest proof set lie within subtree B. We concludethat all most-proving nodes lie within subtree B.With respect to subtree B an analogous analysis applies. However, sincenode B is an and node, the roles of proof number and disproof number areinterchanged. Thus, to prove B, both its children must be proved. Therefore,in both subtrees D and E, frontier nodes exist which are part of the smallestproof set of B. To disprove B, it is su�cient to disprove one child. Node Ehas disproof number 2, one less than disproof number 3 of node D. Thus, allfrontier nodes of a smallest disproof set lie within subtree E. We concludethat all most-proving nodes lie within subtree E.The selection within or node E is based on the disproof numbers, asit was for node A, and thus subtree N is selected. Within and node N nopreference exists on the basis of the disproof numbers and both R and S

2.2 Pn-search: the algorithm 25procedure ProofNumberSearch(root);Evaluate(root);SetProofAndDisproofNumbers(root);while root.proof 6= 0 and root.disproof 6= 0 andResourcesAvailable() domostProvingNode := SelectMostProving(root);DevelopNode(mostProvingNode);UpdateAncestors(mostProvingNode)od ;if root.proof = 0 then root.value := trueelseif root.disproof = 0 then root.value := falseelse root.value := unknown�end Table 2.1: Pn-search algorithm.are most-proving nodes according to de�nition 2.5. In such cases we will,somewhat arbitrarily, always select the leftmost child. Thus, R is selected tobe developed.To summarize, the selection of a most-proving node is based on proofnumbers among the children of or nodes and on disproof numbers amongthe children of and nodes.2.2.4 The pn-search algorithmIn this section the algorithmic details of pn-search are presented in pseudo-code, except for three domain-speci�c procedures and functions. In each ofthese three cases, the code for the implementation depends on the domainof investigation. The goal of each of these three, however, is domain-independent and has been speci�ed below.1. Evaluate(node). Assigns to node.value one of the values true, false andunknown.2. GenerateAllChildren(node). Assigns to node.numberOfChildren thenumber of children of the node, and to node.children[1..node.number-OfChildren] (pointers to) the children themselves.

26 Chapter 2. Proof-Number Searchfunction SelectMostProving(node);while node.expanded docase node.type ofor :i := 1;while node.children[i].proof 6= node.proof doi := i+1odand :i := 1;while node.children[i].disproof 6= node.disproof doi := i+1odesac ;node := node.children[i]od ;return nodeend Table 2.2: Most-proving node selection algorithm.3. ResourcesAvailable(). Returns a Boolean value which indicates whethersu�cient resources are available to continue the search. This functionwill typically test the availability of working memory.The algorithm of table 2.1 encodes the main loop of pn-search. The rootof the tree is created and evaluated. Then, at each iteration, a most-provingnode is selected and developed, followed by updating the proof and disproofnumbers of the most-proving node and its ancestors.The algorithm terminates when the tree is solved, or the program runsout of resources. We remark that there is a choice between implementingimmediate evaluation and delayed evaluation. The main di�erence betweenthese two methods is the amount of information available within trees ofthe same size: with immediate evaluation, all nodes in the tree have beenevaluated, while with delayed evaluation the frontier nodes have not beenevaluated. Due to the extra information, under the same working-memorylimitations, immediate evaluation is more often able to solve a tree thandelayed evaluation. In rare circumstances, however, delayed evaluation maybe preferable. Examples of these circumstances include trees with a large

2.2 Pn-search: the algorithm 27procedure SetProofAndDisproofNumbers(node);if node.expanded thencase node.type ofand :node.proof := �N2Children(node) N.proof;node.disproof := MinN2Children(node) N.disproofor :node.proof := MinN2Children(node) N.proof;node.disproof := �N2Children(node) N.disproofesacelseif node.evaluated thencase node.value offalse : node.proof := 1; node.disproof := 0true : node.proof := 0; node.disproof := 1unknown : node.proof := 1; node.disproof := 1esacelse node.proof := 1; node.disproof := 1�end Table 2.3: Proof and disproof numbers calculation algorithm.variance in the branching factor, and slow evaluation. We have chosen toimplement immediate evaluation, as it is used in all our applications of pn-search to games. Thus, all frontier nodes in the tree have been evaluated.The algorithm of table 2.2 encodes the selection of a most-proving node,in accordance with the description in section 2.2.3. Thus, at or nodes thechild with lowest proof number is selected, while at and nodes the child withlowest disproof number is selected. In case of a tie between children, theleftmost child is selected. Selecting the child with minimal proof number (inan or node) or disproof number (in an and node) is equivalent to selectinga child with proof number or disproof number equal to its father's. Weremark that in most applications children will not be ordered by their proofor disproof number, as the cost of updating the ordering may be prohibitive.If the children are unordered, selecting the leftmost child with equal proof ordisproof number on the average reduces the selection time of the most-provingnode by at least a factor two, compared with determining the minimum overall children. A detailed discussion of enhancements to the algorithm can be

28 Chapter 2. Proof-Number Searchprocedure DevelopNode(node);GenerateAllChildren(node);for i := 1 to node.numberOfChildren doEvaluate(node.children[i]);SetProofAndDisproofNumbers(node.children[i])odend Table 2.4: Node-development algorithm.procedure UpdateAncestors(node);while node 6= nil doSetProofAndDisproofNumbers(node);node := node.parentodend Table 2.5: Ancestor-updating algorithm.found in section 2.3.The algorithm of table 2.3 encodes the calculation of proof and disproofnumbers for a given node. It is a direct translation into pseudo-code of thecase-by-case observations made in section 2.2.2. We remark that "�" in thealgorithm indicates that the sum is calculated over all children, while "Min"indicates that the minimum over all children is calculated.The algorithm of table 2.4 encodes the development of a node. As statedbefore, we have implemented immediate evaluation.The algorithm of table 2.5 updates the proof and disproof numbers ofthe most-proving node and its ancestors. This is necessary to ensure that allnodes in the tree correctly reect the new situation after the developmentof the most-proving node. Starting from the most-proving node, the treeis traversed in the direction of the root, updating the proof and disproofnumbers of each ancestor. After the proof and disproof numbers of the roothave been updated, the algorithm is terminated (indicated by the fact thatthe root has no parent).This concludes our formal description of pn-search.

2.3 Enhancements 292.3 EnhancementsIn the previous section we have presented the pn-search algorithm. Severalenhancements exist. Some of these should be applied in most practicalcircumstances, since the added performance outweighs the additional im-plementation e�ort. The advantage associated with the other enhancementsdepends on the domain of application. In section 2.3.1 we focus on en-hancements reducing the amount of working memory needed to execute asearch. Section 2.3.2 deals with reducing the execution time necessary toselect the most-proving node and to update the proof and disproof numbersof the ancestors. The role of domain-speci�c knowledge when enhancing thealgorithm is examined in section 2.3.3. Finally, transpositions are discussedin section 2.3.4.2.3.1 Reducing memory requirementsPn-search has working-memory requirements linear in the size (number ofnodes) of the search tree. Depth-�rst search algorithms, such as �-� search,only require working memory linear in the depth of the search. As a result,working memory is a possible bottleneck when applying pn-search. Wediscuss two techniques to reduce memory requirements. The �rst techniqueis concerned with the removal of solved subtrees, while the second techniqueperforms pn-search at two levels.Deleting solved subtreesA node in a pn-search tree may inuence the search process in two ways:1. it is (on the path to) the most-proving node;2. its proof and disproof numbers inuence the proof and disproof numbersof its parent.Below, we show that solved subtrees do not inuence the search process ineither way, except that they may solve their parent immediately after theywere solved themselves.First, we show that a solved node is never on the path to the most-proving node. As long as the search is in progress the root is not solved. Wethus start the selection of the most-proving node from an unsolved node. Allunsolved nodes have �nite proof and disproof numbers unequal to zero. Sinceat each step of the selection, a child is chosen with a proof or disproof number

30 Chapter 2. Proof-Number Searchequal to that of its parent, each subsequent node must also be unsolved. Weconclude that a solved node cannot be on the path to the most-proving node.Second, we show that the proof and disproof numbers of a solved nodeeither solves its parent, or does not inuence its parent's values. A solvednode with value true has proof number 0 and disproof number in�nity. Aparent or node is solved by this child, and immediately obtains the valuetrue. A parent and node sums its children's proof numbers, to which the0 does not contribute, while it minimizes its children's disproof numbers, towhich in�nity does not contribute. Only if this child were the last unsolvedchild is the and node solved and obtains the value true. To a solved childwith value false an analogous reasoning applies, with false and true, proofnumber and disproof number, and and node and or node interchanged.We conclude that a solved subtree, once its parent has been updated,no longer inuences the search, and thus may be removed. An e�cientway to implement this enhancement in the SetProofAndDisproofNumbers()algorithm of table 2.3 is by deleting solved children when calculating the sumand minimum of the childrens' proof and disproof numbers.For a discussion of the expected gain of this technique, we refer to section2.4.Pn2-searchAs a second technique to reduce memory requirements, we present a shortdescription of a recent, so far unpublished, development in pn-search, namedpn2-search. The algorithm has been developed in collaboration with StefKeetman.Pn2-search consists of two levels of pn-search. The �rst level consists ofa pn-search (pn1), which calls as evaluation of any node J a pn-search at thesecond level (pn2), with a bound N on the maximum tree size. In pn2-searchN is chosen to be the current size of the pn1 search tree. The second level ofpn-search is a standard pn-search, with a normal (either standard or domain-speci�c) evaluation. The result of pn2 on node J is the value true or falsein case pn2 solved J , or the proof and disproof numbers of J , if J has notbeen solved. In the latter case, the proof and disproof numbers are used toinitialize J in pn1. After termination of pn2, its tree is removed from memory.We remark that several enhancements to pn2-search have been suggested toreduce the overhead associated with recreating deleted parts of the tree. Oneexample of such an enhancement involves storing the M last pn2 trees in acache, instead of deleting them, as suggested by Schae�er (1994). The gain

2.3 Enhancements 31achieved by such enhancements is a topic of future research. Pn2-search hasthe following properties.1. A search resulting in a pn1 tree of size N has searched approximately12 �N2 nodes.2. The memory requirements during the creation of a pn1 tree of size Nare approximately 2N nodes.3. Implementing pn2-search requires only minor changes to an implemen-tation of standard pn-searchIt has been established that the memory requirements of pn2-search are on theorder of the square root of the number of nodes investigated. Comparisons onawari and draughts have shown experimentally that pn2-search investigateson the average three times as many nodes as standard pn-search to solve thesame problem. This factor of three is independent of problem size within therange investigated.Given the approximate constancy of this factor, it follows that in caseswhere pn-search is bounded by trees of 106 nodes, pn2-search, with the sameresources of memory may usefully investigate 1012 nodes. This conclusioncan be extrapolated to even larger problems only when the factor of threesuggested by the experiments remains constant. Whether it does and whetherthe extrapolation therefore remains valid, is a topic for future research.2.3.2 Reducing execution timeThe main di�erence in execution time between a best-�rst search algorithm,such as pn-search, and a depth-�rst search algorithm, such as �-� search,is the number of node traversals necessary to select the most-proving node.The overhead speci�c to pn-search is the calculation of proof and disproofnumbers at internal nodes, being linear in the number of node traversals.The enhancement presented in this section reduces the number of nodetraversals per selection of the most-proving node. We remark that thesame enhancement can be and has been applied to conspiracy-number search(Klingbeil, 1989).At each iteration of pn-search we traverse the tree starting at the rootand ending at the most-proving node. After developing the most-provingnode, we follow the same path backwards until we are at the root. The basisof the enhancement consists of two observations.

32 Chapter 2. Proof-Number Search� If the proof and disproof numbers of an ancestor do not change, theupdating process can be terminated.� If a node J is on the path from the root to the most-proving node,and J's proof and disproof numbers are not changed by the updatingprocess, J also lies on the path from the root to the next most-provingnode.From these two observations it follows that at each iteration a node existswhere we can terminate the updating process, and start the next most-proving node selection. Such a node is called the current node, which isde�ned as follows.De�nition 2.6 For any and/or tree T, at any time during the executionof pn-search, the current node of T is de�ned as the ancestor of the previousmost-proving node J, closest to J, which had no changes to its proof anddisproof numbers caused by the development of J. Initially, the current nodeequals the root.Enhancing the pn-search algorithm to use the notion of current nodechanges the algorithms for ProofNumberSearch and UpdateAncestors. Thenew algorithms are shown in the tables 2.6 and 2.7.The current-node enhancement reduces the number of node traversals periteration from linear in the depth of the search tree to close to constant andshould therefore be included in most practical implementations of pn-search.We remark that at the cost of storing a most-proving node per subtree,the selection process can be changed into an instant most-proving nodeselection. Then, the most-proving nodes of the subtrees are updated duringthe updating of the proof and disproof numbers within the tree. Since theworking memory is the main bottleneck in most applications, we feel thatsmall gains in terms of processing speed do not warrant the extra spacerequirements.2.3.3 Applying domain-speci�c knowledgeTwo assumptions underly the formulation of the pn-search algorithm. First,the probability distribution of expected values of frontier nodes is equalthroughout the tree. Second, the distribution of probabilities over the threeevaluation values (true, false, unknown) is unknown. These two assumptionsdescribe a situation in which no domain-speci�c knowledge can be applied toguide the search through the tree. In many practical domains, however, at

2.3 Enhancements 33procedure ProofNumberSearch(root);Evaluate(root);SetProofAndDisproofNumbers(root);currentNode := root;while root.proof 6= 0 and root.disproof 6= 0 andResourcesAvailable() domostProvingNode := SelectMostProving(currentNode);ExpandNode(mostProvingNode);currentNode := UpdateAncestors(mostProvingNode)od ;if root.proof = 0 then root.value := trueelseif root.disproof = 0 then root.value := falseelse root.value := unknown�end Table 2.6: Pn-search algorithm (with current node).least some knowledge is available. In this section we show how such knowledgecan be applied to pn-search by altering the initialization of the proof and/ordisproof numbers of frontier nodes.We can view proof and disproof numbers as lower bounds on the e�ortnecessary to solve a tree. So far, the e�ort has been measured in nodedevelopments. We consider three methods to use alternative measures ofe�ort. First, we use the number of node evaluations as a measure of e�ort.Second, a domain-speci�c measure of e�ort is applied. Third, a functionof the tree depth is used to inuence the shape of the tree searched. Eachmethod is illustrated using a particular game, being give-away chess, awariand go-moku, respectively. Finally, we review the three methods applied.Evaluations as a measure of e�ortA node development, when using immediate evaluation, consists of expandingthe node and evaluating each of its children. Thus, the amount of e�ortinvolved in a node development depends on the number of children. We willuse as J 's proof number the least number of node evaluations necessary toprove node J and as its disproof number the least number of node evaluationsnecessary to disprove J . Let us assume that J will have n children when

34 Chapter 2. Proof-Number Searchfunction UpdateAncestors(node);changed := true ;while node 6= nil and changed dooldProof := node.proof;oldDisproof := node.disproof;SetProofAndDisproofNumbers(node);changed := (oldProof 6= node.proof) or(oldDisproof 6= node.disproof);previousNode := node;node := node.parentodreturn previousNodeend Table 2.7: Ancestor updating algorithm (enhanced).expanded. J 's proof and disproof numbers can be initialized using thatknowledge, even before J is expanded. If J is an or node, only one childneeds to evaluate to true to prove J , thus J 's proof number equals 1. Todisprove J , all n children must evaluate to false. J 's disproof number istherefore initialized to n. For an and node, the proof number is initializedto n, while the disproof number becomes 1.The advantage of using the number of evaluations as a measure of e�ort isthat a distinction between frontier nodes can be made which is not present instandard pn-search. It allows pn-search to focus on frontier nodes with fewerchildren before developing frontier nodes with more children. It is expectedthat in this way pn-search will �nd solutions more quickly. Below we presentresults from applying this method to give-away chess.Give-away chess is a variant of chess where a player wins as soon as shecannot make a legal move (i.e., she has no pieces left or her remaining piecesare blocked). The pieces move as in chess, with two exceptions:1. the king has no special status and can be captured like any other piece;2. a player is forced to make a capture move if she can (like in checkersand draughts).Castling and en-passant capturing are extremely rare in give-away chess. Tosimplify our implementation task, we have omitted these types of moves, thus

2.3 Enhancements 35rendering them illegal. In collaboration with Barney Pell we created the give-away chess program Prove-away, solely based on pn-search. A node evaluatesto true, if white is to move and has no legal moves, while it evaluates tofalse if black is to move and has no legal moves. All other nodes evaluate tounknown. Pn-search was implemented in two variants, one variant using thestandard initialization, and the other one using node evaluations as measuresof e�ort.To enable Prove-away to play games against opponents, it selects itsmoves by performing pn-search with a predetermined bound on the numberof nodes to be created. If the tree is not solved within that limit, the 1-plynodes are inspected and the move leading to a node with the minimal ratioof proof and disproof numbers is selected. If the tree is proved within thelimit, the move proving the tree is selected, ensuring a win for Prove-away.If the tree is disproved, the 1-ply node with the largest subtree is selected,speculating on the opponent not seeing her winning line. Although we haveno clear indication of the strength of Prove-away, it has beaten its humanopponents in all but three of its games (out of several dozen). Most gamesare decided by Prove-away �nding a winning line in which the opponent isforced at each move to capture one of the program's pieces, until the programruns out of moves and wins. The maximum depth of such lines in give-awaychess is 32 ply (16 moves by the program and 16 captures by the opponent).We conducted an experiment to compare the two variants of pn-searchdescribed above. During the experiment, Prove-away plays random gamesagainst itself. At each move in the game, both variants of pn-search (standardinitialization and using evaluations as measure of e�ort) create a tree, withthe current game position as root. As soon as one or both variants solve thetree, the game is terminated. If in a position neither variant solves the treewithin 25,000 nodes, Prove-away plays a random legal move to continue thegame. A total of 30 games were played, which lasted on the average 5.6 ply(i.e., a little less than three moves by white and three moves by black). Threegames where duplicates of other games, due to the fact that the programquickly proved that black wins after the opening moves 1. d2-d4, 1. d2-d3 or1. e2-e4, and each of these moves was selected twice as opening move duringthe 30 games. In the following we disregard the three duplicate games.The conditions of the experiment ensure that the �nal position of eachrandom game has been proved a win for one of the players by at least oneof the pn-search variants. In some games, both variants proved the win,while in others only the pn-search variant with the number of evaluationsas the measure of e�ort succeeded. In none of the games did only standard

36 Chapter 2. Proof-Number Searchstandard initialization by improvementinitialization no. of moves factordevelopments 5928 2661 2.2nodes visited 62323 7838 8.0branching factor 10.5 2.9 3.6max tree size 48935 5988 8.2nodes per sec. 169 132 0.8Table 2.8: Give-away chess results.pn-search solve the tree of the �nal position. To compare the performancesof both algorithms, we reran the standard algorithm with unlimited workingmemory on the positions where that variant had not found the win withinthe limit of 25,000 nodes. The results of the experiment are presented intable 2.8.Measured in number of node developments, the enhanced algorithm(using evaluations as measure of e�ort) gains a factor of a little over 2, whilein number of nodes the improvement factor is almost 8. These numbersindicate that the enhanced algorithm develops nodes with, on average, a 4times smaller branching factor (2.9 vs. 10.5). This clearly indicates that theselection of most-proving nodes is strongly inuenced by the non-standardinitialization. The average amount of working memory necessary to completethe search is speci�ed in table 2.8 as the maximal tree in memory per search.It is directly related to the total size of the tree created, resulting in animprovement by a factor 8. The extra time spent on counting the number ofmoves per terminal node slows the algorithm down approximately 20% pernode, compared to the standard initialization. Thus, the overall gain in cputime amounts to a factor of more than 6.We conclude that using the number of node evaluations as a measure ofe�ort to initialize the proof and disproof numbers may yield a signi�cantreduction in node evaluations, node developments and cpu time.Domain-speci�c measures of e�ortIn many domains, domain-speci�c properties exist which give an indicationof the amount of e�ort involved in solving a position (i.e., in solving theand/or tree with the position as root).

2.3 Enhancements 37For instance, in othello solving a position with only a few empty squaresis easier than solving a position with more empty squares. In draughts, it issimpler to solve a position if both players have only four men than if bothplayers have ten men. In these cases, we could select as domain-speci�cmeasures of e�ort the number of moves to the end of the game (othello) orthe number of men of the opponent to be captured (draughts and checkers).We illustrate the idea on the game awari. In the initial awari position,there are 48 stones on the board. Both players move stones around, with thegoal of capturing stones. The goal of awari is to capture more stones thanyour opponent. It follows that a player who has captured at least 25 out ofthe total of 48 stones, wins the game (for a de�nition of the rules of awari,see section 2.4.2). We use the number of stones a player needs to captureas the measure of e�ort. Let us assume that we would like to determinewhether north can win, or whether south can obtain at least a draw. Letus furthermore assume that south has so far captured 11 stones, while northhas collected 8 stones. We build the tree from the perspective of south, thusproving the tree means showing that south can reach at least a draw. In thegiven position, south must capture at least another 13 stones to reach a draw,while north needs another 17 stones to obtain the 25 stones necessary for awin. These values, 13 and 17, are then used as proof and disproof numbersof the position.In section 2.4.7 we present test results of applying pn-search to awarifor both the standard initialization and the stone-based initialization assuggested here.Depth-related measures of e�ortBy inspecting trees created by pn-search, we have found some occasions inwhich the shape of the tree indicated that much e�ort was spent on variationswhich were less likely to succeed quickly than some others. For instance, inmating problems in chess, where the weaker side was restricted to movingone piece between two squares, most variations had proof number one. As aresult, variations where the attacker moved a single piece aimlessly over theboard were searched very deeply. On one occasion, this resulted in a mate in114 moves being found, while a mate in 4 moves existed. Instead of puttinga hard limit on the depth of the search, examining deep variations can besomewhat discouraged by initializing the proof and disproof numbers of anode using a function of the depth of the node.By assigning higher proof and disproof numbers to nodes deeper in the

38 Chapter 2. Proof-Number Searchtree, it is expected that pn-search will create a somewhat shallower andbroader tree. Analogously, by assigning smaller proof and disproof numbersto nodes deeper in the tree, pn-search is expected to create deeper andnarrower trees. Inspection of trees created by pn-search with such alternativeproof-and-disproof-numbers initializations shows that the average node depthis indeed inuenced in accordance with these expectations.Experiments on go-moku (see chapter 5), with each node's proof anddisproof numbers initialized to the depth of the node measured in full moves,show that a somewhat broader, shallower tree is created, without losing pn-search's ability to �nd narrow, deep variations leading to a win. Comparisonson go-moku showed that this initialization was an improvement over thestandard initialization. The depth-related initialization was used in thesearch which led to solving go-moku.Despite this example, we do not have much ground for the assumptionthat such an initialization is an enhancement to pn-search for domainswith behavior similar to go-moku. Furthermore, the evaluation functionwe developed for go-moku also inuenced the success of the non-standardinitialization. Although a linear function in the depth of the node workedwell in go-moku, more complicated functions may be necessary for otherdomains. The strongest conclusion we are prepared to draw is that by usinga function of the depth of the node, the shape of the tree can be somewhatinuenced (either made broader and shallower, or narrower and deeper).Reviewing the application of domain-speci�c knowledgeWe have presented three ways in which domain-speci�c knowledge can beused to change the initialization of the proof and disproof numbers at frontiernodes. Although each of the three methods has been successful in improvingthe performance in a practical domain, some caution is in order, particularlywith the second and third methods. While the use of non-standard proof-and-disproof-numbers initializations may seem useful to guide the search process,the underlying principles of pn-search are violated. Two examples of violatedprinciples are: (1) the assumption that all frontier nodes are indistinguishableand (2) the assumption that the proof and disproof numbers are lower boundson the e�ort required to solve the tree. The positive inuence of di�erentinitializations may at the same time result in negative e�ects. We havefound that for some domains, such as othello, it is necessary to performa large number of experiments to �ne-tune the initialization process, akinto the process of �ne-tuning evaluation functions in game-playing programs

2.3 Enhancements 39(Gnodde, 1993). We conclude that as yet we lack a proper understandingof the precise e�ects associated with knowledge-driven proof-and-disproof-numbers initializations.2.3.4 TranspositionsThe de�nition of pn-search depends on the graph searched being a tree.When determining the proof and disproof numbers of an internal node J , thecardinality of the smallest proof set and disproof set must be determined.In a tree, the subtrees rooted at the children of J are disjoint, ensuringthat the cardinality of the smallest proof set and disproof set of J can becalculated from the cardinality of the smallest proof sets and disproof sets ofthe children.In many domains, however, the same subtree may be encountered severaltimes during the search, at di�erent places in the tree. The standard pn-search algorithm will in such cases obtain an upper bound on the cardinalityof the smallest proof and disproof sets, instead of the true proof anddisproof numbers. Problems and solutions related to the problem of thecommon subtree (transpositions) in combination with pn-search have beeninvestigated by Schijf (1993) and Schijf et al. (1994).In the following, we shortly describe problems and practical solutions fortranspositions in pn-search. We distinguish between directed acyclic graphs,abbreviated as dags and directed cyclic graphs, abbreviated as dcgs. Weremark that practical techniques for handling transpositions in game-playingprograms using �-� search have been extensively described in the literature(Greenblatt et al., 1967).Transpositions in DAGsTranspositions resulting in dags necessarily occur in games where each moveis a conversion, i.e. an irreversible alteration of the state of the game. Inchess, captures and pawn moves are examples of conversions, while non-capture moves by a piece (except for castling, and castling-forbidding moves)are non-conversions. In connect-four, qubic and go-moku, each move is aconversion, as in all three games the number of stones on the board strictlyincreases.As stated above, in a dag, addition of proof numbers or disproof numberspossibly overestimates the cardinality of the minimal set of nodes neededto solve the tree. Theoretically correct algorithms exist to establish thecorrect proof and disproof numbers at each node, but these are slow or use

40 Chapter 2. Proof-Number Search
2,2

2,1 2,1

1,1

1,1 1,1

1,1

A

B C

D E F

GFigure 2.4: and/or dag with practical solution.an inordinate amount of working memory, or both, thus barring practicalapplication (Schijf, 1993).A practical solution to this problem is to treat the dag as if it were a tree,thus calculating (incorrect) proof and disproof numbers of a node directlyfrom its children. The main di�erence in the algorithm is that while updatingancestors, all parents of a node must be updated recursively. In �gure 2.4,a dag is depicted where proof and disproof numbers are calculated directlyfrom their children. It can easily be shown that if node G is solved, rootA obtains the same value as G. Thus, the proof and disproof numbers of Ashould equal 1. Furthermore, G should be the most-proving node. Thus, bothnumbers in the root are too high, and the selection mechanism incorrectlyselects node D as the most-proving node. This example clearly indicates thatthe practical solution is no longer in accordance with the de�nitions of section2.2.2. Still, our experience with connect-four, qubic and go-moku shows thatthis practical pn-search algorithm for dags has advantages similar to thoseof standard pn-search.Transpositions in DCGsTranspositions resulting in dcgs appear in games where a series of non-conversion moves leads to a position which has occurred before. Specialrules govern the continuation of games after repetitions, leading by complexregulations to game-speci�c outcomes. There is fascination in the diversity

2.3 Enhancements 41

1,1

1,1

A

B C

D E

FFigure 2.5: Cyclic and/or graph.of these rules: in Chinese chess, some repetitions are illegal by the operationof complex rules; in go, any repetition is outlawed by the ko rule; in chess,�nally, a repeated position can give rise to a claim of a draw from its thirdoccurrence onwards.Figure 2.5 depicts a dcg; in �gure 2.6 we have converted that graph intoa tree. Each path in the tree terminates at a frontier node of the graph, orat a repetition of positions in the path. In this example we assume that arepetition evaluates to false. The tree contains three duplicates of node D.Among these three, two have the value false, while one has proof number2 and disproof number 1. The fact that the same node may have di�erentproof and disproof numbers depending on the path it lies on forms the basisof the complexity of performing pn-search on dcgs. Node C has propertiessimilar to node D. Moreover, we note that A's proof number (2) is less thanthe sum of the proof numbers of its children, as subtrees B and C have nodeE in common. The proof number at the root indicates that to prove the tree,both E and F must be proved. The disproof number 1 of A indicates thatdisproving either E or F disproves the tree.The dependence of the proof and disproof numbers of a node on thepath to that node forms the basis of the di�culties of cyclic transpositions.In Schijf (1993), a theoretically correct algorithm for pn-search on dcgs isdescribed. Unfortunately, its time and working-memory requirements are toocostly to warrant practical application.

42 Chapter 2. Proof-Number Search
2,1

2,1 1,1

2,1

1,1

1,1

1,1 false 1,1

1,1false

A

B

ED

C F

D

C F

ED

C

00,0

00,0

00,0Figure 2.6: Tree version of the graph of �gure 2.5.
Practical methods to apply pn-search to dcgs also exist. First, thepractical algorithm for dags may be applied with one modi�cation: onlypositions created after a conversion move are eligible to have more than oneparent. As a result, some transpositions are investigated only once, while forothers duplicates are created in the graph. Second, for each set of equivalentpositions, at most two nodes are created: one for all paths in which thenode occurs for the �rst time, and the second node when the node is itsown ancestor. The second node is initialized to the value associated with arepetition of positions in the game under investigation. In this case, if a nodeis its own ancestor through at least one path, the repetition of positions isused to update the ancestors on all paths leading to the node, including thosein which the node is not a repetition. Therefore, the search may incorrectlydeduce that a node must have the value of a repetition of positions. Thus,if the value of the root is proved to equal the value assigned to repetitionsof positions, the proof is not fully reliable. If the opposite value is proved,however, the proof is bound to be correct. For a detailed description of thesetwo practical algorithms for pn-search in dcgs, we refer to Schijf (1993).We believe that pn-search on directed cyclic graphs requires further in-vestigation.

2.4 Results 432.4 Results2.4.1 IntroductionIn this section we compare pn-search's performance with that of a sophisti-cated implementation of �-� search, by far the most commonly applied game-tree search algorithm in tournament programs for strategic games. As a testdomain, we have selected the game of awari, one of the games on the OlympicList. We have chosen awari for two main reasons. First, awari search treescontain non-uniformity, which make them suitable for the application of pn-search. Second, all strong tournament programs competing in the ComputerOlympiads selected their moves using sophisticated implementations of �-�search, establishing that awari search trees are suitable for application of �-�search.It will be shown that, for the purpose of proving the game-theoretic valueof a position in awari, pn-search outperforms �-� search by a wide margin. Itproves that a category of search trees exists for which pn-search outperforms�-�. Further indications of pn-search's strengths can be found in chapters4 and 5, where pn-search's contribution to solving qubic and go-moku isdescribed.This section is organized as follows. First, we present the rules of awari.Second, we give a description of the strongest existing awari programs, whichpresents evidence that our implementation of �-� search is competitive with�-� search implementations of other authors. Third, we describe in detailthe implementations of pn-search and �-� search and their performances arecompared. Fourth, it is explained how the nodes visited by both algorithmsare counted, which is important due to the di�erent nature of the algorithms.Fifth, we describe the set of awari positions to which the algorithms wereapplied. Finally, we present and analyze the empirical data.2.4.2 The rules of awariAwari is a two-player (south and north) zero-sum game with perfect informa-tion. It is one instance of a large family of games named mancala, of whichsome 1200 variants are known. The mancala games originate from Africa.Awari is mainly played in its western regions, such as Nigeria. For the gamedescribed here, the names wari or awele are also used (Deledicq and Popova,1977).Awari is played on a wooden board containing two rows of six pits. Eachplayer controls the row on her side of the board. South's pits (from left to

44 Chapter 2. Proof-Number Search
A B C D E F

abcdef

57

1 0 19 4 2

113100

South (to move)

North

4Figure 2.7: A position with legal moves A1, C4�2, D19�7, E4 and F2�4.right, as seen by south) are named A through F, while north's pits (from leftto right, as seen by north) are named a through f. At the right-hand sideof each row, an auxiliary pit is used to contain a player's captured stones.At the start of the game each pit (except the auxiliary pits) contains fourstones, for a total of 48 stones on the board.At each move, a player selects a non-empty pit X from her row. Startingwith X's neighbor, she then sows all stones from X, one at the time, counter-clockwise over the board (omitting the two auxiliary pits). If X containssu�cient stones to go around the board (12 stones or more), pit X is skippedand sowing continues. Thus, after the move, X will always be empty. Finally,captured stones, if any, are removed and stored in the auxiliary pit. Stonesare captured if the last stone sown lands in an enemy pit which after landingcontains 2 or 3 stones. If such a capture is made, and the preceding pitcontains 2 or 3 stones and the pit is an enemy pit, those stones are alsocaptured. This procedure is successively repeated for the pits preceding andends as soon as a pit is encountered containing a number of stones other than2 or 3, or the end of the opposing row is reached.A move is described by the name of the pit, followed by the numberof stones sown (the name of the pit by itself de�nes the move, but such anotation is prone to error). The number of stones captured, if any, is indicatedby the amount preceded by a "�". In �gure 2.7 an example position is shownwith south to move. Legal moves for south are: A1, C4 � 2, D19 � 7, E4and F2� 4.The goal of awari is to capture more stones than the opponent. The gameends as soon as one of the players has collected 25 or more stones. Twoother conditions exist which terminate the game. First, if a player is unable

2.4 Results 45
A B C D E F

abcdef

0

South (to move)

North

23 22

0 1 0 1 0

000001

Figure 2.8: 1: B1 f1 wins. After 1: E1? f1 south must play 2: F1:to move (i.e., all her pits are empty), the remaining stones are captured byher opponent. Second, if the same position is encountered for the third time,with the same player to move, the remaining stones on the board are evenlydivided among the players. In all cases, after the end of the game, the winneris the player who captured the most stones. If both players capture 24 stones,the game is drawn.A last rule exists to prevent players from running out of moves earlyin the game. Whenever possible, a player is forced to choose a movesuch that her opponent is able to make a reply move. It is, however, notcompulsory to look several moves ahead to ensure that the opponent willcontinue to be able to reply. For instance, �gure 2.8 shows a position inwhich south by playing 1. B1 can deliberately create a position in whichshe is unable to o�er north any stones on her next move. By doing so,south captures all three stones remaining on the board and wins the game.However, would she have played 1: E1, then after 1: : : : f1 she is forcedto play 2: F1, leaving the game for the moment undecided (although after2: : : : a1 3: B1 b1 4: C1 c1 5: D1 d1 6: A1 e1 we are back at the initialposition, giving south a second chance to play the winning move).2.4.3 Tournament programsLithidionIn 1990 Maarten van der Meulen and the author constructed an awari-playingtournament program, named Lithidion (Greek for 'little stone'). Lithidion atthe time consisted of an �-� search algorithm, and an endgame databasecontaining the game-theoretic value of each awari position with 13 stones or

46 Chapter 2. Proof-Number Searchfewer left on the board (Allis et al., 1991c).In 1991 Lithidion was enhanced with pn-search and a larger database (allpositions with 17 stones or fewer). In 1992 Lithidion was further enhancedwith an opening book. In describing Lithidion, we will concentrate on thislast version of Lithidion.The basis for Lithidion is its �-� search algorithm. Any position not in theopening book or the endgame database is searched with iterative-deepening�-� search. The evaluation function for leaf nodes is trivial: at each leafnode it is assumed that the players divide the remaining stones evenly. If,in the search tree, a position is encountered having 17 stones or fewer onthe board, its exact value is retrieved from the endgame database. Thus,the value of the �-� search is based on a combination of crude guesses forsome leaf nodes, and exact values for others (Beal, 1984). We remark that inawari the di�erence in the number of stones by which one wins is irrelevant.Therefore, the value retrieved from the endgame database is converted into�1 for losses, 0 for draws, and 1 for wins. Once the game has progressedto a position contained in the endgame database, no search is needed, andat each turn the best move is played instantly.After a move has been selected by �-� search (typically based on an 18-to-20 ply search), pn-search is called to check the move. If a proof can befound that the selected move loses, the move is rejected, �-� is asked to selecta new move, and the procedure is repeated. If all moves are proved losses, the�rst move selected is played, hoping for an error by the opponent. While theopponent is pondering on the position, Lithidion performs pn-searches on herpotential moves looking for wins. In case the opponent selects a losing move,Lithidion uses the proof by pn-search to select its winning move. The pn-search algorithm regards positions within the endgame database as terminalnodes, just as it treats positions where a player has no legal moves. Allother positions are internal nodes. In summary: pn-search is only used toprevent Lithidion from playing losing moves and to detect winning lines aftererroneous moves by the opponent. All other moves are based on �-� search.OpponentsLithidion has played in three tournaments: the awari tournaments of the2nd, 3rd and 4th Computer Olympiads (London 1990, Maastricht 1991 andLondon 1992). Lithidion won the gold medal each time. The tournamentsof the 2nd and 3rd Olympiads have been described in Levy and Beal (1991)and Van den Herik and Allis (1992).

2.4 Results 47In 1990, Lithidion's only opponent, Marco, written by Remi Nierat,winner of the gold medal at the awari tournament of the 1st computerOlympiad, lost all its games. Marco is based on human-expert knowledgeof awari, shallow �-� searches (averaging fewer than 10 ply) and no endgamedatabases. In most games, both Marco and Lithidion had prospects ofwinning, until Lithidion's endgame database was reached. At that pointMarco made one or more erroneous moves, leaving Lithidion with an easywin. In 1990, the main deciding factor was the endgame database (at thattime, all positions of 13 stones or fewer).In 1991, a new opponent appeared: MyProgram written by Eric vanRiet Paap. MyProgram had been created using the published descriptionof Lithidion (Allis et al., 1991c). It contained a large endgame database(all positions of 16 stones or fewer), a fast implementation of �-� searchincluding the singular-extension enhancement (Anantharaman et al., 1989)and the same evaluation function as Lithidion (see above). Lithidion defeatedMyProgram by the smallest possible margin, with three wins, two losses andone draw. In at least one of the games, pn-search played a decisive role,�nding a deep winning line in a position unclear to �-� search. Given thesmall di�erences between the programs (a 17-stone database versus a 16-stonedatabase, pn-search versus singular extensions, and MyProgram searchingtwice as many nodes per second), it is unclear what the exact impact ofpn-search on the match has been.In 1992, two new opponents appeared: Marvin and Juju. Juju turnedout to be no competition for its two strong opponents and lost all its games.Marvin was created by Ralph Gasser with Lithidion as its example. The�-� search algorithms of Marvin and Lithidion performed almost equallywell. Marvin's endgame database (20 stones), however, was much larger thanLithidion's (17 stones). A disadvantage to Marvin was that its database didnot �t in ram memory. Each entry retrieved from the hard disc slowed downthe �-� search. Two further disadvantages to Marvin were its lack of a pn-search implementation and of an opening book. As a later test indicated, theopening book was the decisive factor in this match, which Lithidion won by ascore of 4-2. The test consisted of replaying the �rst game from the positionwhere Lithidion had exited its opening book, with Marvin and Lithidionchanging places. Marvin easily won the game, similarly to the way Lithidionhad won the game during the tournament. Clearly, the opening book hadprovided Lithidion with a winning advantage.

48 Chapter 2. Proof-Number SearchConclusionWe have given a description of the architecture of Lithidion, the role of�-� search in it, and the competition it faced. From this description weconclude that Lithidion's �-�-search implementation has been thoroughlytested and has performed well in competition with strong opponents. Westress this point, since Lithidion's �-� search has been selected as the sparringpartner for pn-search in our comparison tests on awari. Such a comparison isonly valid if made against a sophisticated implementation, and we believethat practical evidence suggests that Lithidion's �-� search meets thoserequirements.2.4.4 The algorithms comparedFor our experiments, we have compared two variants of �-� search, and twovariants of pn-search. We will use the following abbreviations for the fouralgorithms:�-� �-� iterative-deepening search without transpos-ition tables.transposition �-� iterative-deepening search with transpositiontables.basic pn pn-search with standard initialization.stones pn pn-search with initialization based on the numberof stones to be captured.The �-� algorithm has the following characteristics. At each node, moves arepre-ordered by capture size. The largest captures are evaluated �rst, sincethe resultant positions are most likely to hit the database. Another reasonfor processing captures �rst is that they are often good moves. An iterative-deepening search is performed with a depth increase of 1 per iteration. Theresult of each iteration is a value and a move ordering of the full principalvariation. The search terminates as soon as the value of the position hasreached �1 or +1, indicating that the value of the position has beendetermined.The transposition algorithm is the same as �-�, except that it isextended with a transposition table of a quarter of a million entries. Thetransposition table is implemented as a hash table, with one entry per hashcode. At each node in the search tree, we �rst examine whether the position

2.4 Results 49is present in the transposition table. Then we investigate whether the depthto which it had previously been searched is at least as large as the currentdepth. If both conditions are met, the range of possible values stored in theentry is used to narrow the �-� window. If after updating � exceeds or equals�, the search returns to the node's parent. Otherwise, the search is continuedwith the narrowed window.After a node's value has been established, the results are stored in thetransposition table. If the value of the node is equal to the initial � or �,we only know that the node's value is less or equal to �, or greater or equalto �, respectively. Only if the value lies between � and � proper, is thevalue reliable and can be stored as the true outcome of the search to thegiven depth. Values �1 and1 are treated separately, since these values arealways indisputable. For those values, the searched depth is set to1 as well,since deeper searches cannot change a reliable value, making the informationapplicable to each following iteration. Collisions in the hash table are resolvedin favor of the position which has been searched most deeply. We remark thatunlike tournament chess programs, we store a full G�odel code per entry in thetransposition table, ensuring that two di�erent positions will not mistakenlybe regarded as equal.The transposition table is expected to be useful in awari in the middle andend games, when empty pits and pits containing single stones are common.A con�rmation of this assumption will transpire from the results of ourexperiments presented in section 2.4.7.Basic pn is the standard pn-search algorithm, enhanced with thetechnique which removes solved subtrees. Each frontier node is initializedto proof number 1 and disproof number 1.Stones pn is equal to basic pn, except for the initialization of frontiernodes. Instead of proof and disproof numbers being initialized to 1, thenumber of stones still to be captured by a player to achieve her goal is usedas the initialization, as explained in section 2.3.3. We remark that neithervariant of pn-search uses transposition tables.The �-� algorithm calculates approximately 10,000 nodes per second ona sun sparcstation 1+. The other three algorithms are roughly a factortwo slower. For transposition, storing and retrieving information from thetransposition tables is responsible for the slowed-down performance, whilethe pn-search variants have as extra overhead the creation and deletion ofnodes, as well as the calculation of the proof and disproof numbers.

50 Chapter 2. Proof-Number Search2.4.5 Comparing the performancesWhen selecting a search algorithm for an application, the elapsed cpu timeis an important selection criterion. However, experimental results on treesearches when measured in cpu time are di�cult to generalize, due toimplementation details. Instead, it is customary to compare the numberof nodes visited.In this case, a careful analysis is needed to determine the fairest way tocompare the number of nodes visited by �-� search and pn-search.Let us consider the number of nodes visited by �-� iterative-deepeningsearch. On the one hand, we could sum the number of nodes visited ineach iteration. However, this would be unfair to �-� search, since a smallernumber of iterations (e.g., by searching to even ply depths only) may resultin almost the same ordering and thus reducing the number of nodes visited.On the other hand, we could just take the number of nodes visited in thelast iteration. That would be unfair towards pn-search, as the last iterationdoes use the move ordering of previous iterations, and these searches shouldbe included in the total node count somehow. Moreover, �-� search withtransposition tables obtains many early cut-o�s during the last iteration dueto the solved subtrees stored in the transposition table.Instead, we have chosen to count at iteration i only the nodes at depthi. Then the extra iterations are an asset to �-� search, without costinganything in terms of the number of nodes visited. Re-ordering of the movesmay result in terminal nodes in a new iteration, which are not at the deepestlevel. These nodes are not counted at all. This slight bias in favor of �-�iterative-deepening search does not signi�cantly inuence the results.For pn-search, we simply count the total number of nodes created duringthe search.2.4.6 Test positionsAs mentioned in section 2.4.3, Lithidion has taken part in three awaritournaments of Computer Olympiads. In total, she played 23 games (5against Marco and 6 each against MyProgram, Juju and Marvin), of whichtwo games were identical, which can be explained as follows. Each of the �veprograms described in section 2.4.3 plays deterministically. Therefore, beforethe next game against the same opponent, a change should be made in theopening choice of the program to avoid losing in exactly the same way. Jujuforgot to do so once, and lost two games in identical fashion.

2.4 Results 51In the 22 di�erent games a total of 1707 positions have occurred (from theinitial position to the position after the last move had been played). Of thesethere were 1599 unique positions, which have been selected as the initial testpositions.For each of the initial test positions, a search with all four algorithms wasperformed. Since an awari game has three possible outcomes: win, draw andloss, and pn-search is a two-valued search algorithm, the three outcomes mustbe divided into two sets. We arbitrarily chose to treat a draw as equivalent toa loss for the player to move. Each of the searches has one of three possibleoutcomes:� The player to move has a proved win.� The opponent has at least a draw.� The search ran out of resources.Not all test positions can be used to compare the performance of the fouralgorithms. First, positions with 17 stones or fewer are solved immediately byall four algorithms through a single database lookup. Second, positions tooearly in the game are likely to be unsolvable by all four algorithms. Therefore,we have selected the relevant positions from the 1599 initial positions asfollows. Each position has been investigated by all four algorithms with aresource limit of 500,000 nodes per position. If after 500,000 nodes the searchhad not succeeded, it was terminated. Using the outcome of the searches,the following selection was made. First, the 2 positions in which the gamehad just ended were discarded since all four algorithms solved the positionsvisiting only a single node. The reason why only 2 such positions were foundout of 22 di�erent games is that most games ended by resignation. Second,all positions with 17 stones or fewer (496 in total) were excluded. Third,all positions which were not solved by any of the algorithms (764 in total)were labeled unsolvable. The remaining 337 positions are named the �naltest positions.We remark that in this way positions which are well suited for �-� searchwill be selected for the �nal test positions, as well as those positions wellsuited for pn-search. Thus, in our selection method of test positions there isno bias towards either of the algorithms.Each of the algorithms which failed to solve one of the �nal test positionswithin the 500,000 nodes limit, was given virtually unlimited resources to tryagain. In practice this meant a limit of a quarter billion nodes per position for

52 Chapter 2. Proof-Number Search�-� search, while for pn-search no �nal test position took more than aboutone and a half million nodes to solve.2.4.7 ResultsIn this section we present the results of the comparison of the four algorithmsdescribed in section 2.4.4 on the 337 �nal test positions of section 2.4.6.Each of the 337 �nal test positions was solved by basic pn andstones pn. Two positions were not solved by �-� within a quarter billionnodes, while there were two more positions not solved by both �-� andtransposition. In this section we have set the solution size of unsolvedpositions at a quarter billion, which is a lower bound on the number of nodesnecessary to solve them. Although this results in a bias in favor of �-� search,it does not inuence our conclusions and it allows us to include the positionsin the test results. Removing the positions from the �nal test set would beparticularly unfair towards pn-search, as it would ignore its �nest results.First, we present �gures indicating how often one algorithm outperfor-med another, without paying attention to the exact di�erence in node counts.Second, we tabulate the total number of nodes visited by each of the fouralgorithms, and calculate averages. Third, we group test positions by size ofsolution, and graphically depict the average di�erence in performance of thesearch algorithms per group.Outperforming the other algorithmsIn this section, we are interested in whether one algorithm performed betteron a speci�c test position than another algorithm, but ignore the size of thedi�erence. In our results we have divided the set of positions into two halves:the easy and the hard positions. To this end, we have sorted the positionsaccording to the minimum number of nodes in which a position was solved.As a result, the 169 positions which were solved by at least one algorithmin fewer than 3200 nodes, were classi�ed as easy positions, while the 168positions with smallest solution larger than 3200 nodes were named the hardpositions.In table 2.9 we have listed for each algorithm how often it outperformedall other algorithms, separated for easy and hard positions. If two algorithmsshared �rst place on a position, they were each awarded half a point.As can be seen from table 2.9, at the easy positions there is hardly anydi�erence between the �-� search algorithms (84 times best algorithm) andthe pn-search algorithms (85 times best algorithm). For the hard positions

2.4 Results 53�-� transposition basic pn stones pneasy 23 61 41 44hard 0 22 3112 11412Table 2.9: Number of times an algorithm performed best of all.
�-� transposition basic pn stones pn�-� - 35 79 9112transposition 134 - 89 100basic pn 90 80 - 82stones pn 7712 69 87 -Table 2.10: Comparing pairs of algorithms on easy positions.the picture is entirely di�erent: the pn-search variants are 146 times best,against just 22 times for the �-� search variants.Table 2.10 shows per pair of algorithms, how often one algorithm outper-formed the other, on the easy positions. Each entry at row R and column Cin the table indicates how often the algorithm heading row R found a solutionmore quickly than the algorithm heading column C. The same informationfor the hard positions is displayed in table 2.11.Table 2.10 indicates that transposition wins against the other threevariants, albeit with a small margin compared with the two pn-search variants(89 against 80 and 100 against 69).Table 2.11 clearly indicates that �-� has the worst performance of allfour algorithms. It loses in all cases against transposition, and only 6times outperforms the pn-search variants. Transposition occasionally doesbetter than the pn-search variants, but is outperformed in more than 85% ofall hard positions. Between the pn-search variants, the initialization basedon the stones to be captured seems to pay o�, given the 126 against 42 wincompared with the standard initialization.

54 Chapter 2. Proof-Number Search�-� transposition basic pn stones pn�-� - 0 6 6transposition 168 - 25 24basic pn 162 143 - 42stones pn 162 144 126 -Table 2.11: Comparing pairs of algorithms on hard positions.total nodes average nodes factor tree size�-� 2,437,035,522 7,231,559 128.8 -transposition 1,285,839,816 3,815,548 68.0 -basic pn 28,214,875 83,723 1.5 42,767stones pn 18,918,032 56,136 1.0 25,505Table 2.12: Test �gures per algorithm.Nodes visitedIn this section we concentrate on the number of nodes visited by eachalgorithm.In table 2.12 the �rst column of results lists the total number of nodesvisited on the 337 test positions, per algorithm, while the second columncontains the average per position. In the third column, the factor di�erencebetween each algorithm's average and the best average is presented. For bothpn-search variants we have also determined the maximum number of nodespresent in memory during each search. The average of these maxima havebeen listed in the last column of the table.From table 2.12 a pattern similar to that seen in tables 2.10 and 2.11becomes apparent: the pn-search variants perform best, with stones pndoing somewhat better than basic pn. With factors 68.0 and 128.8, both�-� and transposition are clearly outperformed.The average maximum tree size in memory during the pn-searches,compared to the average solution size, indicates that removing solved subtreesduring the search results in somewhat smaller memory requirements. Hereapproximately a factor 2 is gained. We remark that these �gures only relate

2.4 Results 55101 102 103 104 105 106 107 108 109�-� 18 47 40 45 57 61 36 26 7transposition 18 47 44 59 67 53 23 23 3basic pn 14 43 52 77 92 57 2stones pn 14 37 57 77 101 51Table 2.13: Positions per group, per grouping algorithm.to solved positions. In searches which are not successful, the number of solvedsubtrees is smaller, rendering the technique less e�ective.Performance by sizeTable 2.12 shows that pn-search is capable of outperforming �-� search by alarge factor. The table does not indicate, however, to what extend the gainfactor is related to the size of the search problems. Furthermore, we mustrealize that in the table the hard problems dominate the results.Measuring the size of the search problems is not a straightforward task,since a position which is di�cult to solve with �-� search may be rathersimple for pn-search or vice versa. Therefore, we have grouped the testpositions in four di�erent ways, each time according to one of the algorithmsapplied in our experiments. We describe the grouping process based on �-�.We have created groups for each power of 10. Thus, group i consists ofall positions which were solved by �-� in more than 10i�1 nodes, and lessthan or equal to 10i nodes. Within each group, the average number of nodesnecessary to solve all positions in the group is calculated, for each of thefour algorithms. These averages are then compared to see which algorithmperforms best on positions of the size represented by the group.In table 2.13 we have listed for each algorithm the number of positionsper group, depending on the algorithm used as grouping criterion. Thesenumbers indicate the size of each of the groups on which �gures 2.9, 2.10,2.11 and 2.12 are based.Figures 2.9, 2.10, 2.11 and 2.12 contain the results per group, wherethe groups are created according to the solutions of �-�, transposition,basic pn and stones pn, respectively. For each �gure, the numbers on thehorizontal axis indicate the log10 of the size of the groups. The numberson the vertical axis indicate the log2 of the factor di�erence between the

56 Chapter 2. Proof-Number Search
3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

1 2 3 4 5 6 7 8 9 10

pn stones

pn basic

a-b

transposition

relative
logarithmic
tree size

logarithmic
problem size

Figure 2.9: Comparison based on grouping by �-�
3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

1 2 3 4 5 6 7 8 9 10

transpositiona-b

pn basic

pn stones

relative
logarithmic
tree size

logarithmic
problem size

Figure 2.10: Comparison based on grouping by transpositions

2.4 Results 57

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

-1

-2

8

a-b

transposition

pn basic

pn stones

relative
logarithmic
tree size

logarithmic
problem size

Figure 2.11: Comparison based on grouping by basic pn

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

-1

-2

8

a-b

transposition

pn stones

pn basic

relative
logarithmic
tree size

logarithmic
problem sizeFigure 2.12: Comparison based on grouping by stones pn

58 Chapter 2. Proof-Number Search101 102 103 104 105 106 107 10815 43 46 65 75 57 35 1Table 2.14: Positions per group, grouped by all four algorithms.algorithms.In �gures 2.9 and 2.10 we see that on small problems �-� search doessomewhat better, while with increasing problem size, pn-search does betterand better. For the largest problems, the gain factor is around 500.In �gures 2.11 and 2.12, again pn-search does worse on the smallestproblems and quickly starts doing better on increasing problem size. Itis remarkable that the gain factor reduces when the problem size furtherincreases. The cause of this phenomenon is described below.In each �gure the algorithm used as grouping criterion plays an importantrole. In the �rst few groups we �nd positions which were suitable for that typeof algorithm, while in the last few groups the positions found were di�cultto solve for the algorithm. It is thus to be expected that in the graphs theother algorithms will do somewhat worse in the �rst groups, while they dosomewhat better on the last groups.This is exactly what can be seen in all four graphs. In �gures 2.9and 2.10 pn-search outperform �-� search starting from group 4, while in�gures 2.11 and 2.12 pn-search is the better algorithm from group 2 onwards.Furthermore, in the �rst two graphs pn-search's gain factor towards the lastfew groups grows remarkably fast, while in the second two graphs, with pn-search as the grouping criterion, pn-search's advantage reduces in the lasttwo groups.Thus, when looking at the groups for the hard problems, �gures 2.9 and2.10 are too attering towards pn-search while �gures 2.11 and 2.12 do notgive pn-search full credit.As a solution to this problem, we present one �nal graph. This time wehave determined the size of a problem in a more elaborate way. For eachsolution by an algorithm, we determine the log10 of the number of nodesvisited. For the four algorithms we then determine the average of theseexponents and use it as group number. The number of positions per grouphas been tabulated in table 2.14. We average the logs since node counts tendto grow exponentially instead of linearly.

2.4 Results 59

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

-1

-2

8

a-b

transposition

pn basic

pn stones

relative
logarithmic
tree size

logarithmic
problem size

Figure 2.13: Comparison based on grouping using all four algorithms.The singleton last group has been deleted, and its position has beenadded to the second last group, making a total of 36 entries in that group.The graph produced by this grouping criterion is pictured in �gure 2.13. Thenumbers on the axes have the same meaning as in �gures 2.9, 2.10, 2.11 and2.12. In it, the bias towards a single algorithm no longer exists. The �gurecon�rms the suggestion from the previous four �gures, that pn-search's gainfactor, compared with �-� search, grows with increasing problem size.2.4.8 ConclusionsIn this section we have compared the behavior of two pn-search variants withtwo variants of �-� search. The comparisons lead to clear conclusions: pn-search signi�cantly outperforms both variants of �-� search (cf. table 2.12)in proving game-theoretic values in awari. The gain factor di�erence betweenpn-search and the �-� variants tends to increase with increasing problem size(cf. �gure 2.13).We further conclude from table 2.12 that a domain-dependent initializa-tion can be bene�cial on awari, with the enhancement yielding a pro�t ofabout a factor 2. Moreover, the removal of solved subtrees in pn-search

60 Chapter 2. Proof-Number Searchdecreases the working memory requirements by a factor of about 2, inproblems which are ultimately solved.We believe that the success of pn-search on awari is due to the non-uniformity of the tree. Allis et al. (1991b) have attempted to measure thedegree of non-uniformity necessary for pn-search to outperform alternativealgorithms. The results of this section show that awari's non-uniformitywarrants the selection of pn-search for proving game-theoretic values insteadof �-� search variants.We tentatively conclude from these results that pn-search has contributedsigni�cantly to proving the game-theoretic values of other non-uniform trees,such as those of connect-four, qubic (see chapter 4) and go-moku (see chapter5).2.5 Related algorithmsIn this chapter we have presented pn-search as an and/or tree searchalgorithm. Its roots, however, lie within the game-tree search algorithms.So far we have applied pn-search only to game trees, including awari, chess(Breuker et al., 1994), connect-four (Allis, 1988), give-away chess, go-moku(see chapter 5), othello (Gnodde, 1993) and qubic (see chapter 4). In ourdiscussion of related algorithms we will therefore focus mainly on game-tree search algorithms. In this section, we discuss the relationships withconspiracy-number search, sss*, b* and a*, the latter being the only single-agent search algorithm in the list.2.5.1 Conspiracy-number searchConspiracy-number search (cn-search) is pn-search's direct ancestor. Cn-search was developed in the middle of the 1980s by McAllester, and hasreceived attention of many researchers since then (McAllester, 1988; Klingbeiland Schae�er, 1988; Klingbeil, 1989; Schae�er, 1989; Van der Meulen, 1990;Allis et al., 1991b; Lister and Schae�er, 1994).While pn-search focuses on the minimum number of nodes which mustconspire to prove the value of a position, cn-search determines the minimumnumber of nodes which must conspire to change the value of a position. Thismain di�erence is more apparent when looking at the search tree: pn-searchdoes not use a heuristic evaluation function to evaluate non-terminal nodes,while cn-search does.

2.5 Related algorithms 61Subtle di�erences between cn-search and pn-search can be identi�ed bycreating an instantiation of cn-search which resembles pn-search as much aspossible. To do so, we de�ne a three-valued evaluation function for cn-search,which returns -1 for a disproved node, 0 for a node with value unknown, and1 for a proved node. In such a tree, the conspiracy numbers for -1 and 1 ofa node correspond to the proof and disproof numbers of that node. Thesealgorithms only di�er in the manner in which the next node to be developedis selected, for which unpublished experiments on connect-four have shownthat the selection mechanism of pn-search performs better than the selectionmechanism of cn-search.In cn-search, for any potential value v of the evaluation function it isdetermined for each subtree howmany nodes, sayNv, within the subtree mustchange their evaluation value to v, to change the value of the subtree to v. IfNv for the root exceeds a certain limit, for all v unequal to the current rootvalue, cn-search assumes that the current root value is reliable and terminatesthe search. Schae�er's implementation showed that cn-search could achievegood results in tactical chess positions (Schae�er, 1989). Unfortunately,experiments with tournament chess programs (Van der Meulen, 1990) havenot been successful.We remark that, despite pn-search's success in analyzing awari positions,we do not claim that pn-search is better suited than cn-search to perform wellin a tournament chess program. Instead, we claim that the ideas behind cn-search, such as applied in pn-search, are better suited for proving values, thanfor determining the reliability of heuristic root values. Pn-search capitalizeson this suitability, concentrating on proving only. We do envision applicationsin tournament programs, as we have in our awari program. For instance,Breuker et al. (1994) have shown that pn-search may be an asset to chessprograms, to prove quickly whether a mating sequence exists in a given chessposition.We conclude that cn-search and pn-search are closely related, with pn-search focusing on a di�erent goal and being successful at it.2.5.2 SSS*With the availability of large internal memories, algorithms which storethe search in working memory have become of practical interest. One ofthe earliest game-tree search algorithms which uses a stored tree is sss*(Stockman, 1979; Campbell and Marsland, 1983).

62 Chapter 2. Proof-Number Searchsss* and pn-search are both best-�rst search algorithms. At each stepin the algorithm a node is selected according to a certain criterion andthen developed. This process is repeated until the tree has been solved, orresources have run out. An important similarity between sss* and pn-searchis that neither algorithm uses a heuristic evaluation function for internalnodes. Only leaf nodes are assigned a value, either by a heuristic evaluationfunction or by reliable game knowledge.The main di�erence between the algorithms is the criterion which deter-mines the selection of the next node. Sss* selects a node purely based onthe upper bound still achievable. At any point during the search the nodewhich has the highest possible upper bound is selected, while among equalsthe leftmost node in the tree is preferred. Pn-search does not use a rangeof terminal-node values. Instead, the set of possible terminal-node values issplit into two. Solving the tree means determining in which of the two setsthe true value lies. If the exact value from a larger range must be determined,pn-search should be called repeatedly, for instance by having pn-search bethe discriminating function in a binary search. While pn-search does not usea range of values, it bases its selection on the proof and disproof numbersimplying that a node is tried which may be part of a solution with minimale�ort.A predecessor of pn-search, viz. ��-cn search (Allis et al., 1991b), can beseen as a hybrid form of pn-search and sss*. It uses both a range of valuesand proof and disproof numbers (although these were named di�erently)to determine the next node to be developed. The main criterion is therange of possible values, like in sss*, while in case of a tie the proof anddisproof numbers are used. It can be shown, however, that trees exist withsolutions of only a few nodes, in which ��-cn search could spend a longtime in irrelevant subtrees (Allis et al., 1994). The solution to this problemconsisted of reducing the impact of the range of values, while enlarging therole of the proof and disproof numbers. The result of this change has beenthe development of pn-search.For a comparison of sss* and ��-cn search on random trees, see Allis et al.(1991b).2.5.3 B*B* is a best-�rst game-tree search algorithm introduced by Berliner (1979).It assumes that at each frontier node a special evaluation function returnsa reliable lower and upper bound on the true value of the node. After a

2.5 Related algorithms 63node is expanded, the lower and upper bounds of a node are calculated bymaximizing (or minimizing, depending on the node type) the lower and upperbounds of its children. Let us assume that the root of the tree is a max node.Let us further assume that the root has two children A and B, with values inthe intervals [0; 2] and [1; 3]. b*'s main goal is to determine the best move,without necessarily knowing the exact value of such a move. In our example,B is the most-promising child of the root. Before we can terminate the search,however, we should either prove that the upper bound (2) on A's interval canbe reduced to a value below the lower bound of B, which currently equals 1,or we should prove that the lower bound of B can be raised to at least thevalue of A's upper bound. These two di�erent strategies are called prove anddisprove.Focusing both on proving and disproving is a similarity with pn-search.However, a di�erence with pn-search is that there is no way to simultaneouslywork on both strategies. Thus, in b*, at each step �rst a choice must be madefor one of the strategies, followed by the selection of a node. Of course, aftereach node expansion, a change of strategies may take place. Since b* does notassume that some nodes may change their bounds more easily than others,we suggest that the concept of proof and disproof numbers could be a usefuladdition to b*.An important prerequisite of b* is the reliable evaluation function whichdetermines the lower and upper bound per node. Such an evaluation functionheavily depends on domain-speci�c knowledge, and may be a serious obstaclein many domains. If, however, the knowledge to create such a function isreadily available, b* provides a sound mechanism to incorporate it to guidethe search process. An alternative way to obtain these bounds through asmall search has been described by (Palay, 1982). For pn-search such a clearmechanism has not yet been formulated. In this respect b* has advantagesabove pn-search.2.5.4 A*A*, a single-agent search algorithm, has links with pn-search. A* is a best-�rst search algorithm, which uses an admissible evaluation function at eachfrontier node. Such a function calculates a lower bound on the total costsof the path from the root to a solution through that node. At each stepa node with minimal lower bound on the solution costs is developed. a*thus guarantees �nding an optimal solution (Hart et al., 1968; Hart et al.,1972; Nilsson, 1980).

64 Chapter 2. Proof-Number SearchWhere a* concentrates on the cheapest overall solution, including thee�ort already spent (i.e., the cost of the path from root to frontier node), pn-search selects a node on the basis of the cheapest remaining solution, thusignoring the contribution of already solved nodes and the path length fromthe root to the most-proving node. As a result, pn-search is not guaranteedto �nd the solution tree of minimal size.Surprisingly, a small change to pn-search is su�cient to let it �nd theminimal solution tree. If, at each internal node, we add one to the proofnumber and disproof number as calculated from its children's proof anddisproof numbers, then the proof number and disproof number at each nodeare a lower bound on the size of a solution tree for the node. We remark thatproof and disproof numbers now can only increase, making some changes tothe algorithm necessary. This algorithm, originating from discussions withIngo Alth�ofer, has been named mst*, short for Minimal Solution-Tree search.Mst*, as variant of pn-search, will be subject of future research.

Chapter 3Dependency-Based Search3.1 IntroductionIn section 2.1, we argued that choosing a representation and performinga search are two interacting subprocesses of problem solving. Betterrepresentations of a problem may result in smaller state spaces, andbetter search algorithms may traverse a given state space more e�ciently.While the game-tree search algorithm pn-search (chapter 2) focuses on thelatter, the single-agent search algorithm dependency-based search (db-search)introduced in this chapter, focuses on the former.Atomic vs. structured statesSearch problems are often modeled by treating states as atomic entities. Thismeans that two states are considered as either equal or di�erent, without theoption of a measure of similarity between states.As an alternative to atomic state representations, states can be structured,such as in strips (Fikes and Nilsson, 1971). In strips, each state is de�nedas a set of attributes. Each operator f is speci�ed by a precondition set, adelete set and an add set. In any state A containing the attributes of theprecondition set of f , f can be applied, yielding a state B. B consists of theattributes of A with the attributes of the delete set of f removed and withthe attributes of the add set of f added.To see how a structured state representation may help in reducing the sizeof a state space consider a production system P consisting of 10 rewritingrules r0; r1; : : : ; r9. 65

66 Chapter 3. Dependency-Based Search0 r0�! a1 r1�! l2 r2�! t3 r3�! o4 r4�! g5 r5�! e6 r6�! t7 r7�! h8 r8�! e9 r9�! rFurthermore, we consider production system P 0, which contains the 10 rulesof P as well as the rule r10.altogether r10�! goalRule r10 states that the string altogether may be replaced by the string goal.For both P and P 0, we start with the initial string 0123456789. The goal ofboth P and P 0 is to create the string goal. Clearly, in P there is no solution,while any order of applying rules r0 to r9, followed by the application of r10leads to the goal in P 0.First, let us represent P using atomic states. The state space will consistof 210 = 1024 states, each representing a mixture of digits and lower-caseletters. The state space of P 0 consists of the same 1024 states as P , withone additional state consisting of the string goal. Without the application ofdomain-speci�c knowledge, searching P consists of traversing the full statespace of 1024 states. The number of states visited in P 0 depends on thesearch algorithm applied. Depth-�rst search visits the goal as 11th state,while breadth-�rst search visits the goal state as number 1025.Second, let us represent P and P 0 using structured states. A possiblestructure consists of attributes of the form a(i; z), where i 2 f0; : : : ; 9g, andz 2 f0; : : : ; 9; a; e; g; h; l; o; r; tg. An attribute a(i; z) indicates that letter ordigit z occupies position i in the string represented by the set of attributes.In P 0 we have an additional attribute g representing the string goal. Therule r0 can now be represented by its precondition set fa(0; 0)g, its deleteset fa(0; 0)g and its add set fa(0; a)g. Similarly, rule r5 is represented by its

3.1 Introduction 67precondition set fa(5; 5)g, its delete set fa(5; 5)g and its add set fa(5; e)g.The rule r10 is represented by its precondition setfa(0; a); a(1; l); a(2; t); a(3; o); a(4; g); a(5; e); a(6; t); a(7; h); a(8; e); a(9; r)g;its delete setfa(0; a); a(1; l); a(2; t); a(3; o); a(4; g); a(5; e); a(6; t); a(7; h); a(8; e); a(9; r)g;and its add set fa(0; g); a(1; o); a(2; a); a(3; l)g:The number of states in the state space, as well as the number of states visitedby depth-�rst search and breadth-�rst search algorithms are equivalent to thenumbers found for atomic states.The di�erence between the atomic and the structured state representa-tions is that the structure of states provides us with a framework for reasoningabout relations between states and operators (e.g., rewriting rules), withouthaving to rely on domain-speci�c knowledge. As an example of such a relationbetween operators we state that any two rules ri and rj, for 0 � i < j � 9are independent, meaning that in any state where both rules can be applied,changing the order of application does not inuence the outcome.Clearly, all relations which can be found by using structured state re-presentations can also be found through a domain-speci�c analysis of theproblem at hand. The advantage of a general framework using structuredstates as introduced in this chapter is that the analysis is performed onceand for all for a category of problems.In this chapter we de�ne a framework, based on structured states andstrips-like operators. Within the framework, a set of conditions has beenidenti�ed which are su�cient to prove that a reduction of the state space canbe performed without the loss of solutions in the state space.Conventional search algorithms cannot traverse the reduced state space;but the db-search algorithm can. It is proved that db-search, introduced forthe purpose, traverses exactly the reduced state space.To give an indication of the amount of state-space reduction achieved byour framework, we once again look at the state space de�ned for productionsystems P and P 0. For P the reduced state space consists of 11 elements(an initial state and 10 states representing the changes by rules r0; : : : ; r9).For P 0 the reduced state space consists of 12 elements (one additional staterepresenting goal). These numbers should be compared with the 1024 and1025 found for the atomic-state representation.

68 Chapter 3. Dependency-Based SearchOverview of the chapterIn section 3.2 we describe the double-letter puzzle (dlp), which is used asan example throughout the chapter. In section 3.3 we formally de�ne aframework for a category of single-agent searches based on structured-staterepresentations. Each de�nition in this section is illustrated by its applicationto dlp. In section 3.4 db-search is described informally using the frameworkintroduced in the previous section, by applying it to an instance of dlp. Insection 3.5 we present algorithms in pseudo-code for db-search. In section3.6 we compare the performances on dlp of db-search and depth-�rst search.Finally, in section 3.7 the scope of applicability of db-search is discussed. Forpractical results of db-search we refer to chapters 4 and 5.3.2 The double-letter puzzleThe double-letter puzzle (dlp) is a production system consisting of an axiomand a set of 10 rewriting rules. The axiom is an element of fa; b; c; d; eg+.The rewriting rules are listed below.aa ! e j bbb ! a j ccc ! b j ddd ! c j eee ! d j aThe rewriting rules can be informally described as allowing any doubleoccurrence of a letter to be replaced by a single instance of its alphabeticalpredecessor or successor in a circular alphabet.We de�ne the set of theorems of dlp as follows:1. The axiom is a theorem2. If x is a theorem and there exists a rewriting rule r such that x r�! y,then y is a theorem.3. There are no theorems except as de�ned by 1. and 2.Each theorem of length 1 (i.e., a theorem consisting of a single letter) is calleda solution to dlp.

3.3 A formal framework for db-search 69Two solutions to instance aabdcbbdcaa of dlp are presented below.aabdcbbdcaa aa!b�! bbdcbbdcaa bb!a�! adcbbdcaa bb!c�! adccdcaa cc!d�!cc!d�! adddcaa dd!c�! adccaa cc!d�! addaa dd!e�! aeaa aa!e�! aee ee!a�!ee!a�! aa aa!bje�! b j eaabdcbbdcaa aa!b�! bbdcbbdcaa bb!c�! cdcbbdcaa bb!c�! cdccdcaa cc!d�!cc!d�! cdddcaa dd!c�! ccdcaa cc!d�! ddcaa dd!c�! ccaa cc!b�! baa aa!b�!aa!b�! bb bb!ajc�! a j cFrom the examples we see that a, b, c and e can be deduced. For a proofthat d cannot be deduced from aabdcbbdcaa, we refer to appendix A.3.3 A formal framework for db-searchIn this section we de�ne a formal framework for db-search. The frameworkis described in four steps. In section 3.3.1 we de�ne states and operators. Insection 3.3.2 we de�ne paths through the state space and classes of equivalentpaths. It is shown that conventional search algorithms traverse exactly theset of all paths. In section 3.3.3 key classes are de�ned. These form a subsetof the classes of paths de�ned previously. It is shown that, under accuratelyde�ned circumstances, the set of all key classes is complete, meaning that eachsolution path is represented by a key class. In section 3.3.4 we de�ne a meta-operator for traversing the state space de�ned by the set of all key classes.It is shown that the meta-operator is sound and complete, meaning thatthrough application of the meta-operator exactly all key classes are visited.Finally, in section 3.3.5, we summarize the properties of our framework.The description of the framework for db-search requires a large numberof de�nitions. For reference purposes, we have listed the symbols used in thissection and a short description of their meaning in table 3.1. Each de�nitionin this section is illustrated by its application to the instance of dlp withaxiom aacc.3.3.1 States and operatorsIn this section we �rst de�ne the set of attributes U and the state space Us.Then we de�ne operators (consisting of a precondition set, a delete set andan add set) which map states onto other states, followed by the set of all

70 Chapter 3. Dependency-Based Search
symbol descriptionU the set of all attributesUs the state spaceUi the set of all initial statesUg the set of all goal statesUf the set of all operatorsUp the set of all paths applicable to initial statesUk the set of all key classesf an operatorfpre the precondition set of operator ffdel the delete set of operator ffadd the add set of operator ff(S) the state reached when applying operator f to Sf1 � f2 f1 supports f2, f2 depends on f1f1 � f2 f1 precedes f2f(p;q;r;z1;z2) an operator in dlpP a pathP � Q the concatenation of paths P and QP � Q paths P and Q are equivalentP �= Q P and Q are transpositionsP (S) the state resulting from applying path P to state S[P]� the equivalence class of path PUp=� the set of equivalence classes of Upkey(P) the key operator (last operator) of path PP k Q the merge of paths P and QParf (P) the set of parents of operator f in path PAncf (P) the set of ancestors of operator f in path PAx the axiom state of dlpTable 3.1: Symbols used in db-search framework

3.3 A formal framework for db-search 71operators Uf . Finally, we de�ne the set Ui of all initial states, and the set Ugof all goal states.De�nition 3.1 Let U be a set of attributes. Then the state space Us isde�ned as 2U , the power set of U .We index the letters of the axiom in dlp from 0 to n � 1, where n isthe length of the axiom (i.e., 4 for dlp with axiom aacc). In the axiom, the�rst a has index 0, the second a has index 1, the �rst c has index 2 and thesecond c has index 3. Each letter in a theorem originates from a substringof the axiom. We represent a letter z in a theorem by three values: the �rstand last index of the substring of the axiom z originates from, and z itself.If aab is produced from aacc, the letter b originates from the substring cc inthe axiom, which has �rst index 2 and last index 3. Therefore, the b in aabis represented by A(2; 3; b).The set of all attributes U is speci�ed as follows.U = fA(i; j; z) j 0 � i � j � 3 ^ z 2 fa; b; c; d; eggAs the axiom will play a special role in many of the de�nitions of this section,we denote the state representing the axiom aacc by Ax. In accordance withde�nition 3.1, Ax 2 Us is represented as follows.Ax = fA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; c)gDe�nition 3.2 We de�ne an operator f as a 3-tuple hfpre; fdel; faddi, withfpre; fdel; fadd � U and fdel � fpre. The elements in the 3-tuple arenamed the precondition set, the delete set and the add set of f , respectively.Operator f is a partial function f : Us �! Us, de�ned as f(S) = (S n fdel)[fadd, for all S � fpre.De�nition 3.2 states that an operator f is applicable to each statecontaining all attributes in the precondition set of f . Applying operatorf to state S yields a state T , by deleting the attributes of the delete set of ffrom S and adding to the result the attributes of the add set of f . In dlp,two equal adjacent letters z1 are replaced by z2, which is either the successoror predecessor of z1. The two z1s originate from two adjacent substrings inthe axiom. Let the �rst z1 originate from the substring with start index pand end index q, and let the second z1 originate from the substring with startindex q+1 and end index r. Then, the indices p, q, and r, and the letters z1

72 Chapter 3. Dependency-Based Searchand z2 are su�cient information to de�ne an operator. In the following, wedenote with f(p;q;r;z1;z2) the operatorhfA(p; q; z1); A(q + 1; r; z1)g; fA(p; q; z1); A(q + 1; r; z1)g; fA(p; r; z2)gi:An example operator in dlp isf(0;0;1;a;b) = hfA(0; 0; a); A(1; 1; a)g; fA(0; 0; a); A(1; 1; a)g; fA(0; 1; b)giApplying f(0;0;1;a;b) to axiom state Ax yields fA(0; 1; b); A(2; 2; c); A(3; 3; c)g.De�nition 3.3 The set of operators de�ned within a domain is denoted byUf .Using de�nition 3.3 we de�ne for our instance of dlp the set of operatorsUf asff(p;q;r;z1;z2) j 0 � p � q < r � 3 ^ z1 2 fa; b; c; d; eg ^ z2 2 succpred(z1)gHere succpred(z) denotes a set containing the circular alphabetical successorand predecessor of z.De�nition 3.4 We denote the set of initial states by Ui, with Ui � Us. Wedenote the set of goal states by Ug, with Ug � Us.For our instance of dlp,Ui = ffA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; c)ggUg = ffA(0; 3; a)g; fA(0; 3; b)g; fA(0; 3; c)g; fA(0; 3; d)g; fA(0; 3; e)gg:3.3.2 PathsIn this section we �rst de�ne paths, which are just sequences of operators.We de�ne the application of a path to a state S, as one by one applying theoperators, starting from state S. Then solutions for a state S are de�ned asthe paths which, if applied to S yield a superset of a goal state. We thende�ne the extension of a path P , which is a path consisting of all operators ofP , in the same order, plus one additional operator. An equivalence relationfor paths is de�ned, which states that two paths are equivalent if one isa permutation of the other. Then, a notation for equivalence classes ofpaths is introduced. Finally, we describe the behavior of conventional searchalgorithms in terms of paths.

3.3 A formal framework for db-search 73De�nition 3.5 Any element P of Uf� is a path. Let P = (f1; : : : ; fn) be apath. Let concatenation of two paths P and Q be denoted by P � Q. Then,P is applicable to S if (1) P = �, or (2) P = (f) � Q and f(S) is de�nedand Q is applicable to f(S). If P is applicable to S, thenP (S) = fn(fn�1(: : : (f2(f1(S))) : : :)):For path P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)), applicable to the axiomstate Ax, it follows from de�nition 3.5 thatP (Ax) = f(0;1;3;b;c)(f(2;2;3;c;b)(f(0;0;1;a;b)(Ax))) == f(0;1;3;b;c)(f(2;2;3;c;b)(fA(0; 1; b); A(2; 2; c); A(3; 3; c)g)) == f(0;1;3;b;c)(fA(0; 1; b); A(2; 3; b)g) == fA(0; 3; c)gDe�nition 3.6 The set of paths Up, is de�ned as follows.Up = fP j S 2 Ui ^ P is applicable to SgIt can be checked that for our instance of dlp with initial state Ax, Up(de�nition 3.6) consists of 17 paths.Up = f�; (f(0;0;1;a;b)); (f(0;0;1;a;e)); (f(2;2;3;c;b)); (f(2;2;3;c;d));(f(0;0;1;a;b); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;b)); (f(0;0;1;a;b); f(2;2;3;c;d));(f(2;2;3;c;d); f(0;0;1;a;b)); (f(0;0;1;a;e); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;e));(f(0;0;1;a;e); f(2;2;3;c;d)); (f(2;2;3;c;d); f(0;0;1;a;e));(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;a)); (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;a));(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)); (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;c))gDe�nition 3.7 Let P = (f1; : : : ; fn) be a path applicable to S. We de�nethe following terminology with respect to P .1. P is a solution for S, if 9x 2 Ug x � P (S).2. A path Q is an extension of P , if Q = P � (f), for some operator f .We give examples for de�nition 3.7 using pathP = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)):

74 Chapter 3. Dependency-Based Search1. P is a solution for axiom state Ax, because P (Ax) = fA(0; 3; c)g andfA(0; 3; c)g 2 Ug.2. P is an extension of path (f(0;0;1;a;b); f(2;2;3;c;b))..De�nition 3.8 Let P and Q be paths. P and Q are equivalent, denoted byP � Q, if P is a permutation of Q.An example of de�nition 3.8 from the set of paths in dlp applicable toAx is (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)) � (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;c))De�nition 3.9 Let P 2 Up be a path. We denote the set of all paths Q 2 Upsuch that P � Q by [P]� (the equivalence class of P modulo �). The set ofall equivalence classes of Up modulo � is denoted by Up=�.From de�nition 3.9 and the example after de�nition 3.6 it follows that forP = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c));[P]� = f(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)); (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;c))g:We mention that in our instance of dlp Up=� consists of 11 equivalenceclasses.Traversing UpIn this section we describe how a conventional tree search algorithm traversesUp, as de�ned within our framework.As an example tree search algorithm, we discuss depth-�rst search (dfs).Starting from initial state Ax, dfs traverses a tree such that each node Nrepresents a path P applicable to initial state Ax. At node N , an operatorf of Uf can be applied, if f is applicable to P (Ax). In other words, f canbe applied at node N , if P � (f) is applicable to Ax, i.e., P � (f) 2 Up.Clearly, dfs will traverse a �nite Up fully, unless terminated early.A reduction of state space Up is applied in many practical domains. Wesay that P �= Q if P (Ax) = Q(Ax). Thus, if P �= Q, then P (Ax) and Q(Ax)are transpositions. From the de�nition of a path, it is clear that in such acase P and Q can be extended in exactly the same way. Thus, even though

3.3 A formal framework for db-search 75several paths may lead to the same state, the continuations from that stateneed to be investigated only once. Instead of traversing Up, we may thereforerestrict ourselves to traversing Up=�=. To do so, transposition tables are usedto store the results of investigating the continuations starting at each node.Before investigating a node, it is checked whether the node has already beeninvestigated (indicating that the node is a transposition) (Greenblatt et al.,1967).We conclude that conventional tree search algorithms traverse the statespace Up, which may be reduced by investigating each transposition onlyonce.3.3.3 Key classesIn this section we de�ne the key operator of a path (which is just the lastoperator of the path), key classes (which are equivalence classes of pathswhere all paths have the same key operator), and the set of all key classes. Wede�ne monotonicity, which indicates that in the course of executing operators,an attribute can never be recreated after it has been deleted. We de�nesingularity, which means that each goal state consists of a single attribute.Furthermore, we de�ne redundant paths, which are extensions of solutions.Finally, we show that the set of all key classes is complete under the conditionof monotonicity, singularity and the absence of redundancy. Completenessmeans that each solution in Up is an element of a key class.De�nition 3.10 Let P = (f1; : : : ; fn) be a path applicable to S. The lastoperator of a non-empty path P (i.e., fn), is called the key operator of thepath. Notation: key(P) = fn.For path P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)) we obtain from de�nition3.10 that key(P) = f(0;1;3;b;c).De�nition 3.11 Let C 2 Up=� be a class. C is a key class, if for all Pi; Pj 2C, key(Pi) = key(Pj). The set of all key classes of Up=� is denoted by Uk.The key of a key class C is de�ned to equal the key of the paths in C and isdenoted by key(C).From de�nition 3.11 and the example after de�nition 3.9, it followsthat for P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)), [P]� is a key class. ForQ = (f(0;0;1;a;b); f(2;2;3;c;b)), [Q]� is not a key class, since Q has key f(2;2;3;c;b),while (f(2;2;3;c;b); f(0;0;1;a;b)) has key f(0;0;1;a;b). We note that Uk for ourinstance of dlp consists of 7 key classes.

76 Chapter 3. Dependency-Based SearchDe�nition 3.12 A path P = (f1; : : : ; fn) applicable to S is monotonous forS if 8i6=j faddi \ faddj = ; ^ 8i S \ faddi = ;:Up is monotonous if all paths in Up are monotonous for all S 2 Ui.In our instance of dlp, there are 17 paths. Investigation shows that eachpath P is monotonous for Ax. From de�nition 3.12 it follows that Up ismonotonous.De�nition 3.13 We say that Ug is singular if each S 2 Ug consists of asingle attribute, i.e., jSj = 1.The Ug de�ned for dlp,Ug = ffA(0; 3; a)g; fA(0; 3; b)g; fA(0; 3; c)g; fA(0; 3; d)g; fA(0; 3; e)ggis singular, according to de�nition 3.13.De�nition 3.14 A path Q is redundant, if Q is an extension of P , and Pis a solution for an initial state, or P is redundant. Up is non-redundant, ifno path in Up is redundant.In dlp, there are no operators applicable to goal states. Therefore, thereare no redundant paths in dlp, as de�ned in de�nition 3.14.Completeness of UkIn section 3.3.2 we have shown that conventional search algorithms traverseUp. Through the equivalence relation �, we have de�ned classes of paths,Up=�. Of these classes, the subset Uk of key classes has been singled out.In this section we will show that to �nd all solutions in Up, it is su�cientto consider only paths which are elements of key classes, thereby restrictingthe size of the state space. Our proof is based on the assumption that Up ismonotonous and non-redundant, and that Ug is singular.Our proof consists of three steps. First, in lemma 3.1 we show thateither all paths in a class are a solution, or none are. It follows that insteadof focusing on paths, we need only to focus on classes of paths, therebyrestricting our state space to Up=�. Second, in lemma 3.2 we show that eachequivalence class containing a solution must be a key class. Third, in theorem3.1 we combine these two results to show that it is su�cient to examine theset of all key classes Uk.Lemma 3.1 Let P and Q, paths applicable to S, be elements of [P]�, for Pand Q monotonous for S. Then P (S) = Q(S).

3.3 A formal framework for db-search 77ProofWe assume without lack of generality that P = (f1; : : : ; fn) for some naturaln. Let a 2 P (S) be an attribute. Then, because of monotonicity, a is anelement of exactly one of the following sets: S; fadd1 ; fadd2 ; : : : ; faddn . Now letus suppose that a 2 fdeli , for some i. Then from de�nition 3.2 it followsthat a 2 fprei , restricting a to membership of exactly one of the followingsets: S; fadd1 ; fadd2 ; : : : ; faddi�1 . But then, since a 62 fi(: : : (f1(S))), also a 62P (S). This contradicts our assumption that a 2 P (S). Thus, there is noi 2 f1; : : : ; ng such that a 2 fdeli . Since Q is a permutation of P , a 2 Q(S)and P (S) � Q(S). Analogously, Q(S) � P (S). 2Lemma 3.2 Let Ug be singular and let Up be monotonous and non-redun-dant. If P is a solution applicable to S then [P]� is a key class.ProofLet Q 2 [P]�. We assume without lack of generality that Q = (f1; : : : ; fn)for some natural n. Let x be an attribute in an element of Ug. If x 2 faddp ,for some p 2 f1; : : : ; ng, then (f1; : : : ; fp) is a solution, since Ug is singular.Since Up is non-redundant, Q is non-redundant. Thus, fp must be the lastoperator (i.e., the key operator) of Q. As fp occurs in all paths in [P]�, itmust be the key operator in each of these paths. Thus, [P]� is a key class 2Theorem 3.1 Let Up be monotonous and non-redundant and let Ug besingular. Then Uk is complete (i.e., each solution path in Up is elementof a class in Uk, and each class in Uk either consists of only solutions, or nosolutions).ProofFrom lemma 3.1 it follows that either all paths in the equivalence classesof Up=� are solutions, or none are. From lemma 3.2 it follows that theequivalence class modulo� for any solution path is a key class. Thus, for anysolution path, its equivalence class is a key class, of which each representativeis a solution. Thus Uk is complete. 23.3.4 Traversing UkIn this section we de�ne two relations, to support and to precede, betweenoperators. These relations create a partial order between operators in

78 Chapter 3. Dependency-Based Searchmonotonous paths. Using the partial order we can de�ne the parents(operators which directly support or precede an operator) and ancestors(operators which directly or indirectly support or precede an operator). Last,we de�ne the merge of a set of classes, which itself is a class. The merge of aset of classes consists of paths containing exactly the operators in the paths ofthe classes merged. Stated more simply, if we merge a class containing pathP with a class containing path Q, the merge contains all paths consisting ofexactly the operators in P and Q. Operators in both P and Q occur onlyonce in the paths of the merge.The purpose of these de�nitions is to create a meta-operator which iscapable of traversing exactly Uk. We have shown in section 3.3.3 that Ukis complete. Together with a proof that we have a meta-operator whichtraverses exactly Uk, we have shown that a restricted state space can betraversed, without reduced e�cacy. The de�nition of the meta-operatorand the proof of its soundness (each application leads to a key class) andcompleteness (all key classes will be created by application of the meta-operator) follow the de�nitions in this section.De�nition 3.15 Let f1; f2 2 Uf . We de�ne the two relations � (supports)and � (precedes) on Uf � Uf as follows.1. f1 � f2 () fadd1 \ fpre2 6= ;.2. f1 � f2 () fpre1 \ fdel2 6= ;.We remark that we will use both the phrases f1 supports f2 and f2 dependson f1 to describe f1 � f2. We provide examples in our instance of dlp, forthe two relations of de�nition 3.15.1. f(0;0;1;a;b) � f(0;1;3;b;a), as fadd(0;0;1;a;b) \ fpre(0;1;3;b;a) = fA(0; 1; b)g.2. f(0;0;1;a;b) � f(0;0;1;a;e), as fpre(0;0;1;a;b) \ fdel(0;0;1;a;e) = fA(0; 0; a); A(1; 1; a)g.We remark that also f(0;0;1;a;e) � f(0;0;1;a;b). Which shows thatf(0;0;1;a;e) and f(0;0;1;a;b) cannot occur in the same monotonous path.De�nition 3.16 Let P be a non-empty path applicable to S, and let f be anoperator in path P . The set of parents of f in P is de�ned as follows.Parf (P) = ffi j fi 2 P ^ (fi � f _ fi � f)g

3.3 A formal framework for db-search 79Between f(0;0;1;a;b), f(2;2;3;c;b) and f(0;1;3;b;c) the following two relationshold: f(0;0;1;a;b) � f(0;1;3;b;c) and f(2;2;3;c;b) � f(0;1;3;b;c). Thus, for path P =(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)), de�nition 3.16 states that Parf(0;1;3;b;c)(P) =ff(0;0;1;a;b); f(2;2;3;c;b)g.De�nition 3.17 Let P be a non-empty path applicable to S, and let f be anoperator in P . The set of ancestors of f in P is de�ned as follows.Ancf(P) = ffg [[fi2Parf (P)Ancfi(P)Furthermore, a parent fi of f is named a relevant parent if for all parents fjof f , with fj 6= fi, fi 62 Ancfj (P).In our example instance of dlp, Ancf (P) = ffg [Parf (P), for all pathsP and all operators f . In more complex instances of dlp, however, not allancestors of f as de�ned in de�nition 3.17 will be parents of f (or f itself).In each instance of dlp, each parent is a relevant parent.De�nition 3.18 Let P1; : : : ; Pn be paths applicable to S. Then the mergeof P1; : : : ; Pn, denoted by P1 k : : : k Pn, is de�ned as the set of all paths Qapplicable to S, such that Q is a permutation of the set of all operators inthe Pi. The merge of a set of classes [Pi]� is de�ned as the merge of a set ofrepresentatives of the classes. Thus,[P1]� k : : : k [Pn]� = P1 k : : : k Pn:We present three examples of merges of paths, as de�ned in de�nition3.18.(f(0;0;1;a;b)) k (f(2;2;3;c;b)) = f(f(0;0;1;a;b); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;b))g(f(0;0;1;a;b)) k (f(0;0;1;a;e)) = ;(f(0;0;1;a;b)) k (f(2;2;3;c;b)) = f(f(0;0;1;a;b))g k f(f(2;2;3;c;b))ggA meta-operatorSo far, we have de�ned Uk and proved its completeness, under the assump-tions of singularity, non-redundancy and monotonicity. For the remainderof this section we assume that these three conditions hold, unless statedotherwise.

80 Chapter 3. Dependency-Based SearchTraversing Uk is not as straightforward as traversing Up. For instance,f(f(0;0;1;a;b))g is a key class in the unsolvable instance aacaa of dlp, whoseaxiom is represented byfA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; a); A(4; 4; a)g:We can extend the only path in the key class to the paths (f(0;0;1;a;b); f(3;3;4;a;b))and (f(0;0;1;a;b); f(3;3;4;a;e)). However, in both cases the equivalence classes ofthese paths are not key classes. Thus, extending elements of key classesmay lead to paths which are not element of a key class. We conclude thattraversing Uk involves more than just extending paths.In this section we introduce the meta-operator F (N; f) which is capable oftraversing Uk. First, we de�ne F (N; f). Then we prove that each applicationof F (N; f) in a graph where each node represents a key class, creates onlynodes representing key classes. Finally, we prove through induction that eachkey class is created through application of F (N; f).De�nition of the meta-operatorWe de�ne meta-operator F (N; f) in de�nition 3.19.De�nition 3.19 Let N � Uk, with N = fC1; : : : ; Cng, all Ci 6= ;, andn � 1. Let C1 k : : : k Cn = C, with C 6= ;. Let operator f 2 Uf , suchthat 81�i�n (key(Ci) � f _ key(Ci) � f), and let f be an extension to apath P 2 C. We then say that f is valid in N . F (N; f) is applicable ifand only if f is valid in N and there is no proper subset M of N , suchthat f is valid in M . If F (N; f) is applicable, then F (N; f) = [P � (f)]�.Furthermore, F (;; f) is applicable if and only if f(Ax) is de�ned. In thosecases, F (;; f) = f(f)g.An informal interpretation of F (N; f) is as follows. Operator f can onlybe applied to states containing all elements of fpre. Each element Ci of theset of key classes N contributes one or more attributes of fpre, implying thatf depends on or is preceded by the key operators of each Ci. If all operatorsin the Ci can be combined without conicts (i.e., the merge of all Ci is notempty) and paths in the merge extended with f are applicable, then F (N; f)is applicable.We give two examples. First, we look at instance aacc of dlp. Both C1 =f(f(0;0;1;a;b))g and C2 = f(f(2;2;3;c;b))g are key classes. Operator f = f(0;1;3;b;a),with fpre = fA(0; 1; b); A(2; 3; b)g depends on the keys of the paths of C1 andC2. Furthermore, C1 k C2 = f(f(0;0;1;a;b); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;b))g.

3.3 A formal framework for db-search 81For both paths Q1 and Q2 in the merge, Q1 � (f) and Q2 � (f) areapplicable to Ax. Finally, F (fC1g; f) and F (fC2g; f) are not valid. Thus,F (fC1; C2g; f) is applicable.Second, we look at the production system P 0 of section 3.1. In P 0, eachof the applications of r0; : : : ; r9 results in a key class of one element, whichwe name C0 through C9. Rule r10 depends on each of the applications ofr0 to r9 to have been executed. Thus, F (fC0; : : : ; C9g; r10) is applicable andyields the solution of P 0.Soundness of the meta-operatorIn theorem 3.2 we prove that each application of meta-operator F (N; f)creates a key class. Before we give the proof of theorem 3.2, we prove lemmas3.3 and 3.4.Lemma 3.3 Let P = (f1; : : : ; fn) be a path applicable to S. Let fi 6� fi+1 ^fi 6� fi+1. Then (f1; : : : ; fi�1; fi+1; fi; fi+2; : : : ; fn) is also a path applicableto S.ProofLet fi�1(: : : (f1(S)) : : :) = T . Then fi(T) is de�ned, and fprei � T . Sincefi 6� fi+1 we know that faddi \ fprei+1 = ;. Thus, fprei+1 � T and fi+1(T) isde�ned. Furthermore, fi 6� fi+1 implies that fdeli+1 \ fprei = ;. Thereforefi(fi+1(T)) is de�ned. Since fi(fi+1(T)) = fi+1(fi(T)) according to lemma3.1, (f1; : : : ; fi�1; fi+1; fi; fi+2; : : : ; fn) is a path. 2Lemma 3.4 Let C be a key class with key fn. Let P = (f1; : : : ; fn) be a pathin C. Then the following two statements are true.1: 81�i�n�1 9j>i (fi � fj _ fi � fj)2: 81�i�n�1 (fn 6� fi ^ fn 6� fi)Proof1. Suppose that there exists an fp, with 1 � p � n�1, such that 8j>p(fp 6�fj^fp 6� fj). Then, by repeated application of lemma 3.3, we can movefp to the end of P . However, this contradicts the assumption that C isa key class. Thus, 81�i�n�19j>i(fi � fj _ fi � fj).

82 Chapter 3. Dependency-Based Search2. Suppose that there exists an fp, with 1 � p � n� 1, such that fn � fp.Then faddn \ fprep 6= ;. Let x 2 faddn \ fprep . Then, by monotonicity,x 62 S and x 62 faddi , for all i < n. Thus, fp is only applicable if p � n,which is a contradiction. Thus, fn 6� fp. Suppose that there exists anfp, with 1 � p � n� 1, such that fn � fp. Then fpren \ fdelp 6= ;. Letx 2 fpren \ fdelp . Then, by de�nition 3.2 x 2 fprep , and either x 2 S, orx 2 faddi for exactly one i < p, but not both. And thus, x 62 faddj for allj � p. Thus, fn is only applicable, if n � p, which is a contradiction.Thus, fn 6� fp. Therefore, 81�i�n�1 (fn 6� fi ^ fn 6� fi). 2Theorem 3.2 If F (N; f) is applicable, then F (N; f) is a key class.ProofConsider arbitrary P 2 F (N; f) and suppose that key(P) 6= f . Then eitherkey(P) = key(Pi) for some Pi in a class in N or key(P) is a non-key operatorfj in a path in some class in N . The �rst case leads to a contradiction, sincekey(Pi) � f according to de�nition 3.19, which contradicts lemma 3.4. Thesecond case also leads to a contradiction, since [Pi]� is a key class, and fromlemma 3.4 it follows that fj precedes or supports at least one operator fkin Pi and thus cannot be the key in Pi. We conclude that the assumptionkey(P) 6= f is invalid, thus F (n; f) is a key class with key f . 2Completeness of the meta-operatorIn this section we prove by induction that each key class can be createdthrough applications of F (N; f), as formulated in theorem 3.3. Before wepresent the proof of theorem 3.3, we prove lemmas 3.5 and 3.6.Lemma 3.5 Let P be a path applicable to S, and f 2 P . Then there is apath Q applicable to S, such that1. Q consists of exactly the operators in Ancf (P).2. [Q]� is a key class, with key f .We name [Q]� the key class induced by f in P .

3.3 A formal framework for db-search 83Proof1. Let P = (f1; : : : fn) and Q be the path consisting of the operators inAncf (P) in the same order as they appear in P . Now let us supposethat Q is not applicable to S, i.e., there is an operator fi in Q, suchthat fi is not applicable. Then, there is an attribute x 2 fprei , suchthat x 2 faddj , while fj 62 Ancf (P). However, then faddj \ fprei 6= ;,and thus fj � fi, and thus fj 2 Ancf (P) if fi 2 Ancf (P). Thus, Q isapplicable to S.2. By de�nition of Ancf (P), for each operator fi 2 Ancf (P) with fi 6= f ,there is an operator fj, such that fi � fj _ fi � fj . And thus, fi mustoccur before fj in any path containing both. Thus, only f may be thelast operator in a path containing all operators in Ancf (P). Therefore,[Q]� is a key class, with key f . 2Lemma 3.6 Let C be a key class with key fn and let P 2 C be a path, withP = (f1; : : : ; fn). Let N be the set of relevant parents of fn in P . Then themerge M of the key classes induced by the elements of N is non-empty, andfor each path Q 2M , Q � (fn) 2 [P]�.ProofLet fi 2 P (1 � i � n � 1) be the operator with highest index such thatfi is not in any path of the key classes induced by the relevant parents offn. Since P is a path in a key class, it follows from lemma 3.4 that thereexists an fj such that fi � fj _ fi � fj . If fj = fn, then fi is a parent offn and by de�nition a relevant parent. If fj 6= fn, then fi is in a path in thesame key class as fj induced by a relevant parent of fn. Thus, in both cases,fi is in a path in a key class induced by a relevant parent of fn. From thiscontradiction, it follows that all fi 2 P are in a path in a key class induced bya relevant parent of fn. Thus, the merge of all these key classes contains atleast the path Q such that Q � (fn) = P . From this it follows immediatelythat for each path Q 2M , Q � (fn) 2 [P]�. 2Theorem 3.3 For each non-empty key class C 2 Uk, there is a set N of keyclasses and an operator f , such that F (N; f) = C.

84 Chapter 3. Dependency-Based SearchProof� Basis.Let C = f(f1)g. Then by de�nition F (;; f1) = C.� Induction step.We assume that each class C consisting of paths with length less thann is the result of an application of F (N; f). Let P = (f1; : : : ; fn) andlet C = [P]� be a key class, with key fn. Let R be the set of relevantparents of fn in P . Furthermore, let N be the set of key classes inducedby the elements of R (cf. lemma 3.5). Then, from lemma 3.6 it followsthat the merge M of all paths in N is non-empty, and that for eachpath Q 2M , [Q � (fn)]� = C. Thus, F (N; fn) = C. 23.3.5 SummaryIn this section we have created a framework for db-search. We have shownthat conventional search algorithms traverse the set of all paths Up. Theobject of determining the state space traversed by conventional searchalgorithms was to create a standard for comparison with db-search.Next we have de�ned the set of key classes Uk, which is a subset of theequivalence classes of Up modulo �. We have proved that Uk is complete,which means that all solutions in Up are elements of classes in Uk underthe conditions of monotonicity, non-redundancy and singularity. Thus, eventhough the cardinality of Uk is not larger than that of Up, and often (much)smaller, all solutions are present in the smaller state space.Finally, we determined a meta-operator which can be used to traversethe smaller state space Uk. The meta-operator F (N; f) was de�ned, and wehave shown that it is both sound and complete. The former indicates thateach operation of the meta-operator yields an element of the reduced statespace, while the latter indicates that each element of the reduced state spacecan be reached by application of the meta-operator.Summarizing, we have succeeded in creating a framework which allowsus to search a smaller state space, while being assured that the smallerstate space contains all solutions of the original state space, and that thesmaller state space is fully traversed. What remains to be done, is to describepractical algorithms for applying the meta-operator in an e�cient manner.This is the topic of the next section.

3.4 Informal description of db-search 853.4 Informal description of db-searchIn section 3.3.4 we have de�ned meta-operator F (N; f). F (N; f) can beapplied to a set of nodes N (each node representing a key class) and anoperator f , under the three conditions that (1) the merge M of all keyclasses in N is non-empty; (2) the concatenation of a path P in M withf is applicable to the initial state; (3) for each of the key operators fi of theclasses in N , fi � f or fi � f .Clearly, trying all subsets N of nodes of a tree T as parameter for F (N; f),has a search complexity exponential in the number of nodes of T . In such acase, searching Uk may be more expensive than searching the larger set Upusing a conventional search algorithm. The way in which db-search traversesthe search graph is designed to limit the cost of applying F (N; f) as muchas possible. We present a short informal description of db-search, followedby an explanation of the application of db-search to an instance of dlpDb-search repeatedly executes levels, where each level consists of twostages. In the �rst stage, named the dependency stage, only sets of nodeswith cardinality 1 are selected for application of F (N; f). If new eligible setsof nodes with cardinality 1 are created during a stage, F (N; f) is applied tothese sets as well. The dependency stage ends when F (N; f) has been appliedto all such sets. In the second stage, called the combination stage, sets ofnodes with larger cardinality are considered. A node A created during thecombination stage may not be element of a set N to which F (N; f) is appliedduring the same stage. This ensures that the computationally expensivecombination stage does not continue any longer than is strictly necessary.We remark that during each combination stage of db-search, we onlyperform preparatory work for application of F (N; f). We create a combina-tion node A for each set of nodes N , such that at least one f exists allowingthe execution of F (N; f). During the dependency stage of the next level,f will be executed from A. Thus, nodes created during the combinationstage do not themselves represent elements of Uk, but are aids to a clearimplementation. They correspond to the merge of the classes represented bythe nodes in N .In the following, we describe the application of db-search to instanceaaccadd of dlp.Figure 3.1 shows the search graph after executing the �rst dependencystage for axiom aaccadd. In each child node we have capitalized the letterwhich has been created through the last applied operator. In each of the1-ply nodes of the tree four operators are applicable. However, none of these

86 Chapter 3. Dependency-Based Search
aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaEFigure 3.1: Search graph after 1st dependency stage for theorem aaccadd.
aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBaddFigure 3.2: Search graph after 1st combination stage for theorem aaccadd.correspond to an application of meta-operator F (N; f), since the operator fdoes not depend on the operator leading to the 1-ply node. To clarify this,we look at the node representing theorem Eccadd. The rules cc ! bjd anddd! cje are applicable and correspond to the operators f(2;2;3;c;b), f(2;2;3;c;d),f(5;5;6;d;c) and f(5;5;6;d;e). Neither of these operators depends on the operatorf(0;0;1;a;e) which has led to the creation of this node. Therefore, the meta-operator is not applicable in node Eccadd.Having �nished the �rst dependency stage, we proceed with the �rstcombination stage. In dlp, each precondition set of an operator consists oftwo attributes. As a result, during the combination stage only combinationsof exactly two nodes need to be considered. Figure 3.2 shows the searchgraph for our instance of dlp after �nishing the �rst level of db-search.It was created by examining all 15 combinations of two 1-ply nodes, tosee if the combination of two nodes would lead to a valid application ofthe meta-operator. In one case it did, resulting in the creation of nodeBBadd. The operators which led to the creation of the parents BBadd aref(0;0;1;a;b) and f(2;2;3;c;b). Depending on both these operators are f(0;1;3;b;a) andf(0;1;3;b;c). Thus, two operators are applicable in BBadd, for which reasonthe combination node representing theorem BBadd was created.Next, we execute the dependency stage of the second level of db-search.For this stage, we apply F (N; f) to the combination node created in the�rst level. The application of f(0;1;3;b;a) and f(0;1;3;b;c) from the combinationlead to the creation of Aadd and Cadd. From Aadd we can apply two more

3.4 Informal description of db-search 87
aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Cadd

Bdd Edd

AaddFigure 3.3: Search graph after 2nd dependency stage for theorem aaccadd.
aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Cadd

Bdd Edd

Aadd
EE

D AFigure 3.4: Complete dependency-based search graph for theorem aaccadd.operators which depend on the operator leading to Aadd. Thus, a total offour nodes is added in the second dependency stage. Figure 3.3 shows thesearch graph after the second dependency stage.For the second level of combination nodes, not all combinations of nodesin the tree need to be checked. Only combinations involving at least onenode created during the second dependency stage need to be investigated. Inour example this leads to a combination between second-level node Edd and�rst-level node aaccaE. Using the new combination node, the third level ofnodes is created, again consisting of a dependency stage and a combinationstage.The complete dependency-based search graph for theorem aaccadd is

88 Chapter 3. Dependency-Based Searchprocedure DbSearch()CreateRoot(root);level := 1;while ResourcesAvailable() and TreeSizeIncreased() doAddDependencyStage(root);AddCombinationStage(root);level := level + 1odend Table 3.2: Main db-search algorithm.procedure AddDependencyStage(node)if node 6= nil thenif level = node.level+1 andnode.type in [Root, Combination] thenAddDependentChildren(node)� ;AddDependencyStage(node.child);AddDependencyStage(node.sibling)�end Table 3.3: Dependency-stage algorithm.shown in �gure 3.4.The graph consists of three dependency levels, and two combinationlevels. The third combination level is empty, which terminates the search.From �gure 3.4 we see that the instance of dlp with axiom aaccadd has twosolutions: single-letter theorems a and d can be created.3.5 AlgorithmsIn this section we present the db-search algorithms in pseudo-code. Weremark that many implementation details have been omitted in the algo-rithms.Table 3.2 shows the main loop of db-search. Repeatedly, a level is created,

3.5 Algorithms 89procedure AddDependentChildren(node)for operator in LegalOperators(node) doif Applicable(operator, node) thenLinkNewChildToGraph(node, operator);AddDependentChildren(node.newChild)�odend Table 3.4: Dependent-children algorithm.procedure AddCombinationStage(node);if node 6= nil thenif node.type = Dependency and node.level = level thenFindAllCombinationNodes(node, root);� ;AddCombinationStage(node.child);AddCombinationStage(node.sibling)�end Table 3.5: Combination-level algorithm.consisting of a dependency stage and a combination stage, as described insection 3.4.Table 3.3 shows the algorithm for creating the dependency stage. It isassumed that each node has a child pointer and a sibling pointer. The childpointer points to the �rst child of the node, while the child's sibling pointerpoints to the next child, etc. This assumption explains the recursive calls inAddDependencyStage(). In the graph, we distinguish between three types ofnodes: Root, Combination and Dependency. A dependency stage is startedonly from combination nodes, and, for the �rst level, from the root.The algorithm of table 3.4 determines all operators dependent on a nodeand creates children for each eligible operator. The functionApplicable() teststo see if the selected operator and node form a pair of parameters which iseligible for application of the meta-operator F (N; f).The second stage of each level of db-search consists of creating thecombinations of independent paths. In our example algorithm (see table

90 Chapter 3. Dependency-Based Searchprocedure FindAllCombinationNodes(partner, node);if node 6= nil thenif NotInConict(partner, node) thenif node.type = Dependency thencombination := Combine(partner, node);operators := DependingOn(combination);if operators 6= nil thenAddCombinationNode(node, combination)�� ;FindAllCombinationNodes(partner, node.child)� ;FindAllCombinationNodes(partner, node.sibling)�end Table 3.6: Algorithm to �nd combinations of nodes.3.5) we have assumed that each combination consists of exactly two nodes.In the double-letter puzzle and qubic, this is indeed the case. In go-moku,combinations of up to four nodes exist. Extending the algorithm to includecombinations of three or more nodes is not di�cult. A disadvantage is,however, that searching for combinations of c nodes in a graph of size Nhas a time complexity in the order of N c. Domain-speci�c reductions ofthe complexity may often be possible. We have therefore refrained frompresenting a general algorithm for combinations of other than two nodes.The algorithm of table 3.6 �nds a node in the graph for a selectedpartner. It is checked that the nodes are not in conict, that its type isa dependency node, and that the combination of the two nodes allows atleast one application of the meta-operator. This last condition is importantto prevent the creation of a large number of useless combination nodes.3.6 Test resultsEarlier, we stated that conventional search algorithms traverse Up, while db-search traverses Uk. In this section we investigate through experiments ondlp the di�erence in cardinality between Up and Uk.First, we describe the four algorithms used in the experiments. Second,

3.6 Test results 91we describe the set of test problems used for the experiments, as well as theconditions in which the experiments took place. Third, we present the resultsof the experiments.Selected algorithmsAs a conventional tree-search algorithm for our experiments, we have selecteddfs of which we have implemented two variants: (1) without transpositiontables (dfs-), and (2) with transposition tables (dfs+). Since we intendto run the algorithms in our experiments until the complete state space hasbeen traversed, the performance of alternatives like breadth-�rst search areequivalent to the performance of dfs.The other two implemented algorithms are the domain-speci�c algorithmtriangle, presented in appendix A, and, of course, db-search. An advantageof db-search over triangle is that in cases where only few theorems can bededuced, db-search may search less nodes than the �xed number of entriesneeded for triangle. A disadvantage of our implementation of db-searchis that we did not implement a transposition table. However, transpositionsresulting from the order in which operators are executed are non-existent inUk, as they are all part of the same key class. As a result, transpositionshave only a minor inuence on the performance of db-search on dlp.Test problemsWe have generated random instances of dlp. For each string length of 1to 20, 100 strings were generated, for a total of 2000 axioms. For each ofthese 2000 axioms, all four algorithms were to run to completion. However,in order not to have extremely large state spaces dominate the results and tokeep the required resources within practical limits, we have set limits for thestate spaces examined by dfs+ and dfs-. We terminated dfs+ as soon asthe tree size exceeded 100,000 nodes, while dfs- was terminated as soon asthe tree size exceeded 1,000,000 nodes. Both triangle and db-search wererun to completion on all selected test problems.ResultsThe tree-size limit set for dfs+ terminated the search 26 times out of the2000 runs. Only once did the early termination result in missing a solution.For dfs- a million nodes was insu�cient to complete the search in 129 of the2000 runs. In 24 of these, at least one of the solutions was missed.

92 Chapter 3. Dependency-Based Search
20

18

16

14

12

10

8

6

4

2

0
2 4 6 8 10 12 14 16 18 20

db-search

DFS with transpositions

DFS without transpositions

axiom length

nodes
visited

TRIANGLE

log 2 of

Figure 3.5: Tree size per algorithm applied to the double-letter puzzle.Db-search's most di�cult problem was dbdeabbaacccddaeecda, for whichit needed 3934 nodes to determine that it has no solutions. Both variationsof depth-�rst search did not complete the search on this axiom within theirrespective tree-size limits.The average number of nodes visited by each algorithm is illustrated in�gure 3.5. The horizontal axis is the axiom length, while the vertical axis isthe log2 of the number of nodes created.Up to strings of length 18, db-search outperforms triangle. Forthose strings, transpositions do not outweigh the gain db-search makes interminating the search early if possible. Still, the time complexity of db-search, in particular in the combination stage of each level, is higher thanfor the domain-speci�c algorithm. Therefore, we do not claim that db-searchoutperforms triangle.The trees traversed by both variants of dfs su�er from a combinatorialexplosion. At theorem length 20 the average cardinality of Up (the size ofthe trees searched by dfs-) is more than 1200 times the average cardinalityof Uk (the size of the graphs searched by db-search). As can be seen fromthe size of the graph traversed by dfs+, transpositions are responsible fora factor 20. The more than 60 times smaller graph traversed by db-searchcompared to dfs+ indicates that db-search is far more e�cient on dlp thanconventional search algorithms.In chapters 4 and 5 db-search has been applied to qubic and go-moku,

3.7 Applicability 93resulting in signi�cantly reduced state spaces, while no domain-speci�c algo-rithm has yet been developed which does the same.3.7 ApplicabilityDb-search is a single-agent search algorithm. The main source of applicationstherefore lies within that area. In some games, such as qubic and go-moku, a restricted search concentrates on sequences of threatening movesonly. If the opponent is constantly restricted to only a single reply, thestate space is conceptually transformed into a single-agent state space. Inthose circumstances db-search may be applied to games. For details of suchtransformations on qubic and go-moku see chapters 4 and 5.In section 3.3.3 we have proved that Uk is complete if three conditionsare met. While these conditions all hold for dlp, they do not hold fullyin domains such as qubic and go-moku (i.e., after the transformation to asingle-agent state space). As a result, Uk may neither be sound nor complete.Searching a non-complete Uk may still be favorable to searching Up, if thesize of Up prohibits full investigation. However, further research is necessaryto understand the implications of applying db-search to such domains ingeneral.

94 Chapter 3. Dependency-Based Search

Chapter 4QubicIn chapters 2 and 3 two new search techniques, pn-search and db-search, wereintroduced. Pn-search attempts to use non-uniformity in and/or trees totraverse the state space more e�ciently than the various conventional searchalgorithms. Db-search traverses a smaller graph than conventional searchalgorithms. Still, for a special class of problems it has been shown that thesmaller graph is sound and complete. This means that each solution foundby a conventional search algorithm will also be found by db-search.Pn-search and db-search were developed during the investigation ofseveral games: connect-four (Allis, 1988), awari (Allis et al., 1994), qubic(Allis and Schoo, 1992) and go-moku (Allis et al., 1993). The application ofpn-search and db-search to qubic and go-moku are discussed in this and thenext chapter. The purpose of these chapters is twofold:1. to explain in detail how pn-search and db-search were applied to twocombinatorially complex problems, and2. to show that qubic and go-moku can be solved, thereby positivelyanswering our �rst research question (cf. section 1.4) for two speci�cgames.At this point it is important to mention that qubic was solved more thana decade before we started our research. Oren Patashnik solved qubic in 1977and his solution was con�rmed by Ken Thompson (Patashnik, 1980).Our interest in qubic sprang from its potential as a test bed for go-moku,due to the similarity between these two games. While threat sequences (seesection 4.2.2) play an important role in both games, threat sequences in go-moku are more complex than threat sequences in qubic.95

96 Chapter 4. QubicBeing ignorant of Patashnik's work, there was the added challenge ofsolving the game. After we were informed of Patashnik's work by IngoAlth�ofer and Ralph Gasser, we nevertheless decided to �nish our work onthe game. The experience gained has helped to solve go-moku, while it alsoprovided the means for a comparison of db-search and pn-search with thesearch techniques applied by Patashnik.The chapter is organized as follows. In section 4.1 we provide abackground to the investigations in qubic. The rules of qubic and commonstrategies are presented in section 4.2. The application of db-search to qubicis described in section 4.3. The role of pn-search in the solution of qubictranspires from section 4.4. The results of our investigations, as well ascomparisons with the results of Patashnik, are presented in section 4.5.4.1 BackgroundAmong the games of the Olympic List, qubic is one of the lesser-knowngames. Despite its simple rules, qubic has a severe handicap: it is playedon a three-dimensional board. Therefore, visualizing sequences of moves is adi�cult task for human players, while most games end in a long sequence ofthreatening moves requiring careful analysis.Nevertheless, at least some strong human players exist, as is apparentfrom Patashnik (1980), who describes how qubic is solved using a combinationof human expert knowledge and a standard search algorithm.Patashnik assumed that qubic would be a �rst-player win. Therefore, toprove a win in a position with white (the �rst player) to move, only onewinning move had to be selected. To prove a win in a position with black(the second player) to move, all moves had to lead to wins for white. Using astandard ��� search, Patashnik created a tactical module which determinedin a given position whether the player to move had a forced win. For eachposition in the search tree, it was determined whether the player to movehad to make a forced move. Otherwise, if black was to move, for each legalblack move a child position was created. If white was to move, a so-calledstrategic move had to be made. These moves were selected by hand byPatashnik. Using some 1500 hours of cpu time, and 2929 strategic moves,qubic was solved. The database with the solution tree has been checked byKen Thompson, who con�rmed Patashnik's results.Our research in 1991 consisted of creating a tactical module based ondb-search. Furthermore, instead of selecting strategic moves by hand, pn-search guided the search process. After the program was created we were

4.2 Rules and strategies 97informed that qubic had already been solved. Nevertheless, as qubic wasnot yet removed from the Computer Olympiad, we �nished our solution incollaboration with Patrick Schoo. Since then our understanding of db-searchhas improved, resulting in a new implementation of our qubic program. Inthis chapter we describe the 1993 implementation and its results, which di�ersomewhat from Allis and Schoo (1992).In earlier publications (Allis and Schoo, 1992; Allis et al., 1993) we usedthe term threat-space search for the application of db-search to qubic and go-moku. In this text we only use the term db-search. We gladly acknowledgethat both names were suggested by Barney Pell.4.2 Rules and strategiesQubic is a three-dimensional instance of a category of games of which well-known two-dimensional analogs are tic-tac-toe, go-moku and renju. First,we present the rules in section 4.2.1. Second, in section 4.2.2 we discussthe role of threats and threat sequences in qubic. Finally, we analyze theautomorphisms (i.e., mappings of the playing board onto itself, such that allrelevant properties of the board are preserved) of the qubic board and its twodi�erent types of cubes in 4.2.3.4.2.1 RulesQubic is played on a 4�4�4 cube, thus consisting of 64 small cubes. Playersmove alternately by occupying any empty cube. The game ends as soon asone of the players has occupied four consecutive cubes in a straight line (eitherin one, two or three dimensions). Such a set of four cubes in a straight lineis called a group. There are 3� 16 = 48 one-dimensional groups, 3� 8 = 24two-dimensional groups and 4 three-dimensional groups, for a total of 76groups.In �gure 4.1 the three di�erent types of groups are shown. Group a is one-dimensional, group b is two-dimensional, while group c is three-dimensional.4.2.2 Threats and threat sequencesIf a player has occupied three cubes in a group, with the fourth cube empty,she threatens to win at her next move. In such a position, the opponent isforced to refute the threat (unless she can win at her next move). The game

98 Chapter 4. Qubic
a a a a

b

b

b

b

c

c

c

c

Figure 4.1: Three types of groups in qubic.is usually decided by a player creating a threat sequence ending in a doublethreat, which cannot be stopped by the opponent.In �gure 4.2 an example winning threat sequence in a single plane isshown. White has occupied three cubes in the plane (in the corners), whileblack has played her moves elsewhere (i.e., in other planes). White now hasan 11-ply winning threat sequence starting with moves 1 through 9 in �gure4.2. After move 9, white threatens to win at a and b, which cannot both becountered by black's next move.In general, a threat sequence may end in one of three possible ways. First,a double threat may be created, resulting in a win for the attacker. Second,the attacker may run out of threats. Third, the forced moves of the defendermay result in her accidentally creating a threat of her own, and changing herrole from defender to attacker.If a threat sequence ends without success for the attacking player, shehas normally exhausted most of her threat potential, reducing her winningchances. Therefore, early in the game, both players try to occupy cubes whichincrease their potential for creating threats, without actually executing thosethreats.

4.3 Applying db-search 99
8 6

5 4 b

973a

1 2

Figure 4.2: An 11-ply winning threat sequence.4.2.3 Cube types and automorphismsThe 64 cubes fall into two categories. The 8 corner cubes and 8 center cubesare named 7-cubes, as each is part of 7 groups (3 one-dimensional groups, 3two-dimensional groups and 1 three-dimensional group). The other 48 cubesare called 4-cubes as they are part of four groups only (3 one-dimensionalgroups and 1 two-dimensional group).The number of automorphisms in qubic is surprisingly high: 192. Thiscan be explained as follows. By rotation, each of the six sides of the cubecan be brought on top in four di�erent ways, resulting in a total of 24automorphisms by rotation. There are three more operations, each doublingthe number of automorphisms. First, reection in a plane through the centerof the cube. Second, turning the cube inside out, i.e., exchanging (in all threedimensions) the inner planes with the outer planes. Third, internal exchange,i.e., exchanging the inner planes in all three dimensions, while leaving theouter planes untouched.Due to the automorphisms, there are only two distinct opening moves inqubic, one at any 7-cube, and one at any 4-cube. After White's �rst moveat a 7-cube, black has 12 distinct answers, as presented in �gure 4.3. Eachof the empty 51 cubes in the �gure can be mapped to at least one of the 12black cubes, through at least one of the automorphisms of qubic.4.3 Applying db-searchAs mentioned before, threat sequences play a dominant role in qubic. Obvi-ously, to play qubic well, it would be advantageous to have a module whichdetermines whether a winning threat sequence exists. Our application ofdb-search to qubic is restricted to searching for winning threat sequences.This section consists of three parts. First, in section 4.3.1 we describehow the adversary-agent state space, when restricted to threat sequences,can be transformed into a single-agent state space. Second, in section 4.3.2

100 Chapter 4. Qubic

Figure 4.3: The 12 two-ply moves.we illustrate how the single-agent state space thus created for qubic �ts inthe framework for db-search presented in chapter 3. Third, in section 4.3.3we discuss three properties of the single-agent state space for qubic whichhave not been included in the framework of section 4.3.2. For each of theseproperties there is an explanation of how our implementation of db-searchhandles them.4.3.1 A single-agent search in qubicOur description of the single-agent state space of threat sequences in qubicconsists of a set of de�nitions, an interpretation of the de�nitions, and thetransformation of the adversary-agent state space to a single-agent statespace.De�nitionsIn the previous sections we informally introduced the concept of threats,threat sequences and winning threat sequences in qubic. These notions arede�ned in de�nitions 4.1, 4.2 and 4.3.

4.3 Applying db-search 101De�nition 4.1 A threat in qubic is a move by the attacker leading to aposition such that1. The defender cannot win at her next move, and2. The defender has at most one move stopping the attacker from winningat her next move.If a threat leaves the defender without any moves to stop the attackerfrom winning at her next move, it is called a double threat, otherwise thethreat is called a single threat.De�nition 4.2 A threat sequence (a1; d1; a2; d2; : : : ; an; dn), with n � 1, isany sequence of moves such that each ai, 1 � i � n is a single threat, andeach di the single response to ai which does not lose immediately,De�nition 4.3 A winning threat sequence in qubic is a sequence of moves(a1; d1; : : : ; an; dn; an+1; dn+1), such that (a1; d1; : : : ; an; dn) is a threat se-quence, an+1 is a double threat and dn+1 is any legal move.InterpretationHere we elaborate on the de�nitions presented above, interpreting them inthe context of groups.To win in qubic, a player must occupy all four cubes in a group. Thus,a player who occupies three cubes in a group, while the last cube is empty,threatens to win. According to de�nition 4.1, such a move is only a threatif the opponent has not obtained three cubes in a group herself. In otherwords, a threat consists of a local property for the attacker (i.e., the state ofone speci�c group) and the global lack of a similar property for the defender(i.e., no group on the board having the property).In a threat sequence, each attacker move occupies the third attacker cubein a group, while the fourth cube is empty. Each defender move occupiesthe fourth cube in that group. In each case, the defender has no alternativemove which wins immediately and, although the rules of qubic allow playinganywhere else, alternative moves are blunders as they would result in losingat the next move. In other words, a threat sequence consists of a sequence ofmoves where each attacker move is followed by its only non-blundering reply.A winning threat sequence is a threat sequence followed by a doublethreat and any legal move. Since there are at least two places where theattacker threatens to win at the next move, and the defender cannot win

102 Chapter 4. Qubicherself immediately, all moves are equally bad. Therefore, any legal movemay be selected.Adversary-agent vs. single-agentAs we have seen, in threat sequences and winning threat sequences each moveby the defender is implied by the previous attacker move. Therefore, we mayconceptually merge these two moves into a single meta-move.If we examine the state space created by these meta-moves, it is no longeran adversary-agent state space, but instead a single-agent state space. Foreach meta-move, the attacker selects any of the possible threats in a position.If the threat is a single threat, the move by the opponent is implied by theprevious move. If the threat is a double threat, all moves by the opponentare equally bad, and a random move may be selected to represent all possiblemoves. In both cases the defender has no real choice, e�ectively transformingthe state space into a single-agent state space. In the remainder of thissection, we will only regard meta-moves, and assume that the attacker moveand defender move in a meta-move are made at the same time.4.3.2 A db-search framework for qubicIn this section, we describe a db-search framework for the single-agent statespace of qubic. We mention that the framework only involves local properties,i.e., occupation of single groups, while ignoring global properties, i.e., possiblecounter threats of the defender. Global properties of a position will behandled in section 4.3.3. The terminology introduced in chapter 3 is usedthroughout this section.AttributesThe set U of all attributes is de�ned as follows. U = fC(i; x)j0 � i �size � 1 ^ x 2 f�; �; �gg. Attribute C(i; x) represents the fact that cube i isoccupied by the attacker (�), occupied by the defender (�) or empty (�). Theconstant size equals the number of cubes on the playing board (i.e., 43 = 64).It can easily be checked that U has 192 elements.OperatorsThe operator fc1;c2;c3;c4 is de�ned as follows.fprec1;c2;c3;c4 = fC(c1; �); C(c2; �); C(c3; �); C(c4; �)g

4.3 Applying db-search 103fdelc1;c2;c3;c4 = fC(c3; �); C(c4; �)gfaddc1;c2;c3;c4 = fC(c3; �); C(c4; �)gThe set of all operators Uf is de�ned as follows.Uf = ffc1;c2;c3;c4jfc1; c2; c3; c4g is a groupgWe remark here that a group is a set of four squares which, if all occupiedby one player, result in that player winning the game. In qubic there are 76groups. For each group, the 4 elements can be ordered in 4! = 24 possibleways. Thus, there are 24 � 76 = 1824 operators in Uf . Since c1 and c2 can beexchanged without changing the operator, there are e�ectively 912 operatorsin Uf .Initial state and goal statesThe initial state consists of exactly 64 attributes, one per cube indicatingthe contents of the cube. Each qubic position which is to be checked for theexistence of a winning threat sequence can serve as an initial state. The setUg of goal states is independent of the initial state, and is de�ned as follows.Ug = ffC(c1; �); C(c2; �); C(c3; �); C(c4; �)g j fc1; c2; c3; c4g is a groupgIn other words, any state in which a group exists of which three cubeshave been occupied by the attacker and the fourth cube is empty, is a goalstate. We remark that each meta-move starts with a move by the attacker.Therefore, a state as described here in the single-agent search, ensures thatin the adversary-agent search the attacker can win at her next move. Ug has304 elements and is not singular.Properties of the qubic frameworkThe framework we have described above is monotonous. Furthermore, wecan easily restrict ourselves to non-redundant paths. If Ug were singular, ourUk would be complete.We can create a singular Ug0 = f fGg g, by de�ning a special goalattribute G and operators which transform any element of Ug into G, whichwould result in a complete Uk. A discussion of the completeness of Uk wouldbe premature, however, since we have ignored the global properties of qubicso far.

104 Chapter 4. Qubic4.3.3 Qubic-speci�c enhancements to db-searchThe db-search framework for qubic presented in the previous section focusesonly on the local properties of threats. In this section we discuss the threeglobal properties which need to be incorporated in db-search. Each propertyis described followed by the method of inclusion in db-search.Defender fourIn each winning threat sequence, both the attacker and defender occupycubes. Even though the defender has no choices of which cubes to occupy,the attacker may, accidentally, force her to occupy all four cubes in a group.Such a group is named a defender four. If this happens, the threat sequenceby the attacker has failed.During the dependency stage of each level of db-search, it is easy to checkafter each meta-move (a; d), consisting of attacker move a and defender moved, whether d has created a defender four. It is su�cient to investigate the4 or 7 groups in which d lies. During the combination stage of each levelof db-search, a defender four could be created by the merge of two or morepaths. To detect such a defender four, all 76 groups must be investigatedwhen creating a combination.We remark that the qubic-speci�c enhancements mentioned below renderthe dependency-stage test for defender fours superuous and it has thereforebeen omitted in our implementation.Closed defender threeEach meta-move results in a group containing three attacker cubes and onedefender cube. Such a group is named a closed attacker three. Similarly,a closed defender three is a group containing three defender cubes and oneattacker cube. A group where one player has occupied three cubes, while thefourth cube is empty are named open attacker three or open defender three.Even though closed defender threes cannot be converted into a winninggroup, they may represent a subtle problem. If two paths in db-search aremerged they may create one or more closed defender threes on the board.Let us assume that the three defender cubes are occupied during meta-movesm1, m2 and m3, while the attacker cube is occupied during meta-move m.Furthermore, let us assume that a path P in the merge exists, consistingof the following sequence of moves: (m1;m2;m3;m4;m), where m4 is anymeta-move. Then, after move m3, an open defender three exists. Clearly,

4.3 Applying db-search 105the only way for the attacker to stop the open defender three is to immediatelyplay move m. In P move m4 is played �rst, which means that meta-movem4erroneously ignores the option for the defender to win. We remark that (someof) the cubes in a closed defender three need not be part of a meta-move,but could be part of the initial state.Summarizing, closed defender threes present a problem when the meta-move occupying the attacker cube is played later than immediately after thethird defender cube has been occupied. In other words, an ordering existsbetween the set of meta-operators occupying the defender cubes in the closeddefender three, and the operator occupying the attacker cube.During the dependency stage of db-search, to create a closed defenderthree, �rst an open defender three must be created, otherwise the closeddefender three does not pose a problem. As these are monitored separately,we can safely ignore closed defender threes during the dependency stage.During the combination stage, a merge may create one or more closeddefender threes. Only paths in which the attacker cube for each closeddefender three is occupied in time (i.e., not later than immediately afterthe third defender cube has been occupied) should be included in the merge.Determining whether a merge is non-empty may be time-consuming whenfully incorporating the closed defender tests. Instead, we have implemented asimple and surprisingly e�ective heuristic. Previously, for each combinationnode (i.e., for each merge), a path representing the merge was selectedrandomly. The heuristic consists of investigating whether the selected pathhonors the ordering criteria imposed by the closed defender threes. If so, themerge is not empty. If not, the merge is assumed to be empty. Clearly, in thisway valid merges may be rejected, but invalid merges are never wrongfullyaccepted.To investigate the amount of error created through the use of thisheuristic, we ran the program twice on a set of test positions. The �rst variantof the program contained the heuristic test, while the second variant did nottest for closed defender threes at all. In less than 1% of the test positions didthe second variant suggest a winning line, while the �rst variant failed to �ndany winning line, although several times the �rst variant suggested a di�erentwinning line. We remark that in the extra 1%, the suggested winning linemay have been incorrect, due to defender threes, or may have been validand have been accidentally rejected by the above heuristic. A non-heuristicimplementation for investigating closed defender threes is expected to yieldonly a small gain in e�cacy while causing a signi�cant decrease in e�ciency.Such an implementation has therefore been omitted.

106 Chapter 4. QubicOpen defender threeWhen a threat sequence contains an open defender three, the attacker mustrespond to that defender three immediately or lose at the next move.During the dependency stage of db-search, only meta-moves are consi-dered which depend on, or are preceded, by the node from which the meta-move is made. Therefore, during the dependency stage it is often not possibleto counter a defender three. Instead, we solve the problem of open defenderthrees during the combination stage.In standard db-search, to apply meta-operator F (N; f), set N must be aminimal set of key classes, such that f depends on, or is preceded by, the keyoperator in each of those classes. We extend the application of meta-operatorF (N; f) as follows.Let F (N; f) be applicable and let P be an element in the merge of classesof N . Furthermore, we assume that (x1; : : : ; xn) is the priority queue ofempty cubes in open defender threes in P (A), where A is the initial state.Then, we de�ne F (N 0; f), with N 0 = N [P1, to be applicable, if (1) the keyoperator f1 of P1 occupies with its attacker move x1, and (2) the merge ofall elements in N 0 is non-empty.Using the extended meta-operator, we can create combinations of pathsto counter open defender threes. Clearly, a combination should only becreated if F (N; f) is applicable and its priority queue of empty cubes inopen defender threes is empty. In our db-search implementation for qubic wehave implemented the extended meta-operator.Summary of db-search enhancementsIn this section we have introduced three qubic-speci�c enhancements to db-search. The main question yet to be answered is whether the state spacesearched by db-search with these qubic-speci�c enhancements is complete.Of course, the heuristic applied to counter closed defender threes renders thestate space incomplete, but as has been argued, only a marginal number ofsolutions are incorrectly rejected. Without proof we state that, except forthe aforementioned heuristic, our implementation of db-search is complete.In other words, in each position where a winning threat sequence exists,db-search �nds a winning threat sequence, unless the meta-moves within eachwinning threat sequence can be reordered such that a closed defender threeis countered too late by the attacker.

4.4 Applying pn-search 1074.4 Applying pn-searchTo apply pn-search to qubic, we need to convert the qubic game tree intoan and/or tree. This is described in section 4.4.1. The enhancements tobasic pn-search adopted for our qubic implementation are described in section4.4.2.4.4.1 Qubic as an AND/OR treeProof-number search (as described in chapter 2) is an and/or-tree algorithm.To apply it to qubic, we represent positions where white is to move as ornodes, and positions where black is to move as and nodes. A win for white isrepresented by the value true, while a draw and a win for black are representedby the value false. Thus, proving the pn-search tree means that white canwin in the root position, while disproving the pn-search tree means that blackcan achieve at least a draw.At each or node, white is to move. At such nodes, db-search with whiteas attacker is used as evaluation function. If db-search �nds a winning threatsequence, the node is proved, otherwise it obtains the value unknown. In andnodes, black is to move. In such nodes, db-search with black as attacker isused as evaluation function. If a winning threat sequence is found, the node isdisproved, otherwise the value of the node is unknown. A node representing aposition with all 64 cubes occupied, while neither player has created a winningcon�guration, is a draw and therefore has value false, without applying theevaluation function.4.4.2 EnhancementsThe above description explains how standard pn-search is applied to qubic.However, four enhancements have been added to speed up the search. Theenhancements are discussed in this section.TranspositionsA dag is created instead of a tree, using the algorithm described in section2.3.3. This ensures that if a position has already occurred in the dag, or ifa position is equivalent through automorphisms to another position in thedag, the position is not investigated again.

108 Chapter 4. QubicThreatening moves by whitePn-search favors subtrees in which the mobility (i.e., the number of choicesavailable to a player) of one player is restricted, while the mobility of theother is enlarged. In qubic, this means that threatening moves are favoredabove all other moves, as they leave the opponent with just a single response.After a threatening move, and the forced response by the opponent, againthreatening moves are favored above all other moves, and so on. Thus, pn-search automatically focuses on the space of threatening moves. This isundesirable for pn-search in qubic, since the evaluation function (db-search)will already have investigated whether a winning threat sequence exists. Ifsuch a sequence does not exist, the potential for threats should be increased,instead of decreased by executing them. Therefore, in our pn-search tree, wehave restricted white to non-threatening moves, simply by omitting moveswhich create a threat in the move-generation module. For black, of course,all moves are investigated.Heuristic (dis)proof number initializationIn chapter 2 we have suggested several methods to include some domain-speci�c knowledge in the initialization of proof and disproof numbers. Herewe describe our qubic-speci�c initializations.After expansion of an and node (black to move), usually many nodesare proved immediately by db-search. Nodes in which black has just createda threat, however, are not proved immediately, because white is forced tocounter the threat. A good estimate of the number of nodes which muststill be proved at an and node is the number of threatening moves blackcan make. Therefore, the proof number of an and node is initialized to thenumber of threatening moves for black (with a minimum of 1), while thedisproof number is initialized to 1.After expansion of an or node (white to move), usually several nodes aredisproved immediately by db-search. Moves which create potential threats(named positional moves), however, are usually not disproved immediately.We determine the number of positional moves using the following heuristic.For a move M we consider the set of groups G which contain M , whilenot containing any black cubes. M is named positional if G consists of atleast three groups, each containing zero or one white cubes (besides M), orat least two groups, each containing at least one white cube (besides M).At or nodes, the disproof number is initialized to the number of positionalmoves for white (with minimum 1), while the proof number is set to 1.

4.5 Solving qubic 109Removing solved terminal nodesIn section 2.3.1 it was described how solved subtrees in a pn-search tree maybe removed. Such a technique has disadvantages when applied to a daginstead of a tree.Assume that a node J has been solved and is subsequently removed fromthe dag. If in another subtree a new instance of node J is created, the workto solve J will be duplicated. The decision of which solved nodes to removemay depend on the size of the working memory and the probability that thisscenario will occur. Generally, nodes which have been solved with little e�ortmay be removed with less cost than nodes which have been solved only aftera large search.We have decided to remove nodes from the dag only if they were solvedthrough evaluation. As evaluations of nodes require only a small amount oftime, the reduced memory requirements were judged to outweigh the costof re-evaluation for the terminal nodes which occur more than once in thesearch. In our experiments the memory requirements were thus reduced byapproximately 70%.4.5 Solving qubicIn this section we describe how we solved qubic. First, in section 4.5.1we describe how we subdivided the game tree into 195 subtrees. Second,in section 4.5.2 we present statistics on solving each of the 195 subtrees.Third, we compare our results with those of Patashnik (1980) in section4.5.3. Finally, in section 4.5.4 we discuss the reliability of our results.4.5.1 Subdividing the game treeIn this section we explain why and how we subdivided the qubic game treein 195 subtrees. First, we explain why this was necessary. Second, we showhow we subdivided the game tree into four-ply subtrees. Third, we explainhow each of the four-ply subtrees was investigated.Necessity of subdividing the game treeBefore white can create a threat, she must have occupied two cubes in thesame group. After the threat is executed by white and countered by black,white has three cubes in one group together with a black cube. To create anew threat she must have occupied at least one other cube. Thus, winning

110 Chapter 4. Qubicthreat sequences can only be found in positions with at least six cubes (threewhite and three black) on the board. As we have seen in �gure 4.2, in somepositions with exactly three white cubes, winning threat sequences exists.From the above, it follows that any evaluation by db-search of positionswith 0 to 5 cubes occupied will return the value unknown. Furthermore, thenumber of children per qubic position at level d equals size-d. Therefore,the �rst 5 ply of the qubic game tree, using evaluation function db-search,has a uniform branching factor per level of the tree. Executing pn-searchfor the full game tree (with the root representing the empty board) will beine�ective, as pn-search relies on non-uniformity. For this reason, we decidedto split the game tree into subtrees.Selecting a minimal set of subtreesThe subtrees each represent positions 4-ply into the game. A depth of fourwas selected since it was deep enough to overcome the uniformity problem forpn-search mentioned above, while it required the selection of only 13 strategicmoves by hand (i.e., one move for the initial position, and 12 moves in thetwelve 2-ply positions of �gure 4.3) thus leaving as much work to pn-searchas possible.Starting from the empty board, we suggested a move for white. Sincethere are only two distinct moves, one at a 4-cube, and one at a 7-cube, weselected the 7-cube move as white's best chance for winning.As shown in �gure 4.3, black has 12 di�erent �rst moves. Thus, at ply twowe have 12 positions to solve. In each of these positions we suggested a movefor white. In Patashnik (1980), moves at 7-cubes were selected, such that thenumber of di�erent resultant positions (after applying automorphisms) wasas small as possible. There, 7 three-ply positions are presented. To obtainthe 7 three-ply positions, in each of the 12 two-ply positions, white playedin a one-dimensional group containing white's �rst move. Since white's �rstmove at a 7-cube is an element of 3 one-dimensional groups, it is possible toselect such a move with the extra constraint that black's �rst move is not anelement of the same group.Using this approach, it turns out that there are eight di�erent ways inwhich the 12 two-ply positions are reduced to 7 three-ply positions. Werepresent a three-ply position by a three-tuple < w1; w2; b1 >, with w1 andw2 the cube number of the white stones, and b1 the cube number of theblack stone. The cube numbers for each of the 64 cubes of the qubic boardare shown in �gure 4.4. The eight ways to create 7 three-ply positions is as

4.5 Solving qubic 111
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63Figure 4.4: Cube numbers on the qubic board.follows. < 0; 3; 12 >;< 0; 3; 21 >;< 0; 3; 60 >;((< 0; 3; 5 >;< 0; 3; 29 >) _ (< 0; 3; 20 >;< 0; 3; 24 >));((< 0; 12; 1 >; (< 0; 3; 28 > _ < 0; 3; 61 >))_(< 0; 3; 28 >; (< 0; 3; 1 > _ < 0; 12; 1 >)))For each of these eight groups of 7 three-ply positions, we have createdthe set of all four-ply positions. Since there are 61 legal moves per position,initially 427 four-ply positions were created. After applying automorphisms,however, 195, 195, 217, 217, 226, 226, 241 or 241 positions remain, dependingon the group of three-ply positions. The 3-ply position < 0; 3; 1 > looks badfor white, since black has blocked the potential white threats. Therefore, thegroup expanding to 195 four-ply positions of which < 0; 3; 1 > is an elementis ignored. The remaining group of 7 three-ply positions expanding to 195four-ply positions is listed below.< 0; 3; 12 >;< 0; 3; 20 >;< 0; 3; 21 >;< 0; 3; 24 >;

112 Chapter 4. Qubic< 0; 3; 60 >;< 0; 3; 61 >;< 0; 12; 1 >The same group of three-ply positions was selected by (Patashnik, 1980).Since each 7-cube move is also an element of three two-dimensionalgroups, we could instead try moves at 7-cubes in the same two-dimensionalgroup as the �rst white move. Again, the 12 two-ply positions can be reducedto 7 three-ply positions, this time in seven di�erent ways, all of which havebeen listed below.< 0; 15; 51 >;< 0; 15; 21 >;< 0; 60; 3 >;< 0; 51; 6 >;< 0; 51; 5 >;((< 0; 15; 1 >; (< 0; 60; 1 > _ < 0; 60; 7 >))_(< 0; 60; 7 >; (< 0; 15; 1 > _ < 0; 60; 1 >))_(< 0; 60; 1 >; (< 0; 60; 7 > _ < 0; 51; 7 > _ < 0; 15; 1 >)))The number of four-ply positions grown from each of these groups is 219,229, 229, 229, 229, 240 and 240.We have selected the same set of three-ply positions as Patashnik (1980),since it yields the smallest set of four-ply positions. This choice also allowsus to compare his results with ours.Investigating the subtreesPn-search has been applied to all but two of the 195 four-ply positions. Thetwo remaining positions have the property that the two black stones lie withina group G1 which intersects the group G2 containing the two white stones.By playing at the intersection c of G1 and G2, either player can create athreat and counter a potential threat by the opponent at the same time.Therefore, move c is regarded as a strong move for white. However, in pn-search we explicitly forbid white to create threats. In these two positions,this heuristic deprives white of her best move, and allows black to gaincounterplay. Therefore, in these two positions we played white's third moveat c and countered the threat with black's third move before applying pn-search.Tests on these two four-ply positions showed that one position was quicklysolved through an alternative third move for white, while the pn-search forthe other position was terminated after a dag of a million nodes had beencreated. In the latter case, these tests suggest that playing at intersection cmay be white's only path to a win.

4.5 Solving qubic 1134.5.2 StatisticsIn this section we present the statistics of running pn-search on the 195positions described in the previous section. We distinguish between executiontime, pn-search dag size, db-search evaluations and solution size. We alsopresent an example winning line.Execution timeAll experiments were run on a sparcstation 2 at the Vrije Universiteit inAmsterdam. The machine has 128 Megabytes of internal memory, allowingpn-search trees of up to 1 million nodes to �t in internal memory, withoutslowing down the search by swapping to disk. The sparcstation 2 isestimated to have an execution speed of 28 mips.The cpu time needed for the 195 positions (193 four-ply positions and 2six-ply positions) was 55,700 seconds, or roughly 15.5 hours.Pn-search DAG sizeThe pn-search tree size is the number of nodes created during the search.Since no nodes are removed from the dag once created, this equals the sizeat termination. We remark that terminal nodes solved by db-search are notincluded in the dag, as described in section 4.4.2.The smallest pn-search dag consisted of 884 nodes, while the largestconsisted of 310,000 nodes, with the median at 4,000 nodes and the averageat 10,000 nodes. Only one other dag was larger than 60,000 nodes, at118,000. These two di�cult positions are < 0; 3; 1; 7 > (118,845 nodes)and < 0; 3; 21; 22 > (310,424 nodes). (The positions are described by thetwo cubes containing white stones, followed by two cubes containing blackstones.)Db-search evaluationsA total of 3.5 million positions were evaluated with db-search, for white tomove, and 0.9 million positions for black to move. Comparing the totalnumber of evaluations, 4.4 million, with the sum of the sizes of the pn-searchdag's created, 2.0 million, it follows that not creating nodes for the solvedpositions in the tree shrinks the tree to be held in memory by a factor ofalmost 3.2.Each time db-search created a dag of 500 nodes or more it was reported.This occurred just 241 times, out of over 4 million evaluations. Among these,

114 Chapter 4. Qubicdepth positions0 12 124 1956 20008 142610 107412 77214 57316 34518 14220 6222 3624 826 428 4total 6654Table 4.1: Number of positions in the qubic solution31% were successful evaluations. The largest successful evaluation took 2,008nodes, while the largest failed evaluation took 3,153 nodes. Creating the db-search dag of 3,153 nodes took less than 5 seconds cpu time.Solution sizeThe solution tree we found for qubic consists of a set of positions with whiteto move, and a winning move for each of these positions. The number ofpositions at each depth of the tree is shown in table 4.1.A deep winning lineOur approach to solving qubic makes it di�cult to determine the length ofthe winning line constituting optimal play by both sides. First, db-searchdoes not search for the shortest winning threat sequence, but terminates assoon as any winning sequence is found. Second, pn-search does not search forthe shallowest solution, but for one which reduces the work still to be done

4.5 Solving qubic 115
1

26

8

7

6

28 9

3

17 20 15

5 2 4 31

12 21 32

14 16 18 19

22

24

10

25

33

23

29

30

11

13

27Figure 4.5: A deep winning line.to complete the proof.Therefore, the 4 lines of depth 28, as shown table 4.1, followed by thewinning threat sequence found by db-search are not necessarily the longestlines with optimal play by both sides. Nevertheless, the winning line shownin �gure 4.5, consisting of 33 ply, is one of these four.Below follows a short analysis of the game. The �rst four ply consist ofwhite and black occupying 7-cubes. White 5 comes somewhat as a surprise:white occupies a 4-cube to block the potential threat created by black. Black6 similarly blocks white's potential threat. With white 7 two more potentialthreats are created, of which one is countered by black 8. White 9, againat a 4-cube, creates several opportunities for white to win through a threatsequence. Black then starts creating threats up to black 28, each of which isfollowed by a forced move by white. White 29, countering black 28, regainsthe initiative for white by creating a threat. After black's forced reply, whitecreates a double threat with white 31 and wins with white 33.We remark that while this may be the line of play where black postponesthe end as long as possible, after white 9 all white had to do is counter threatscreated by black. The �rst time white had to select a move again, she had

116 Chapter 4. Qubicmany options to win, of which white 31 is the simplest way. Therefore, fromthe point of view of human players, playing white in this line only requiresskill up to white 9. We remark that other lines exist in the solution to qubicwhich require more strategic moves by white, although the winning line isshorter.4.5.3 Comparison with PatashnikIn this section we compare our solution with that of Patashnik. Thiscomparison is not meant to criticize Patashnik's work in any way. On thecontrary: his ability to solve qubic in the late 1970s constrained by thecomputing resources of that time should be regarded as one of the moreimpressive achievements in games research. The goal of our comparison isonly to obtain information on the performance of db-search and pn-search.First, we compare the performance of pn-search in selecting strategicmoves with that of Patashnik as strong human player. Second, we comparethe performance of db-search with that of the forced-sequence searcher usedby Patashnik. Third, we summarize the results.Pn-search vs. human expertAs stated in section 4.5.1, we have researched the same 195 four-ply positionsas Patashnik (1980). Patashnik de�nes a strategic move as a non-obviousmove for white, thus excluding moves suggested by the tactical search, andexcluding forced moves for white when countering threats made by black. Tocompare our results with Patashnik's we must exclude all forced moves forwhite from the 6,654 moves in our solution to qubic. The number of strategicmoves per depth, for both Patashnik and our solution, are shown in table4.2.From table 4.2 it follows that Patashnik made 10% fewer strategic movesthan pn-search. For Patashnik, making the strategic moves was a bottleneckin solving qubic, as each strategic move was made by hand. Consequently,minimizing the number of strategic moves was a major concern in hisresearch. Therefore, we feel that pn-search, while not explicitly tryingto minimize the number of strategic moves in our solution to qubic, hasperformed well.

4.5 Solving qubic 117level Patashnik pn-search0 1 12 12 124 195 1956 1448 19608 788 66810 309 24812 110 11314 51 4116 15 1418 0 2total 2929 3254Table 4.2: Number of positions in qubic solution per depth.Db-search vs. forced-sequence searchBefore we can compare the total amount of cpu time spent by Patashnik withour results, we must allow for the di�erent types of machines used. Althoughit is di�cult to compare such vastly di�erent machines, an expert indicatedthat if the performance had to be expressed in mips, his best estimate for thedec-10 would be between 2 and 3 mips (Witmans, 1994). Compared with theapproximately 28 mips of the sparcstation 2, we assume that our machinewas between 10 and 20 times faster than the hardware used by Patashnik. Inour comparison we disregard the fact that today's computers are equippedwith much larger memories than 15 years ago.Our �rst comparison is based on the total solution time. Patashnik'ssolution took approximately 1500 hours, not counting time wasted on back-tracking due to bad strategic moves, and computer failure. We comparethis �gure with our 15.5 hours of cpu time. Factoring out the di�erence inmachine speed, our solution is between 5 and 10 times faster than the solutionfound by Patashnik. As almost all cpu time is spent on searching forcedsequences, for both Patashnik's solution and ours, this is a �rst indicationthat db-search may be 5 to 10 times more e�cient than a conventional forced-sequence search as implemented by Patashnik.Comparing the execution time of individual instances of Patashnik'sforced-sequence search and our db-search is slightly more di�cult. Patashnik

118 Chapter 4. Qubicremarks that typically his forced-sequence search took about two seconds,but occasionally as long as half an hour. He also remarks that if his strategicmoves had been slightly worse, an uncontrollable combinatorial explosionwould have occurred in some positions.For a second comparison, we will assume an average of two seconds perforced-sequence search for Patashnik. To simplify matters for db-search,we assume that all 55,700 seconds of cpu time were spent on db-searchevaluations (disregarding the time necessary to perform pn-search, to checkfor automorphisms, and to �nd transpositions in the pn-search dag). Duringthis time over 4.4 million evaluations were performed, for an average of almost80 evaluations per second. Given the di�erence in machine speed, we �nd thatdb-search is between 8 and 16 times faster than Patashnik's forced-sequencesearch.As a third comparison, we look at the slowest evaluation of db-search(less than 5 seconds) and the slowest forced-sequence search of Patashnik(approximately 30 minutes). This di�erence implies a gain factor for db-search of 20 to 40 on the di�cult positions.Summarizing comparison with PatashnikWe conclude that applying expert knowledge (Patashnik) to solve qubic,results in a marginally smaller solution compared to applying the knowledge-free search technique pn-search. On qubic, db-search performs between 5 and40 times better than a conventional search algorithm. In our opinion, thequbic results illustrate the strengths of both pn-search and db-search.4.5.4 ReliabilityThere are many sayings concerning the number of errors made by program-mers, among which one of the most famous is: There is always one more bug.These bugs may vary from uninitialized variables to serious programming-logic errors. For a program the size of our qubic implementation (over 6,000lines of C code), there may thus be some doubts about the reliability ofour results. In this section we present some measures taken to ensure theircorrectness.The most complicated part of the program consists of the db-searchimplementation. During the implementation errors were made, and correctedbut, of course, ensuring that this code is error free is a di�cult task.Therefore, the products of db-search, viz. winning threat sequences, wereindependently examined for their correctness. Once a potential winning

4.5 Solving qubic 119threat sequence was found, the program started from the initial searchposition and played the sequence move by move. After each move by theattacker it is investigated whether (1) the defender has a threat, and (2) theattacker has a threat at the cube suggested as next move for the defender.After the last move by the attacker, it is investigated if indeed a group offour cubes has been occupied by the attacker. If any of these investigationsshow that db-search made an error, this is reported. No errors have beendiscovered in db-search during the process of solving qubic. We conclude thatthe product of the most complicated part of the program is independentlyveri�ed.The second most complicated part of the program consists of the pn-search implementation. Fortunately, pn-search has been implemented forseveral di�erent games, ensuring that the chances of implementation errorsare much lower than for new code. Still, the search process is too complicatedto monitor fully, and thus errors may go unnoticed. To examine our results, asuccessful pn-search produces a small database consisting of the positions inthe solution tree. After we solved all 195 four-ply positions, we merged thesedatabases. Next, we created a database-checking module. For each positionin the database with white to move a successor should be contained in thedatabase. For each position in the database with black to move, all successorsare generated. A successor should either be contained in the database, orwhite should have a winning threat sequence as found by db-search. Wehave thus checked the database and found it complete.Third, our solution is consistent with the results of Patashnik (1980), butarrived at independently. In conclusion, we believe that our implementationmay be regarded as reliable.

120 Chapter 4. Qubic

Chapter 5Go-MokuIn this chapter we discuss the application of pn-search and db-search to go-moku. In the previous chapter we stated two goals for chapters 4 and 5,which we repeat here. The �rst goal is to explain in detail how pn-searchand db-search have been applied to two combinatorially complex problems.The second goal is to show that qubic and go-moku can be solved, therebypositively answering our �rst research question (cf. section 1.4) for twospeci�c games.In several ways, qubic and go-moku are related games, with go-mokubeing the more complex one. The relationship between qubic and go-mokuis expressed in the organization of this chapter: almost every section hasa corresponding section in chapter 4. We mention this relationship forreaders who are particularly interested in the application of db-search orpn-search. Comparing corresponding sections on qubic and go-moku mayprovide additional insight in these algorithms.The chapter is organized as follows. In section 5.1 we provide abackground to investigations in go-moku. The rules of go-moku and commonstrategies are presented in section 5.2. The application of db-search to go-moku is described in section 5.3. The role of pn-search in the solution ofgo-moku is explained in section 5.4. The results of our investigations arepresented in section 5.5.5.1 BackgroundAmong the games of the Olympic List, go-moku has the simplest rules: twoplayers (black and white) alternate placing stones on a 15� 15 square lattice121

122 Chapter 5. Go-Mokuwith the goal of obtaining a line of exactly �ve consecutive stones of theplayer's color. While its roots lie in China and Japan, it is also popular inseveral countries of Europe and the former Soviet-Union. Part of go-moku'spopularity must be ascribed to the fact that it can be played with pencil andpaper, allowing it to be played virtually everywhere (including classrooms)by virtually everyone (including bored students).In Japan professional renju players (renju being a complicated variant ofgo-moku) have studied go-moku in detail and have stated that the playerto move �rst (black) has an assured win (Sakata and Ikawa, 1981). Thesestatements are sometimes accompanied by a list of main variations, suchas the 32-page analysis in Sakata and Ikawa (1981). Close examination ofthese analyses reveals that in each position only a small number of whitemoves are analyzed. For example, after black's �rst move at the center of a15�15 board, white has 35 distinct moves, of which 2 are adjacent to black's�rst move, ignoring symmetrically equivalent moves. In Sakata and Ikawa(1981) only the variations after the 2 moves adjacent to black's �rst moveare discussed. As far as we know, prior to this work no complete proof ofblack's win in go-moku has been published.Until this study, all go-moku programs have been defeated at least onceor been in a lost position when playing black. As an example of the latterwe mention the game between the go-moku 1991 world-champion programVertex (black) and the program Polygon (white). Vertex maneuvered itselfinto a position provably lost for black (Uiterwijk, 1992a). As an aside wenote that Polygon played its �rst move non-adjacent to the �rst black stone,indicating that �nding a win in such a variation may not be entirely obvious.Summarizing, go-moku is assumed to be a �rst-player win but, as far aswe know, no complete proof has been published nor has any go-moku programever been shown to be unbeatable when playing black.At this point we reiterate our remark of section 4.1. In earlier publicationswe have used the term threat-space search for the application of db-search toqubic and go-moku. In this text we only use the term db-search.5.2 Rules and strategiesGo-moku is a two-player game, related to the well-known trivial game of tic-tac-toe. While in tic-tac-toe players must create a line of three consecutivemarkers of their color on a restricted 3 � 3 board, in go-moku players mustcreate a line of �ve on a practically unrestricted lattice. Through the years,several variants of go-moku have been developed, which are described in detail

5.2 Rules and strategies 123in section 5.2.1. Next, threats and threat trees are discussed in section 5.2.2.Finally, in section 5.2.3 some insight is given into the way human go-mokuexperts think.5.2.1 RulesIn go-moku, simple rules lead to a highly complex game, played on the 225intersections of 15 horizontal and 15 vertical lines. Going from left to rightthe vertical lines are lettered from a to o; going from the bottom to the topthe horizontal lines are numbered from 1 to 15. Two players, black and white,move in turn by placing a stone of their own color on an empty intersection,henceforth called a square. Black starts the game. The player who �rstmakes a line of �ve consecutive stones of her color (horizontally, vertically ordiagonally) wins the game. The stones once placed on the board during thegame never move again nor can they be captured. If the board is completely�lled, and no one has �ve-in-a-row, the game is drawn.Go-moku variantsMany variants of go-moku exist; they all restrict the players in some sense,mainly reducing the advantage of black's �rst move. We mention fourvariants.Non-standard boards In the early days the game was played on a 19� 19board, since go boards have that size. Some people prefer to think ofgo-moku as being played on an in�nite board. However, a larger boardincreases black's advantage (Sakata and Ikawa, 1981), which resultedin the standard board size of 15� 15.Free-style go-moku An overline is a line of six or more consecutive stonesof the same color. In this variant, an overline is regarded as a win.Standard go-moku In the variant of go-moku played most often today, anoverline does not win (this restriction applies to both players). Only aline of exactly �ve stones is considered as a winning pattern.Renju A professional variant of go-moku is renju. White is not restricted inany way, e.g., an overline wins the game for white. However, black is notallowed to make an overline, nor a so-called double three or double four(cf. Sakata and Ikawa (1981)). If black makes any of these patterns,she is declared to be the loser. Renju is not a symmetric game: to play

124 Chapter 5. Go-Mokuit well requires di�erent strategies for black and for white. Even thoughblack's advantage is severely reduced, she still seems to have the upperhand.We have investigated both free-style go-moku and standard go-moku. Weremark that in this chapter we discuss free-style go-moku unless it is explicitlystated otherwise.Opening restrictionsIn an attempt to make the game less unbalanced, opening restrictions havebeen imposed on black. We mention two such restrictions.Professional go-moku In professional go-moku, black is forced to make her�rst move in the center of the board. White must play her �rst move atone of the eight squares adjacent to black's �rst move. Black's secondmove must be outside the set of 5� 5 squares centered by black's �rststone.Professional renju In professional renju, the game starts with two playerswhich are named temporary black and temporary white. Temporaryblack plays her �rst move at the center of the board, while temporarywhite plays her �rst move adjacent to the black stone on the board.Due to symmetry, there are only two distinct �rst moves for temporarywhite. For each of these two, there are 12 selected squares wheretemporary black is allowed to play her second move. Thus, there are24 possible 3-ply sequences in this variant. Next, temporary whitemay choose between playing black or white for the remainder of thegame. Temporary black automatically plays the other color. Then,white plays her second move. Finally, black selects two squares for herthird move and gives white the choice between these two. From there,the game continues according to the rules of standard renju.In our research we have investigated variants of go-moku without anyopening restrictions.5.2.2 Threats and threat treesWe describe the four types of threats in go-moku, followed by a discussion ofthreat trees and winning threat trees.

5.2 Rules and strategies 125
...............
.oxxxx.●a
...............
...............
.........●c xxx.●c ..
...............
...............
..●b ..●e ...o.●d xxx.●d .●d .
.x..x..........
.x....●e
.x....x........
.x.....x.......
..●b●e
...............
...............Figure 5.1: Threats in go-moku.ThreatsIn go-moku a threat is an important notion; the main types have descriptivenames: the four (�gure 5.1a) is de�ned as a line of �ve squares, of which theattacker has occupied any four, with the �fth square empty; the straight four(�gure 5.1b) is a line of six squares, of which the attacker has occupied thefour center squares, while the two outer squares are empty; the three (�gure5.1c and 5.1d) is either a line of seven squares of which the three centersquares are occupied by the attacker and the remaining four squares areempty, or a line of six squares with three consecutive squares of the four centersquares occupied by the attacker and the remaining three squares empty; thebroken three (�gure 5.1e) is a line of six squares of which the attacker hasoccupied three non-consecutive squares of the four center squares, while theother three squares are empty. A winning pattern, i.e., a line of �ve squares,all occupied by one player, is named a �ve.If a player constructs a four, she threatens to win on the next move.Therefore, the threat must be countered immediately at the empty square ofthe four. If a straight four is constructed, the defender is too late, since thereare two squares where the attacker can create a �ve at her next move (unless,of course, the defender has the opportunity to win at her next move). Witha three, the attacker threatens to create a straight four at her next move.Thus, even though the threat has a depth of two moves, it must be counteredimmediately. If an extension at both sides is possible (�gure 5.1c), then there

126 Chapter 5. Go-Moku
..●a
.●a .●a xxxo.........
.x.............
.x.............
.x...........●b ..
.o.....oxxx.●b .●b o.
..........x....
.........x.....
.........●b
....●c
...x...........
...x...........
...●c .●c xx.●c
....●c
...............Figure 5.2: Complicated threats.are two defensive moves: both directly adjacent to the attacking stones. Ifonly one extension is possible then three defensive moves are available (�gure5.1d). Moreover, against a broken three, three defensive moves exist (�gure5.1e).We remark that more complicated threats exist, which threaten to win intwo or more moves. Three examples are shown in �gure 5.2, in each of whichblack threatens to play at the intersection of the two lines of black stones.In �gure 5.2a, black threatens to create a double four, in �gure 5.2b, blackthreatens to create a four-three, and in �gure 5.2c, black threatens to createa double three. Each of these is a winning pattern. White can counter thethreats of �gure 5.2 in 3, 4 and 5 possible ways, respectively.In our research we have not included the patterns of �gure 5.2 as threatsfor three reasons. First, the large number of defensive moves per threat doesnot combine well with our transformation of the winning threat-tree searchto a single-agent search, as described in section 5.3.1. Second, recognizingthreats which consist of a single line on the board can be performed moree�ciently than recognizing threats which consist of combinations of lines.Third, the threats shown in �gure 5.2 are only a small sample of the completeset of more complicated threat patterns, making inclusion of all possiblethreats of go-moku a complex task. In Uiterwijk (1992b) a program basedon a large set of threat patterns is described.

5.2 Rules and strategies 127
...............
...............
...............
.....o16
....o2 .x15 o4 ..o6 .o14 ..
.....x1 o8 x3 x7 x5 o10 x9 ...
.....oxxxo12 x11
.....ooxox13
.....oxxxox17
.....oxo.o.....
....oxxx.......
......o........
...............
...............
...............(a) Fours only.

...............

...............

...............

...............

.........x13

......xx3 o10 x5

......ox1 ox.....

......oxo2 x11 o....

......oo4 xx.....

......o6 ..o12

.....o8 x7

....x9

...............

...............

...............(b) Threes only.Figure 5.3: Winning threat variationsThreat treesTo win the game against any opposition a player needs to create a doublethreat (either two threes, two fours, or a three and a four). In most cases,several threats are executed before a double threat occurs. A tree in whicheach attacker move is a threat is called a threat tree. A threat tree leading toa (winning) double threat in each variation is called a winning threat tree. Avariation in a winning threat tree is called a winning threat variation. Eachthreat in the tree forces the defender to play a move countering the threat.Hence, the defender's possibilities are limited.In �gure 5.3a a position is shown in which black can win through a winningthreat variation consisting of fours only. Since a four must be counteredimmediately, the whole sequence of moves is forced for white.In �gure 5.3b a position is shown in which black wins through a winningthreat variation consisting of threes, twice interrupted by a white four. Asmentioned earlier, white has at each turn a limited choice. During the play,she can create fours as is shown in �gure 5.3b. Still, her loss is inevitable.

128 Chapter 5. Go-Moku5.2.3 Human strategiesDuring the second and third Computer Olympiad (Levy and Beal, 1991; Vanden Herik and Allis, 1992), we observed two human expert go-moku players(A. Nosovsky, 5th dan and N. Alexandrov, 5th dan). These Russian playersare involved in two of the world's strongest go-moku playing programs (Vertexand Stone System). While observing the experts, it became clear that theyare able to �nd quickly sections on the board where a winning threat tree canbe created, regardless of the number of threes which are part of the winningthreat tree. The depth of these winning threat trees are typically in the rangeof 5 to 20 ply.The way a human expert �nds winning threat trees so quickly can bebroken down into the following four steps.1. A section of the board is chosen where the con�guration of stones seemsfavorable for the attacking player. It is then decided whether enoughattacking stones can collaborate making it useful to search for a winningthreat tree. This decision is based on a "feeling", which comes from along experience in judging patterns of stones (cf. De Groot (1965)).2. Threats are considered, and in particular the threats related to otherattacking stones already on the board. Defensive moves by theopponent are mostly disregarded.3. As soon as a variation is found in which the attacker can combine herstones to form a double threat, it is investigated how the defender canrefute the potential winning threat variation. Whenever the opponenthas more than one defensive move, an examination is made to seewhether the same threats work in all variations of the threat tree.Moreover, it is investigated whether the opponent can insert one ormore fours, e�ectively neutralizing the attack.4. If only a few variations of the tree do not lead to a win via the samethreat variation, an examination is made to see whether the remainingpositions can be won via other winning threat trees.In practical play, a winning threat tree often consists of a single set ofattacking moves applicable to each variation of the tree, independent of thedefensive moves.We remark that the size of the state space is considerably reduced by�rst searching for one side (the attacker). Only if a potential winning

5.3 Applying db-search 129threat tree is found is the impact of defensive moves investigated. Thisapproach is supported by the analyses given in (Sakata and Ikawa, 1981).When presenting a winning threat tree, they only provide the moves for theattacker, thus indicating that the set of attacking moves works irrespectiveof the defensive moves. Possible fours which the defender can create withoutrefuting the threat tree can be neglected altogetherIn positions without winning threat trees, the moves to be playedpreferably increase the potential for creating threats or, whenever defensivemoves are called for, the moves chosen will reduce the opponents potential forcreating threats. The human evaluation of the potential of a con�guration isbased on two aspects: (1) direct calculations of the possibilities, (e.g., if theopponent does not answer in that section of the board) and (2) a so-calledgood shape (i.e., con�gurations of which it is known that stones collaboratewell).In section 5.3 we model the above thinking process in our application ofdb-search to go-moku.5.3 Applying db-searchAs mentioned before, threat trees play a dominant role in go-moku. To playgo-moku well, it would be advantageous to have a module which determineswhether a winning threat tree exists. Our application of db-search to go-mokuis restricted to searching for winning threat trees.This section consists of four parts. First, in section 5.3.1 we describehow the adversary-agent state space, if restricted to a subset of all possiblethreat trees, can be transformed into a single-agent state space. Second, insection 5.3.2 we illustrate how the single-agent state space thus created forgo-moku �ts in the framework for db-search as presented in chapter 3. Third,in section 5.3.3 we discuss properties of the single-agent state space for go-moku which have not been included in the framework of section 5.3.2. Foreach of these properties it is explained how our implementation of db-searchhandles them. Fourth, in section 5.3.4 heuristics are described which lead toa signi�cantly improved e�ciency, at the cost of a slightly reduced e�cacy.Fourth, in section 5.3.5 we describe the additional requirements necessary toapply db-search to standard go-moku instead of free-style go-moku.

130 Chapter 5. Go-Moku5.3.1 A single-agent search in go-mokuOur description of the single-agent state space in go-moku consists of a setof de�nitions, an interpretation of the de�nitions, and the transformation ofthe adversary-agent state space to a single-agent state space.De�nitionsIn the previous sections we have introduced the concept of threats, threattrees and winning threat trees. For our application of db-search to go-moku,we formally de�ne the notions threat (de�nition 5.1), reply (de�nition 5.2),threat sequence (de�nition 5.3), potential winning threat sequence (de�nition5.4) and winning threat sequence (de�nition 5.5).De�nition 5.1 A threat in go-moku is a move by the attacker creating a�ve, a straight four, a four, a three or a broken three. A �ve and a straightfour are called double threats, while a four, three and broken three are calledsingle threats. The squares related to a threat are the 5 (�ve and four),6 (straight four, three, broken three) or 7 (three) squares in the line of thethreat (cf. section 5.2.2).De�nition 5.2 A reply to a threat T in go-moku is the set of defender movesR, such that each element of R counters T . Against a �ve and a straight four,R is empty, against a four, R consists of one move, against a three R consistsof two or three moves, and against a broken three, R consists of three moves.De�nition 5.3 A threat sequence in go-moku is any sequence of moves(a1; d1; a2; d2; : : : ; an; dn), with n � 1, such that each ai, 1 � i � n is asingle threat, and each di is the reply to ai.De�nition 5.4 A potential winning threat sequence in go-moku is anysequence (a1; d1; : : : ; an; dn; an+1; dn+1), such that (a1; d1; : : : ; an; dn) is athreat sequence, an+1 is a double threat and dn+1 is the reply to an+1.De�nition 5.5 A winning threat sequence in go-moku is a potential winningthreat sequence (a1; d1; : : : ; an; dn; an+1; dn+1), for which it has been checkedthat the defender cannot counter the threat sequence by:1. interjecting a sequence of threats the attacker must respond to, leadingto a win for the defender2. interjecting a sequence of threats the attacker must respond to, leadingto occupation of a square related to a threat ai, before the defender hasplayed the reply to di.

5.3 Applying db-search 131InterpretationHere we elaborate on the de�nitions presented above. De�nition 5.1 de�nesthreats in accordance with the de�nitions of section 5.2.2. The only di�erenceis our inclusion of the �ve as a threat, and naming the straight four and the�ve double threats. The reason for doing so is explained below.When a double three is created, it is assumed that the defender countersone of them, allowing the attacker to convert the remaining three into astraight four at the next move. When a double four is created, it is assumedthat the defender counters one of them, allowing the attacker to convert theremaining four into a �ve at the next move. When a four-three is created,depending on the threat countered by the defender, the attacker can createeither a �ve or a straight four. Thus, we may recognize double threats onemove after they appear in the form of straight fours or �ves.The de�nition of a reply forms a crucial step in our conversion ofthe adversary-agent state space of go-moku into a single-agent state space.Human strategies imply that often threat trees are found such that in eachvariation the same attacking moves are played. In other words, the choicebetween defensive moves in such threat trees is irrelevant. We convert thesethreat trees to threat sequences by allowing the defender to play all defensivemoves as a single reply. In �gure 5.4, we have depicted such a winning threatsequence, consisting of four threats. After black 1, white has the three-movereply 2. After black 3, white has the two-move reply 4. After black 5, whitehas the three-move reply 6. Black 7 creates a straight four, to which thereply set is empty.Clearly, in free-style go-moku, having extra stones on the board is never adisadvantage. Thus, if a variation wins for the attacker when the defender isallowed to play replies consisting of multiple stones, then the variation winsalso if the defender is forced to select one stone from each multiple-stonereply.Positions exist in which the multiple-stone reply leads to counter play forthe defender, while the attacker would win in all variations through the sameattacking moves if the defender were restricted to playing one stone per reply,but these are rare.A potential winning threat sequence as de�ned in de�nition 5.4 has in-vestigated only local defensive moves, i.e., after each threat, it is assumedthat the defender must immediately counter the threat. A winning threatsequence has also been checked for global defensive moves, i.e, that the squaresnot related to the threat sequence have been investigated for their inuence

132 Chapter 5. Go-Moku
...............
...............
...............
...............
.....o2 .o4
.....o6 xx3 o6 x5 o6
......ox1 ox.....
......oxo2 x7 o....
......oo4 xx.....
..........o2
...............
...............
...............
...............
...............Figure 5.4: White defending with multiple-stone replieson the success of the threat sequence.Adversary-agent vs. single-agentAs we have seen, in (winning) threat sequences, each reply by the defenderis implied by the previous attacker move. Therefore, we may conceptuallymerge these two moves into a single meta-move.The state space created by these meta-moves is no longer an adversary-agent state space, but instead a single-agent state space. In the remainder ofthis section, when discussing meta-moves, we assume that the attacker moveand defender move in a meta-move are made simultaneously.5.3.2 A db-search framework for go-mokuIn this section we de�ne a db-search framework for the single-agent statespace of go-moku, de�ned in the previous section. We mention that theframework only involves local defensive moves, while ignoring global defensivemoves. Global defensive moves of a position will be discussed in section 5.3.3.The terminology introduced in chapter 3 is used throughout this chapter.

5.3 Applying db-search 133NotationLines of �ve, six and seven squares play an important role in go-moku. Fornotational purposes, we de�ne the following sets.G5 = ffs1; s2; : : : ; s5g j s1; : : : ; s5 form a line of �ve squaresgG6 = ffs1; s2; : : : ; s6g j s1; : : : ; s6 form a line of six squaresgG7 = ffs1; s2; : : : ; s7g j s1; : : : ; s7 form a line of seven squaresgWe mention that on a 15 � 15 board, G5 has 572 elements, G6 has 500elements and G7 has 432 elements.Furthermore, we de�ne a linear order on the squares of the go-moku board,such that a1 < a2 < : : : < a15 < b1 < : : : < o15. Clearly, the outer squaresof a line are always minimal and maximal within the line, with respect tothis ordering.AttributesThe set U of all attributes is de�ned as follows. U = fS(i; x) j a1 � i �o15 ^ x 2 f�; �; �gg. Attribute S(i; x) represents the fact that square i isoccupied by the attacker (�), occupied by the defender (�), or empty (�). Itcan easily be checked that U has 675 elements.OperatorsThe operator fFI;g5 (�ve), for g5 = fs1; : : : ; s5g and g5 2 G5, is de�ned asfollows. fpreFI;g5 = fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �)gfdelFI;g5 = fS(s5; �)gfaddFI;g5 = fS(s5; �)gThe operator fSF;g6 (straight four), for g6 = fs1; : : : ; s6g and g6 2 G6,and s1 < s2; s3; s4; s5 < s6, is de�ned as follows.fpreSF;g6 = fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)gfdelSF;g6 = fS(s5; �)gfaddSF;g6 = fS(s5; �)g

134 Chapter 5. Go-MokuThe operator fFO;g5 (four), for g5 = fs1; : : : ; s5g and g5 2 G5, is de�nedas follows.fpreFO;g5 = fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �)gfdelFO;g5 = fS(s4; �); S(s5; �)gfaddFO;g5 = fS(s4; �); S(s5; �)gThe operator fBT;g6 (broken three), for g6 = fs1; : : : ; s6g and g6 2 G6,and s1 < s2; s3; s4; s5 < s6 and s4 neither minimum nor maximum infs2; s3; s4; s5g, is de�ned as follows.fpreBT;g6 = fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)gfdelBT;g6 = fS(s1; �); S(s4; �); S(s5; �); S(s6; �)gfaddBT;g6 = fS(s1; �); S(s4; �); S(s5; �); S(s6; �)gThe operator fT2;g7 (three with 2 reply moves), for g7 = fs1; : : : ; s7g andg7 2 G7, and s1 < s2 < s3; s4; s5 < s6 < s7, is de�ned as follows.fpreT2;g7 = fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �); S(s7; �)gfdelT2;g7 = fS(s2; �); S(s5; �); S(s6; �)gfaddT2;g7 = fS(s2; �); S(s5; �); S(s6; �)gThe operator fT3;g6 (three with 3 reply moves), for g6 = fs1; : : : ; s6g andg6 2 G6, and s1 < s2; s3; s4; s5 < s6 and s2 either minimum or maximum infs2; s3; s4; s5g, is de�ned as follows.fpreT3;g6 = fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)gfdelT3;g6 = fS(s1; �); S(s2; �); S(s5; �); S(s6; �)gfaddT3;g6 = fS(s1; �); S(s2; �); S(s5; �); S(s6; �)gThe set of all operators Uf is de�ned as follows.Uf = ffFI;g5 j g5 2 G5g [ffSF;g6 j g6 2 G6g [ffFO;g5 j g5 2 G5g [ffBT;g6 j g6 2 G6g [ffT2;g7 j g7 2 G7g [ffT3;g6 j g6 2 G6gWe mention that on a 15� 15 board, Uf contains 3076 operators, of whicheach can be applied in more than one way, resulting in a total number of23596 possible applications of operators.

5.3 Applying db-search 135Initial state and goal statesThe initial state consists of exactly 225 attributes, one per square indicatingthe contents of the square. Each possible con�guration of black, white andempty squares in which neither player has occupied a line of �ve can serveas initial state. The set Ug of goal states is independent of the initial state,and is de�ned as follows.Ug = f fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �)g jfs1; s2; s3; s4; s5g 2 G5g [f fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)g jfs1; s2; s3; s4; s5; s6g 2 G6 ^ s1 < s2; s3; s4; s5 < s6gIn other words, each state containing a �ve or straight four is a goal state.Ug is not singular.Properties of the go-moku frameworkThe framework we have described above is monotonous. Furthermore, wecan easily restrict ourselves to non-redundant paths. If Ug were singular, ourUk would be complete.We can create a singular Ug0 , by de�ning a special goal attribute G andoperators which transform any element of Ug into G, which would result ina complete Uk. A discussion of the completeness of Uk would be premature,however, since so far we have ignored global defensive moves.5.3.3 Go-moku speci�c enhancements to db-searchThe db-search framework for go-moku presented in the previous sectionfocuses only on the local defensive moves. For those moves we de�ned repliessuch that each defender move was forced, allowing us to transform the searchinto a single-agent search.A search for global defensive strategies is only necessary to investigatewhether a potential winning threat sequence is correct. Thus, given sucha threat sequence, it should be investigated whether the defender hasalternatives to the local reply to refute the threat sequence. To investigatethe global defensive strategies, we perform single-agent searches, this time�xing the attacker choices. After each attacker move speci�ed in the threatsequence, the resultant position is investigated for a global defensive strategyby the defender. We describe the investigations in four steps.

136 Chapter 5. Go-MokuFirst, we de�ne the threat categories, which play an important rolein determining for each position the types of global defensive movesavailable. Second, we describe two ways in which global defensive moves maysuccessfully counter a potential threat sequence. Third, we describe a set ofparameters for db-search. Fourth, we describe how the module searching forwinning threat sequences is composed of a series of db-searches.Threat categoriesThe operators de�ned in section 5.3.2 can be divided in three categories.Category 0 consists of the �ve, category 1 of the straight four and four, andcategory 2 consists of the three and the broken three. Using these categorieswe can state exactly what kind of global defensive moves may be interjectedby the defender while countering a threat sequence. Against a threat fromcategory i, only threats from categories j can be used as global defensivemoves, with j < i. Thus, against a �ve no global defensive moves exist,against a (straight) four only a �ve can serve as global defensive move, whileagainst a three or broken three, both �ves, straight fours and fours may serveas global defensive moves.The above relation between global defensive moves and threat categoriescan easily be veri�ed by noting that each threat in category i threatens towin in exactly i moves.Global defensive strategiesIn section 5.3.1 we have listed two ways in which the defender may successfullycounter a threat by interjecting global defensive moves. First, she may createa sequence of threats leading to a win. Second, she may create a sequence ofthreats leading to the occupation of a square in the threat sequence.Here we describe how db-search can be used to determine whether such aglobal defensive strategy exists. Our application of db-search for this purposeis such that we may erroneously decide that a defensive strategy exists, thusrejecting a winning threat sequence for the attacker, but that we will neveroverlook the existence of a defensive strategy.To prevent confusion arising from the terms attacker and defender in thiscontext, we assume here that player A has found a potential winning threatsequence, and we investigate whether player B has a global defensive strategyafter move ai by A. Three remarks concerning the application of db-searchto search for global defensive strategies for player B are in order.

5.3 Applying db-search 1371. The goal set Ug for player B should be extended with singleton goalsfor occupying any square in threat aj or reply dj , with j � i.2. If B �nds a potential winning threat sequence (i.e., a global defensivestrategy against the potential winning threat sequence ofA), this threatsequence is not investigated for counter play of player A. Instead,in such a case we always assume that A's potential winning threatsequence has been refuted.3. In the application of db-search for player B, only threats of categoriesless than the category of the threat played by A may be applied. Thus,in a db-search for player B, only threats having replies consisting of asingle move are applied.If we examine the description of db-search for B, we may �nd that thesearch is monotonous and contains no redundant paths. As argued before, Ugcan be easily transformed into a singular Ug0 , without a conceptual di�erencein the resulting Uk. Since any sequence found for player B is accepted asrefutation of the potential winning threat sequence of A, we claim that ifapplication of db-search does not �nd a global defensive strategy, such astrategy does not exist for player B.We stress this point as it is a vital element in the process of solving go-moku: we must ensure that in no position we accept a threat sequence aswinning, if the threat sequence could be refuted.Parameters to db-searchAbove, we have seen that db-search is used to �nd potential winning threatsequences as well as to investigate whether the defender has a global defensivestrategy refuting a potential winning threat sequence. These searches are allperformed by the same module, whose parameters are listed below.1. The position to which db-search is to be applied.2. The attacker, i.e., the player for whom a db-search is applied.3. The goal squares, i.e., the set of squares, which, if one is occupied bythe attacker, terminates the search.4. The defensive check option. This is a Boolean value indicating whethera potential winning threat sequence should be investigated for counterplay.

138 Chapter 5. Go-Moku
o..............
.o.............
..o.........x..
....●bx..
.....●ax9 ..
....o4x7 o.
...o2 o2 x1 xxo2 o.o8 ...
.....●e .xoo.x....
.....●c .ox3 xx5 o6 xo..
....●dx......
..o....o.o.....
.o.............
o..............
...............
...............Figure 5.5: White refutes a potential winning threat sequence.5. The maximum category, i.e., only threats of this category and lowercategories may be applied.The winning threat sequence moduleHere we present a step by step description of the winning threat sequencemodule, with the aid of the position in �gure 5.5.To �nd the winning threat sequence for black in the position before black1 of �gure 5.5, db-search may be called with (1) that position; (2) attackerblack; (3) the empty set of goal squares; (4) the defensive check option atvalue true; (5) maximum category 2. If the potential winning threat sequenceshown in �gure 5.5 is found, db-search will be called �ve more times, afterblack 1, black 3, black 5, black 7 and black 9. The parameters to db-searchafter, for instance, black 1 are: (1) the position after black 1; (2) attackerwhite; (3) the set consisting of the 28 squares related to the threats black1 (7 squares), black 3 (5 squares), black 5 (5 squares), black 7 (5 squares)and black 9 (6 squares); (4) the defensive check option at value false; (5)maximum category 1.After black 5, which is of category 1, black can only use a defensivestrategy involving threats of category 0, i.e., �ves only. However, to createa �ve after black 5, white should have created several fours after black 1 (ofcategory 2), followed by the local defensive reply white 2. Therefore, we needto try threats of category 0 after black 5, for all positions which could arise

5.3 Applying db-search 139after sequences of fours by white, in earlier global defensive strategy searches.Indeed, if white, instead of playing 2 immediately after 1, interjects movea (followed by black's forced reply b) and move c (followed by black's forcedd), then after white 2, black 3, white 4 and black 5, white can create a �veat e.Summarizing, to �nd the global defensive strategies, after each attackermove of category 2, a search for category 1 for the defender should beperformed, while after each attacker move of category 1, a search for category0 for the defender should be performed, from every position which could bereached by interjecting defender fours after previous threats of category 2 bythe attacker.5.3.4 Heuristically improving the e�ciency of db-searchAs we have argued before, the module which searches for winning threatsequences will only return a winning threat sequence if the winning threatsequence is guaranteed to lead to a win for the attacker. The opposite is nottrue: not all winning threat sequences will be found. This is caused by ouracceptance of a global defensive strategy, without investigating whether thedefensive strategy itself can be countered.In the context of winning threat trees our search is far from complete,as we only �nd winning threat sequences, i.e., threat trees in which eachvariation leads to a win through the same attacking moves, in the sameorder.In this section we present three heuristics which signi�cantly increasethe e�ciency of our winning threat sequence module, at the cost of another(small) reduction in e�cacy. Each of the heuristics, if at all applicable, isnot applied during searches for global defensive strategies, in order to ensurethat all existing refutations of potential winning threat sequences are found.Global refutationOur �rst heuristic for increasing the e�ciency of db-search is based on theexistence of global refutations in some positions. A global refutation is acon�guration on the board which refutes all winning threat sequences of theattacker. An arti�cial example is depicted in �gure 5.6.Black to move has a large number of distinct potential winning lines ather disposal, each starting with a three. For instance, black 1 creates a doublethree immediately. White 2, however, creates a double four, thus successfullycountering the three created by black 1. Alternative lines for black, such as

140 Chapter 5. Go-Moku
...............
...............
...............
...............
.......●a
......●b .●c x.......
......xx1 x......
.......x.......
...............
...............
...............
...............
...............
...............
..xooo.o2 .ooox..Figure 5.6: Global refutation of all potential winning lines.black a, black b and black c, again creating a double three, are all also refutedby white 2.Thus, while db-search, focusing on local defenses, �nds many potentialwinning threat sequences, each of these is refuted by the search for globaldefensive strategies. Finding all several hundreds or thousands of potentialwinning threat sequences in such a position is clearly a waste of time.As heuristic to recognize those positions, we check at the end of each db-search level the number of potential winning threat sequences investigatedso far. If this number exceeds a preset threshold T , the search is terminated.Experiments showed that T = 10 leads to a largely increased e�ciency, at asmall cost in e�cacy.We remark that while searching for global defender strategies, the �rstpotential winning threat sequence found is accepted as refutation. The searchis therefore not inuenced by this heuristic.Category reductionThe category reduction heuristic is designed for a special type of globalrefutations. Let us suppose that the defender has a threat Tc1 of categoryc1. If the attacker creates a threat Tc2 of category c2, then either (1) c2 < c1,or (2) Tc2 should counter Tc1, or (3) Tc1 is a refutation of Tc2 . As the searchfor potential winning lines does only consider local replies, countering Tc1 byTc2 will only occur by accident.

5.3 Applying db-search 141Ignoring the option that this may happen, we obtain the categoryreduction heuristic: if in a node N of the db-search dag, the defender has athreat of category c1, for each descendent of N the attacker is restricted tothreats of categories less than c1.We remark that this heuristic is switched o� while searching for globaldefender strategies.Restricted threesThe de�nitions of operator fT3;g6 (three with 3 reply moves) and operatorfT2;g7 (three with 2 reply moves) imply that if the latter is applicable, theformer is too. While in most positions where both are applicable they areinterchangeable, operator fT2;g7 is superior in that its reply consists only of 2moves, thus diminishing the chances for counterplay. Only in rare occasionsare both applicable, while only fT3;g6 leads to a winning threat sequence.To prevent the creation of threat sequences with as only di�erence theoccurrence of fT3;g6 instead of fT2;g7, we restrict application of fT3;g6 to lineswhere fT2;g7 is not applicable.We remark that while searching for global defender strategies, only threatsof categories 0 and 1 are applicable. The search is therefore not inuencedby this heuristic.5.3.5 Additional requirements for standard go-mokuStandard go-moku di�ers from free-style go-moku in the value of overlines: anoverline is a win in free-style go-moku, while it is not in standard go-moku.To apply our winning threat sequences module, as described in theprevious sections, to standard go-moku, a few additional requirements arenecessary. We discuss these requirements briey.First, we introduce the concept of a line extension. Second, we describehow a line extension inuences a db-search for potential winning threatsequences. Third, we describe the inuence of line extensions to the searchfor global defensive strategies.ExtensionsFor each line g 2 G5, a square c is an extension of g, if g[fcg 2 G6. Similarly,for each line g 2 G6, a square c is an extension of g, if g [fcg 2 G7. Wemention that the extension of a line g 2 G7 is de�ned analogously, after theset G8 has been de�ned. The extension set of a line g, i.e., the set of all

142 Chapter 5. Go-Mokuextensions of g consists of 0, 1 or 2 elements, depending on the position of gon the board, with respect to the board edge.Line extensions and winning threat sequencesA winning threat sequence in standard go-moku must meet all the requi-rements for a winning threat sequence in free-style go-moku. An addedrequirement is that at the moment of execution of threat ai, the squaresin the extension set of ai must not be occupied by an attacker stone.An attacker stone may be placed at the extension of a threat in threedistinct ways.1. The stone was present in the initial position.2. The stone is played while executing an earlier threat in the threatsequence.3. The stone is played as forced response to a defender threat.The �rst and second way of placing an attacker stone at a threat extensionis checked during the db-search for potential winning threat sequences: anoperator can only be applied if the extension squares are empty or occupiedby the defender. During the combination stage of db-search, we ignore theoccupation of extensions. Instead, after a potential winning threat sequencehas been found, the extensions of all threats in the threat sequence areexamined.Line extensions and global defensive strategiesThe third way of placing an attacker stone in a threat extension provides thedefender with an extra global defensive strategy. This strategy �ts as followswithin the parameters provided to db-search. In addition to the set of goalsquares provided for free-style go-moku, the set of extensions to the threatswhich have not yet been executed by the attacker is passed to db-search. Arefutation of the potential winning threat sequence has been found, if oneof the extensions has been occupied by the attacker (i.e., the player whosepotential winning threat sequence is being examined).Special attention must be paid to the multiple-stone replies. While havingextra stones on the board does not harm a player in free-style go-moku, itmay harm a player in standard go-moku. To ensure that each global defensivestrategy is found, we perform the db-search for global defensive strategies

5.4 Applying pn-search 143as a free-style go-moku search. Thus, a potential winning threat sequencein standard go-moku may be refuted through a sequence of defender threatscontaining overlines.5.4 Applying pn-searchTo apply pn-search to go-moku, we need to convert the go-moku game treeinto an and/or tree. This is described in section 5.4.1. Furthermore,we describe the enhancements to basic pn-search adopted for our go-mokuimplementation in section 5.4.2.5.4.1 Go-moku as an AND/OR treePn-search (as described in chapter 2) is an and/or-tree algorithm. To applyit to go-moku, we represent positions where black is to move as or nodes, andpositions where white is to move as and nodes. A win for black is representedby the value true, while a draw and a win for white are represented by thevalue false. Thus, proving the pn-search tree means that black can win inthe root positions, while disproving the pn-search tree means that white canachieve at least a draw.In each or node, black is to move. As evaluation function at such a node,we apply db-search with black as attacker. If db-search �nds a winning threatsequence, the node evaluates to true, otherwise to the value unknown. In eachand node, white is to move. The same procedure as in or nodes is applied,this time with white as attacker. If a winning threat sequence is found, thenode evaluates to false, otherwise to the value unknown. A node representinga position with all 225 squares occupied and neither player having a winningcon�guration, is a draw, and therefore obtains value false, without applyingdb-search.5.4.2 EnhancementsThe above description explains how standard pn-search is applied to go-moku.However, �ve enhancements have been added to speed up the search. Theenhancements are discussed in this section.TranspositionsA dag is created instead of a tree, using the algorithm described in section2.3.3. This ensures that if a position has already occurred in the dag, or

144 Chapter 5. Go-Mokuif a position is equivalent through automorphisms to another position inthe dag, the position is not investigated again. We test for the 8 standardautomorphisms of a square board.Restricting black's movesIn go-moku, the average branching factor is more than 200. Most of thesemoves are unrelated to the battle at the center of the board and should beignored. However, since we want to prove the value of the root position, wecannot simply ignore moves using heuristic selection functions.A large reduction of the branching factor at the or nodes can be made,however. Since we want to prove a win for black in the root position, it issu�cient to prove for each internal or node that (at least) one child leads toa win for black. For each internal and node all children must be proved.Using these properties, we may at each or node restrict black to, say,the N most-promising children, using a heuristic ordering function. If in therestricted game tree a proof of black's win is found, the same proof is validin the full game tree. In our investigations presented in section 5.5 we haverestricted black in each or node to the 10 most-promising children. Beforethe ordering function is applied, we �rst restrict the set of all legal moves tothe set of moves which counter the threats of the opponent, as described inthe next section.The heuristic ordering function used is rather simple: each square isassigned 4 points for each three with a two-stone reply, 3 points for each threewith a three-stone reply, 2 points for each broken three, 2 points for each opentwo, which is de�ned as two black stones in the center of an otherwise emptyline of 6 and 1 point for each broken two, which is de�ned as two black stoneswith a one-square gap in the center three squares of an otherwise empty lineof 7. Among all children, the 10 children with the highest score are selected.No points are given for the creation of a four. Creating a four is oftenonly a strong move if it stops a threat of the opponent, or if it creates awinning threat sequence. Since a node is only expanded if no winning threatsequence exists and it is ensured that we select the 10 best moves among themoves which counter the existing threats of the opponent, there was no needto assign any points for creating fours.Clearly, a thorough analysis of the strategic knowledge of experts wouldhave led to a more re�ned move-ordering function. As we show in section5.5, the function described here was su�cient for our purposes.

5.4 Applying pn-search 145
...............
...............
...............
...............
.....o2 .o4
.....o6 xx3 o6 x5 o6
......ox1 ox.....
......oxo2 x7
......oo4 xx.....
..........o2
...............
...............
...............
...............
...............Figure 5.7: Black threatens to win by moves 1 through 7.Related squaresAs stated before, most of the approximately 200 legal moves per positionare unrelated to the battle at the center of the board and should be ignored.Although we cannot ignore moves by white using heuristic selection functions,we may try to apply a winning threat sequence found as reply to one move toa large number of other moves. In this section we describe how this is donein a reliable way.For each winning threat sequence of the attacker, we de�ne the set ofrelated squares as follows. An empty square c is related to a winning threatsequence in a given board position, if the threat sequence no longer wins, ifc would have been occupied by the defender.Before we use the notion of related squares, we introduce the term implicitthreat, for any position where a player threatens to win through a winningthreat sequence. In �gure 5.7 black threatens to win through the threatsequence consisting of black 1 through 7. Therefore, the position is an implicitthreat for black.Now let us suppose that we have algorithms to determine whether aposition is an implicit threat, and that we can determine for each winningthreat sequence the set of related squares. Given a position with white tomove, which is an implicit threat for black, we determine the set of squaresrelated to the winning threat sequence. Then, it follows directly from thede�nition of related squares that we may restrict white to these related

146 Chapter 5. Go-Moku
...............
...............
...............
........●a .●b
....●b .●b .●a .●b .●a .●b .●a
.....●b .●a x.●a .●a .●a .●a
......●b o.●a ox.....
......ox.●a .●a
....●b .●b .●b o.●a xx.....
.......●b .●a .●b .●a .●a
......●b .●b ...●b
.....●b ..●b●b
....●b
...............
...............(a) Superset of related squares

...............

...............

...............

...............

....●a●a

.....●a .x.●a .●a .●a

......●a o.●a ox.....

......ox..●a

......o.●a xx.....

.......●a ..●a .●a .●a

......●a .●a ...●a

.....●a●a

...............

...............

...............(b) Related squaresFigure 5.8: Replies to the threat sequence of �gure 5.7squares.Clearly, by determining implicit threats and sets of related squares in ane�cient way, we could speed up our search. To determine an implicit threat,it su�ces to make a null-move for the opponent (white in �gure 5.7) and toapply db-search to �nd a winning threat sequence for black. Determining theexact set R of squares related to a winning threat sequence is computationallyexpensive. Instead, we determine a superset S of the set of related squares.The set consists of all squares meeting one of the following two conditions.1. The square is in one of the lines of the threats in the winning threatsequence.2. The square may be used in any counter threat by the opponent, in anyof the global defensive strategy searches performed to investigate thewinning threat sequence.Using db-search S can be determined e�ciently. Without proof we state thatR � S. For empirical evidence of this claim we refer to section 5.5.4.In �gure 5.8a, we have shown the set S for the threat sequence of �gure5.7. The squares labeled a are part of the lines of the threats. The squares

5.4 Applying pn-search 147labeled bmay, together with white stones on the board or the defensive movesin the threat sequence, form new defensive threats for white.Iterated related squaresThe related-squares concept can be used to even further reduce the set ofwhite moves to be examined. After having determined the superset S ofthe set of related squares, an element s of S is selected. A white stone isplaced at s, and the position is investigated with db-search. If no winningthreat sequence is found, a child is added to the tree for s. Otherwise, thesuperset S1 of squares related to the newly found winning threat sequenceis determined. Only squares in S \ S1 need further be investigated, since allmoves at other squares lead to a win through one of the two winning threatsequences found so far. This procedure is repeated until all moves have beenexamined.In �gure 5.8b we have marked the set of squares for which child nodesare grown. Of the 35 related squares of �gure 5.8a (set S), only 19 squares(set R) remain in 5.8b.The null-move heuristic and the related-squares heuristic are applied forboth players in the pn-search dag. For the attacker in the search (the playerfor which we select only 10 moves per node) we �rst determine the set ofcounter moves using the heuristics of this section, and then order the movesaccording to the move-ordering function of the previous section. Of course,if less than 10 counter moves exist, these are all selected.The implicit-threat heuristicThe branching factor of go-moku is such that the search tree may becomequickly intractable. To force black to select moves where white has arestricted number of moves, we evaluate a position which is not an implicitthreat for black to false. Only early in the game tree (i.e., when there areless than 9 stones on the board), if no black move leads to an implicit threat,is the above restriction lifted.We have found that no later than move 11 in the game, black can ensurethat each move is an implicit threat. By enforcing this restriction, the sizeof the search tree is signi�cantly reduced.

148 Chapter 5. Go-MokuHeuristic (dis)proof number initializationDuring our initial experiments, we have used the standard proof and disproofnumbers initialization of 1 each. While studying the trees grown, it becameapparent that pn-search tended to pursue some deep lines longer thandesirable. This is mainly caused by continuously executing threats, withoutcreating a potential for a winning threat sequence.In qubic, as described in chapter 4, we chose to remove all threateningmoves for the attacker from the search tree. We could safely do so, since ourdb-search implementation for qubic searched the full space of threateningsequences. The incompleteness of db-search in go-moku with respect to thespace of all threat trees blocks a similar approach in go-moku. Instead, wehave opted to attach a small penalty to all deep lines. At each frontiernode the proof and disproof numbers are initialized to the number of fullmoves made from the root position. Thus, at depth d, the proof and disproofnumbers are initialized to 1 + bd=2c.This heuristic initialization ensures that forcing lines are not searchedtoo deeply (before su�cient alternatives have been tried), without interferingwith the essence of pn-search.5.5 Solving go-mokuThe program Victoria consists of the pn-search algorithm described in theprevious section, using db-search as evaluation function. In this section wedescribe how Victoria solved both free-style go-moku and standard go-moku.First, we describe the i/o of Victoria. Second, it is explained how the gametree was split in several hundreds of subtrees. Third, we present statisticsregarding the search process. Finally, we discuss the reliability of our results.5.5.1 Victoria's I/OThe input to Victoria consists of (1) A go-moku position; (2) The gamevariant (free-style go-moku or standard go-moku); (3) The player to move;and (4) The maximum tree size for pn-search.The output of Victoria consists of (1) the value upon termination ofpn-search (true, false, unknown) (2) a database containing a record foreach position in the solution tree. The database returned by Victoria isempty unless the value true was returned. For each record in the databaserepresenting a position with black to move, at least one child position will also

5.5 Solving go-moku 149be represented in the database. For each record in the database representinga position with white to move, only child positions are represented in thedatabase in which black does not have a winning threat sequence.The database created by Victoria served two purposes. First, the mergeddatabase of all subtrees investigated should provide us with a solution treefor the full go-moku game tree. Second, the databases created by solvedsubtrees were used as transposition table for pn-searches. We have seenseveral occasions where a search of several hundreds of thousands of nodeswithout transposition tables was reduced to a mere few thousands nodes, byhitting the database early during the search.5.5.2 Subdividing the game treeWe have divided the go-moku game tree into several hundreds of smallerproblems. The main reason for doing this is that the size of the go-mokugame tree is such that we could not solve it through a single pn-search, dueto the limits imposed on pn-search by the size of our computer's workingstorage.We remark that by splitting the game tree into subtrees, part of thesolution process has been performed by hand. Most of these moves have beenmade with the aid of Sakata and Ikawa (1981), while others where suggestedby the proof and disproof numbers of failed pn-searches. The number of blackmoves selected by hand (several hundreds) is less than one percent of the totalnumber of black moves in the solution tree (many tens of thousands).5.5.3 StatisticsIn this section we present the statistics of running pn-search on go-moku. Asmentioned before, we have subdivided the problem in several hundreds ofsubtrees, each of which was individually solved. Since each completed searchextended the database of solved positions, the number of positions searchedpartly depend on the order in which the subproblems were solved.Execution timeOur calculations were performed in parallel on 11 sun sparcstations of theVrije Universiteit in Amsterdam. Each machine was equipped with 64 or128 megabytes internal memory, ensuring that pn-search trees of up to 1million nodes would �t in internal memory, without slowing down the searchby swapping to disk. The processor speed of the machines ranged from 16

150 Chapter 5. Go-Mokuto 28 mips. Our processes could only run outside o�ce hours. As a result,sometimes processes which had not �nished at 8am were killed, and hadto be restarted at 6pm. Still, over 150 cpu hours per day were availablefor solving go-moku. In the �gures below, we have not included cpu timespend on processes which were killed in the morning and restarted in theevening, nor have we included the cpu time spent on test runs during whichwe discovered bugs in our software (see also section 5.5.4). Thus, the timementioned indicates the amount of time necessary to solve go-moku withoutinterruptions, using the �nal version of Victoria.Free-style go-moku was solved using 11.9 days of cpu time, while standardgo-moku (thus banning wins through overlines) was solved with 15.1 days ofcpu time.Pn-search tree sizeThe summed size of all pn-search trees built during the calculations (againexcluding terminated processes and runs of initial versions of the program)for free-style go-moku is 5.3 million. For standard go-moku, 6.3 million nodeswere grown.Comparing these �gures with the execution time necessary for thesolutions, we see that both variations ran at the speed of approximately 5nodes per second. The rejection of potential winning lines involving overlines,resulted in the creation of a 20% larger search tree.Db-search evaluationsFor each internal node of the pn-search tree, 10-20 independent db-searches(excluding global defensive strategy searches) were performed on the average,resulting in, between 50 and 100 db-searches per cpu second. Multiplied bythe total calculation time, the number of independent db-searches executedto solve go-moku lies between 50 million and 130 million.Solution sizeThe solution tree found by Victoria for free-style go-moku is slightly smallerthan the solution tree found for standard go-moku: 138,790 versus 153,284database records. Comparing these numbers with the total size of the pn-search trees, we �nd that 1 out of every 40 nodes created participates in thesolution. The deepest variation in both solution trees is 35 ply.

5.5 Solving go-moku 151depth free-style standard depth free-style standard0 1 1 18 1351 18851 1 1 19 1094 15902 35 35 20 710 11253 35 35 21 594 9544 7227 7242 22 408 6415 6824 7251 23 327 5066 20859 22749 24 193 2967 20239 21078 25 154 2418 20686 22056 26 85 1599 20550 21898 27 74 12810 8959 10015 28 40 6711 8637 9570 29 35 5412 5246 6015 30 7 1913 4778 5492 31 7 1814 2999 3663 32 1 815 2647 3282 33 1 616 2173 2810 34 1 117 1811 2392 35 1 1Table 5.1: Nodes per tree depth in go-moku solutions.In table 5.1 we have listed the number of nodes per depth for both solutiontrees. We remark that for each position with black to move, only one childposition needs to be included. Due to transpositions, the number of nodesat each odd ply should therefore be less or equal to the number of nodes atthe preceding even ply. The only exception in the table, ply 5 for standardgo-moku, is caused by the fact that we have included several options for blackfor some opening positions in our set of positions to be checked by pn-search.Deep winning linesThe combination of db-search and pn-search makes it di�cult to determinethe maximin of go-moku (i.e., the length of the game after optimal playof both players). Both db-search and pn-search do not aim at �nding theshortest winning paths, while the longest path found by the combination ofthe algorithms may well be di�erent from the game leading to the single

152 Chapter 5. Go-Moku
...............
...............
...............
......x27
......o26 .x17 o28 o20
......o16 .o18 x19
.....x9 o10 x11 x5 x23 x21 o24 ...
......o6 x1 x7 x25 x39 o22 ...
......x3 o2 .x31 x29 x35 o36 ..
.....o4 x13 o12 o8 o32 x33 o30 ...
.........o14 x37 o34 ...
..........x15
..........o38
...............
...............(a) Free-style go-moku

...............

......o38 .o42

.....o44 o34 x37

....o40 x39 x25 x33 x35 o36

.....x41 o24 .x17 x31 o20 .o28 ..

.....x43 o16 .o18 x19 .x27 ...

.....x9 o10 x11 x5 o32 x21 o26 ...

.....x45 o6 x1 x7 x23 .o22 ...

......x3 o2 ..o30

.....o4 x13 o12 o8 .x29

.........x15

..........o14

...............

...............

...............(b) Standard go-mokuFigure 5.9: Deep variationsposition at level 35 of the solution tree. Even though the games leading topositions at level 35 of the solution trees do not necessarily show optimalplay of either side, we have depicted two of these games in �gure 5.9.5.5.4 ReliabilityIn section 4.5.4, we have explained the hazards of solving games through largecomputer programs. The same hazards mentioned there exist in go-moku ineven greater form.Our go-moku implementation consists of almost 20,000 lines of C-code.Approximately half is dedicated to the X-interface created by Loek Schoen-maker, while the other half consists of db-search, pn-search, database look-upand database creation, automorphism management, etc. Errors in programsthis size are virtually unavoidable. Many errors have been created andcorrected during implementation and testing of the program, but there isno guarantee that all bugs have been found.A further source of error is the complexity of the calculation process.We used 11 sparcstations in parallel to solve each of the several hundreds ofsubtrees. These 11 sparcstations created their own databases when solving aposition, while they all used one large database as transposition table. After

5.5 Solving go-moku 153solving a position, the transposition table should be extended with the newlycreated small databases. A locking mechanism was created to ensure thatno databases would be corrupted. Still, computers going down at criticalmoments introduced the possibility that data would get lost. This, in fact,has happened during our calculations.To ensure the completeness of the solution found, we have created amodule which examines the �nal database created. For each position withblack to move a successor position must be present in the database. Foreach position with white to move, for each legal move either a winningthreat sequence must exist, or the successor position must be present inthe database. The only common element with the solving process is db-search. Thus, an error in db-search may go unnoticed, while all other parts,including pn-search and the related-squares generator, are eliminated fromthe checking process. Using the database checking module, we have bothlocated missing database parts, due to computers failing at critical momentsand human error, and have found an error in our related-squares generator.The �nal investigations, however, for both the free-style go-moku and standardgo-moku variants were successful.The correctness of our db-search implementation is based on meticulouslytesting all possible types of counterplay, including intricate ways in which theopponent forces the attacker, after a sequence of fours, to occupy an extensionsquare of a threat in the threat sequence. After the �nal database creation,which was checked and accepted by the database-checking module, no errorshave been found in this part of the program. Therefore, go-moku should beconsidered a solved game.

154 Chapter 5. Go-Moku

Chapter 6Which Games Will Survive?6.1 ScopeIn chapters 2 and 3, we presented two new search techniques which have beenapplied to qubic and go-moku in chapters 4 and 5, thereby partly answeringour �rst research question (see section 1.4). In this chapter, we broaden ourscope to all three research questions and the problem statement. The chapterconsists of four parts.First, in section 6.2, we de�ne four properties of games. These are perfectinformation, convergence, sudden death, and complexity.Second, in section 6.3, we discuss four aspects of each of the games of theOlympic List.1. The relation between the game and the four game properties introducedin section 6.2.2. The state of the art in game-playing programs.3. Techniques currently applied.4. Obstacles to progress.Third, in section 6.4 we review our three research questions on the basisof the discussion of individual games presented in section 6.3, leading to areview of the problem statement.Finally, in section 6.5, we speculate about the future playing strength ofcomputer game playing programs, as well as of the future of thinking gamesin our society. 155

156 Chapter 6. Which Games Will Survive?For the rules of the games discussed in this chapter, we refer to Levy andBeal (1989), Levy and Beal (1991) and Van den Herik and Allis (1992).6.2 Game propertiesIn this section we de�ne four properties of games, viz. perfect information(section 6.2.1), convergence (section 6.2.2), sudden death (section 6.2.3) andcomplexity (section 6.2.4).6.2.1 Perfect informationThe perfect-information property divides the set of games into two disjointsubsets: the set of perfect-information games and the set of imperfect-information games. In a perfect-information game, all players, at any timeduring the game, have access to all information de�ning the game state andits possible continuations. Any game which is not a perfect-information gameis de�ned to be an imperfect-information game.For example, chess is a perfect-information game. Relevant informationde�ning the game state in chess includes: (1) the con�guration of chess pieceson the board; (2) the number of moves made since a pawn was moved, ora piece has been captured; (3) the en-passant capturing opportunities inthe current game state; (4) the castling options left to both players; and(5) previous con�gurations with their en-passant capturing opportunitiesand castling options. The information described here allows each player todetermine the game state and its possible continuations, including en-passantcapturing moves, castling moves, repetition of positions, and the status withrespect to N -move rules. In practice, a player needs only three pieces ofinformation: (1) the con�guration of chess pieces; (2) the game score, i.e.,all moves played since the start of the game; and (3) the o�cial rules ofchess. The combination of these three pieces of information allows a playerto deduce all necessary information during a game.Bridge is an example of an imperfect-information game. During thebidding phase of bridge, each player sees only her own cards, leaving herunaware of the distribution of the remaining 39 cards over her partner andher opponents. During the playing phase, each player sees her cards, thoseof the dummy and the cards already played, still leaving her unaware of thedistribution of the remaining cards over the undisclosed hands.Optimal play in a perfect-information game always consists of a purestrategy, while in imperfect-information games optimal play may require a

6.2 Game properties 157mixed strategy. In a pure strategy, for each game state a single move canbe determined, which leads to the game-theoretic value of the position.In a mixed strategy, optimal play requires a player to play a move i withprobability pi, while at least two such pi are non-zero. For a discussion ofpure and mixed strategies, we refer to von Neumann and Morgenstern (1944).6.2.2 ConvergenceThe convergence property labels games as either converging, diverging orunchangeable. Before we can de�ne these classi�cations, we introduce con-versions in de�nition 6.1.De�nition 6.1 A move M from state A to state B is a conversion, if nocon�guration of pieces which could have occurred in any game leading to thecon�guration of pieces in A, can occur in a game continuing from state B.Examples of conversions in chess are moving a pawn, or capturing a piece. Incheckers, any move except for a non-capture move by a king is a conversion.For most games, the main conversions involve the addition (e.g., connect-four, go-moku, qubic and othello) or removal (e.g., chess, checkers, bridge) ofpieces from play. We may divide the state space of all legal positions of agame into disjoint classes, where each class contains all positions with thesame number of pieces on the board. Let us de�ne a directed graph G inwhich each class is a node, and an arc exists between class A and class B ifand only if a position P exists in A such that a move exists from P whichleads to a position Q in B. We can now de�ne convergence using this notionof classes of positions. A game converges if for the majority of edges from Ato B in G, the cardinality of A is larger than the cardinality of B. A gamediverges if for the majority of edges from A to B in G, the cardinality of Bis larger than the cardinality of A. A game is unchangeable if the game doesnot have conversions, or if it neither converges nor diverges.An example of a converging game is checkers. The initial position incheckers consists of 24 men, while during the game the number of mendecreases. After the �rst few captures, the number of legal checkers positionsdecreases as the number of pieces on the board decreases.An example of a diverging game is othello. Each move in othello adds apiece to the board. Except for the endgame, the number of legal positionsincreases as the number of stones on the board increases.An example of an unchangeable game is shogi. Although shogi containscaptures, there are no conversions in shogi. Captured pieces may be brought

158 Chapter 6. Which Games Will Survive?into play again by the player who captured the piece. As a result, the totalnumber of pieces participating in a shogi game does not increase or decrease.Thus, shogi is an unchangeable game.The relevance of the convergence property is that for converging gamesendgame databases (Thompson, 1986) can be created, while this is generallyunfeasible for diverging or unchangeable games.6.2.3 Sudden deathThe sudden-death property labels games as either sudden-death or �xed-ter-mination. A sudden-death game may end abruptly by the creation of one ofa prespeci�ed set of patterns. A �xed-termination game lacks sudden-deathpatterns.An example of a sudden-death game is go-moku: the game is terminatedif one of the players has created a line of �ve stones in her color. Sudden-death games need not always terminate through the creation of a sudden-death pattern: go-moku is declared a draw when all 225 squares have beenoccupied without either player creating a winning pattern.An example of a �xed-termination game is othello. Othello lasts untilboth players run out of moves or one of the players has no discs left on theboard. In practice, games last between 55 and 60 moves. Even though agame might be decided within 15 moves by one player capturing all the discsof the opponent, such an anomaly is only of marginal relevance.The sudden-death property often is an important property in restrictingthe search tree of a game. For games of high complexity (see section 6.2.4)the sudden-death element in combination with a clear advantage for one ofthe players may be the main property that allows the game to be solved.Examples are qubic and go-moku (both sudden-death games) described inchapters 4 and 5.6.2.4 ComplexityThe property complexity in relation to games is used to denote two di�erentmeasures, which we name the state-space complexity and the game-treecomplexity.State-space complexityThe state-space complexity of a game is de�ned as the number of legal gamepositions reachable from the initial position of the game. While calculating

6.2 Game properties 159the exact state-space complexity of games such as chess is hardly feasible, wepresent a method for calculating an approximation, using tic-tac-toe as anexample.A crude approximation to tic-tac-toe's state-space complexity is obtainedthrough the notion that each of the nine squares can be occupied by cross,nought, or be empty. Thus, an upper bound to the state-space complexity is39 = 19; 683. A sharper upper bound is obtained by noting that the number ofcrosses should equal the number of noughts, or exceed it by one. This resultsin an upper bound of 6; 046. The exact state-space complexity, however, isobtained by observing that a position is illegal if a move has been added aftera player has created three-in-row. Thus, positions containing a line of threenoughts with nought to move, or a line of three crosses with cross to movemust be excluded. The resulting 5; 478 legal positions determine the state-space complexity of tic-tac-toe. The de�nition of the state-space complexitycould be re�ned so that symmetrically equivalent positions are counted onlyonce. We refrain from such a re�nement.Let us assume that we have established a superset of all legal positionsof the game and the cardinality of that superset. Let us also assume thatfor each individual position of the superset we have an evaluation functionwhich determines whether the position is legal. Using the combination ofthese two and a Monte-Carlo simulation, we may obtain an estimate of thetrue state-space complexity. We performed 10 Monte-Carlo simulations,with a thousand samples per simulation, chosen from the superset of 39con�gurations mentioned above. For each simulation we determined thefraction of the positions which were legal. Multiplication of this fractionby the size of the superset, 39, gave an estimated state-space complexity inour 10 simulations ranging from 4; 920 to 5; 983 with an average of 5; 479,surprisingly close to the true state-space complexity.The main application of the state-space complexity of a game is that itprovides a bound to the complexity of games which can be solved throughcomplete enumeration. With today's (1994) technology, where computernetworks have access to Gigabytes of disk storage, the boundary of solvabilityby exhaustive enumeration lies at a state-space complexity of approximately1011.Game-tree complexityBefore we are able to de�ne the game-tree complexity of a game, two auxiliaryde�nitions are needed.

160 Chapter 6. Which Games Will Survive?De�nition 6.2 The solution depth of a node J is the minimal depth (in ply)of a full-width search su�cient to determine the game-theoretic value of J.According to de�nition 6.2, the solution depth of a mate-in-n position inchess, n � 1, is 2n� 1 ply.De�nition 6.3 The solution search tree of a node J is the full-width searchtree with a depth equal to the solution depth of J.As an example we consider a chess position J with white to move. White has30 legal moves. For simplicity's sake, we assume that after each legal whitemove, black has 20 legal moves of which at least one mates white. Then,the solution search tree of J consists of J , the 30 children of J , and the 600grandchildren of J .De�nition 6.4 The game-tree complexity of a game is the number of leafnodes in the solution search tree of the initial position(s) of the game.If J were the initial position of a game, its game-tree complexity would be600.While calculation of the exact game-tree complexity of games such aschess is hardly feasible, we can calculate a crude approximation as follows.Using tournament games, we can observe the average game length. Also, wemay determine the average branching factor, either as a constant, or as afunction of the depth in the game tree. The game-tree complexity can beapproximated by the number of leaf nodes of the search tree with as depth theaverage game length (in ply), and as branching factor the average branchingfactor (per depth).For instance, in tic-tac-toe, the average game length is close to nine ply,since most games end in a draw, which always takes exactly nine half-moves.The branching factor at level i in the game tree equals 9 � i. Thus, theminimax search tree with depth 9 and branching factor 9 � i at level iconsists of 9! = 362880 terminal nodes, which is an estimate of the game-treecomplexity of tic-tac-toe. Note that the game-tree complexity of a game maybe larger than the state-space complexity, as the same position may occur atseveral di�erent places in the game tree.The game-tree complexity is an estimate of the size of a minimax searchtree which must be built to solve the game. Thus, using optimally-ordered�-� search, we may expect to search a number of positions in the order ofthe square root of the game-tree complexity (Knuth and Moore, 1975).As a guide to the perplexed, anticipating results duely credited in thefollowing section, we present a graphical overview of the two complexities we

6.3 The games of the Olympic List 161

awari checkers

othello

qubic

draughts chess

go-moku

renju

go

nine
men’s
morris

connect-
four

Chinese
chess

10

20

40

80

160

320

log10 of

complexity

game-tree complexity

state-space complexity

Figure 6.1: Estimated game complexities.distinguish in �gure 6.1. For credits and sources see the discussions of theindividual games.6.3 The games of the Olympic ListIn this section we discuss each of the games of the Olympic List individually.For each game, we describe (1) its properties, as introduced in section 6.2;(2) the currently strongest computer programs; (3) the techniques applied inthese programs; and (4) the obstacles to progress in the game.We have ordered the games of the Olympic List as follows. First, wediscuss four solved games (qubic, connect-four, go-moku and nine men's morris)in the order in which they were solved. Second, we discuss the eight unsolvedperfect-information games, in an order depending on the strengths of thecurrently strongest game-playing program: (1) stronger than the current

162 Chapter 6. Which Games Will Survive?world champion (awari and othello) (2) Grand Master strength or stronger(checkers, draughts and chess) (3) below Grand Master strength (Chinesechess, renju and go). Third, we discuss the three imperfect-information gamesof the Olympic List (scrabble, backgammon and bridge).6.3.1 QubicGame propertiesQubic is a diverging, perfect-information game with sudden death. An upperbound to the state-space complexity of qubic is 364 � 1030. To estimate thegame-tree complexity, we assume an average game length of 20 ply. With64� i legal moves in a position at ply i, the game-tree complexity of qubic isapproximately 64!44! � 1034.The state of the artQubic was the �rst game of the Olympic List to be solved. It was provedthat the game is a win for the player to move �rst (Patashnik, 1980). Themain game property responsible for qubic being solvable is sudden-death. Fordetails on the solution of qubic, we refer to chapter 4.Techniques currently appliedQubic was solved by Patashnik using a standard �-� search for determiningthe existence of winning threat sequences. All non-forced moves leading tothe solution were made by hand, using expert knowledge. Qubic has beensolved again using db-search for determining the existence of winning threatsequences, and pn-search for making the non-forced moves, as described inchapter 4.Obstacles to progressIt could be argued that qubic provides additional challenges beyond solvingthe game. For instance, one might want to determine the game-theoreticvalue of every legal position, or determine the shortest winning threatsequence from each position. However, we believe that with respect to humanperformance on qubic, all interesting problems within qubic have been solved.During the solution processes, no obstacles to progress have been discovered.

6.3 The games of the Olympic List 1636.3.2 Connect-FourGame propertiesConnect-four is a diverging, perfect-information game with sudden death.Although at �rst sight the sudden death in connect-four may seem asimportant as in qubic, most games in connect-four are decided between moves37 and 42, i.e., while �lling the last column of the board.The state-space complexity of connect-four has been estimated at 1014(Allis, 1988). With an estimated average game length of 36 ply, and anaverage branching factor of 4, the game-tree complexity of connect-four isapproximately 436 � 1021.The state of the artIn September 1988, James Allen determined the game-theoretic value througha brute-force search (Allen, 1989): a win for the player to move �rst.A few weeks later, in October 1988, connect-four was solved through aknowledge-based approach, resulting in the tournament program victor(Allis, 1988; Uiterwijk et al., 1989a; Uiterwijk et al., 1989b). RecentlyJohn Tromp has calculated the game-theoretic value for all 8-ply connect-four positions (Tromp, 1993).Techniques currently appliedBoth Allen and Tromp used a sophisticated implementation of �-� search.While Allen spent 300 hours of cpu time to determine the game-theoreticvalue of the position after 1: d1, Tromp's calculations took some 40,000 hourscpu time for his (vastly) more complex task. Our knowledge-based solutioninitially took 350 hours of cpu time. However, adding a knowledge rule incombination with changing the search algorithm to pn-search has resultedin a program which solves connect-four in less than 25 cpu hours. All theseexperiments were performed on comparable hardware.Obstacles to progressThe current version of victor, in combination with the 8-ply databasecreated by Tromp, can be used to determine the game-theoretic value ofalmost any connect-four position within minutes. Furthermore, victor'sknowledge-based component is able to provide us with an explanation why

164 Chapter 6. Which Games Will Survive?a position is won. Therefore, we believe that no challenges remain withinconnect-four and no obstacles to progress have been discovered.6.3.3 Go-mokuGame propertiesGo-moku is a diverging, perfect-information game with sudden death. Anupper bound to the state-space complexity is 3225 � 10105. To estimate thegame-tree complexity, we assume an average game length of 30 ply. With225 � i legal moves in a position at ply i, the game-tree complexity of go-moku is approximately 1070. For the professional variant of go-moku, withopening restrictions for black, the average game length will be somewhatlarger, resulting in a higher game-tree complexity.The state of-the-artAs described in chapter 5, two variants of go-moku without openingrestrictions have been solved in August 1992, proving that the game-theoreticvalue is a win for the player to move �rst. The current computer go-moku world champion (according to the rules of professional go-moku) is theprogram Vertex written by Shaposhnikov (Uiterwijk, 1992a). It is unclearat what performance level Vertex plays in relation to the strongest humanplayers.Techniques currently appliedAs described in chapter 5, the two variants of go-moku without openingrestrictions were solved using a combination of db-search and pn-search.world champion Vertex is based on standard game-tree search techniques:a �xed-depth (16-ply) �-� search for the most-promising 14 moves ineach position. Vertex has been provided with expert pattern knowledgeand opening knowledge of two-fold world correspondence Renju championNosovsky .Obstacles to progressDuring the solution process of go-moku, it became apparent that through itstactical knowledge Victoria was able to suggest strong positional moves inmany positions. In other words, many positionally strong moves could beexplained through tactical calculations. We believe that a combination of

6.3 The games of the Olympic List 165db-search and pn-search, without the multi-move reply and other e�ciencymeasures, can be implemented to outperform all human players in the searchfor deep winning threat trees. With similar positional bene�ts as encounteredduring the solution process of the free-style and standard go-moku, weconjecture that the best human players can be defeated at any variant ofgo-moku. It is also possible that standard techniques as applied in Vertexwould prove su�cient for the task. Therefore, we conclude that no obstacleshave been discovered in go-moku.6.3.4 Nine men's morrisGame propertiesNine men's morris is a converging, perfect-information game. The game has asudden-death element: if a player is unable to make a move, she loses. Eventhough this plays a role in practice, its inuence on the game is much lessthan that of the main feature: closing mills and thereby capturing men of theopponent. Therefore, it seems more appropriate to classify nine men's morrisas a �xed-termination game than as a sudded-death game.The state-space complexity of nine men's morris, calculated by Gasser(1990), is the smallest of all games of the Olympic List: 1010. Nine men'smorris' game-tree complexity is much larger. During the opening phase ofthe game, the branching factor is 16 on the average In the middle gameand end game, the branching factor ranges from 1 to over 50, resulting inour conservative estimate of the average branching factor of 10. Setting theaverage game length at 50 ply (again a conservative estimate), the game-treecomplexity of nine men's morris is calculated to be at least 1050.The state of the artNine men's morris has been solved in October 1993 by Ralph Gasser, provingthat the game-theoretic value is a draw. In the years preceding the solution ofthe game, the program Bushy, also by Gasser, has shown itself to be strongerthan the best human players, as illustrated by defeating the British championby 5 to 1 in an exhibition match during the 2nd Computer Olympiad (Levyand Beal, 1991).Techniques currently appliedNine men's morris has been solved through the creation of databases byretrograde analysis for all positions which may occur during the middle game

166 Chapter 6. Which Games Will Survive?or endgame (Gasser, 1993). For the opening phase, which takes exactly 18ply, a forward search using �-� search was applied.Obstacles to progressDuring the solution of nine men's morris through the application of standardsearch techniques, no obstacles to progress on the game have been discovered.6.3.5 AwariGame propertiesAwari is a converging, perfect-information game, with �xed termination. Onlyin rare circumstances may a player run out of moves early in the game,terminating it. The chances of this happening, however, are quite remote,which is why awari is not a sudden-death game.The state-space complexity of awari is calculated by Allis et al. (1991c) tobe 1012. The game-tree complexity of awari, based on an average branchingfactor of 3.5 and an average game length of 60 ply, is estimated at 1032.The state of the artAlthough lack of o�cial human awari champions makes it di�cult to prove,empirical evidence suggests that today's strongest awari program, Lithidion(Allis et al., 1991c), outperforms the strongest human players. Lithidionhas lost games against human opponents, but in each of these cases thegame revealed a serious bug in the program. All other games against humanopponents were won, most by large margins.We believe that awari will be the next game to be solved. Its state-spacecomplexity is such that, using 2 terabyte of disk space, awari can be solved.It is only because solving awari is not a high-priority project, that it willtake several years and advances in technology before the hardware becomesavailable to solve the game through full enumeration.A similar approach as applied to nine men's morris, i.e. endgame-databaseconstruction in combination with a forward search, may reduce the memoryrequirements for solving awari.Techniques currently appliedFor a detailed description of the techniques applied to today's strongest awariprograms, we refer to section 2.4.3.

6.3 The games of the Olympic List 167Obstacles to progressGiven the current strength of awari programs, and the impending solution ofthe game, no obstacles have been found on awari.6.3.6 OthelloGame propertiesOthello is a diverging, perfect-information game with �xed termination. Thestate-space complexity of othello has an upper bound of 364 � 1030. Severallegality tests, such as that the four center squares should not be empty andthat the occupied squares must form a connected set, reduced the upperbound in a Monte-Carlo analysis to approximately 1028.To calculate the game-tree complexity of othello, we assume an averagegame length of 58 ply. With a conservative estimate of the average numberof moves per position set at 10, we obtain a game-tree complexity of 1058.The state of the artOthello programs have played at the level of the human world champion since1980. In that year the program The Moor won a game against the reigningworld champion. Since then, programs have continued to improve. Currently,rating lists for othello players show that several programs clearly exceed thestrongest human players in playing strength. Today's strongest program isLogistello by Michael Buro, which, among other tournaments, has won the1st Paderborn othello tournament.Techniques currently appliedAll strong othello programs are based on standard game-playing techniques:(1) a deep �-� search; (2) a large opening database; (3) an endgame searchdetermining the outcome of a game after approximately 36 ply; and (4) a�nely-tuned evaluation function.The chances that othello will be solved in the near future are extremelyremote. The state-space complexity rules out the option of full enumeration,while the game-tree complexity renders a full-depth forward search imposs-ible. The diverging nature of othello makes creation of endgame databasesunfeasible. Finally, the property of �xed termination of othello renders solvingthe game in similar fashion to the solution of qubic and go-moku impossible.Only if a so far unidenti�ed structure in the game is discovered, resulting in

168 Chapter 6. Which Games Will Survive?knowledge rules which prove the value of nodes early in the game tree, mayothello be solved in the coming decades.Obstacles to progressThe strongest othello programs have already surpassed their human oppo-nents. Even though solving the game is out of reach, human players donot possess knowledge or skill not shown by their arti�cial opponents. Weconclude that no obstacles have been found in the research on othello.6.3.7 CheckersGame propertiesCheckers is a converging, perfect-information game with �xed termination.In checkers a game is lost by a player who runs out of moves. Althoughin exceptional cases this may happen while both players still have most oftheir pieces, in practice to win a game, (almost) all of the opponent's piecesmust be captured. The state-space complexity of checkers is estimated at1018 (Schae�er et al., 1991). The average branching factor is surprisinglylow: 2.8, which is mostly due to the forced-capture rule (Schae�er, 1993a).With an estimated average game length of 70 ply, we obtain a game-treecomplexity of 1031.The state of the artAs stated in section 1.1, Samuel's learning checkers program has, at leastby some, been wrongfully credited with solving the game, which hasclouded the history of the performance of checkers programs. Recente�orts by Schae�er et al. (1992) have led to the development of a trueworld-championship level checkers program, named Chinook. Chinook haschallenged the human world champion, Marion Tinsley, for his title. Ina rather close match, 4 wins, 2 losses and 33 draws, Tinsley successfullydefended his title.A rematch is scheduled for August 1994 in Boston. With the extra e�ortsspent on Chinook (see below), it is not unlikely that 1994 will see a computerprogram become the strongest checkers entity in the world.Techniques currently appliedChinook consists of (1) a deep �-� searcher (averaging approximately 20

6.3 The games of the Olympic List 169ply); (2) a �ne-tuned evaluation function; (3) a large, man-made, computerchecked opening book; and (3) endgame databases comprising all endgamepositions of 7 pieces or less, and all endgame positions of 4 pieces against 4.The inuence of the endgame databases in checkers should not be under-estimated. Due to forced captures in checkers, removing 16 men o� the boardmay happen rather quickly.With regard to solving checkers, we mention that full enumeration of thegame is ruled out by the size of the state-space complexity. A completeforward search, even if the game-tree is perfectly ordered, is also out of reachof current technology. However, convergence in checkers has allowed thecreation of large endgame databases, which decrease the size of the game-treesigni�cantly. Therefore, we do not rule out that the combination of forwardsearch (either pn-search or �-� search) and endgame databases may provesu�cient to solve (some of the openings of) checkers, as stated by Schae�er(1993a).Obstacles to progressWhile Chinook's strength is its deep tactical searches, combined with perfect-endgame knowledge, its main weakness is that the value of each patternnot available in the evaluation function must be compensated for by search.In contrast, Tinsley's pattern knowledge is such, that he knows of manypositions for which a search of 50 or more plies is necessary to reveal thevalue of the position. Each of such patterns corresponds to a weakness of theprogram with respect to human players.Although Chinook's tactical and endgame ability make up for most ofthe lack of pattern knowledge, it reveals traces of an obstacle to progress incheckers: the inability to gain experience from previous plays. The suitabilityof checkers to alternative approaches, such as the brute-force approachapplied by Chinook shows that this experience obstacle has not preventedcheckers programs from successfully challenging the strongest human players.6.3.8 DraughtsGame propertiesDraughts is a converging, perfect-information game with �xed termination,in many ways similar to checkers. The state-space complexity of draughts issigni�cantly larger than that of checkers, and we have calculated an upperbound of 1030. The game-tree complexity of draughts is also larger than that

170 Chapter 6. Which Games Will Survive?of checkers. Conservatively estimating the average branching factor at 4,and the average game length at 90 ply, we obtain an estimated game-treecomplexity of 490 � 1054.The state of the artThe strongest draughts program is Truus written by Stef Keetman (Keetman,1993). Truus' current level of play at tournament speed is ranked around the40th position in the world. In speed draughts, Truus has beaten reigningworld champion Alexei Tsjizjow once, and reached the 9th position in atournament entered by almost all strong human players.Currently, Keetman works towards the goal of creating a tournamentprogram able to defeat the human world champion. These e�orts mayimprove Truus' level of play in the near future.Techniques currently appliedTruus consists of (1) a deep �-� searcher (averaging a nominal depth ofapproximately 10 ply); (2) a �ne-tuned evaluation function; (3) a large, man-made, computer-checked opening book; and (4) a set of about 1,000 tacticalpatterns, which Truus learned through automatic generalization.According to its author, Truus' undefeated record amongst draughtsprograms since 1990, is mostly due to its learning of tactical patterns(Keetman, 1993). In the near future, Truus' learning abilities will beextended to positional patterns, which have so far been hand-coded by theauthor.The large state-space complexity, in combination with the large game-treecomplexity, make draughts unsolvable in the foreseeable future.Obstacles to progressTruus' strength is mostly based on its knowledge of tactical patterns anddeep tactical searches. Although it has been argued by Keetman (1993) thattactical knowledge in draughts enhances positional play, positional knowledgeis Truus' main weakness in comparison with human experts. Like in checkers,each pattern not available in the evaluation function must be compensatedfor by search revealing similar traces of an obstacle to progress as in checkers:the inability to gain experience while playing the game.

6.3 The games of the Olympic List 1716.3.9 ChessGame propertiesChess is a converging, perfect-information game with sudden-death. Whileconvergence and sudden-death are major contributors to high-level play ingames like qubic, go-moku and checkers, there is only a slight inuence ontournament play in chess. Convergence in chess is slow, and a large majorityof all chess games are decided long before endgame databases come intoplay. In chess practice the subgoal of obtaining material superiority oftendominates the sudden-death goal of checkmate. Thus, both convergence andsudden-death are less pronounced in chess, than in games like checkers anddraughts, or qubic and go-moku, respectively.In our calculation of the state-space complexity of chess, we have includedall states obtained through various minor promotions. Using rules todetermine the number of possible promotions, given the number of piecesand pawns captured by either side, an upper bound of 5 �1052 was calculated.Not all of these positions will be legal, due to the king of the player who justmoved being in check, or due to the position being unreachable through aseries of legal moves. Therefore, we assume the true state-space complexityto be close to 1050. A state-space complexity of 1043, as mentioned by variousauthors (Schae�er et al., 1991), is in our opinion too low an estimate.The game-tree complexity of chess, 10123 is based on an average branchingfactor of 35 and an average game length of 80 ply.The state of the artToday's strongest chess program is Deep Thought (Hsu, 1990). Its estimatedelo rating of 2550 ranks it between positions 100 and 150 on the world ratinglist. Current e�orts to create Deep Blue, a parallel program consisting of 1000Deep Thoughts, aim at surpassing the human world champion.Possibly as early as 1994 a new match with today's strongest computerchess player and one of the reigning world champions, Garry Kasparov, willbe held. So far, all previous games between Kasparov and Deep Thoughthave been won by the human Grand Master (Van den Herik and Herschberg,1989).Techniques currently appliedMost ai research on games has focused on chess. Several di�erent approacheshave been tried, ranging from purely knowledge-based (Reznitsky and

172 Chapter 6. Which Games Will Survive?Chudako�, 1990) to purely brute-force (Hsu, 1990).Deep Thought consists of (1) a deep �-� searcher (averaging approxima-tely 10 ply); (2) a �ne-tuned evaluation function; (3) a move-generatorembedded in hardware; and (4) a large, man-made, computer-checkedopening book.Even though deep searches have had a large impact on the strength oftoday's chess programs, we should not ignore the contribution of the improvedevaluation functions developed alongside the deeper searches. A strongexample is Ed Schr�oder's 1992 world champion program, which compensatesfor one or more plies of search through a highly sophisticated evaluationfunction, manually �ne-tuned through years of development and testing.Obstacles to progressIn chess, just as in checkers, many strategic concepts known to human GrandMasters are based on gains achieved after a large number of moves. For manyof these patterns, programs cannot compensate for their lack of knowledgeby simply searching a few ply deeper.Again, but more clearly than in checkers and draughts, the contours oflack of experience as obstacle to progress in chess becomes visible.The extent to which this obstacle prevents programs from attainingdominance over their human counterparts through brute-force alone isunclear. While some believe that it will still take decades before computerswill defeat the human world champion, others have stated that this eventwill occur before the year 2000 (Van den Herik, 1983).6.3.10 Chinese chessChinese chess is similar to (Western) chess in many ways: (1) it is aconverging, perfect-information game with sudden-death; (2) its state-spacecomplexity, at 1048, is similar to that of chess (at 1050). (3) the approachesto creating computer programs for playing Chinese chess have been similarto that of chess. Its game-tree complexity, estimated at 3895 � 10150(Tsao et al., 1991), is somewhat larger than the game-tree complexity ofchess, at 10123.In our opinion, the main reason why Chinese chess programs fall somewhatbehind in their challenge of the stronger human players is the lesser amountof e�ort invested in Chinese-chess research.

6.3 The games of the Olympic List 1736.3.11 RenjuGame propertiesRenju (see also section 5.2.1) is a variant of go-moku, played by professionalplayers. It is a diverging, perfect-information game with sudden death. Itsstate-space complexity and game-tree complexity are similar to that of go-moku.The state of the artIn its purest form, without special opening rules restricting black (see section5.2.1), we believe renju can be proved a �rst-player win, in the same wayas go-moku has been solved. The main extension needed consists of thede�nition of special types of threats white can create, using squares forbiddento black (squares where black would create a double three, a double four or anoverline). Using these extra threat types, white may be able to counter threatsequences which cannot be countered otherwise. Furthermore, potentialwinning threat sequences by black must be checked for the occupation byblack of forbidden squares. Despite the extra complications in the program,and the somewhat enlarged solution complexity, we believe that renju shouldbe solvable in at most ten times the e�ort required for the go-moku solution.Professional renju, as described in section 5.2.1, is a game with virtuallyequal chances for both players. As go-moku could only be solved throughblack's opening advantage, we believe that professional renju will be unsolv-able in the foreseeable future. Today's strongest renju programs, such asVertex by Shaposhnikov, are estimated to play at a level of 2 or 3 kyu (Ohta,1993), which is the level of intermediate to strong club players.Techniques currently appliedWorld champion Vertex is based on standard game-tree search techniques:a �xed-depth (16 ply) �-� search for the most-promising 14 moves ineach position. Vertex has been provided with expert pattern knowledgeand opening knowledge by two-fold world correspondence Renju championNosovsky.Obstacles to progressIn go-moku we have seen that the availability of a strong tactical moduleallows a program to determine positionally strong moves: through refutation

174 Chapter 6. Which Games Will Survive?of positionally weak moves by tactically forced sequences, the positionallystrong moves automatically emerge as the only options. In renju, a strongtactical module can be created using the same principles as applied to go-moku, albeit somewhat more complex. So far, it has not been shown that it isnecessary to master deep positional knowledge as applied by human masterplayers. In other words, so far no obstacles to progress in renju have beendiscovered.6.3.12 GoGame propertiesGo is a diverging, perfect-information game with �xed termination, Weremark that, in theory, go should be regarded as an unchangeable game,instead of a diverging game, as any legal state can be reached from any otherlegal state, if both players cooperate to this end. However, in practice, theboard is slowly �lled with stones until the board is divided into territoriesfor both players. For practical purposes, therefore, go is a diverging game..Go's state-space complexity, bounded by 3361 � 10172, is far larger thanthat of any of the other perfect-information games of the Olympic List. Itsgame-tree complexity, with an average branching factor of 250, and averagegame length of 150 ply, is approximately 10360.The state of the artThe strongest programs, such as Goliath by Mark Boon and Go-Intellectby Ken Chen, have achieved ratings roughly between 8 and 10 kyu (Boon,1991; Chen, 1992), a level equivalent to weak club players. The low playingstrength in comparison to human players cannot be attributed to the lack ofinterest by strong players or by �nanciers: both Mark Boon and Ken Chenhave a go-rating of 5 dan, while large sums of money can be won by thestrongest go programs.The explanation for the low playing strength of current go programsis found in the nature of the game. While the potential branching factoraverages 250, human players only consider a small number of these, throughextensive knowledge of patterns relevant to go. Similarly, while evaluatinga position, humans determine the strengths and weaknesses of groups onthe board with pattern knowledge. Thus, either programs must obtainpattern knowledge similar to human experts, or compensate for a lack ofsuch knowledge through search or other means.

6.3 The games of the Olympic List 175Techniques currently appliedWe restrict our description to two-fold computer world champion Goliath,written by Mark Boon. Goliath's main strength is its evaluation function.As part of the evaluation function, heuristics determine the value of groupsunder attack, as well as the result of many forcing sequences, withouthaving to analyze these sequences in detail. The evaluation function is usedin a selective search, where moves are generated using pattern knowledgeindicating candidate moves.A future version of Goliath, aimed at achieving a playing level of 5 kyu,is currently being developed.Obstacles to progressThe main progress made by human go novices can be attributed to learningimportant patterns, in go terminology called good shape and bad shape.Furthermore, after each life-and-death attack, their pattern knowledge re-garding the liveliness of each group on the go board is enhanced. Afterplaying a few hundred games, a novice go player will have acquired su�cientpattern knowledge to defeat today's strongest go programs.While lack of pattern knowledge is not unique to go (cf. checkers, draughtsand chess), the main reason why it stands out in go is that deep search failsto mask the lack of pattern knowledge. As a result, in go, the experienceobstacle is clearly visible.6.3.13 ScrabbleGame propertiesScrabble is a diverging imperfect-information game with �xed termination.The imperfect information in scrabble consists of not knowing the contentsof the rack of the opponent and of the chance element in drawing tiles fromthe heap.The state of the artDuring our investigations we have not been able to determine the currentlevel of the strongest scrabble programs. While some people stated thatscrabble programs such as TSP by Jim Homan and Tyler by Alan Frank (thetwo competitors at the third Computer Olympiad) (Uljee, 1992) are stronger

176 Chapter 6. Which Games Will Survive?than the best human players, others believe that human players still have theedge.Techniques currently appliedScrabble as a family game may be best known for its potential of familydisputes: while one player maintains that a word is valid, another may disputeit. At o�cial scrabble tournaments, the set of legal words is strictly de�ned.Either the British O�cial Scrabble Words or the American O�cial ScrabblePlayers Dictionary determine the legal words. For words of nine or moreletters, Webster's Ninth Collegiate is decisive. All strong scrabble programshave these dictionaries in memory.Generally, a set of legal moves is selected, of which each move is evaluatedaccording to (1) the number of points scored; (2) the remaining board position(i.e., the average score the opponent may obtain after the move); and (3) thepotential of the letters remaining on the rack, in combination with the letterslikely to be drawn from the heap.The endgame of scrabble (i.e., once all letters from the heap have beendrawn) is a perfect-information game. A standard forward search can beapplied to such positions to determine optimal play for both sides.Obstacles to progressScrabble programs have shown to be capable of high-level play, even thoughrelatively little research has been performed in this area. We believethat using existing techniques, scrabble programs will surpass their humanopponents, if this is not already the case. Summarizing, no obstacles toprogress in scrabble have been encountered.6.3.14 BackgammonGame propertiesBackgammon is a converging, imperfect-information game of �xed termina-tion. Although both players have access to all information determining thecurrent state, dice determine the legal continuations. Not until a player isbearing her stones o� or until the game has converted into a running game,are conversion moves made.

6.3 The games of the Olympic List 177The state of the artIn 1980, the human world champion in backgammon, Luigi Villa, was beatenin a short match by the backgammon program bkg (Berliner, 1980). However,both the length of the match, and the fact that Villa seems not to have takenthe match as seriously as he should have done, suggest that bkg may nothave been truly stronger than the top human players of that time.Recently, Gerald Tesauro created the program TD-gammon, which nar-rowly lost a match against former world champion Bill Robertie: 40-39.Tesauro's investigations suggest that TD-gammon is signi�cantly strongerthan bkg (approximately 0.35 points per game), while being close to currenthuman world-champion level (Tesauro, 1993).Techniques currently appliedWhile bkg has been created through expert knowledge, TD-gammon is athree-layer neural network, which is trained through the unsupervised TD(�)learning algorithm. The input to TD-gammon consists of the board positionin combination with some fairly basic backgammon knowledge. From theinput and a random initialized network, TD-gammon has trained itself on1.5 million games of self play, resulting in world-class level play (Tesauro,1993).Using the neural network as the evaluation function, TD-gammonperforms a 3-ply search. Doubling is handled by a separate algorithm, aswell as part of bearing o�, for which an endgame database is used.Obstacles to progressTesauro's work on TD-gammon indicates that a neural network is capable ofcapturing pattern knowledge in backgammon as well as the strongest humanplayers. Therefore, we do not see obstacles which have become apparentthrough research on backgammon.6.3.15 BridgeGame propertiesBy declaring bridge to be a two-player game, it was possible to include itin the Olympic List. Arguments can be adduced for bridge being a two-player, three-player or four-player game. During the bidding phase, fourplayers participate in the bidding. During the playing phase, three players

178 Chapter 6. Which Games Will Survive?participate, while the fourth player becomes the dummy. On the score card,two partnerships are recognized as the players in bridge. Like Blair et al.(1993), we have chosen to regard bridge as a two-player game.We remark that double-dummy bridge problems are two-player perfect-information games, while bridge problems assuming optimal counterplay canbe regarded as two-player imperfect-information games. Finally, we mentionthat Blair et al. (1993) call the three and four player phases in bridge, two-player games without perfect recall.Restricting ourselves to the playing phase of bridge, it is a converging,imperfect-information game with �xed termination.The state of the artInstead of trying to master the whole game at once, several researchers haveconcentrated on single aspects, such as Lindelof (1983), who developed aspecial bidding system for computer programs and Berlekamp (1963), whocreated a double-dummy analyzer. Recently, Schoo (1992) has created aprogram which determines optimal play in single suits.Despite progress on parts of bridge, the strength of today's best bridgeprograms may at best be called amateur level. An example of leading bridgeprograms is Bridge Baron by Tom Throop and Tony Guilfoyle, winner of thebridge tournament at the second and third Computer Olympiads.Techniques currently appliedBridge Baron consists of knowledge rules which determine what to bid andthe information each bid contains. A major problem not yet solved isinterpreting the bids of the opponents when they are using vastly di�erentbidding systems.Knowledge rules containing standard playing patterns form the basis forthe playing phase, in combination with search. The heuristic nature of thepatterns is the source of errors, as shown in a deciding hand in the �nal ofthe third Computer Olympiad (Throop and Guilfoyle, 1992).Except for double-dummy problems and single-suit problems, exhaustivesearch has so far not been successful, predictions by Levy (1989) notwith-standing that a world-champion level program based on brute-force searchcould be created with today's technology.

6.4 Reviewing the problem statement 179Obstacles to progressThe main reason for the slow progress on bridge seems the inability ofprograms to truly understand the vague information they are processing.Instead, programs are taught a bidding system by specifying for each bid thehands for which the bid may be applicable, and the information transferredby the bid. The creation of a bidding program in this way su�ers fromthe knowledge-acquisition bottleneck (Feigenbaum, 1979). Furthermore,extracting information from the bidding phase for use during the playingphase has proved to be rather di�cult. Novice human players learning toplay bridge experience similar problems. However, through experience, theylearn to interpret bids, judge hands, and transfer information gained duringbidding to the playing phase. We believe that the experience obstacle blocksprogress in bridge.6.4 Reviewing the problem statementIn section 1.4, we have formulated the problem statement consisting of twoquestions. To �nd an answer to the questions in the problem statement,we formulated three research questions. In this section we summarize theanswers found to the three research questions (section 6.4.1) and review theproblem statement (section 6.4.2).6.4.1 The research questionsIn this section, we summarize the answers found to the three researchquestions of section 1.4. We discuss each of the questions separately.Solvable gamesThe �rst research question reads: `Which games can be solved and whattechniques may contribute to the solution. With respect to the �rst part ofthe question, solvable games, we have found the following answer.1. Four games (qubic, connect-four, go-moku and nine men's morris) havebeen solved.2. Awari and renju without opening restrictions will be solved in the nearfuture.3. Checkers is a likely candidate for solution in the future.

180 Chapter 6. Which Games Will Survive?With respect to the second part of the question, contributing techniques, wehave found the following answer.1. For qubic, go-moku and renju, db-search has been, or will be, acontributor to �nding winning threat sequences.2. For qubic, connect-four, go-moku, renju and checkers, pn-search hasbeen, or may be, a contributor to performing a forward search to solvethe game.3. For nine men's morris, awari and checkers, retrograde analysis has been,or will be, a contributor to create endgame databases which reduce thesize of the search tree necessary to solve the game.4. In connect-four applying knowledge rules to determine the game-theoretic value of game positions has proved to be successful.5. Variants of �-� search have proved e�ective as contributors to thesolution of qubic, connect-four and nine men's morris, while they mayaid in solving checkers.Outperforming the best human playersThe second research question reads: `For which games can we createprograms outperforming the best human players in the near future, and whattechniques contribute to their performance.' With respect to the �rst partof the question, outperforming the best human players, we have found thefollowing answers (we ignore the games listed in the answers to the �rstresearch question.)1. Today's othello programs are stronger than the best human players.2. Today's draughts, backgammon and scrabble programs are close to worldchampion level. Expected progress in the near future, possibly just bytechnological advances, seem su�cient to outperform the best humanplayers.3. For chess, Chinese chess and (professional) renju, current techniques mayprove su�cient to obtain world-champion level, although it is ratherdi�cult to predict when the last human hurdle will be taken.With respect to the second part of the question, contributing techniques, wehave found the following answer.

6.4 Reviewing the problem statement 1811. The most important techniques for obtaining high-level tournamentprograms have been sophisticated variants of �-� search, with �ne-tuned static evaluation function. It is a contributing factor in othello,draughts, chess, Chinese chess and professional renju.2. Db-search in combination with pn-search may prove a contributingfactor for professional renju.3. Neural networks are the basis for the high performance level inbackgammon.Human superiorityThe third research question reads: `In which games will humans continue toreign in the near future (say, at least the next decade) and what are the mainobstacles to progress for computer programs?' With respect to the �rst partof the question, human superiority, we have found the following answer.1. For chess, Chinese chess and (professional) renju it is unclear whetherthe, seemingly inevitable, defeat of the strongest human players willtake place within the coming decade.2. For bridge and go the current performance level as well as the obstaclesto progress suggest that humans will remain superior for at least thecoming decade, if not for much longer.With respect to the second part of the question, we have found that the mainobstacle to progress apparent in several games, but most clearly in bridge andgo, is the lacking ability to gain experience.6.4.2 The problem statementThrough the answers to the three research questions, as presented in section6.4.1, we are now able to discuss the questions raised in the problemstatement.As an answer to the �rst question, concerning new ai techniquesapplicable to other domains, we have found in the course of our researchtwo new search techniques, pn-search and db-search. Pn-search is applicableto and/or trees (see chapter 2), and can thus be applied outside the area ofgames. Db-search is a single-agent search (see chapter 3), for which we havepresented examples including production systems. The applicability of db-search to problems outside the domains discussed in this thesis needs to be

182 Chapter 6. Which Games Will Survive?Predicted program strengths in the year 2000Solved Over Champion World Champion Grand Master Amateurconnect-four checkersqubic renju chess Chinese chessnine men's morris othello gogo-moku scrabble draughts bridgeawari backgammonTable 6.1: Predictions for the Olympic Games in the year 2000investigated in the future. Clearly, as challenges remain within the domainof games, with as speci�c examples bridge and go, new ai techniques may bedeveloped through further investigation of these games.As answer to the second question, concerning obstacles emerging throughinvestigation of games, we have found a single obstacle, apparent in severalgames, but most pronounced in bridge and go: the lack of an ability to gainexperience. The ability to gain experience is based on learning and exibility.Flexibility is necessary to generalize while learning, and to recognize theapplicability of patterns learned. While these concepts are not at all newrevelations, we believe that their importance in relation to our researchconsists of showing that even without other interfering obstacles, such ascommon-sense knowledge, gaining experience is an obstacle in itself. Webelieve that to overcome such an obstacle, a recommended approach is toresearch it in separation from other known obstacles. Stated di�erently, webelieve that bridge and go are suitable test beds for investigating the natureof the experience obstacle.In conclusion, we state that our research has contributed two new searchtechniques which may be applied in ai, as well as some additional insight inthe importance of one obstacle to game research.6.5 Predictions6.5.1 Future playing strengthIn 1990 we have predicted the strength of computer programs in the year2000 for each of the games of the Olympic List (Allis et al., 1991a). Thesepredictions have been reproduced in table 6.1. In 1990, we were only aware ofthe solution to connect-four even though qubic had been solved over a decadebefore. Currently, four of the �ve games listed as predicted to be solved in

6.5 Predictions 1832000 are solved. In the Over Champion category (i.e., signi�cantly strongerthan the human world champion), renju is listed. If we were to recreatetable 6.1 today, we would put renju without opening restrictions in the Solvedcategory, while we would put professional renju at the Grand Master category.The Over Champion entry should thus be regarded as a compromise betweenthese two. Of the �ve games in the Over Champion category, currentlyonly othello is known to have achieved true Over Champion level. To be atworld champion level means having a rating close to that of the human worldchampion. For both games mentioned (chess and draughts), an o�cial ratingsystem exists, which makes it possible to check such a claim. Equivalent tosuch a rating would be a close match over a large number of games. Thus,Chinook is considered by us to be of world-champion level in checkers. Themain reason for listing Chinese chess at Grand Master level, instead of atworld-champion level, is the little e�ort invested in comparison with chess.Therefore, we believe that progress in Chinese chess will keep trailing severalyears behind that of chess.The bridge entry at Grand Master level in retrospect seems somewhatoptimistic. Had we introduced a Master level, this is where we wouldcategorize it with our 1994 knowledge. However, having to choose betweenamateur level and Grand Master level, we opted for the latter.Finally, the go entry speaks for itself. In go terminology, the termamateur may be ambiguous. To be clear, any dan rating in the year 2000 forcomputer programs (even amateur dan ratings) would be above our currentexpectations.6.5.2 The future of gamesEven where computers have failed to achieve perfection, which we see assolving the game, they may succeed at the simpler task of outwitting humanbeings. In table 6.1, we predict that for the majority of the games of theOlympic List computers will have the advantage over their human opponentsbefore the turn of the century.This being so, we nevertheless argue that all games will continue to beplayed at all levels, from youngsters enjoying tic-tac-toe to Grand Masterscompeting in chess tournaments for titles and money. Neither known game-theoretic values nor the availability of silicon opponents of superior strengthwill extinguish man's urge to compete.It has also been argued that, once a program of over-champion strengthexists, programs will cease to improve. Not so: while human beings construct

184 Chapter 6. Which Games Will Survive?programs, competition among programmers will see to it that programs willcontinue to rise in strength. We therefore conclude: all games will survive atall levels.

Appendix ADomain-speci�c solution toDLPIn this appendix we describe the algorithm triangle to determine thesolution to an instance of the double-letter puzzle. Triangle has storagecomplexity in the order of n2 and time complexity in the order of n3.To simplify the description of triangle, we index the letters in the axiomof dlp from 0 to n � 1, where n is the length of the axiom. We de�ne asubstring of the axiom as any range of letters from a start index i to an endindex j, with 0 � i � j � n� 1.Triangle uses a triangular array of 12n(n+ 1) entries, where each entrycan store any subset of fa; b; c; d; eg. Rows in the array represent start indices,and columns represent end indices, i.e., each row i consists of column entriesi to n � 1. In the triangular array, triangle stores for each substring ofthe axiom, the single letters to which that substring can be reduced. After�nishing this task for all substrings, the solution to dlp is found in the entryrepresenting the substring with start index 0 and end index n � 1, whichrepresents the whole axiom. The triangular array is �lled in n steps.First, the n entries with the start index equal to the end index (entries[i; i], for 0 � i � n�1) are initialized to the singleton set containing the letterat position i in the axiom. The other 12n(n� 1) entries are not initialized.Second, we concentrate on entries representing substrings of two letters(i.e., entries [i; i + 1], for 0 � i � n � 2). In general, the value of [i; i + 1]can be determined by looking at the sets at table entries [i; i] and [i+ 1; i+1]. The intersection S of these sets indicates pairs of equal letters whichcan be replaced by the predecessor or successor of the letters in S. These185

186 Appendix A. Domain-specific solution to DLP
0 1 2 3 4 5 6 7 8 9 10
a be − − − bd ce bd − abce

a − − − − − − − −
b − −

−
− − − − − −

−

d − − ce − ce − ad
c − bd ce bd − ac

b ac − − − −
b − − − −

d − − −
c − −

a be
a

1
2

3
4

5
6

7
8

9
10

0 ac

Figure A.1: Solution to instance aabdcbbdcaa of dlp.predecessors and successors are then stored at the entry [i; i+ 1].Third, we determine the value of the entries representing substrings ofthree letters (i.e., entries [i; i + 2], for 0 � i � n � 3). To determine thevalue of [i; i+2] we must look at the intersection S1 of the sets at entry [i; i]and [i+ 1; i+ 2], and at the intersection S2 of the sets at entry [i; i+ 1] and[i+ 2; i+ 2]. The union of S1 and S2 determines the letters from which thepredecessors and successors are included in entry [i; i+ 2].In general, entry [p; q] is the set of predecessors and successors of theletters in Sq�1i=p ([p; i] \ [i+ 1; q]).Figure A.1 depicts the array of entries created to solve the instanceaabdcbbdcaa of dlp (the example of section 3.2). The set of letters stored inentry [0; n� 1] yields the solution. As mentioned in section 3.2, only d is nota solution.

SummaryIn this thesis "intelligent" games are investigated from the perspective ofArti�cial Intelligence (ai) research. Games were selected in which, at leastpartially, human expert players outperformed their arti�cial opponents. Byinvestigating a game, we envision at least two possible outcomes.� If we achieve a playing strength su�cient to defeat the best humanplayers, analysis of the means which led to this improvement mayuncover new ai techniques.� If the playing strength keeps falling short, even after prolongedattempts, of that of the best human players a better understandingof the problems inherent in playing the game at a high level may beacquired.We remark that there is a possibility that the results do not lead toprogress (i.e., no new ai techniques and no better understanding of theinherent problems). In the �rst case, the improvement may be due to entirelydomain-speci�c techniques which cannot be generalized to ai techniques. Inthe second case, we may �nd that we have di�culty in isolating the problemsfrom our failed attempts. By investigating a representative set of games,the probability increases that new ai techniques are developed or insightinto problems hindering progress is obtained. For our investigations, wehave selected a set of games called the Olympic List, consisting of: awari,backgammon, bridge, chess, Chinese chess, checkers, connect-four, draughts,go, go-moku, nine men's morris, othello, qubic, renju and scrabble.The research is in two parts. First, we have investigated three gameswhich we believed could be solved: awari, qubic and go-moku. Games canbe solved if it is possible to determine strategies leading to the best possibleresult for both players. For qubic and go-moku we have been able to �ndstrategies which guarantee a win for the �rst player. For awari this has187

188 Summarynot yet been achieved, but we did create a program that outperforms thestrongest human players. Analysis and generalization of the methods usedin solving qubic and go-moku resulted in two new ai techniques: the searchtechniques proof-number search (pn-search) and dependency-based search (db-search). Awari is close to its solution, indeed so close that we believe thatextant techniques su�ce to solve it.Second, for each game of the Olympic List we have investigated whetherthe di�erence in playing skill of human beings and computer programs givesus reason to believe that there is an intrinsic obstacle to progress. We havefound that, based on insu�cient exibility and learning ability, an experienceobstacle exists. This obstacle is particularly conspicuous in bridge and go.We conjecture that, while such obstacles exist in the games domain, thesesame obstacles will stand in the way of progress in other domains.This thesis consists of six chapters. In chapter 1, the relevance ofinvestigating games is discussed, leading to the formulation of a problemstatement and three research questions. In chapter 2, pn-search is de�ned.It is shown that pn-search traverses a set of state spaces much more e�cientlythan alternative search algorithms; awari serves to provide an example. Inchapter 3, db-search is de�ned, a search algorithm that traverses a statespace signi�cantly reduced when compared to traditional search algorithms.It is shown that under clearly de�ned conditions the reduced state space iscomplete, which means that it contains all solutions present in the originalstate space. The potential of db-search is demonstrated on an exampledomain. In chapter 4, it is demonstrated how pn-search and db-search solvedqubic. Similarly, in chapter 5 it is demonstrated how pn-search and db-searchcombined solved go-moku. In chapter 6 all games of the Olympic List areinvestigated, resulting in, among others, a prediction of the playing strengthsof the strongest computer programs in the year 2000 and a discussion of thefuture of games in our society.

SamenvattingDit proefschrift beschrijft onderzoek naar denkspelen in het kader van deKunstmatige Intelligentie. Uitgegaan is van denkspelen waarin de sterkstemenselijke spelers hun kunstmatige opponenten, in elk geval op onderdelen,nog de baas waren. Dergelijke onderzoekingen kunnen leiden tot tenminstetwee nuttige uitkomsten.� Wanneer de achterstand op de menselijke topspelers geheel wordtingelopen, dan leidt analyse van de wijze waarop dit bereikt wordtmogelijk tot het vinden van nieuwe ai-technieken.� Wanneer ook na langdurige pogingen het niveau van de mens onhaal-baar blijkt, kan analyse van de gevonden problemen leiden tot hetontdekken van algemene obstakels voor vooruitgang in de Kunstma-tige Intelligentie.Het is natuurlijk ook mogelijk dat de achterstand op de mens in eenbepaald denkspel wordt ingehaald, maar dat reeds bestaande techniekengebruikt kunnen worden, of dat de gebruikte technieken geheel speci�ekzijn voor dat spel en geen algemenere toepassing zullen vinden. Ook zouhet zich kunnen voordoen dat langdurige pogingen tot analyse van degevonden problemen tot niets leiden. Door een representatieve verzamelingdenkspelen te onderzoeken, achten wij de kans groot dat onderzoek bij eenaantal daarvan tot nieuwe inzichten zal leiden. Deze verzameling, die derOlympische Denkspelen, bestaat uit: awari, backgammon, bridge, Chineesschaken, checkers, dammen, go, go-moku, molenspel, othello, qubic, renju,schaken, scrabble en vier-op-een-rij.In het onderzoek hebben we ons allereerst geconcentreerd op driedenkspelen die mogelijk opgelost konden worden: awari, qubic, en go-moku.Dit zijn denkspelen waarvoor het mogelijk lijkt uitspraken te bewijzen overstrategie�en die tot het best bereikbare resultaat leiden voor beide spelers.189

190 SamenvattingVoor qubic en go-moku hebben we een strategie kunnen vaststellen die deeerste speler winst garandeert. Voor awari zijn we nog niet zover; wel is eenprogramma gecre�eerd dat sterker speelt dan menselijke topspelers. Analyseen generalisatie van de methoden die tot de oplossing van qubic en go-moku leidden, hebben twee nieuwe ai technieken opgeleverd, namelijk dezoektechnieken proof-number search (pn-search) en dependency-based search(db-search). Awari staat op het punt opgelost te worden. We geloven danook dat bestaande technieken hiervoor afdoende zullen blijken te zijn.Vervolgens is voor elk van de Olympische Denkspelen nagegaan inhoeverre de afwijking tussen de speelniveau's van mensen en computersaanleiding geeft te veronderstellen dat een belangrijk obstakel de vooruitgangin de weg staat. Wij hebben gevonden dat met name het feit datcomputerprogramma's onvoldoende in staat zijn relevante ervaring op tedoen, door gebrek aan exibiliteit en lerend vermogen, dit bij sommige spelenleidt tot een wezenlijke achterstand ten opzichte van menselijke spelers. Hetduidelijkst wordt dit gebrek bij bridge en go. We vermoeden dat zolangbij begrensde onderzoeksgebieden, zoals denkspelen, dergelijke obstakelsvooruitgang in de weg staan, diezelfde obstakels een hindernis vormen bijvooruitgang in andere onderzoeksgebieden.Het proefschrift bestaat uit zes hoofdstukken. In hoofdstuk 1 wordende mogelijke produkten van onderzoek naar denkspelen beschreven. Erwordt een probleemstelling geformuleerd, evenals drie onderzoeksvragen. Inhoofdstuk 2 wordt pn-search gede�nieerd. Aan de hand van experimentenop awari wordt aangetoond dat pn-search een bepaald type zoekruimteaanzienlijk e�cienter onderzoekt dan alternatieve zoekalgoritmen. In hoofd-stuk 3 wordt db-search gede�nieerd, een zoekalgoritme dat de zoekruimtedie door traditionele zoektechnieken wordt onderzocht aanzienlijk verkleint.Er wordt aangetoond dat onder nauwkeurig gede�nieerde omstandighedende door db-search verkleinde zoekruimte volledig is, wat wil zeggen dat zijalle oplossingen van de oorspronkelijke ruimte bevat. Aan de hand van eenvoorbeeld wordt de potentie van db-search ge��llustreerd. In hoofdstuk 4wordt gedemonstreerd hoe pn-search en db-search qubic hebben opgelost,terwijl in hoofdstuk 5 het oplossen van go-moku met pn-search en db-searchwordt beschreven. In hoofdstuk 6 worden alle Olympische Denkspelen onderde loep genomen, resulterend in, onder andere, een voorspelling van despeelsterkte van de beste computerprogramma's in het jaar 2000 en van detoekomst van denkspelen in onze samenleving.

Curriculum VitaeName: L. Victor AllisDate of birth: May 19, 1965Place of birth: Gemert, The NetherlandsNationality: DutchMarried to: Petra Allis-MeinsmaDaughter: CindyEmail: victor@cs.vu.nlEducationSept '77{Aug '83 Hermann Wesselink College, Amstelveen.Sept '83{Oct '88 Vrije Universiteit, Amsterdam, Master degree(with honors)Jan '90 {Aug '93 University of Limburg, Maastricht. Ph.D. studentin Arti�cial Intelligence. Supervisor: H.J. van denHerik.Work ExperienceSept '85 {June '87 Teaching assistant at the Vrije Universiteit,Amsterdam.April '88{Sept '88 Free-lance Computer Science Teacher, novi,Maarssen.Jan '89 {Nov '89 Programmer, Analist, Project Leader at AdvancedManagement Systems, Takapuna, New Zealand.Jan '90 {Aug '93 Free-lance Computer Science Teacher, novi.Sept '93 { Assistant professor of Arti�cial Intelligence at theVrije Universiteit, Amsterdam.191

192 Curriculum Vitae

Bibliography[1] Allen J. D. (1989). A Note on the Computer Solution of Connect-Four. Heuristic Programming in Arti�cial Intelligence 1: the �rstcomputer olympiad (eds. D.N.L. Levy and D.F. Beal), pp. 134{135.Ellis Horwood, Chichester, England. (163)[2] Allis L.V. and Schoo P.N.A. (1992). Qubic Solved Again. HeuristicProgramming in Arti�cial Intelligence 3: the third computerolympiad (eds. H.J. Van den Herik and L.V. Allis), pp. 192{204. EllisHorwood, Chichester, England. (95, 97)[3] Allis L.V. (1988). A Knowledge-Based Approach of Connect-Four.The Game is Solved: White wins. M.Sc. Thesis, Faculty ofMathematics and Computer Science, Vrije Universiteit, Amsterdam.(9, 60, 95, 163)[4] Allis L.V., Van den Herik H.J., and Herschberg I.S. (1991a). WhichGames Will Survive? Heuristic Programming in Arti�cial Intelligence2: the second computer olympiad (eds. D.N.L. Levy and D.F. Beal),pp. 232{243. Ellis Horwood, Chichester, England. (182)[5] Allis L.V., Van der Meulen M., and Van den Herik H.J. (1991b). ��Conspiracy-Number Search. Advances in Computer Chess 6 (ed. D.F.Beal), pp. 73{95. Ellis Horwood, Chichester, England. (60, 62)[6] Allis L.V., Van der Meulen M., and Van den Herik H.J. (1991c).Databases in Awari. Heuristic Programming in Arti�cial Intelligence2: the second computer olympiad (eds. D.N.L. Levy and D.F. Beal),pp. 73{86. Ellis Horwood, Chichester, England. (46, 47, 166)[7] Allis L.V., Van den Herik H.J., and Huntjens M.P.H. (1993). Go-Moku Solved by New Search Techniques. Proceedings of the 1993193

194 BIBLIOGRAPHYAAAI Fall Symposium on Games: Planning and Learning. AAAIPress Technical Report FS93-02, Menlo Park, CA. (95, 97)[8] Allis L.V., Van der Meulen M., and Van den Herik H.J. (1994). Proof-Number Search. Arti�cial Intelligence, Vol. 66, No. 1, pp. 91{124.(62, 95)[9] Anantharaman T.S., Campbell M.S., and Hsu F.-h. (1989). SingularExtensions: Adding Selectivity to Brute-Force Searching. Arti�cialIntelligence, Vol. 43, No. 1, pp. 99{109. (47)[10] Beal D.F. (1984). Mixing Heuristic and Perfect Evaluations: NestedMinimax. ICCA Journal, Vol. 7, No. 1, pp. 10{15. (46)[11] Beasley J.D. (1985). The Ins & Outs of Peg Solitaire. OxfordUniversity Press, Oxford. (6)[12] Berlekamp Elwyn R. (1963). Programs for Double-Dummy BridgeProblems - A New Strategy for Mechanical Game Playing. Journalof the Association for Computing Machinery, Vol. 10, No. 4, pp. 357{364. (178)[13] Berlekamp E.R., Conway J.H., and Guy R.K. (1982). Winning Waysfor your mathematical plays II. Academic Press, London. (5)[14] Berliner H.J. (1979). The B* Tree Search Algorithm: A Best-FirstProof Procedure. Arti�cial Intelligence, Vol. 12, pp. 23{40. (16, 62)[15] Berliner H.J. (1980). Backgammon Computer Program Beats WorldChampion. Arti�cial Intelligence, Vol. 14, pp. 205{220. (177)[16] Blair J.R.S., Mutchler D., and Liu C. (1993). Games with ImperfectInformation. Proceedings of the 1993 AAAI Fall Symposium onGames: Planning and Learning, pp. 59{67. AAAI Press TechnicalReport FS93-02, Menlo Park, CA. (178)[17] Boon M. (1991). Overzicht van de ontwikkeling van een gospelend programma. M.Sc. Thesis, University of Amsterdam, TheNetherlands. (174)[18] Breuker D.M., Allis L.V., and Herik H.J. van den (1994). How toMate: Applying Proof-Number Search. Advances in Computer Chess7, pp. 251{272. (60, 61)

BIBLIOGRAPHY 195[19] Buchanan B.C. and Shortli�e E.H. (1984). Rule-Based ExpertPrograms: the MYCIN Experiments of the Stanford HeuristicProgramming Project. Addison-Wesley, Reading, MA. (2)[20] Campbell M.S. and Marsland T.A. (1983). A Comparison of MinimaxTree Search Algorithms. Arti�cial Intelligence, Vol. 20, No. 4, pp.347{367. (15, 61)[21] Carroll C.M. (1975). The Great Chess Automaton. DoverPublications, Inc., New York. (1)[22] Charniak E. (1978). On the Use of Framed Knowledge in LanguageComprehension. Arti�cial Intelligence, Vol. 11, pp. 225{265. (3)[23] Chen K. (1992). Attack and Defense. Heuristic Programming inArti�cial Intelligence 3: the third computer olympiad (eds. H.J. Vanden Herik and L.V. Allis), pp. 146{156. Ellis Horwood Ltd, Chichester.(174)[24] De Groot A.D. (1965). Thought and Choice in Chess. MoutonPublishers, The Hague-Paris-New York. Translation, with additions,of a Dutch Ph.D. thesis from 1946. Second edition 1978. (3, 128)[25] Deledicq A. and Popova A. (1977). Wari et Solo: le jeu de calculAfrican. CEDIC, Paris. (43)[26] Dreyfus H.L. (1980). Why Computers Can't Be Intelligent. CreativeComputing, Vol. 6, No. 3, pp. 72{78. (4)[27] Feigenbaum E.A. (1979). Themes and Case Studies of KnowledgeEngineering. Expert Systems in the Micro-Electronic Age (ed.D. Michie), pp. 3{25. Edinburgh University Press, Edinburgh,Scotland. (3, 179)[28] Fikes R.E. and Nilsson N.J. (1971). STRIPS: A new approach tothe application of theorem proving to arti�cial intelligence. Arti�cialIntelligence, Vol. 1, No. 2. (65)[29] Gasser R. (1990). Heuristic Search and Retrograde Analysis: theirapplication to Nine Men's Morris. Diploma thesis, Swiss FederalInstitute of Technology, Z�urich. (165)

196 BIBLIOGRAPHY[30] Gasser R. (1991). Endgame Database Compression for Humans andMachines. Heuristic Programming in Arti�cial Intelligence 3: thethird computer olympiad (eds. H.J. Van den Herik and L.V. Allis),pp. 180{191. Ellis Horwood, Chichester, England. (9)[31] Gasser R. (1993). Personal Communication. (166)[32] Gnodde J. (1993). A��da, New Search Techniques Applied to Othello.M.Sc. Thesis, University of Leiden, The Netherlands. (39, 60)[33] Greenblatt R.D., Eastlake III D.E., and Crocker S.D. (1967). TheGreenblatt Chess Program. Proceedings of the Fall Joint ComputingConference, pp. 801{810. San Francisco. (39, 75)[34] Hall M.R. and Loeb D.E. (1992). Thoughts on Programming aDiplomat. Heuristic Programming in Arti�cial Intelligence 3: thethird computer olympiad (eds. H.J. Van den Herik and L.V. Allis),pp. 123{145. Ellis Horwood Ltd, Chichester. (6)[35] Hart P.E., Nilsson N.J., and Raphael B. (1968). A Formal Basis for theHeuristic Determination of Minimum Cost Paths. IEEE Transactionson SSC, Vol. 4. (17, 63)[36] Hart P.E., Nilsson N.J., and Raphael B. (1972). Correction to'A Formal Basis for the Heuristic Determination of Minimum CostPaths'. SIGART Newsletter, Vol. 37. (63)[37] Hofstadter D.R. (1979). G�odel, Escher, Bach: an Eternal GoldenBraid. Basic Books, New York. (13)[38] Hofstadter D.R. (1985). Metamagical Themas. Bantam Books,Toronto. (6)[39] Hsu F.H. (1990). Large Scale Parallelization of Alpha-Beta Search: AnAlgorithmic Architectural Study with Computer Chess. PhD thesis,Carnegie Mellon University, Pittsburgh, USA. (171, 172)[40] Keetman S. (1993). Personal Communication. (170)[41] Klingbeil N. and Schae�er J. (1988). Search Strategies for ConspiracyNumbers. Canadian Arti�cial Intelligence Conference, pp. 133{139.(60)

BIBLIOGRAPHY 197[42] Klingbeil N. (1989). Search Strategies for Conspiracy Numbers. M.Sc.Thesis, University of Alberta, Edmonton, Alberta, Canada. (31, 60)[43] Knuth D.E. and Moore R.W. (1975). An Analysis of Alpha-BetaPruning. Arti�cial Intelligence, Vol. 6, No. 4, pp. 293{326. (15, 160)[44] Knuth D.E. (1969). The Art of Computer Programming, Vol. 2.Addison-Wesley Publishing Company. (p. 192 in the second (1981)edition). (8)[45] Korf R.E. (1985). Depth-First Iterative-Deepening: an OptimalAdmissable Tree Search. Arti�cial Intelligence, Vol. 27, pp. 97{109.(6)[46] Levy D.N.L. and Beal D.F. (eds.) (1989). Heuristic Programming inArti�cial Intelligence: the �rst computer olympiad. Ellis Horwood,Chichester, England. (6, 156)[47] Levy D.N.L. and Beal D.F. (eds.) (1991). Heuristic Programmingin Arti�cial Intelligence 2: the second computer olympiad. EllisHorwood, Chichester, England. (6, 46, 128, 156, 165)[48] Levy D.N.L. (1989). The Million Pound Bridge Program.Heuristic Programming in Arti�cial Intelligence: the �rst computerolympiad (eds. D.N.L. Levy and D.F. Beal), pp. 95{103. EllisHorwood, Chichester, England. (178)[49] Lindelof E.T. (1983). COBRA - The Computer Designed BiddingSystem. London, Gollancz. (178)[50] Lister L. and Schae�er J. (1994). An Analysis of the ConspiracyNumbers Algorithm. Computers and Mathematics with Applications,Vol. 27, No. 1, pp. 41{64. (60)[51] Marr D. (1977). Ariti�cial Intelligence - A Personal View. Arti�cialIntelligence, Vol. 9, pp. 37{48. (3)[52] McAllester D.A. (1988). Conspiracy Numbers for Min-Max Search.Arti�cial Intelligence, Vol. 35, pp. 287{310. (16, 60)[53] Michalski R.S., Carbonell J.G., and Mitchell T.M. (1983). MachineLearning: An Arti�cial Intelligence Approach, Vol. 1. Tioga, PaloAlto, CA. (3)

198 BIBLIOGRAPHY[54] Michalski R.S., Carbonell J.G., and Mitchell T.M. (1986). MachineLearning: An Arti�cial Intelligence Approach, Vol. 2. MorganKaufmann, Los Altos, CA. (3)[55] Michie D. (1982). Information and Complexity in Chess. Advancesin Computer Chess 3 (ed. M.R.B. Clarke), pp. 139{143. PergamonPress, Oxford. (4)[56] Newell A., Shaw J.C., and Simon H.A. (1957). PreliminaryDescription of General Problem Solving Program-I (GPS-I). ReportCIP Working Paper 7. (2)[57] Nilsson N.J. (1971). Problem Solving Methods in Arti�cialIntelligence. McGraw-Hill, New York. (15)[58] Nilsson N.J. (1980). Principles of Arti�cial Intelligence. Tioga, PaloAlto, CA. (14, 63)[59] Ohta T. (1993). Personal communication. (173)[60] Palay A.J. (1982). The B* tree search algorithm - new results.Arti�cial Intelligence, Vol. 19, pp. 145{163. (63)[61] Patashnik O. (1980). Qubic: 4x4x4 Tic-Tac-Toe. MathematicsMagazine, Vol. 53, pp. 202{216. (95, 96, 109, 110, 112, 116, 119,162)[62] Reinefeld A. (1994). A Minimax Algorithm Faster than Alpha-Beta. Advances in Computer Chess 7 (eds. H.J. Van den Herik,I.S. Herschberg, and J.W.H.M. Uiterwijk), pp. 237{250. Universityof Limburg, Maastricht. (15)[63] Reznitsky A. and Chudako� M. (1990). Pioneer: A Chess ProgramModelling a Chess Master's Mind. International Computer ChessAssociation Journal, Vol. 13, No. 4, pp. 175{195. (171)[64] Sakata G. and Ikawa W. (1981). Five-In-A-Row. Renju. The IshiPress, Inc., Tokyo. (122, 123, 129, 149)[65] Samuel A.L. (1959). Some Studies in Machine Learning Using theGame of Checkers. IBM Journal of Research and Development, Vol. 3,No. 3. (2)

BIBLIOGRAPHY 199[66] Samuel A.L. (1967). Some Studies in Machine Learning Using theGame of Checkers II. Recent Progress. IBM Journal of Research andDevelopment, Vol. 11, No. 6. (2)[67] Schae�er J. (1989). Conspiracy Numbers. Arti�cial Intelligence,Vol. 43, No. 1, pp. 67{84. (16, 60, 61)[68] Schae�er J., Culberson J., Treloar N., Knight B., Lu P., and SzafronD. (1991). Reviving the Game of Checkers. Heuristic Programming inArti�cial Intelligence 2: the second computer olympiad (eds. D.N.L.Levy and D.F. Beal), pp. 119{136. Ellis Horwood Ltd., Chichester,England. (2, 168, 171)[69] Schae�er J., Culberson J., Treloar N., Knight B., Lu P., and SzafronD. (1992). A World Championship Caliber Checkers Program.Arti�cial Intelligence, Vol. 53, pp. 273{289. (2, 168)[70] Schae�er J. (1993a). Personal Communication. (168, 169)[71] Schae�er J. (1993b). A Re-Examination of Brute-Force Search.Proceedings of AAAI Fall Symposium on Games: Planning andLearning, pp. 51{58. AAAI Press Technical Report FS93-02, MenloPark, CA. (5)[72] Schae�er J. (1994). Personal Communication. (30)[73] Schijf M. (1993). Proof-Number Search and Transpositions. M.Sc.Thesis, University of Leiden, The Netherlands. (39, 40, 41, 42)[74] Schijf M., Allis L.V., and Uiterwijk J.W.H.M. (1994). Proof-NumberSearch and Transpositions. ICCA Journal, Vol. 17, No. 2, pp. 63{74.(39)[75] Schoo P.N.A. (1992). Optimal Play in a Single Bridge Suit. PersonalCommunication. (178)[76] Shortli�e E.H. (1976). MYCIN: Computer-based MedicalConsultations. Based on a PhD thesis, Stanford University, Stanford,CA, 1974. (2)[77] Stiller L. (1989). Parallel Analysis of Certain Endgames. ICCAJournal, Vol. 12, No. 2, pp. 55{64. (9)

200 BIBLIOGRAPHY[78] Stockman G. (1979). A Minimax Algorithm Better than Alpha-beta?Arti�cial Intelligence, Vol. 12, pp. 179{196. (15, 61)[79] Tesauro G. (1993). TD-Gammon, A Self-Teaching BackgammonProgram, Achieves Master-Level Play. AAAI Technical report FS93-02 Games: Planning and Learning, pp. 19{23. AAAI Press TechnicalReport FS93-02, Menlo Park, CA. (177)[80] Thompson K. (1982). Computer Chess Strength. Advances inComputer Chess 3 (ed. M.R.B. Clarke), pp. 55{56. Pergamon Press.(5)[81] Thompson K. (1986). Retrograde Analysis of Certain Endgames.ICCA Journal, Vol. 9, No. 3, pp. 131{139. (9, 158)[82] Throop T. and Guilfoyle T. (1992). A Thrilling Hand. HeuristicProgramming in Arti�cial Intelligence 3: the third computerolympiad (eds. H.J. Van den Herik and L.V. Allis), pp. 27{28. EllisHorwood Ltd, Chichester. (178)[83] Tromp J.T. (1993). Aspects of Algorithms and Complexity. Universityof Amsterdam. Ph.D. Thesis. (163)[84] Tsao Kuo-Ming, Li Horng, and Hsu Shun-Chin (1991). Design andImplementation of a Chinese Chess Program. Heuristic Programmingin Arti�cial Intelligence 2: the second computer olympiad (eds. D.N.L.Levy and D.F. Beal), pp. 108{118. Ellis Horwood Ltd, Chichester.(172)[85] Uiterwijk J.W.H.M., Van den Herik H.J., and Allis L.V. (1989a).A Knowledge-Based Approach to Connect-Four. The Game is Over:White to Move Wins! Heuristic Programming in Arti�cialIntelligence: the �rst computer olympiad (eds. D.N.L. Levy and D.F.Beal), pp. 113{133. Ellis Horwood Ltd, Chichester. (9, 163)[86] Uiterwijk J.W.H.M., Van den Herik H.J., and Allis L.V. (1989b).A Knowledge-Based Approach to Connect-Four. The Game is Over:White to Move Wins! Report CS 89-04, Department of ComputerScience, Faculty of General Sciences, University of Limburg. (163)[87] Uiterwijk J.W.H.M. (1992a). Go-Moku still far from Optimality.Heuristic Programming in Arti�cial Intelligence 3: the third computer

BIBLIOGRAPHY 201olympiad (eds. H.J. Van den Herik and L.V. Allis), pp. 47{50. EllisHorwood Ltd, Chichester. (122, 164)[88] Uiterwijk J.W.H.M. (1992b). Knowledge and Strategies in Go-Moku.Heuristic Programming in Arti�cial Intelligence 3: the third computerolympiad (eds. H.J. Van den Herik and L.V. Allis), pp. 165{179. EllisHorwood Ltd, Chichester. (126)[89] Uljee I.H. (1992). Letters beyond Numbers. Heuristic Programming inArti�cial Intelligence 3: the third computer olympiad (eds. H.J. Vanden Herik and L.V. Allis), pp. 63{66. Ellis Horwood Ltd, Chichester.(175)[90] Van den Herik H.J. and Allis L.V. (eds.) (1992). HeuristicProgramming in Arti�cial Intelligence 3: the third computerolympiad. Ellis Horwood, Chichester, England. (6, 46, 128, 156)[91] Van den Herik H.J. and Herschberg I.S. (1985). The Construction ofan Omniscient Endgame Data Base. ICCA Journal, Vol. 8, No. 2, pp.66{87. (9)[92] Van den Herik H.J. and Herschberg I.S. (1989). Champ meets Champ.ICCA Journal, Vol. 12, No. 4. (171)[93] Van den Herik H.J. (1983). Computerschaak, Schaakwereld enKunstmatige Intelligentie. Academic Service, 's-Gravenhage. (4,172)[94] Van den Herik H.J. (1991). Kunnen computers rechtspreken? GoudaQuint BV, Arnhem. (2)[95] Van der Meulen M. (1990). Conspiracy-Number Search. ICCAJournal, Vol. 13, No. 1, pp. 3{14. (16, 60, 61)[96] von Neumann J. and Morgenstern O. (1944). Theory of Games andEconomic Behavior. Princeton University Press, Princeton. (157)[97] Winston P.H. (1992). Arti�cial Intelligence. AddisonWesley, Reading,MA. 3rd edition. (5)[98] Witmans P.A. (1994). Personal communication. (117)

202 BIBLIOGRAPHY

IndexSymbols��-cn search, 62�-� search, 8, 15, 39, 43, 4615-puzzle, 6AA*, 63add set, 65adversary agent, 99, 102, 130ancestor, 79Arti�cial Intelligence, 1attribute, 65, 71, 102automorphism, 97, 99, 144awari, 6, 9, 10, 16, 31, 33, 37, 43{51, 59{61, 95, 162, 166,167, 179, 180, 182, 188awele, 43BB*, 16, 62backgammon, 6, 162, 176, 177,180{182, 187best-�rst search, 15, 18, 62breadth-�rst search, 14, 66, 67, 91bridge, 4{6, 156, 157, 162, 177{179, 181{183, 187, 188broken three, 125bug, 118, 152

Ccheckers, 2, 4{6, 34, 37, 157, 162,169{172, 175, 179, 180,182, 183, 187chess, 1, 4{6, 8, 16, 34, 37, 39, 41,49, 60, 61, 156, 157, 159,160, 162, 171, 172, 175,180{183, 187Chinese chess, 6, 41, 162, 172, 180{183, 187class, 74closed attacker three, 104closed defender three, 104cn-search, 16, 60collisions, 49combination stage, 85, 104, 105common-sense knowledge, 3complexity, 155, 156Computer Olympiad, 6, 46, 97connect-four, 6, 9, 39, 40, 60, 61,95, 157, 161, 163, 164,179, 180, 182, 187convergence, 155{157conversion, 39, 157CPU time, 50, 150current node, 32DDAG, 39database, 148203

204 INDEXdb-search, 10, 67, 97, 122DCG, 39defender four, 104delete set, 65depend on, 78dependency stage, 85, 104, 105depth-�rst search, 14, 15, 29, 66,67, 74, 91diplomacy, 6directional search, 15disproof number, 19, 21disproof set, 19divergence, 157double four, 123, 131double threat, 98, 127double three, 123, 131double-letter puzzle, 68, 88draughts, 2, 6, 31, 34, 37, 162, 169{172, 175, 180{183, 187Ee�ort, 33endgame database, 45evaluationdelayed, 17, 26immediate, 17, 26, 33evaluation function, 107execution time, 31experience, 169, 170, 172, 175, 179,181, 182extension, 73, 141extension set, 141F�ve, 125�xed termination, 158four, 125, 144four-three, 131

free-style go-moku, 124, 129, 131,141{143, 148, 150, 153GG�odel code, 49game property, 155game-theoretic value, 43game-tree complexity, 158, 160game-tree search, 60gamesnon-trivial, 6skill, 6solving, 7two-player, 5well-known, 6zero-sum, 6General Problem Solver, 2give-away chess, 6, 33{35, 60global refutation, 139go, 4{6, 41, 123, 162, 174, 175,181{183, 187, 188go-moku, 6, 9, 10, 33, 38{40, 43,60, 90, 92, 93, 95{97, 121{126, 128{133, 135, 137,141, 143, 144, 147{153,155, 157, 158, 161, 164,165, 167, 171, 174, 179,180, 182, 187, 188goal square, 137goal state, 72, 103, 135good shape, 129graph, 39group, 97, 99, 109Hheuristic, 139, 140, 144hex, 8human expert, 128

INDEX 205Iimperfect information, 156implicit threat, 147initial state, 72, 103, 135intuition, 3iterative deepening, 15Kkey class, 75key operator, 75, 106knowledge representation, 13Llearning, 3level, 85life, 5line of �ve, 133line of seven, 133line of six, 133Mmancala, 43merge, 79, 104meta-move, 102, 104, 132meta-operator, 80, 106micro world, 4mixed strategy, 157mobility, 108monotonicity, 76, 77, 103, 135, 137Monte-Carlo simulation, 159most-proving node, 22MST*, 64mu-puzzle, 13, 14multiple-stone reply, 131MYCIN, 2

Nnim, 6, 8nine men's morris, 6, 9, 161, 165,166, 179, 180, 182, 187nodeand, 17, 143child, 17developing, 17, 18, 33evaluation, 17, 27expansion, 17frontier, 17internal, 17leaf, 17or, 17, 143parent, 17solved, 29terminal, 17traversals, 31type, 17value, 17, 18non-uniformity, 60, 95null-move heuristic, 147OOlympic List, 6, 9, 96, 121open attacker three, 104open defender three, 104, 106operator, 65, 71, 102, 133, 141othello, 6, 37, 38, 60, 157, 158, 162,167, 168, 180{183, 187overline, 123, 141Pparent, 78path, 73peg solitaire, 6perfect information, 7, 155, 156

206 INDEXply, 5pn-search, 10, 16, 143assumptions, 19, 22, 32, 38poker, 6positioneasy, 52hard, 52potential winning threat sequence,130precede, 78precondition set, 65prisoners' dilemma, 6problem solving, 13problem statement, 7, 155, 179,181production system, 65, 81proof number, 19, 20proof set, 19pure strategy, 156Qqubic, 6, 9, 10, 39, 40, 43, 60, 90,92, 93, 95{97, 99, 101{104,106{110, 114, 116, 118,119, 121, 122, 148, 155,157, 158, 161{163, 167,171, 179, 180, 182, 187,188Rredundancy, 76, 77, 103, 135, 137related square, 145, 147related-squares heuristic, 147relevant parent, 79reliability, 118, 152renju, 6, 97, 122{124, 162, 164,173, 174, 179{183, 187repetition, 40

reply, 130, 131representation, 65research question, 7, 95, 155, 179Rubik's cube, 6Sscrabble, 6, 162, 175, 176, 180, 182,187search, 13, 65shogi, 157, 158single-agent search, 63, 99, 102,126, 130, 135singularity, 76, 77, 103, 135, 137solution, 73solution depth, 160solution search tree, 160solved, 2, 7, 9, 95, 96, 121, 148,150, 153, 158, 159, 161{167, 179, 182strongly, 7{9ultra-weakly, 7{9weakly, 7{9SSS*, 15, 61standard go-moku, 124, 129, 141{143, 148, 150, 151, 153stateatomic, 65structured, 65state space, 66, 71state-space complexity, 9, 158, 159straight four, 125strategic move, 116sudden death, 155, 156, 158support, 78Ttemporary black, 124temporary white, 124

INDEX 207test position, 51threat, 101, 130, 145threat category, 136threat sequence, 101, 130threat tree, 126, 127threat-space search, 97, 122three, 125, 144tic-tac-toe, 6, 97, 122, 159, 160,183transposition, 39, 74transposition table, 48, 75tree and/or, 15, 16, 18, 107, 143broad, 38deep, 38disproved, 18game, 15model, 17narrow, 38non-uniform, 16proved, 18shallow, 38single-agent, 15solved, 18, 55uniform, 15Triangle, 91, 185Turk, 1Uunchangeability, 157Wwari, 43weak methods, 5winning threat sequence, 101, 106,130, 139winning threat tree, 127, 139winning threat variation, 127

working memory, 14, 16, 29

