
VERSIE 14/5/2003 11.00

Page 1/6

JSR127 JavaServer Faces
by Bart Leeten (EDS) & Kris Meukens (EDS)
Not many Java Specification Requests (JSRs) have been that much anticipated and contested as
JSR127 JavaServer Faces (JSF):

• Does one really need anything beyond JavaServer Pages (JSPs) and Servlets?

• Aren’t there already enough web application framework offerings?

• Isn’t Struts already filling the gap as the de-facto web application framework for the Java
2 Enterprise Edition (J2EE) platform?

• Should the Java Community Process (JCP) not invest its time and efforts in
evolving/converging the already existing frameworks instead of reinventing the wheel?

• J2EE will never be able to catch up again since Microsoft’s smashing .Net WebForms
and the escorting tool support in Visual Studio.NET, so why still bother about the web
presentation tier?

This article will not only provide you with an overview of what JavaServer Faces is about, but also
with the arguments why we believe JavaServer Faces really presents a significant step forward
for the J2EE Web Tier. As JSF is still work in progress, not cast in stone yet, we will limit
ourselves to describing the overall features and goals, and will not overwhelm you with lower
level Application Programming Interface (API) details.

For clarity reasons and to stress that JavaServer Faces is not only about ‘visual’ user interfaces,
we propose to use the term ‘face’, to express what for visual interfaces is typically named a
‘screen’.

Observations
When observing the construction of web user interfaces on the J2EE platform, one can notice
that before getting the development team truly productive, one first has to deal with a
considerable number of common ‘infrastructure’ issues.

Therefore development teams will often attempt to:

• Abstract away all the plumbing required to process user actions, for example event
handling, validation, error handling, navigation from face A to face B, model state
management, internationalization, localization, web accessibility, … by the creation or
usage of a web application framework.

• Remove, often duplicated code in JSPs, required to create a face (e.g. the mark-up and
accompanying script functions that make up a tree widget) in custom tag libraries. Often
widgets are created so that they correctly render themselves for different user agents,
user agent versions, etc. For that matter, web application frameworks frequently include
user agent capability sensing.

• Define rigid guidelines to which developers have to comply in order to be consistent with
an agreed look and feel.

• Speed up the development of faces by automating the coding process as much as
possible i.e. code generation based on meta data, wizards, templates, …

Think about how many proprietary decisions and costly assemblies have to be/are made before
one can even start to think about what really matters: designing a ‘quality’ application addressing
the business requirements, on time and within budget.

VERSIE 14/5/2003 11.00

Page 2/6

That was the reason why in May 2001 a significant number of players within the JCP joined
forces to form an expert group with the goal of defining a standard user interface (UI) toolkit,
called JavaServer Faces. Moreover the expert group will make JSF:

• leveragable by (off-the-shelf) development tools

• integratable with and built on top of standard J2EE technologies like servlets, JSPs, tag
libraries (like JavaServer Pages Standard Tag Library (JSTL))

• integratable with new (standard) specifications as portlets (as they are currently being
defined in JSR 168).

In fact it is envisioned that JSF becomes a standard part of the J2EE platform.

On the other hand the JSF expert group does not want to ignore existing frameworks. Firstly the
expert group recognizes valuable concepts and patterns applied by existing frameworks and
cherry picks from them. Secondly they are assuring that JSF has integration points with other
frameworks. What the expert group actually tries to accomplish is to standardize the web
application framework API. That way framework builders can concentrate on creating the best
possible JSF implementation while the developers get not only a standardized API code to code
against but also (visual) tool support and pluggable JSF implementations. As such JSF presents
a preservation of current investments and a smooth migration path away –when applicable - from
a proprietary framework. JSF will be a stimulant for web application framework developers to
converge towards standard (J2EE) APIs.

A good example of a migration/integration strategy is the JSF integration library for Struts 1.1
(see http://cvs.apache.org/viewcvs/jakarta-struts/contrib/struts-faces/) and the plan to replace in
the Struts tag library by JSF tag library in Struts 2.0 (see
http://jakarta.apache.org/struts/status.html).

Under the hood
Let’s have a brief look on how JSF delivers its functionality. JSF basically builds upon the web
tier APIs available within J2EE 1.3 i.e. JSP 1.3 and the Servlet 2.3 API, hence it can be used in
combination with all the major application servers today available on the market.

Most of the time the containing environment of a JSF application will be accessible via the Servlet
API, however as JSF can also be used within other containing environments e.g. in the context of
Portlets it has to cater for this possibility. In fact the inner-workings of JSF are shielded from their
external context and kept as ‘pure’ as possible, this assures JSF’s growth path towards the
future.

VERSIE 14/5/2003 11.00

Page 3/6

Modi operandi
JSF supports two modi operandi: with or without JSPs. For use with JSPs, a JSF
implementation must provide at least two JSF tag libraries. They sit, as a thin layer, on top of the
JSF API. The tags can be embedded in JSPs, very similar to how user interfaces are typically
built with Struts for example. The main tag library, also known as the jsf-core tag library, contains
render independent JSF tags. Other tag libraries offer render(kit) dependent tags.

Nevertheless there are some shortcomings inherent to JSPs – e.g. JSPs are often render-
dependent - and in order to address those, JSF offers developers direct access to the JSF API
skipping JSPs and tags.

This can be very practical when you for example want to produce faces that require extremely
flexible (e.g. not only to be rendered in HTML but also in SVG) and adaptive layouts (e.g.
resizable elements). In that case developers will be able to apply absolute positioning or layout
management techniques similar as in Swing/AWT/SWT, to provide a flexible programmatic
mechanism to lay out faces. The composition of such a face can be performed with tools similar
to the ones currently available for the creation of Swing/AWT/SWT-based user interfaces. This is
a major step for the J2EE tool market to catch up with and leapfrog the capabilities that are
currently offered by Microsoft’s VisualStudio WebForms capabilities in that regard.

Component and Render Kits
Another analogy between JSF and Swing/AWT/SWT is that JSF is also component based,
meaning that under the hood every part of a face is represented as a tree of UI components.
Similar to Swing/AWT/SWT the component model used is render technology agnostic. Its
naming scheme is inspired by W3C’s XForms. In other words the developer uses a generic
component model that at run-time will delegate the actual mark-up rendition to specialized objects
called renderers.

Example: a UICommand can visually be represented as an HTML hyperlink, an HTML button or
even a rich SVG button. The concern how it will be rendered is separated from the actual ‘under
the covers’ generic processing. In order to switch the presentation from a hyperlink to a button,
the developer just has to associate another renderer type. In JSPs, the renderer type is indicated
via the embedding of a render type specific tag (e.g. the reference implementation’s tag library
offers the tags <UICommand_Hyperlink/> and <UICommand_Button/>).

VERSIE 14/5/2003 11.00

Page 4/6

Render kits can be knowledgeable about the user-agent’s capabilities and/or the user’s
preferences. Initially (in JSF 1.0) render kits will be an inseparable collection of renderers
designed to optimally work together. However render kits will not be the standard mechanism to
create different skins or look & feels. The standard mechanism that provides that functionally is
deferred to a later release. It turns out to be very complex to design a solution that is really render
independent, W3C’s Cascading Style Sheets (CSS) are not the all-inclusive solution to skin
widgets.

Render kits could be selected according to the capabilities sensed by an advanced JSF
implementation, an elegant mechanism to do so could be through the capabilities offered by
JSR188 CC/PP Processing. The latter JSR’s expert group is defining a standard capabilities
sensing API towards standards as W3C’s Composite Capability/Preference Profiles which is one
of the common mechanisms to capture user-agents capabilities. Notice that Render kits are not
necessarily limited to rendering HTML (in combination with possible scripting and/or CSS). On
the contrary component rendering in for example SVG, PDF or Flash MX, is perfectly within
reach. As JSF 1.0 render kits will offer an inseparable set of renderers, render kits will typically
concentrate on a single content type.

Any JSF implementation must at least feature an HTML 4.01 render kit. In fact a whole 3rd party
market, offering specialized components and/or render kits, is on the verge of emerging. Soon ,
JSF components and/or render kits will be available as currently already exist for some time for
Microsoft’s ASP.NET.

Model Beans
The above UI components and render kits are one part of the story. An other part is the model,
realized with the so-called ‘model beans’ that hold the information to be presented by UI
components. These JavaBeans’ compliant model beans are registered for a particular duration
of time which can be the lifespan of a request, a session, the application or more simply the bean
can be recreated every time it is required. Registration can happen in 2 ways: programmatically
or through the use of an XML configuration file. During this registration process, model beans
can be instantiated and also be populated with information. This information can be statically
defined or dynamically retrieved from elsewhere. A JSF implementation can offer two
mechanisms to retain model bean state over time: on the server (which is the default) or
optionally on the client. The latter requires the model bean state to be serialized into the
rendered response and therefore is dependent on the render kit’s capabilities in that sense. The
inclusion of that capability could be a discriminating feature in your render kit implementation
selection.

Events
A face is not limited to representation, it also offers the ability to interact with the information
through the usage of the appropriate controls. These actions will result in events, that will be
handled by their respective listeners.

Remark that events can originate from both external stimuli and JSF internal workings. An
illustration of this is a user clicking on a tree-node to expand a tree. That action could create a
server-side event setting off a registered listener to retrieve not-yet retrieved leaf information.

In order to define an unambiguous request processing lifecycle that indicates what needs to
happen when, that lifecycle is divided into phases. Currently there are 6 phases defined each with
its distinct responsibility: reconstitute tree, apply request values (*), process validations (*),
update model values (*), invoke application (*) and render response. The phases indicated with
(*) include a shared sub-phase called event processing (this is a significant change with older
JSF early access releases). Therefore event listeners need to indicate during their registration
process in which phase they need to be notified.

VERSIE 14/5/2003 11.00

Page 5/6

Validators and Converters
During the process validation phase dedicated helper objects come into play namely ‘validators’
and ‘converters’. A validator will validate for example the value entered in a UIInput component
and when necessary register ’message’ objects that can be used by the application to show error
messages. The contents of those messages can be retrieved from resource bundles in order to
enable localization of those messages. Remark that validators are not limited to the validation of
the contents of a single component.

For example a particular validator can be responsible to perform the validation of a bank account
number that is represented by a custom bank account number component composed out of 3
separate UIInput components.

Converters are used to transform the data as it is represented on the user interface into the type
as it is required within the model bean. A typical example is a date that is represented on the
screen as the string ‘24/01/2003’ but internally stored in a model bean that is an instance of the
type ‘java.util.Date’.

Wrap-up
Let us in a few words re-iterate this article’s key points:

• JSF will protect investments as it

o Can be integrated with your existing web application framework

o Will become part of the standard Java (2EE) platform APIs

o Is not a product but an API, thus providing choice of provider/implementation

o Offers developers a single programming model independent of user agent and
channels through its abstract user interface component model.

• JSF will improves flexibility:

o Thanks to the unrelenting strategy of separating concerns.

• JSF will be an enabler by

o Forming the foundation of a new market for JSF implementations, components,
render kits and development tools.

o Facilitating more developers to create more sophisticated (web) applications
thanks to its implementation encapsulation.

o Raising web user interface construction on the J2EE platform to new levels. It
can be used both with and without JSPs and is not limited to visual user
interfaces.

• JSF will bring quality improvements by

o Enabling developers to plug-in proven, pre-tested implementations and render
kits thanks to the standardized JSF API.

• JSF will increase productivity

o Through its ability to be leveraged by tools

o By offering a render independent component model so that developers work with
one single model independent of the applied render technology.

VERSIE 14/5/2003 11.00

Page 6/6

o By encapsulating the complexity involved with the development of rich, complex
user interface.

To conclude we mention that by the time you read this article JavaServer Faces will be available
as public draft 2. The final release of version 1.0 is targeted for Q3 of 2003.

For more information you can always contact us by email kris.meukens@eds.com or
bart.leeten@eds.com or find more information at http://java.sun.com/j2ee/javaserverfaces/ and
http://www.jcp.org/en/jsr/detail?id=127.

Bio:

Kris Meukens and Bart Leeten

• Working with Java technology since 1997, primarily in the automotive, financial and
public industries throughout Europe

• Consult and coach EDS customers on the usage of object, web, Java, XML and
integration technology for the development of large enterprise information systems

• Consult EDS customers on ‘electronic product’ (software & other) lifecycle management

• Kris represents EDS within the JSR 127 (JSF) and JSR 168 (Portlets).

• Bart represents EDS within the JSR 127 (JSF) and JSR 152 (JSP 2.0).

