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Abstract

We consider the problem of document binarization as a pre-processing step for optical character recognition (OCR) for the purpose
of keyword search of historical printed documents. A number of promising techniques from the literature for binarization, pre-filtering,
and post-binarization denoising were implemented along with newly developed methods for binarization: an error diffusion binarization,
a multiresolutional version of Otsu’s binarization, and denoising by despeckling. The OCR in the ABBYY FineReader 7.1 SDK is used
as a black box metric to compare methods. Results for 12 pages from six newspapers of differing quality show that performance varies
widely by image, but that the classic Otsu method and Otsu-based methods perform best on average.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Historical printed documents, such as old books and old
newspapers, are being digitized and made available through
software interfaces such as web-based libraries. Scanned
images of the original documents are usually displayed in
grayscale or color for the benefit of human readers, but op-
tical character recognition (OCR) is used to enable keyword
searches, document categorization, and other referencing
tasks. These documents are challenging for OCR because
they use non-standard fonts and suffer from printing noise,
artifacts due to aging, varying kerning (space between let-
ters), varying leading (space between lines), frequent line-
break hyphenation, and other image problems due to the
conversion from print-to-microfiche-to-digital. Commer-
cially, competitive OCR algorithms are designed to interpret
bi-level (black and white) images. We consider the prob-
lem of denoising and binarizing scanned historical printed
documents as a pre-processing step for OCR to enable
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keyword search. In this work, state-of-the-art commercial
OCR is treated as a black box. Comprehensive experiments
compare the effectiveness of a number of methods pro-
posed in the literature and some newly developed methods to
binarize images for keyword extraction for searching and
indexing historical documents. The contributions of this pa-
per are in the large-scale experimental comparisons on real
data, computationally simpler versions of proposed meth-
ods, analysis of different OCR approaches, and a multireso-
lutional version of the Otsu method which achieves slightly
improved performance.

First, in Section 2, we describe the methods used, some
of which have been modified slightly to be significantly
more computationally feasible. De-noising is discussed in
Section 3. Experiments are detailed in Section 4 with results
in Section 5. A discussion about the future of this problem
is given in Section 6.

2. Binarization methods

Here, we describe the methods compared; two new
approaches are detailed, and we explain some modified
implementations of previously proposed methods from the
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literature that enable processing large newspaper documents.
The binarization methods compared are either recently pro-
posed and promising experimentally, or standard methods
that are esteemed by practitioners. The compared methods
cover a number of different approaches to the problem, from
a fixed global threshold to Markov modeling. A recent re-
view of many other binarization methods for OCR can be
found in Ref. [1].

The input grayscale pixels are considered in raster scan
order and denoted xi ∈ [0, 1]. The corresponding output
binarization pixels are denoted bi ∈ {0, 1}, where 0 refers
to “black” and 1 refers to “white”.

2.1. Global fixed threshold

The simplest binarization technique is to use a global fixed
threshold such that bi = 1 if xi �0.5 and bi = 0 if xi < 0.5.

2.2. Otsu threshold

Otsu’s global threshold method [2] finds the global thresh-
old t that minimizes the intraclass variance of the resulting
black and white pixels. This is a standard binarization tech-
nique, and was implemented using the built-in Matlab func-
tion “graythresh” [3]. Then the binarization is formed by
setting bi = 1 if xi � t and bi = 0 if xi < t .

2.3. Multiresolution Otsu (MROtsu) (new approach)

This is a local version of the Otsu method which con-
siders blocks of pixels at several resolution levels when
determining the threshold. The goal is to adapt to changing
backgrounds and differing font sizes. The smallest block size
is adaptively chosen to be twice the dominant line height
h (see Appendix for an algorithm to calculate the domi-
nant line height automatically). This fundamental block size
2h×2h was designed so that it is large enough to contain in-
tact letters (when located in a text region), but small enough
to adapt to background changes. Several larger block sizes
are also used 4h × 4h, 8h × 8h, 16h × 16h, 32h × 32h,
64h×64h, and the entire image. For each block size, the im-
age is considered to be tiled with adjacent non-overlapping
blocks. This means that a 2h×2h block is not centered in its
containing 4h × 4h block, but this speeds up the algorithm
significantly over using centered multiresolutional blocks.

Starting at the fundamental (smallest) scale, each bina-
rized block is tested against a hypothesized white/black ra-
tio. Based on preliminary experiments with digitally created
documents, a 2:1 ratio was selected. If the local binarized
block is too dark, it is assumed to be too small and a larger
block size will be needed. This usually occurs inside head-
line text, pictures, or blank areas.

The binarization consists of the following steps (note that
Steps (2)–(5) can be implemented in parallel over the 2h×2h

blocks, and Step (7) is also a parallel operation).

Step (1): The image is completely divided up into non-
overlapping adjacent blocks of size 2h × 2h.

Step (2): For each block, an Otsu threshold is calculated
based on the pixels in that block.

Step (3): The pixels in each block are binarized.
Step (4): If the ratio of binarized white pixels to binarized

black pixels is less than two, then Steps (2)–(4) are repeated
for the next larger block which contains the given block.

Step (5): Each 2h × 2h block is assigned the last Otsu
threshold calculated for that block.

Step (6): Thresholds ti for each pixel are formed by bi-
linear interpolation of the thresholds in Step (5).

Step (7): Each pixel xi of the original image is compared to
the corresponding threshold ti to form the binarized pixel bi .

2.4. Chang’s method

Chang’s method was developed for OCR of Chinese
characters and makes an adaptive decision between thresh-
olds calculated at different spatial scales [4]. First, a global
threshold t is determined using Otsu’s method. When the
gray value is “far away” from the global threshold, it is
classified using the global threshold. The term “far away”
was not quantified in Chang’s paper. Our preliminary re-
sults showed that 0.25�, where � is the standard deviation
of the full image, works well. Thus, we first binarize pixels
far from the global threshold:

bi = 1 if xi � t + 0.25�,

bi = 0 if xi < t − 0.25�. (1)

When a pixel gray value is close to the global threshold t
a local decision is made instead, as per the following details.
First, one determines the scale of local features. This is im-
plemented by convolving the image with a set of “yardstick”
vectors Yn of length 2n, where n = {2, 4, 6, 8}. These vec-
tors consist of n/2 “1”s followed by n “−1”s followed by
n/2 “1”s. For example, Y4 = {1, 1, −1, −1, −1, −1, 1, 1}.

A set of auxiliary images is produced by convolving
the grayscale image with the horizontal (or vertical) yard-
stick vector at each scale “n”. The horizontal (or vertical)
“reading” of a yardstick at a pixel xi is then the correspond-
ing pixel in the appropriate auxiliary image.

For the ith pixel, the maximum is taken over the horizontal
and vertical directions to create Yni =max(vertical reading,

0)+max(horizontal reading, 0). The scale n of the yardstick
that yields the highest overall reading Yni is defined as the
scale for pixel xi . The square window size for xi is then
set to s + 1, where s is the chosen scale for that pixel. In
Chang’s paper, window size is equal to the average scale
for all pixels in each connected component (as calculated
by the global threshold). In our implementation the optimal
scale is described as above for each pixel in turn, which
significantly reduces the complexity.

For each pixel xi , one then considers an (s +1) × (s +1)

local window centered on the pixel. Let max(window) be
the maximum grayscale value of any pixel in the window,
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and let min(window) be the minimum grayscale value of
any pixel in the window. Define the local threshold as �i =
0.5 max(window)+0.5 min(window). Then the binarization
is bi = 1 if xi ��i or bi = 0 if xi < �i .

Chang reported that worst-case performance rose from
26% to 60% accuracy compared to simply using a global
Otsu threshold based on two commercial OCR systems and
Chinese character documents from 1969.

2.5. Sauvola–Niblack method

Sauvola recently presented promising results [1] using a
variation of Niblack’s binarization [5, p. 115–116]. Niblack’s
method performed best in an extensive review of OCR of
handwritten numbers by Trier and Jain [6]. Niblack proposed
that a threshold for each pixel be calculated based on the lo-
cal mean and local standard deviation. Sauvola’s variant of
Niblack’s method is implemented by dividing the grayscale
image into N ×N adjacent and non-overlapping blocks and
processing on each block separately. Sauvola explicitly con-
siders a document to be a collection of subcomponents of
text, background, and pictures. Only Sauvola’s text binariza-
tion method was applied to these historical documents due
to the overwhelming text content. Since binarization of pic-
tures is not tested here, it is assumed that this simplification
will not reduce performance. A block size of 64 × 64 was
used based on preliminary experiments.

For a pixel xi , let �i and �i be the mean and standard
deviation of the grayscale block to which xi belongs. Then
the Sauvola threshold for pixel xi is given as �i = �i (1 +
k((�i/R)−1)), where k=0.5 and R= 128

255 , as per Sauvola’s
paper. To reduce the computational load, we calculate �i

for the center pixel of each block, and then use bilinear
interpolation to determine the threshold �i for non-center
pixels. The grayscale image is compared to the threshold
image to produce the final binarized image such that bi = 1
if xi ��i or bi = 0 if xi < �i .

2.6. Margin error diffusion (MarginED) (new approach)

Error diffusion is a binarization process commonly used
for halftoning [7]. Halftoning is used in printing to transform
a grayscale image into a 1-bit image, where each bit tells
the printer whether to print a dot of ink at each location
on a page. Error diffusion leads to high-quality halftones. It
locally preserves the image mean, and noise added by error
diffusion binarization is mostly high-frequency noise. Error
diffusion automatically performs some edge sharpening as
it binarizes. In signal processing, error diffusion is termed
“sigma–delta modulation.”

It was hypothesized that error diffusion could be a good
approach to OCR binarization because when a pixel is
rounded the error (between the rounded pixel and the origi-
nal image pixel) is passed forward. Passing the error forward
allows subsequently binarized pixels to compensate for past

binarization errors. In this way, the binarization decisions oc-
cur jointly (in a causal manner) between neighboring pixels.

Error diffusion is usually implemented as a raster scan
process, so one considers an image to be a long vector where
the rows are concatenated and read into the vector from left
to right. Error diffusion performs the following operations
with respect to some threshold � (usually � = 0.5):

bi = 1 if xi + ei ��,

bi = 0 if xi + ei < �. (2)

The vector ei is an error vector. It is the sum of weighted
inherited errors received from previously quantized pixels:

ei =
H∑

h=1

(xi−h − bi)fh. (3)

The error filter f specifies how to weight and pass on
the error between a pixel and the binarized version. The
Floyd–Steinberg error filter is the most common. The
Floyd–Steinberg filter passes on error in the following
spatial pattern:

xi 7/16
3/16 5/16 1/16.

Note that the filter taps sum to one; this constraint is
standard for error diffusion filter design and ensures sta-
bility. It does not work to directly run error diffusion in
order to do OCR binarization because the image mean is
preserved, which translates into very noisy backgrounds if
the background does not have zero mean. Instead, similar
to Chang’s method, the proposed MarginED binarization
only error diffuses marginal or uncertain pixels; more cer-
tain pixels are quantized outright. The algorithm has four
steps as per below and uses an auxiliary image z whose ith
component is zi ∈ [0, 1].

Step (1): Initialize zi = xi for all i. Let � = std(xi)/2,
t = OtsuT hreshold(x).

Step (2): zi = 0 for all xi < (t − �).
Step (3): zi = 1 for all xi > (t + �).
Step (4): zi =(zi −(t −�))/2� for all (t −�)�xi �(t +�).
Step (5): Set bi to be the ith output of the error diffusion of

the image z, using threshold 0.5 and Floyd–Steinberg filter.

Step (2) clips those pixels which are significantly darker
than the Otsu threshold to black. Step (3) clips those pixels
which are significantly lighter than the Otsu threshold to
white. Step (4) re-normalizes the remaining values to the
range between zero and one. Since the extreme pixels have
been effectively binarized, the only unbinarized pixels in the
auxiliary image are those that were originally close to the
Otsu threshold, and these pixels can be considered somewhat
uncertain. Error diffusion is then performed on the marginal
pixels. The error diffusion could flip a pixel of auxiliary
image z that is already binarized, but it is unlikely.

Different error diffusion filters were experimented with
in preliminary trials without significantly better results
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Fig. 1. One state transition.

than the Floyd–Steinberg filter, including traditional error
diffusion filters [7], green noise filters [8], and filters spe-
cially designed to re-create vertical, horizontal, and diagonal
features or letters.

2.7. Markov model for OCR binarization

Text occurs in discrete units of letters. Considering the
structure of each letter to be independent of its surround-
ings leads to a model for binarization that decides whether
a pixel is black or white based only on the local spatial
neighborhood on the scale of a letter. Such a hypothesis
can be implemented as a Markov model of the probability
that each pixel is text, given its neighboring pixels. Wolf
and Doermann recently explored using a non-causal Markov
model for this problem [9] that required solving a global
optimization problem with multiple minima to learn an op-
timal model. Their experimental results on artificially de-
graded images were not, as they noted in their conclusion
section, a significant improvement over previous methods.
However, Markov models can be a powerful tool for mod-
eling. Thus, to explore the possibilities, we implemented a
similar Markov model, but made it causal in order to reduce
computational complexity.

Since there is no inherent notion of causality in an image,
the processing is imposed in a raster scan. The state space is
then defined to include only pixels in the “past” (above or to
the left of the current pixel). A causal Markov model implies
that, given the entire past of an image z, the distribution
of pixel x is given by Pr(x|z) = Pr(x|N), where N is a
pre-defined neighborhood around x. N is chosen here as the
group of 3 pixels to the upper left of x as in Fig. 1.

Our research showed that the Markov model could in fact
model text curves and serifs well, but since similar curves
and serifs and other text features can occur in a variety of
places in a font, this successful modeling exhibited extreme
behavior: in some places a letter was correctly reconstructed
based on very little (Fig. 2, sample 1); in other places, extra
serifs appeared where they should not have existed (Fig. 2,
sample 2).

These problems seem to be inherent in Markov modeling
of a font. Due to its poor performance in preliminary exper-
iments, our lack of confidence that the model could work
in a computationally feasible format for this problem, and
the necessity of labeled data (or expert information) needed

Fig. 2. Markov model binarized image samples.

to train the model for a new document, further experiments
were not run for Markov model approaches.

3. Post-processing and pre-filtering

In addition to these binarization methods, some post-
processing and pre-filtering methods were explored.

3.1. Post-binarization despeckling

The type of noise and artifacts seen in the historical doc-
uments is varied but tends to be characterized by splotches,
specks, and streaks. A post-binarization denoising step was
used to eliminate such non-text objects from the image.

The line height (see Appendix for algorithm) is used to
derive the minimum number of pixels that a black blob must
have to be considered text and not noise. A black blob is
defined as a group of eight-connected black pixels. Blobs
with smaller than the minimum area will be classified as
noise and removed, where the minimum area is calculated as

minimum area = 1
k
(line height)2.

Setting k = 172 will erase any blobs smaller than a punc-
tuation mark in an image of “Times New Roman” font text.
Similarly, setting k = 37 will erase blobs smaller than a full
letter, such as the dot of an “i”, but the main stem would
remain. Setting a value as extreme as k = 20 was found to
work well in preliminary tests. In poor quality images, the
benefits of removing more noise compensates for the loss
of some letters.

The results of using these parameter values are shown in
Table 2.

3.2. Wavelet denoising

Wavelet denoising by shrinking wavelet coefficients is
provably optimal for additive white Gaussian noise where
the noise variance is known [10]. It is clear that the noise
and artifacts present in scanned historical documents are
not white Gaussian, and thus do not statistically fit the
wavelet denoising theory. However, it was hypothesized that
the capability of wavelet representations to preserve edge
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information would improve the quality of the grayscale im-
age and possibly be a useful pre-processing step. Wavelet
denoising was applied to denoise the grayscale images prior
to binarization. Preliminary experiments showed that this
approach was in fact unpromising, and this method was not
explored further.

4. Experiments

We compared the binarization methods on a varied set of
real historical printed documents. The test set consisted of
12 images scanned from archival newspapers by indepen-
dent entities using different equipments; some scans were
from original prints and others from microfiche. The news-
papers used were the San Juan Record, Barrington Review,
Millard Progress, Progress Review, Salt Lake Times, and
East Side Journal. Two full newspaper pages were selected
from each publication. To create a ground truth (correct tran-
scription), these pages were transcribed by human typists
and then checked for errors by independent reviewers. Ex-
amples of the historical documents are shown in Fig. 3. The
number of words in each document is listed in Table 2; there
were 57,305 words total.

Most images were either the original 8-bit scans or 4-bit
quantized versions of 8-bit scans in TIFF format. These
images were labeled with the original scan resolution. The
remaining images, from the San Juan Record and Bar-
rington Review, were obtained as 8-bit JPEG images at a
reduced resolution. We suspect that they were originally
scanned at 300 or 400 dpi, then downsampled to decrease
file size. The San Juan Record images were estimated to
be 165 dpi, while the Barrington Review images were es-
timated to be 95 dpi. These values were inferred from the
known physical dimensions of that newspaper and the pixel
dimensions of the images. The original documents were
no longer available, and the challenge was to implement
OCR on these low resolution digital images. The archiving
process can easily result in such sub-optimal versions of
documents being the only option if the original documents
have been lost, discarded, or misfiled.

The OCR software used for the comparisons was the AB-
BYY Finereader 7.1 SDK Engine [11].

4.1. Metrics

The primary goal for document indexing is to build an
index of all keywords in a document, along with the loca-
tions of each keyword. This differs from the general appli-
cation of OCR, which has the goal of transcribing digital
text documents for direct replacement of the original paper
documents.

The accuracy metric used to rank the performance of the
different methods is recognition rate, similar to that defined
by O’Gorman [12,13]. O’Gorman defined recognition rate
to be the percentage of words in the document with all char-
acters correctly recognized.

Fig. 3. Left: sample crops from an original grayscale San Juan Record
document, a low image-quality newspaper from the test set. Some JPEG
compression artifacts are visible. Right: sample crops from an original
grayscale Progress Review document, a medium image-quality newspaper
from the test set. This image had been reduced to 4-bit grayscale.

We found that some short, frequently used words appear
more times in the OCR transcript than in the ground truth.
This happens when words are split across lines or diffi-
cult to recognize. For example, the word the may be over-
recognized if the OCR recognizes partially obscured words
like their or father as the word the. In order to minimize
counting these incorrect matches as correct, the recognition
rate is calculated:

∑J
j=1 min(groundtruth(j), OCR(j))

∑J
j=1 groundtruth(j)

, (4)

where j = 1, . . . , J indexes the unique words in the docu-
ment, groundtruth(j) is the number of times the jth unique
word is found in the ground truth, and OCR(j) is the number
of times the jth unique word is found in the OCR transcript.
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Fig. 4. Binarized image samples.

The above formula is not perfect; for example, a short
word could be unrecognized five times, and incorrectly rec-
ognized five times, and these errors would counteract in the
above recognition rate formula. However, we found this for-
mula to preserve the truth more accurately than using the
sum of correct words in the OCR transcript as the numerator
of the recognition rate. The remaining errors are few, and do
not appear to be biased in favor of any particular method. To
fully correct these errors a text-registration method would be
needed to determine when OCR is recognizing a word that
is not the correct word (such as “their” as “the”). A major
obstacle to such a calculation is that the OCR application
does not always recognize column breaks, and thus the OCR
transcript may proceed across columns. Since the focus of
this paper is on OCR for keyword searches and not on ac-
curate paragraph reconstruction, missing column breaks do
not affect the OCR’s ability to identify keywords.

4.2. Examples

Fig. 4 shows examples of the different binarization meth-
ods without despeckling and after despeckling with param-
eter setting k = 20.

The different binarization algorithms result in different
amounts of speckle noise. Much of this noise can be removed
by our despeckling technique, for example, the MarginED
technique produces a noisy image but the noise is effectively
removed by the despeckling. Another obvious problem is the
Sauvola–Niblack method, which has chosen fewer pixels to
blacken. This causes some letters in the original to be thin,
and cross-marks on letters like “t” and “e” are reduced or

missing. Despeckling is not well matched to this method, as
it identifies some disconnected letter parts as speckle noise
and removes them. The MROtsu also has some broken let-
ters, but the effects of despeckling are not as severe.

Items to compare include the cross-line on the capital “A”,
some algorithms miss this, some capture it. The “t”s should
have visible cross-marks as well. The “n”s should be open
on the bottom. Dots on “i”’s should be well separated. The
letter “e” should have a clear horizontal line and be open in
the bottom right. In many fonts there is a cross-line in the
lower-case “a” which is helpful to distinguish it from an “o”.

5. Results

The results show that the performance of a particular
method can widely vary but some useful trends can be dis-
tilled. Table 1 ranks the top five methods by median and

Table 1
Ranking of methods based on median and mean word recognition rate,
for all images

Median Mean

0.514 MROtsu k = 172 0.557 MROtsu
0.504 Otsu 0.531 Otsu
0.503 MarginED k = 172 0.528 MarginED
0.493 Chang 0.525 Chang
0.436 Sauvola–Niblack 0.466 Sauvola–Niblack
0.369 Global fixed k = 172 0.454 Global fixed

For brevity, only the best performing despeckle setting is shown for each
method.
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mean recognition rate performance based on all images. Av-
eraged over all images, little or no denoising performs best,
with Otsu-based methods leading, including the proposed
MROtsu method, the original global Otsu threshold, and
the Otsu-based MarginED method. Performing roughly 13%
worse than the Otsu method, the Sauvola–Niblack is ranked
fifth by both median and mean. The global fixed threshold
gives a baseline for the comparisons.

In several cases, OCR is extremely poor. One particu-
lar source image, “millard3”, had less than 5% recognition
rate for some methods, such as the global fixed threshold
and Sauvola–Niblack. The despeckling algorithm always de-
creased mean recognition rate, but sometimes improved me-
dian recognition rate.

Table 2 gives all the raw data on the recognition rate for
each combination of source image, binarization method, and
post-binarization denoising.

6. Discussion

The performance of each method is an indication of the
usefulness of the method’s underlying assumptions. For ex-
ample, the global fixed method assumes that the scanned
gray levels are very well normalized. The Sauvola–Niblack
method uses parameters k and R that may not be optimal for
the statistical properties of historical documents. The Chang
method assumes that the ideal threshold is exactly midway
between the lightest and darkest pixels in a block.

The methods based on the Otsu algorithm do best. The
main assumption behind Otsu approaches is that there are
two classes of pixels, which is always true globally, leaving
only problems with local illumination. The multiresolution
variant (MROtsu) adapts to illumination changes by making
local decisions, using the assumption of a 2:1 white/black
ratio to establish the smallest valid scale where two classes
are present. This assumption is valid for this data set, and
should hold for most printed text. The error diffusion method
was competitive, but its error passing did not improve upon
the global Otsu threshold upon which it was based.

The better performance of the Otsu method compared to
the Sauvola–Niblack method is surprising, given the con-
trary results in Refs. [1,6]. There are several possible con-
tributions to this:

• Purely local algorithms cause undesired results in back-
ground areas, affecting text-detection capabilities of the
OCR black box.

• The simplification of using blocks instead of a sliding
window may reduce the ability to adapt to sharp illumi-
nance changes (this also affects the MROtsu method and
the implementation of the Chang method).

• Many images have poor resolution, quantization, or are
noisy.

• In general, the Sauvola–Niblack images were too light,
causing more broken characters.

In summary, the underlying assumption behind the Otsu
method appears to best model the truth behind historical
printed documents, based on results over a broad range of
historical newspapers. The proposed multiresolutional ver-
sion has been shown to consistently improve performance.
More complex approaches to the binarization and image pre-
processing were not shown to be as useful as might theoret-
ically be expected.

More broadly, this research leads us to hypothesize that
the additional gains available in binarization with a black
box OCR are limited. Larger gains are likely with a sys-
tem that uses a feedback loop with the OCR determining
confidence, or a system with human input for training,
or using multiple local binarizations and a natural lan-
guage processing module after the OCR to make final
decisions.

Acknowledgments

This work was supported in part by DiMeMa Inc. and in
part by an Intel GEM Fellowship. The authors would like to
thank Greg Zick for helpful discussions.

Appendix. Dominant line height detection

The line height of a text image is the number of pixels
between the bottom of one line of text and the bottom of
the next line of text. We assume that the smallest text in
historical documents, such as newspapers, covers most of
the page. The periodic spacing of this majority text is used
to determine the dominant line height, which is calculated
from the vertical frequency spectrum of the image. For com-
putational efficiency, 512 evenly spaced columns of pixels
from the image are selected. The average vertical frequency
spectrum is computed by averaging the magnitude of the
discrete Fourier transform of each column.

The vertical frequency spectrum in Fig. 5 is characteristic
of documents considered in this paper, and should hold for
any image with a significant amount of text with uniform
line height. The largest magnitude peak is centered at 0
cycles per pixel, which is caused by large-scale features of
the document, such as transitions between photographs, text
blocks, and white space.

The second largest magnitude peak is also the peak with
the next lowest frequency. This fundamental vertical fre-
quency is the inverse of the line height in all document im-
ages examined. This is reasonable since the presence of text
at a regular spacing is the main periodic feature of a docu-
ment image.

Higher frequency peaks (harmonics) occur at integer mul-
tiples of the “line height frequency”, forming the fine detail
and sharp edges of individual letters.

For this study, the lowest frequency peak was assumed
to correspond to the greatest magnitude of the vertical
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Fig. 5. Top: Vertical frequency spectrum for document “sjr-2” after Otsu
threshold. For this document, the fundamental vertical frequency peak is
at 0.0508 cycles per pixel. Its inverse, 19.7 pixels per cycle, is the detected
dominant line height. Bottom: Small subsection of document “sjr-2” after
Otsu threshold, showing a line spacing of approximately 20 pixels.

frequency spectrum at 0.0166 cycles per pixel or greater
(60 pixel line height or less). This was found to effec-
tively mask the larger 0 cycles per pixel peak. For higher
resolution scans, a lower minimum frequency would be

appropriate. If scan resolution is unknown, a different peak
finding method would be needed.
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