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UNIX is a registered trademark of AT&T

COMPAQ is a registered trademark of Compaq Computer Corporation
SCO is a registered trademark of Santa Cruz Operation
CHORUS/MiX is a trademark of Chorus systèmes

All other brand or products names mentioned in this document are identified by the trademarks
or registered trademarks of their respective holders.

�������������������������������

 Chorus systèmes, 1991
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CHORUS:in ancient Greek drama, a company of performers pro-
viding explanation and elaboration of the main action.
(Webster’s New World Dictionary)

ABSTRACT

The CHORUS technology has been designed for building new generations of open, distributed,
scalable operating systems. CHORUS has the following main characteristics:

� a communication-based architecture, relying on a minimal Nucleus which integrates dis-
tributed processing and communication at the lowest level, and which implements gen-
eric services used by a set of subsystem servers to extend standard operating system
interfaces. A UNIX subsystem has been developed; other subsystems such as object-
oriented systems are planned;

� a real-time Nucleus providing real-time services which are accessible to system program-
mers;

� a modular architecture providing scalability, and allowing, in particular, dynamic
configuration of the system and its applications over a wide range of hardware and net-
work configurations, including parallel and multiprocessor systems.

CHORUS−V3 is the current version of the CHORUS Distributed Operating System, developed
by Chorus systèmes. Earlier versions were studied and implemented within the Chorus
research project at INRIA between 1979 and 1986.

This paper presents the CHORUS architecture and the facilities provided by the CHORUS−V3
Nucleus. It also describes the UNIX subsystem built with the CHORUS technology that pro-
vides:

� binary compatibility with UNIX;

� extended UNIX services, supporting distributed applications by providing network IPC,
distributed virtual memory, light-weight processes, and real-time facilities.

�������������������������������

This paper is a revised and updated version of an article published in ‘‘Computing Systems’’, The Journal of the
Usenix Association, Volume 1, Number 4.
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1. INTRODUCTION

The evolution of computer applications has led to the design of large, distributed systems for
which the requirement for efficiency and availability has increased, as has the need for higher-
level tools used in their construction, operation, and administration.

This evolution has introduced the following requirements for new system structures that are
difficult to fulfill merely by assembling networks of cooperating systems:

� Separate applications running on different machines, often from different suppliers, using
different operating systems, and written in a variety of programming languages, need to be
tightly coupled and logically integrated. The loose coupling provided by current computer
networking is insufficient. A requirement exists for a higher-level coupling of applications.

� Applications often evolve by growing in size. Typically, this growth leads to distribution of
programs to different machines, to treating several geographically distributed sets of files as
a unique logical file, and to upgrading hardware and software to take advantage of the latest
technologies. A requirement exists for a gradual on-line evolution.

� Applications grow in complexity and become more difficult to understand, specify, debug,
and tune. A requirement exists for a straightforward underlying architecture which allows
the modularity of the application to be mapped onto the operational system and which con-
ceals unnecessary details of distribution from the application.

These structural properties can best be accomplished through a basic set of unified and coherent
concepts which provide a rigorous framework that is well adapted to constructing distributed
systems.

The CHORUS architecture has been designed to meet these requirements. Its foundation is a gen-
eric Nucleus running on each machine. Communication and distribution are managed at the
lowest level by this Nucleus. The generic CHORUS Nucleus implements the real-time services
required by real-time applications. Traditional operating systems are built as subsystems on top
of the generic Nucleus and use its basic services. User application programs run in the context
of these operating systems.

CHORUS provides a UNIX subsystem as one example of a host operating system running on top
of the CHORUS Nucleus. UNIX programs can run unmodified under this subsystem, optionally
taking advantage of the distributed nature of the CHORUS environment.

This paper focuses on the CHORUS architecture, the facilities provided by its Nucleus, and the
distributed UNIX subsystem implementation. Extensions to UNIX services concerning real-
time, multi-threaded processes, distributed applications and servers are outlined.

The CHORUS history and its transition from research to industry is summarized in section 2.
Section 3 introduces the key concepts of the CHORUS architecture and the facilities provided by
the CHORUS Nucleus. Section 4 explains how a traditional UNIX kernel has been merged with
state-of-the-art operating system technology while still preserving its original semantics. It also
gives examples of how its services can then be easily extended to handle distribution. Section 5
gives some concluding remarks.

Comments about some of the important design choices, often related to previous experience, are
given in small paragraphs entitled ‘‘Rationale.’’ For the remainder of this document, terms
found in bold are concisely defined in the glossary, terms found in typewriter refer to pre-
cise names of machines or system entities, and terms found in italics are used for emphasis.
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2. BACKGROUND AND RELATED WORK

CHORUS was a research project on distributed systems at INRIA1 in France from 1979 to 1986.
Three versions were developed, referred to as CHORUS-V0, CHORUS-V1, and CHORUS-V2,
based on a communication-oriented kernel[Zimm81, Guil82a, Zimm84, Rozi87]. The basic concept for
handling distributed computing within CHORUS, for both system and application services, is that
a Nucleus manages the exchange of messages between ports attached to actors.

While early versions of CHORUS had a custom interface, CHORUS−V2[Arma86] was compatible
with UNIX System V, and had been used as a basis for supporting half a dozen experimental
distributed applications. CHORUS-V3 is the current version developed by Chorus systèmes. It
builds on previous CHORUS experience[Rozi87] and integrates many concepts from state-of-the-
art distributed systems developed in several research projects, while taking into account con-
straints of the industrial environment.

The CHORUS-V3 message-passing Nucleus is comparable to the V-system[Cher88] of Stanford
University, its distributed virtual memory and threads are similar to those of Mach[Acce86] of
Carnegie Mellon University, its network addressing incorporates ideas from Amoeba[Mull87] of
the University of Amsterdam, and its uniform file naming is based on a scheme similar to the
one used in Bell Laboratories’ 9th Edition UNIX[Pres86, Wein86].

This technology has been used to implement a distributed UNIX system[Herr88], as a set of
servers using the generic services provided by the CHORUS Nucleus.

2.1 Early Research

The Chorus project at INRIA was initiated with the combined experience from previous
research done on packet switching computer networks, the Cyclades project[Pouz82], and time
sharing operating systems, the Esope project[Bét70]. The goal was to incorporate distributed
control techniques, originating from packet switching networks, into distributed operating sys-
tems.

In 1979 INRIA launched the Sol project whose goal was to re-implement a complete UNIX
environment on French micro and mini computers[Gien83]. The Sol team joined Chorus in 1984,
bringing their UNIX expertise to the project.

2.2 CHORUS−V0 (1980−1982)

CHORUS−V0 experimented with three main concepts:
� The operation of an actor, which was an alternating sequence of indivisible execution phases

and communication phases. It provided a message-driven automaton style of processing.

� A distributed application, which was an ensemble of independent actors communicating
exclusively by exchange of messages through ports or groups of ports. Port management
and naming was designed to allow port migration and dynamic reconfiguration of applica-
tions.

� The operating system was built as a small Nucleus, simple and reliable, replicated on each
site, and complemented by distributed system actors in charge of ports, actors, files, termi-
nal, and network management.

These original concepts proved to be sound and have been maintained in subsequent versions.

�������������������������������

1. INRIA: Institut National de Recherche en Informatique et Automatique
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These CHORUS concepts have been applied in particular to fault tolerance: the ‘‘coupled actors’’
scheme[Bani82] provided a basis for non-stop services.

CHORUS−V0 was implemented on Intel 8086 machines interconnected by a 50 Kb/s-ring net-
work (Danube). The prototype was written in UCSD-Pascal and the code was interpreted. It was
running by mid-1982.

2.3 CHORUS−V1 (1982−1984)

This version moved CHORUS from a prototype to a real system. The sites were SM90 multi-
processor micro-computers − based on Motorola 68000 and later 68020 − interconnected by a
10Mb/s Ethernet. In a multi-processor configuration, one processor ran UNIX as a development
system and disk manager, and up to seven other processors ran CHORUS with one CHORUS sys-
tem controlling the network. The Pascal code was compiled.

The main focus of this version was experimentation with a native implementation of CHORUS

on multi-processor architecture.

The design had a few changes from CHORUS−V0, namely:

� Structured messages were introduced to allow embedding protocols and migrating their con-
texts.

� The concept of an activity message, which embodies data, a context for embedded computa-
tions, and a graph of future computations, was experimented with for a fault tolerant
application.[Bani85]

CHORUS−V1 was running in mid-1984. It was distributed to a dozen places, some of which still
use the system.

2.4 CHORUS−V2 (1984−1986)

Adopting UNIX forced the CHORUS interface to be recast and the system actors to be changed.
The Nucleus, on the other hand, changed very little. The UNIX subsystem was developed partly
from results of the Sol project (the File Manager), and partly from scratch (the Process
Manager). Concepts such as ports, messages, processing steps, and remote procedure calls were
revisited. Changes were made to more closely match UNIX semantics and to allow a protection
scheme à la UNIX. The UNIX interface was extended to support distributed applications by
means of new functionalities such as distant fork, distributed signals, and distributed files.

CHORUS−V2 provided an opportunity to reconsider the whole UNIX kernel architecture with
respect to the following two concepts:

� Modularity: all UNIX services were split into several independent actors. This division
required the design of specific interfaces between UNIX services that had previously relied
upon informally sharing global kernel data structures in order to communicate.

� Distribution: objects such as files and processes, managed by system actors, could be distri-
buted within CHORUS, as could be services such as fork or exec. This required the
development of new protocols for distributed services, such as naming and object location.

This work provided invaluable experience when it came to development of CHORUS−V3;
CHORUS−V2 may be considered as a draft of the current version.

CHORUS−V2 was running at the end of 1986. It has been documented and used by research
groups outside of the Chorus project.

2.5 CHORUS−V3 (1987−present)

The objective of this current version is to provide an industrial product integrating all positive
aspects of the previous versions of CHORUS as well as those of other systems. CHORUS also
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provides several new significant features. CHORUS−V3 is described in the rest of this paper.

2.6 Appraisal of Four CHORUS Versions

The first lesson that can be extracted from the CHORUS work is that successively redesigning
and implementing the same basic concepts provides an exceptional opportunity for refining,
maturing and validating initial intuitions.

Technically, the successive redesigns had the following effects:

� The basic modular structure of kernel and system actors never really changed and some
basic concepts persisted in all versions: ports, port groups, and messages.

� The style of communication (IPC) evolved with each version. The protocols, which were
purely asynchronous in the beginning, were augmented with synchronous operations and
eventually with synchronous RPC.

� Experiments were performed with naming and protection of ports, including variations of
local names, global names and protection identifiers.

� Actors evolved from a purely sequential automaton with processing steps to a real-time
multi-threaded virtual machine.

� Protection and fault tolerance are difficult problems and have remained open questions.
� Early versions of CHORUS handled fixed memory spaces, with the possibility of using

memory management units for relocation. This evolved into dynamic virtual memory sys-
tems with demand paging, mapped into distributed and sharable segments.

� Finally, CHORUS was reimplemented in C++. Although the original implementation
language, Pascal, did not cause any major problems, C++ was chosen because of the wide
acceptance C has gained within the computing industry. C++ also provides modern
object−oriented facilities, such as classes and inheritance, which have been quite useful for
system development.

A summary of the publications describing the CHORUS system through its evolution is given in
§ 8.
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3. CHORUS CONCEPTS AND FACILITIES

3.1 The CHORUS Architecture

3.1.1 Overall Organization

A CHORUS System is composed of a small Nucleus and a set of system servers, which
cooperate in the context of subsystems (Figure 1).

P1 P2 R2Q2Q1

Subsystem 1 Subsystem 2

CHORUS Nucleus

Subsystem 2 InterfaceSubsystem 1 Interface

CHORUS Nucleus Interface

Lib.Lib.Lib.LibraryLib.

Application Programs

Generic Nucleus

Libraries

&

System Servers

... . .. . .. . . . . . . .. . . . . . . .. . .. . . . . . . .. . . . . . .. . .. . . . . . . .. . .. . . . . . . .. . . . . . . .. . .. . . . . . . .. . . . . . .. . .. . . . . . . ..

. . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . .

Figure 1. − The CHORUS Architecture

This overall organization provides the basis for an open operating system. It can be mapped
onto a centralized as well as a distributed configuration. At this level, distribution is hidden.

The choice was made to build a two-level logical structure, with a generic Nucleus at the lowest
level and almost autonomous subsystems providing applications with traditional operating sys-
tem services.

Therefore, the CHORUS Nucleus is not the core of a specific operating system, rather it provides
generic tools designed to support a variety of host subsystems, which can co-exist on top of the
Nucleus.

This structure supports application programs, which already run on an existing operating sys-
tem, by reproducing the operating system’s interfaces within a subsystem. An example of this
approach is given using a UNIX emulation environment called CHORUS/MiX.

The classic idea of separating the functions of an operating system into groups of services pro-
vided by autonomous servers is central to the CHORUS philosophy. In monolithic systems,
these functions are usually part of the ‘‘kernel’’. This separation of functions increases modu-
larity, and therefore the portability of the overall system.
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3.1.1.1 The CHORUS Nucleus

The CHORUS Nucleus manages, at the lowest level, the local physical resources of a site. At the
highest level, it provides a location transparent inter-process communication (IPC) mechan-
ism. The Nucleus is composed of four major components providing local and global services
(Figure 2):

� the CHORUS supervisor dispatches interrupts, traps, and exceptions delivered by the
hardware;

� the CHORUS real-time executive controls the allocation of processors and provides fine-
grained synchronization and priority-based preemptive scheduling;

� the CHORUS virtual memory manager is responsible for manipulating the virtual memory
hardware and local memory resources;

� the CHORUS inter-process communication manager provides asynchronous message
exchange and remote procedure call (RPC) facilities in a location independent fashion.

(Portable)

Real-time Executive

(Portable)

IPC Manager

(Machine dependent)
Supervisor

(Portable)

VM Manager

dependent)
(Machine-

Hardware
........ . . . .. . . . . . . .. . . . .. . .. . . . .. . .. . . . .. . .. . . . .. . .. . . . .. . . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . .. . .. . . . ..

.......

Figure 2. − The CHORUS Nucleus

There are no interdependencies among the four components of the CHORUS Nucleus. As a
result, the distribution of services provided by the Nucleus is almost hidden. Local services deal
with local resources and can be mostly managed using only local information. Global services
involve cooperation between Nuclei to provide distribution.

In CHORUS−V3 it was decided, based on experience with CHORUS-V2 efficiency, to include in
the Nucleus some functions that could have been provided by system servers: actor and port
management, name management, and RPC management.

The standard CHORUS IPC mechanism is the primary means used to communicate with
managers in a CHORUS system. For example, the virtual memory manager uses CHORUS IPC to
request remote data to service a page fault.

The Nucleus was also designed to be highly portable, which, in some instances, may preclude
the use of some underlying hardware features. Experience gained from porting the Nucleus to
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half a dozen different Memory Management Units (MMU’s) on three chip sets has validated
this choice.

3.1.1.2 The Subsystems

System servers work cooperatively to provide a coherent operating system interface, referred to
as a subsystem.

3.1.1.3 System Interfaces

A CHORUS system provides different levels of interface (Figure 1).
� The Nucleus interface provides direct access to the low-level services of the CHORUS

Nucleus.

� A subsystem interface is implemented by a set of cooperating, trusted servers, and typically
represents complex operating system abstractions. Several different subsystems may be
resident on a CHORUS system simultaneously, providing a variety of operating system or
high-level interfaces to different application procedures.

� User libraries, such as the ‘‘C’’ library, further enhance the CHORUS interface by providing
commonly used programming facilities.

3.1.2 Basic Abstractions Implemented by the CHORUS Nucleus

The basic abstractions implemented and managed by the CHORUS Nucleus are given in the fol-
lowing table.

� �����������������������������������������������������������������������������������������������������������������������������

Unique Identifier (UI) global name

Actor unit of resource allocation

Thread unit of sequential execution

Message unit of communication

Port, Port Groups unit of addressing and (re)configuration basis

Region unit of structuring of an Actor address space
� �����������������������������������������������������������������������������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

These abstractions (Figure 3) correspond to object classes that are private to the CHORUS

Nucleus. Both the object representation and the operations on the objects are managed by the
Nucleus. Three other abstractions, shown in the table below, are cooperatively managed both
by the CHORUS Nucleus and subsystem servers.

� �������������������������������������������������������������������������������������������

Segment unit of data encapsulation

Capability unit of data access control

Protection Identifier unit of authentication
� �������������������������������������������������������������������������������������������
��
�
�
�
�
�

��
�
�
�
�
�

Rationale: Each of the abstractions from the two previous tables plays the role specified
below in the CHORUS system.

An actor encapsulates a set of resources:
� a virtual memory context divided into regions, coupled with local or distant segments;
� a communication context, composed of a set of ports;
� an execution context, composed of a set of threads.

A thread is the grain of execution. A thread is tied to exactly one actor and shares its
actor’s resources with all other threads of that actor.
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Site

Communication Medium

Ports

Site

Actors

Threads Threads
Ports

.. .. . . . .. .. . .. . . .. .. . . .. . .. .. . . .. . . .. .. . . .. . .. .. . .

Message

..... .... ..... .... ..... .... ..... .... .... .

. .. . .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. ..

.........

Actors

Figure 3. − CHORUS Main Abstractions

A message is a byte string which has been addressed to a port.

Upon creation, a port is attached to exactly one actor and allows the threads of that actor to
receive messages sent to that port. Ports can migrate from one actor to another. Any
thread having knowledge of a port can send messages to it.

Ports can be grouped dynamically into port groups providing multicast or functional
addressing facilities.

Actors, ports, and port groups all have unique identifiers which are global, location
independent, and unique in space and in time.

Segments are collections of data, managed by system servers which uniquely define their
contents. The location of the data provided for a segment is unrelated to the location of the
user of the segment.

Two mechanisms are provided for building access control mechanisms and authentication:
� Resources can be identified within their servers by a server-dependent key. This key,

when used in combination with the port UI of the server, forms a capability that can be
used to securely reference a resource.

� Actors and ports receive protection identifiers with which the Nuclei stamp all the
messages sent. Actors receiving messages can use these identifiers for authentication.

3.2 Naming Entities

3.2.1 Unique Identifiers

All CHORUS objects such as actors, ports, and segments (described in later sections) are refer-
enced in a global fashion using unique identifiers (UIs).

Rationale: Given that CHORUS is a distributed system, it is important to have a consistent
way to name objects within a collection of sites which represents a CHORUS domain. The
standard structure used for a unique identifier allows distinct administrative entities to be
easily interconnected.
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The CHORUS Nucleus implements a Unique Identifier Location Service (UILS) allowing sys-
tem entities to use unique identifiers to reference CHORUS objects without knowledge of their
current location.

The CHORUS Nucleus guarantees that a UI will exist on at most one site and will never be
reused. A UI is a 128 bit structure whose uniqueness is assured by classic construction
methods. The location service uses several hints for finding the object represented by its UI.
One such hint is the creation site which is embedded within the UI. A UI may be freely
transmitted within the CHORUS domain using any desired mechanisms, such as shared memory,
messages, or carrier pigeons.

Rationale: The Nucleus does not control the propagation of unique identifiers; it is the
responsibility of the individual subsystems. The construction methods used offer a cheap
and basic level of protection that is suitable for many circumstances.

3.2.2 Local Identifiers

Local identifiers (LIs) are used within the context of a server to identify resources associated
with that server. These identifiers are represented by integers and are generated by the local
server. They may be transmitted between entities within the CHORUS domain, but only have
meaning when referencing resources of the server that created them. In particular, these
identifiers may represent an index into a server table or a pointer to a server data structure.

3.2.3 Capabilities

Some objects are not directly implemented by the CHORUS Nucleus, rather by external services.
These objects are named via global names known as capabilities. A capability is composed of
a unique identifier and a key. The UI names the server that manages the object. The key is a
server-specific handle which identifies the object and the access rights associated with a request
(Figure 4). The structure and semantics of a key are defined by its server.

�����������������������������������������������������������������������������

UI of the server (128 bits)

�����������������������������������������������������������������������������

Key to the resource within the server (64 bits)
�����������������������������������������������������������������������������
��
�
�
�
�
�

��
�
�
�
�
�

Figure 4. − Structure of a Capability

3.3 Active Entities

3.3.1 Sites

The physical support of a CHORUS system is composed of an ensemble of sites, interconnected
by a communication medium.2 A site is a grouping of tightly-coupled physical resources con-
trolled by a single CHORUS Nucleus. These physical resources include one or more processors,
central memory, and attached I/O devices.

�������������������������������
2. Examples of suitable communication media include: Ethernet, token rings, hypercubes, and high-speed busses.

 Chorus systèmes, 1991 − 10 − February 1, 1991
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3.3.2 Actors

An actor is a collection of resources in a CHORUS system. An actor defines a protected address
space supporting the execution of threads that share the resources of the actor. An address
space is split into a user address space and a system address space. On a given site, each
actor’s system address space is identical and its access is restricted to privileged levels of execu-
tion (Figure 5).

CHORUS defines three types of actors: user actors, system actors, and supervisor actors.
These definitions encapsulate the concepts of trust and execution privilege. An actor is trusted
if the Nucleus recognizes its right to perform sensitive Nucleus operations. Execution privilege
refers to the ability of an actor to execute privileged instructions and is typically controlled by a
hardware status register. User actors are not trusted and unprivileged. System actors are trusted
but unprivileged. Supervisor actors are both trusted and privileged. Currently, privileged actors
execute within the shared, protected system address space and other actors execute within
private user address spaces; this configuration is an implementation detail.

address space
System

address spaces
User

Actor 1

p+1

n

Actor 2
Actor i

p

0

Figure 5. − Actor Address Spaces

A given site may support many actors simultaneously. Since each has its own user address
space, actors define protected entities to the user.

Any given actor is tied to one site and its threads are always executed on that site. The physical
memory used by the code and data of a thread is always that of the actor’s site. Neither actors
nor threads can migrate from one site to another.

Rationale: Because each actor is tied to one site, the context of the actor is precisely
defined; there is no uncertainty due to distribution because it depends only on the status of
its supporting site. The state of an actor can thus be determined easily and context-
dependent decisions made quickly. A site failure leads to the complete crash of its actors;
no actors partially crash.
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Actors are designated by capabilities built from the UI of the actor’s default port and a manipu-
lation key. The knowledge of an actor’s capability gives full rights to that actor. By default,
only the creator of an actor knows its capability, however the creator can transmit the capability
to others.

The resources held by an actor are designated by local identifiers. The scope of these identifiers
is limited to the specific actor holding the resource.

3.3.3 Threads

A thread is the unit of execution in the CHORUS system. A thread is a sequential flow of con-
trol and is characterized by a thread context corresponding to the state of the processor at any
given point during the execution of the thread.

A thread is always tied to exactly one actor. This actor defines the thread’s execution environ-
ment. Within the actor, many threads can be created and can run concurrently. When a site
supports multiple processors, the threads of an actor can be made to run in parallel on different
processors.

Threads are scheduled as independent entities. The basic scheduling algorithm is a preemptive
priority-based scheme, but the Nucleus also implements time slicing and priority degradation on
a per-thread basis. This combination of strategies allows real-time applications and multi-user
interactive environments to be supported by the same Nucleus according to their respective
needs and constraints.

Threads communicate and synchronize by exchanging messages using the CHORUS IPC
mechanism (see § 3.4). However, as all threads of an actor share the same address space, com-
munication and synchronization mechanisms based on shared memory can also be used. When
the machine instruction set allows it, shared memory synchronization primitives can be con-
structed to avoid invoking the Nucleus.

Rationale: Why threads?
� Threads execute within an actor corresponding to one virtual address space and tied to

one site. Thus, threads provide a mechanism for implementing multiple processes on
machines, such as a Transputer, that do not support virtual memory.

� Threads provide a powerful tool for programming I/O drivers. Using threads to imple-
ment parallel constructs, such as interrupts and parallel I/O streams, simplifies driver
programming.

� Threads allow servers to be multi-programmed, facilitating a concurrent implementa-
tion of the ‘‘client-server’’ model of programming.

� Threads allow the use of multiple processors within a single actor on a multi-processor
site.

� Threads provide an inexpensive mechanism for achieving concurrency within multi-
programs; the cost of a thread context switch is far less than the cost of an actor con-
text switch.

3.4 Communication Entities

3.4.1 Overview

While threads of a single actor are able to communicate using shared-memory primitives, the
basic communication mechanism applicable to the threads of any actor is the exchange of mes-
sages via message queues called ports.

Ports provide a communication entity through which threads, potentially within different actors
on different sites, can synchronize and exchange information. They are named by unique
identifiers thus making them location independent. Messages are records of information which
are transferred between threads sending to and receiving on ports.
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3.4.2 Messages

A message is a contiguous byte string which is logically copied from the sender’s address space
to the receiver’s address space. Using a coupling between virtual memory management and
IPC, large messages may be transferred efficiently using copy-on-write techniques, or if possi-
ble, by simply moving page descriptors.

Rationale: Why messages rather than shared memory?
� Messages make the exchange of information explicit.
� Messages provide well-defined points for isolating the state of an actor.
� In a heterogeneous environment messages are easier to manage than shared memory.
� Using messages, the grain of information exchange is bigger, is better defined, and its

cost can be more accurately calculated.
� The performance of shared memory can be approximated through hints and local

optimizations when sending messages locally (see § 5).
� Using current technology, message passing systems increase in scale more easily, and

the message passing paradigm can be applied more efficiently in loosely-coupled
environments.

3.4.3 Ports

Messages are not addressed directly to threads or actors, rather to intermediate entities called
ports. The port abstraction provides the necessary decoupling of the interface of a service and
its implementation. This decoupling provides the basis for dynamic reconfiguration (see
§ 3.6.1.)

A port represents both an address to which messages can be sent and an ordered collection of
unconsumed messages. When created, a port is attached to a specified actor. Only the threads of
this actor may receive messages on that port. A port can be attached to only one actor at a time,
but multiple threads within that actor can receive messages on the port.

A port can migrate from one actor to another; this migration may also be applied to the uncon-
sumed messages of the port.

Rationale: Why Ports?
� one actor may have several ports and therefore multiple incoming communication

paths.
� multiple threads may share a single port, providing concurrent consumption of data on

incoming communication paths.
� the port abstraction provides the basis for dynamic reconfiguration. The extra level of

indirection provided between any two communicating threads allows a given service to
be migrated transparently from one actor to another. (An example is provided in
§ 3.6.1).

When a port is created, the Nucleus returns both a local identifier and a unique identifier to
name the port. The LI can be used only within the context of the actor to which the port is
currently attached. Messages carry the UI of the port or port group to which they are sent.

Rationale: In the successive versions of CHORUS, the naming scheme of ports evolved:
� In CHORUS−V1, small UIs were adopted as the sole naming space. This proved to be

simple and easy to use, but the lack of protection was an issue for a multi-user environ-
ment.

� In CHORUS−V2, UIs were used only by the Nucleus and system actors; UNIX processes
used local identifiers, modeled on file descriptors, thus insuring protection. Port inheri-
tance on fork and exec was implemented. This scheme was found to have two
main drawbacks: port inheritance was hard to understand and, more importantly, port
name transmission required extra mechanisms.

� The scheme adopted in CHORUS−V3 combines the advantages of both previous ver-
sions. In CHORUS−V3:
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� Ports are named by global names at user level; therefore name transmission in mes-
sages is simplified.

� Within an actor, ports attached to it are named in system calls by local identifiers.
This naming simplifies the user interface and provides a simple and efficient protec-
tion mechanism.

3.4.4 Port Groups

Ports can be assembled into port groups (see Figure 6). The port group abstraction extends
message-passing semantics between threads by allowing messages to be directed to an entire
group of threads and by allowing providers of a service to be selected from among members of
a port group.

Site Site Site Site

Port

Group

Figure 6. − Port Groups

Port groups are similar to ports in that they are globally named by UIs. When a port group is
created it is initially empty; ports can be subsequently added and deleted. Furthermore, port
group UIs can be statically allocated and maintained over an extended period. Statically allo-
cated port groups are used by subsystems to provide well-known service names. A port can be a
member of several groups.

Rationale: This capability can be used to dynamically bind system servers with their global
names. At system compilation time, a subsystem statically defines the names of port
groups on which clients will request services. At boot time, subsystems create ports on
which they will accept and answer service requests. The subsystems insert these ports into
the statically defined port groups. Thus, clients are allowed to be written using these fixed
port group names. This extra level of abstraction separates CHORUS service names from the
implementors and consumers of that service.

Operations performed on groups, such as the insertion and deletion of ports, must be controlled
by the Nucleus to ensure security. The Nucleus provides the creator of a group with its group
manipulation key. This key must be specified to modify the contents of the group and may be
freely transmitted between consenting actors.

The group UI and the group manipulation key are related as follows:3

�������������������������������

3. The group UI and the group manipulation key combine to form a capability.
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groupUI = f(key)

where f is a non-invertible function known by the Nucleus.

3.4.5 Communication Semantics

The CHORUS inter-process communication (IPC) mechanism permits threads to communicate
by sending asynchronous messages or by placing remote procedure calls (RPC). When sending
an asynchronous message, the emitter is blocked only during the local processing of the mes-
sage. The system does not guarantee that the message will be received by the destination port.
When the destination port is not valid, the sender is not notified and the message is discarded.

By contrast, the RPC protocol permits the construction of services using the ‘‘client-server’’
model. RPC guarantees that the response received by a client is that of the server and
corresponds to the client’s request. RPC also permits a client to know if its request has been
received by the server, if the server has crashed before emitting a response, or if the communi-
cation path has broken.

Rationale: Asynchronous IPC and synchronous RPC are the only communication services
provided by the CHORUS Nucleus. The asynchronous IPC service is basic enough to allow
building more sophisticated protocols within subsystems. It reduces network traffic in the
successful cases, yielding higher performance and better scaling to large or busy networks.
RPC is a simple concept, easy to understand, present in language constructs, and easy to
handle in case of errors or crashes. The Nucleus does not provide ‘‘flow control’’ protocols
since application requirements vary greatly.

When messages are sent to port groups, several addressing modes are provided:
� broadcast to all ports in the group4,
� send to any one port in the group;
� send to one port in the group, located on a given site;
� send to one port in the group, located on the same site as a given UI.

3.5 Virtual Memory Management

3.5.1 Segments

The unit of information exchanged between the virtual memory system and data providers is the
segment. Segments are global and are identified by capabilities. They are generally imple-
mented as secondary storage constructs, such as files or swapping areas. Segments are managed
by system actors called mappers. The representation of a segment, its capabilities, access poli-
cies, protection and consistency are defined and maintained by these servers.

A segment may be accessed by mapping a portion of it into a region (see § 3.5.2) or by expli-
citly calling the CHORUS sgRead or sgWrite system calls. Mappers provide a single
basic read/write interface, based on CHORUS IPC, which is used regardless of whether the
request originates from the Nucleus as a result of a page fault in a mapped region or is the result
of an explicit CHORUS system call.

Rationale: On-demand page loading techniques were chosen in order to make it possible to
access very large segments. Another approach, based on whole-segment loading can be
found in[Tane86]. This technique, however, assumes that segments are relatively small and
requires large amounts of physical memory.

�������������������������������

4. Broadcast mode is not currently applicable to RPC requests
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3.5.2 Regions

The actor address space is divided into regions. A region of an actor contains a portion of a
segment mapped to a given virtual address with a set of access rights (Figure 7). Every refer-
ence to an address within a region behaves as a reference to the mapped segment, controlled by
the associated access rights. A thread can create, destroy, and change the access rights of all
regions of actors for which it holds capabilities.

Regions within the site-wide system address space can be manipulated only by trusted threads.
Threads that read, write, and execute regions within the system address space avoid the over-
head of an address space context switch. The CHORUS system uses this functionality to remap
IPC requests between subsystem actors executing on the same site. Remapping IPC requests in
this way also avoids the overhead of copying the message. An address space context switch is
also avoided when invoking interrupt handlers that execute within the system address space.

Segments

Region

Segment Server (Mapper)Actor Address Space

Figure 7. − Regions and Segments

3.5.3 Segment Representation Within the Nucleus

The Nucleus manages a per-segment local cache of physical pages. This cache contains pages
obtained from mappers which will be used to fulfill future requests for the same segment data,
whether they originate from explicit sgRead calls or as a result of page faults. Write updates
are made to the local cache and are passed back to the mapper when physical pages are needed
by the Nucleus or if the cache is explicitly invalidated (see Figure 8). The use of the local cache
for both functions optimizes the use of physical memory within a site and reduces network
traffic.

For a given site, the consistency of a segment shared among regions in different actors is
guaranteed because they share the same cache in physical memory. When a segment is shared
among actors executing on different sites, there is one local cache per site and mappers are
required to maintain the consistency of these caches (Figure 9). Algorithms for dealing with the
problems of coherency of shared memory are proposed in[Li86] .

A standard Nucleus-to-mapper protocol, which is based on CHORUS IPC, has been defined for
managing local caches. The protocol provides mechanisms for demand paging, flushing pages
for swapping out and maintaining cache consistency, and annihilating a local cache.
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Figure 8. − Local Cache

3.5.4 Deferred Copy Techniques

Deferred copy techniques are a mechanism whereby the Nucleus uses memory management
facilities to avoid performing unnecessary copy operations. The CHORUS Nucleus implements
the duplication of data using a copy-on-write history technique similar to the shadow-object
technique of Mach[Rash87] for large objects. It uses a per-virtual page copy duplication of data
similar to [Ging87, Mora88] for small objects.

These techniques vastly improve performance when copying large amounts of data from one
actor to another − as is done during a UNIX fork operation − and when moving small
amounts of data between segments for IPC and I/O operations.

3.6 Communication Support

A variety of communication support facilities is provided by the CHORUS system.
� The CHORUS Nucleus provides a framework within which reliable services may be imple-

mented. The Nucleus allows these services to be dynamically reconfigured to alter server
behavior or to recover from server failure.

� The CHORUS Nucleus provides facilities, as an integral part of the CHORUS IPC, for con-
structing authentication protocols.

� The CHORUS Nucleus handles message passing between actors executing on the same site.
The Nucleus cooperates with the Network Manager to provide a location transparent facil-
ity for exchanging messages with actors executing on different sites.

3.6.1 Reconfiguring a Service

Ports and port groups provide a level of indirection for information sent between communicat-
ing threads. By taking advantage of this indirection, the implementation of a service provided
by a server may be reconfigured without disturbing the clients of that service.
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Figure 9. − Distributed Local Caches

3.6.1.1 Reconfiguration Using Port Migration

Figure 10 illustrates the migration of a port from Server 1 to Server 2 without interrup-
tion of the provided service. Migration allows, for example, a new version of a service to be
installed and activated. When a port is migrated, any unconsumed messages associtated with
that port can be made to migrate with it. Thus, clients of a service can continue to operate undis-
turbed during migration; communication is not interrupted. Port migration requires, however,
that the servers involved participate actively. In particular if a server crashes, its port will not
be migrated.

3.6.1.2 Reconfiguration Using Port Groups

The port group abstraction, on the other hand, offers a framework for passively reconfiguring a
service. Messages that are directed towards port groups will be automatically rerouted to a port
that is capable of providing the desired service if a member port becomes invalid. This form of
reconfiguration may require minimal participation of clients or providers of a service to allow
them to recover from temporary disruptions in communication.

Figure 11 illustrates the automatic reconfiguration of a service using port groups. The
client directs requests to port group G whose members include ports P1 and P2. When
Server 1 crashes, requests are rerouted to Server 2 which continues to provide the ser-
vice.
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Figure 11. − Reconfiguration Using Groups

3.6.2 Authentication

The CHORUS Nucleus provides the ability to protect objects managed by subsystem servers.
Since all services are invoked via the CHORUS IPC mechanism, the support provided is integral
to this mechanism.

The Nucleus supports a protection identifier for each actor and port. The structure of these
identifiers is fixed, but the Nucleus does not associate any semantic value with them. Protection
identifiers can be altered only by trusted threads. Upon creation, an actor or port inherits the
protection identifier of the actor that created it.

Each message sent by an actor is stamped by the Nucleus with the protection identifiers of its
source actor and port. These values can be read but not modified by the receiver of the message
and can be used to securely determine the identity of the requester of a service.

3.6.3 The Network Manager

The Network Manager provides high-level CHORUS communication facilities. The Network
Manager is constructed from three independent modules, known as the High Interface, the Com-
munication Core and the Low Interface. The High Interface implements CHORUS remote IPC,
RPC, and error handling protocols. The Communication Core implements standard communi-
cation protocols and services such as the OSI protocols. The Low Interface manages requests to
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the Network Device Manager, which implements network device drivers.

3.6.3.1 Remote IPC and RPC

To implement remote IPC and RPC, the Network Manager uses two protocols. The first pro-
vides CHORUS-specific features such as locating distant ports, and remote host failure handling.
The second protocol is responsible for data transmission between sites and is operating system
independent.

To provide a data transmission facility, the Network Manager follows current international stan-
dards. The Network Manager implements the OSI family of protocols through the transport
level to support network-wide IPCs and RPCs.

Rationale: The choice to use the OSI protocols results from the desire to use existing stan-
dards whenever possible. Such a choice, however, can be complemented or changed
according to the specific requirements of the supporting network or applications. The IPC
and RPC mechanisms can use any protocol implemented in the Network Manager Com-
munication Core as long as this protocol provides reliability and data ordering.

The Network Manager High Interface also implements an error handling protocol. In the case
of site failure, this protocol is used to notify the initiator of an RPC that its request cannot be
satisfied.

3.6.3.2 UI Location Service

During their lifetime, ports can be attached, in succession, to different actors. The Network
Manager, cooperating with the Nucleus, is responsible for hiding the location of the destination
ports used in IPC or RPC requests. The UI Location Service is used by the Network Manager to
find the site on which a non-local destination port resides.

To locate non-local destination ports, the Network Manager maintains a cache of known ports
and groups. When a remote port becomes invalid, due to port migration, crash, or movement
out of the CHORUS domain, the cache entry is invalidated. Upon receipt of a negative ack-
nowledgement, the local Network Manager enters a search phase and broadcasts queries to
remote Network Managers. Ports not held in the cache are first assumed to reside on their origi-
nal creation site.

3.7 Hardware Events and Exception Handling

The CHORUS Nucleus provides simple facilities which allow user actors to implement their own
exception handling schemes. In addition, CHORUS supports high-performance event and excep-
tion handling for subsystems that wish to directly support hardware devices as well as real-time
applications.

3.7.1 Basic Exception Handling

In its simplest form, the CHORUS Nucleus provides mechanisms that allow user or system
threads to take control of exceptional events within an actor. A thread may ask to associate a
port with exceptions occurring within an actor. When the Nucleus detects an exception and the
actor has a port assigned to the task, it sends a message to that port, describing the exceptional
condition. Threads listening on this port can then take whatever action is appropriate for the
given exception.

If no port has been assigned, exceptions cause the death of the thread generating the exception.

3.7.2 Supervisor Actor Exception and Device Handling

For supervisor actors, CHORUS provides additional facilities whereby system programmers can
directly access low-level I/O events and hardware exceptions to meet their needs. The supervi-
sor supports a mechanism for assigning device interrupts from the hardware to user threads.
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When an interrupt occurs, the supervisor saves the context of the interrupted thread and sequen-
tially calls a prioritized sequence of user routines associated with the given interrupt. Any of
the individual routines may initiate a break in the sequence, if necessary. After the last routine
has finished, the supervisor may initiate rescheduling.

The supervisor supports a similar facility, through which actor routines may be associated with
hardware traps or exceptions. This facility allows subsystem managers, such as the
CHORUS/MiX Process Manager, to provide efficient and protected subsystem interfaces.

The routines associated with hardware events are executed by supervisor threads. The associa-
tion between a hardware event and its handler may be reconfigured at any time. If no associa-
tion between a hardware exception and a handler is made, the exception is handled as it would
be for a standard actor.

3.8 Subsystems

Sets of CHORUS actors that work together to export a unified application programming interface
are known as subsystems. Subsystems, such as the CHORUS/MiX subsystem, export high-level
operating system abstractions, such as process objects, protection models, and data providing
objects. They construct these high-level abstractions using the primitives exported by the
CHORUS Nucleus.

Subsystems can securely export their abstractions by providing access to them through system
traps. Code and data to implement these abstractions may be loaded into system space to
improve performance. Subsystem actors communicate with one another by means of CHORUS

IPC.

The level of protection required for subsystem servers varies widely from service to service.
The CHORUS Nucleus provides basic protection facilities with which subsystems may enforce
their own levels of security and protection as appropriate.

In the example illustrated in Figure 12, several user actors are shown accessing facilities in a
CHORUS subsystem. The subsystem is protected by means of a system trap interface. A portion
of the subsystem is implemented as a system actor, executing in system space, and a portion is
implemented as user actors. The subsystem servers communicate using CHORUS IPC.
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4. CHORUS/MiX: A UNIX SUBSYSTEM

4.1 Overview

The first subsystem implemented within the framework of the CHORUS architecture was a UNIX
SYSTEM V subsystem. In the remainder of this paper, we will refer to the combination of the
CHORUS Nucleus and the set of UNIX SYSTEM V subsystem servers as the CHORUS/MiX

operating system. The facilities provided by the CHORUS Nucleus have permitted the design of
coherent extensions of UNIX for distributed computing.

The implementation of the abstractions of this extended UNIX interface are described in the fol-
lowing sections. Some of the abstractions are implemented by the CHORUS Nucleus and are
provided by CHORUS Nucleus calls. Others are implemented in terms of CHORUS actors.

Some implementation choices are explained in more detail, emphasising problems which arise
when introducing distributed processing into a UNIX system.

4.1.1 Objectives

The CHORUS technology, when applied to UNIX overcomes a number of widely recognized lim-
itations of traditional UNIX implementations. It has been applied with the following general
objectives:

� To implement UNIX services in a modular fashion, as a collection of servers. These auto-
nomous servers have the property that they need only be resident on those sites that make
use of them. In addition, these servers can be dynamically loaded or unloaded as required.

� To permit application developers to implement their own servers, such as window managers
and fault-tolerant file managers, and to integrate them dynamically into CHORUS/MiX.

� To extend UNIX functionality with respect to real-time constraints, distribution of resources,
and concurrent programming. The CHORUS real-time executive provides real-time facilities
previously missing in UNIX systems. CHORUS/MiX provides distributed resource sharing
within the CHORUS domain. The CHORUS thread facilities have been integrated into
CHORUS/MiX, providing multi-threaded UNIX processes.

� To build UNIX functionality using the CHORUS primitives as a basis. The CHORUS/MiX
subsystem can be viewed as a typical client of these primitives; its implementation does not
affect the implementation of the CHORUS Nucleus.

� To provide compatibility with existing application programs and device drivers without a
severe degradation in performance. Existing applications should run without modification
or recompilation; existing device drivers should be integrated into the CHORUS/MiX system
with minimal effort.

4.1.2 Extensions to UNIX Services

In addition to the standard UNIX functionality, CHORUS/MiX offers extensions to UNIX abstrac-
tions and operations. The UNIX operations have been extended to work in a distributed
environment and the UNIX process model has been extended to provide process semantics that
are consistent within multi-threaded programs.

4.1.2.1 Distribution

� The file system is fully distributed and file access is location independent. File trees are
automatically interconnected to provide a name space within which all files, whether remote
or local, are designated with no syntactic change from current UNIX.

� Operations on processes have been extended to remote sites. The UNIX exec system call
can be made to execute on a distant site.
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� The network transparent CHORUS IPC is accessible at the UNIX interface level, thus allow-
ing the easy development of distributed applications within the UNIX environment.

Distribution extensions to standard UNIX services are provided in a way which is compatible
with existing applications. Most applications benefit from the extensions to file, process and
signal management without modification or recompilation.

4.1.2.2 Multiprogramming a UNIX process

Each UNIX process is implemented as an actor; hence the multi-threaded Nucleus model
extends naturally into the UNIX layer. In order to distinguish the thread interface provided by
the Nucleus from the thread interface provided by CHORUS/MiX, CHORUS/MiX threads will be
referred to as u_threads for the remainder of this paper.

The u_thread management interface has been defined to achieve two major objectives.
U_threads are intended to provide a low-level, generic thread interface capable of supporting
needs of typical concurrent programming clients. At the same time, the use of u_threads should
have a minimal impact on the syntax and semantics of UNIX system calls so that UNIX system
calls can easily be used within multi-threaded programs.

The u_thread interface includes primitives for creating and deleting u_threads, suspending and
resuming their execution, and modifying their priorities. All of these are low-level services and
incorporate a minimum of semantic assumptions. Policies regarding stack management and
ancestor/descendant relationships among u_threads, for example, are left to higher-level library
routines.

In several respects, traditional UNIX system services exploit the fact that memory, resource
ownership, and signal delivery are tied to the unit of CPU scheduling. In adapting these ser-
vices for multi-threaded processes, CHORUS has sought preserve the existing interfaces and
functions to the greatest degree possible.

Most of the basic UNIX process management functions extend readily, however, some pose
compatibility problems. For example, only the context of the u_thread executing the fork
system call is duplicated in the child process; other threads are discarded. Similarly, the exec
system call produces a new mono-threaded process, regardless of how many threads were exe-
cuting prior to its invocation.

In general, multiple u_threads can execute CHORUS/MiX system calls concurrently. The
CHORUS/MiX subsystem contains resources, however, such as shared data structures, which can-
not be acquired for use by more than one u_thread at a time. The first u_thread that acquires
such a resource within a system call will cause the other u_threads seeking that resource to
block until the resource is made available, serializing their execution. Typically, resources are
not held for periods of long duration; it is necessary that u_threads release resources before
waiting for I/O to complete, for example. These resources are private to the CHORUS/MiX sub-
system, so u_threads making CHORUS/MiX system calls will not interfere with threads execut-
ing user code or threads executing in other subsystems.

The introduction of multi-threaded processes mandates a reconsideration of signal handling.
CHORUS/MiX adopts a new approach to signal delivery and management. The goal is simple:
signals should be processed by the u_threads that have expressed interest in receiving them.
Each u_thread has its own signal context consisting of components such as signal handlers,
blocked signals, and a signal stack. System calls used to manage this information affect only
the context of the calling u_thread. This design arose from considerations of common signal
usage in existing mono-threaded programs and the desire to keep the same semantics in multi-
threaded programs.

In order to determine which u_threads should receive signal delivery, CHORUS/MiX distin-
guishes two types of signals:
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Chorus systèmes CHORUS Overview CS/TR-90-25.1

1. Signals for which the identity of the target u_thread is not ambiguous. These signals
correspond to synchronous exceptions, timer and asynchronous I/O signals. In these
cases the signal is sent only to the u_thread concerned; that is, the u_thread generating an
exception or the u_thread that has initiated a timer or asynchronous I/O event. If that
u_thread has not either declared a handler or chosen to ignore the signal, the default
action is taken for the entire process.

2. Signals that are logically sent to an entire process. For some signal-delivery purposes a
process is viewed as a single entity. Line-discipline related signals, such as the interrupt
or quit signals, and signals generated by the kill system call are broadcast to all
u_threads of the target process. Each u_thread that has declared a signal handler for the
particular signal will receive delivery. If no u_thread either declares a handler or expli-
citly ignores the signal, the default action is again taken relative to the entire process.

Thus, signal semantics and usage extend smoothly from the traditional UNIX mechanisms to the
multi-threaded environment of CHORUS/MiX. The per-u_thread signal status adds to the size of
the state information that must be initialized and maintained for each u_thread. No extra
expense is added to the u_thread context switch, however, so the real-time responsiveness of the
system is not compromised.

CHORUS/MiX has added the u_threadKill system call, to provide the additional functionality of
allowing u_threads within a process to send signals to one another.

4.1.2.3 Interprocess Communication and U_thread Synchronization

U_threads use the CHORUS Nucleus IPC functionality for communication and synchronization
with each other.

4.1.2.4 Real-Time Facilities

CHORUS/MiX real-time facilities result directly from the services provided by the CHORUS

Nucleus.

4.2 CHORUS/MiX Architecture

UNIX functionalities may logically be partitioned into several classes of services according to
the different types of resources managed: processes, files, sockets, or devices. The design of the
UNIX Subsystem provides a clean definition of the interactions between these different classes,
resulting in a modular structure.

CHORUS/MiX has been implemented as a set of system servers, running on top of the CHORUS

Nucleus. Each system resource is isolated and managed by a dedicated system server. Interac-
tions between these servers are based on the CHORUS message passing model, enforcing clean
interface definitions.

Several types of servers may be distinguished within a typical UNIX subsystem: Process
Managers (PM), File Managers (FM), Socket Managers (SM), Device Managers (DM),
IPC Managers (IPCM), Key Manager (KM) and User Defined Servers (Figure 13).

The following sections describe the general structure of UNIX servers. The role of each server
and its relationships with other servers is summarized.

4.2.1 Structure of a UNIX Server

Each UNIX server is implemented as a CHORUS actor. Each has its own context and, thus, may
be debugged using standard debuggers. Furthermore, UNIX subsystem servers may be
developed as user or system actors.

CHORUS/MiX servers are normally multi-threaded. Each request to a server is processed by one
of its threads, which manages the context of the request until the response has been issued.
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Figure 13. − CHORUS/MiX:UNIX with the CHORUS Technology

Each server creates one or more ports to which clients send requests. Some of these ports may
be inserted into port groups with well-known names. Such port groups can be used to access a
service independent of the provider of the service.

Servers may also provide a trap interface to services. These interfaces can be compatible with
existing UNIX system interfaces, but do not extend transparently across the network. The Pro-
cess Manager offers this interface to provide binary compatibility with the target UNIX system.5

In order to facilitate the porting of device drivers from a UNIX kernel into a CHORUS server, a
UNIX kernel emulation library, which is linked with UNIX device driver code, has been
developed. It provides such functions as sleep, wakeup, splx, copyin, and copy-
out. Interrupt handlers are one of the few parts of a traditional UNIX device driver that may
need to be modified to adapt to the CHORUS environment.

�������������������������������

5. The target system CHORUS/MiX is the COMPAQ386 running SCO UNIX.
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4.2.2 Process Manager

The Process Manager maps UNIX process abstractions onto CHORUS abstractions. It imple-
ments all of the UNIX process semantics including creation, context consistency, inheritance,
and signaling.

On each UNIX site, a Process Manager implements the entry points used by user processes to
access UNIX services. Since traditional UNIX system calls are implemented using traps,
CHORUS/MiX achieves binary compatibility with UNIX utilities by attaching PM routines to
those traps through the CHORUS Nucleus (see § 3.7.2). The PM itself satisfies requests related
to process and signal management, such as fork, exec, and kill. For other system calls,
such as open, close, read, write and System V IPC related calls (messages, sema-
phores and shared memory), the PM invokes other CHORUS/MiX subsystem servers to handle
the request.

For example, when a CHORUS/MiX process issues the open system call, a trap is generated
and handled by the local Process Manager. The PM, using the context of the client process and
running in system mode, uses CHORUS RPC mechanism to invoke the File Manager to perform
the pathname analysis. If the indicated file is not managed by the File Manager, as is the case
for device files, the request is automatically sent by the FM to the appropriate Device Manager.

Process Managers interact with their environment through clearly defined interfaces:
� Nucleus services are accessed through system calls;

� File Manager, Socket Manager, Device Manager , IPC manager and Key Manager services
used for process creation and context inheritance are accessed by means of CHORUS RPC.

Process Managers cooperate to implement remote execution and remote signaling:

� Each Process Manager creates a dedicated port, referred to as the request port, to receive
remote requests. Such requests are processed by Process Manager threads.

� The request port of each Process Manager, in a given CHORUS domain, is inserted into the
Process Manager static port group. Any Process Manager of any given site may, thus, be
reached using one unique functional address.

� Process operations that do not apply to the local site are sent to the functional address of the
appropriate Process Manager.

4.2.3 File Manager

Each site that supports a disk requires a File Manager; diskless stations make requests of
remote File Managers. The two main functions of File Managers are to provide disk-level
UNIX file system management and to act as mappers to the CHORUS Nucleus.

As file servers, File Managers process traditional UNIX requests transmitted via IPC. File
Managers also provide some new services needed for process management, such as handling the
sharing of open files between a process and its child. In addition, they perform the mapping
between the UNIX name and the CHORUS text and data segment capabilities of an executable
file. These two services represent the only interactions between process and file management.

As external mappers, File Managers implement services required by CHORUS virtual memory
management, such as managing a backing store. They use the standard mapper interface ser-
vices provided by the CHORUS Nucleus to maintain cache consistency when local virtual
memory caches are accessed from remote sites.

CHORUS/MiX file system caches are also implemented using the CHORUS virtual memory
mechanisms. Use of the interface optimizes physical memory allocation and makes the imple-
mentation of CHORUS/MiX system calls such as read and write network transparent.
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The naming facilities provided by the UNIX file system have been extended to permit the desig-
nation of services accessed via ports. A new UNIX file type called a symbolic port can be
inserted into the UNIX file tree. Symbolic ports associate a file name with the UI of a port.
When such a file is encountered during pathname analysis, the corresponding request is sent to
associated port (see § 4.4.1.). Figure 14 illustrates the interconnection of two machines, pipo
and piano, using symbolic ports. In the example, the pathname /fs/piano/usr/fred
refers to the same directory from both machines because /fs/piano is a symbolic port to the
File Manager of the piano root file system.

CHORUS/MiX also implements symbolic links à la BSD. When combined with symbolic ports,
this functionality provides an extremely powerful and flexible network file system.

[pipo]

/

usr bin fs

pipo piano

[piano]

/

fs

pipo piano

bin usr

fred

Figure 14. − File Trees Interconnection

4.2.4 Socket Manager

The Socket Manager implements UNIX 4.3 BSD socket management for the Internet address
family. Socket Managers are only loaded onto sites that have network access.

4.2.5 Device Manager

Devices such as tty’s and pseudo-tty’s, bitmaps, tapes, and network interfaces are managed by
Device Managers. There may be several Device Managers per site, depending upon site device
requirements, which may be dynamically loaded or unloaded. Software configurations can be
adjusted to suit the local hardware configuration or the needs of the user community.

A CHORUS IPC-based facility is used to replace the cdevsw table found in traditional UNIX
systems. During initialization, the Device Manager sends its port and the major numbers of
devices that it manages to the File Manager. When these major numbers are encountered during
pathname analysis for an open system call, the request is sent to the associated port.

4.2.6 IPC Manager

The CHORUS/MiX IPC Manager (IPCM) provides user services equivalent to those supplied by
a UNIX System V.3.2 kernel on inter process communication (IPC). These services include:
messages, semaphores and shared memory. The IPCM was built from UNIX System V.3.2 IPC
code.

 Chorus systèmes, 1991 − 28 − February 1, 1991



Chorus systèmes CHORUS Overview CS/TR-90-25.1

The IPCM interacts with the PM, the KM (Key Manager, see below) and the FM. The PM is
the main IPCM’s "client": it transfers user system call requests and arguments to the IPCM,
which handles them and returns values according to UNIX IPC semantics. Note that since they
do not have any device connection, IPCM’s may be present on any CHORUS/MiX site.

For shared memory operation, when a request is made to create a new shared segment, the
IPCM requests service from the Object Manager to initialize a new segment capability. This
capability will be used by processes trying to attach the shared segment to their address space,
using the rgnMap() system call.

4.2.7 Key Manager

The CHORUS/MiX Key Manager (KM) is an internal CHORUS/MiX server. This means it does
not provide any service to user programs, but accepts requests from the PM and the IPCM, in
the context of the UNIX System V.3.2 IPC services.

The Key Manager creates and maintains a mapping between user provided keys and
CHORUS/MiX internal descriptors. It ensures the uniqueness and coherence of the mapping
accross a distributed system. There must be only one KM on a CHORUS/MiX system.

4.2.8 User Defined Servers

The homogeneity of server interfaces provided by the CHORUS IPC allows system users to
develop new servers and to integrate them into the system as user actors. One of the main
benefits of this architecture is that it provides a powerful and convenient platform for experi-
mentation with system servers. For example, new file management strategies or fault-tolerant
servers can be developed and tested as a user level utility without disturbing a running system.

4.3 Structure of a UNIX Process

A traditional UNIX process can be viewed as a single thread of control executing within one
address space. Each UNIX process is, therefore, mapped onto a single CHORUS actor whose
UNIX system context is managed by the Process Manager. The actor’s address space comprises
memory regions for text, data, and execution stacks.

In addition, the Process Manager attaches a control port to each UNIX process actor. This con-
trol port is not visible to the user of that process. A control thread in the Process Manager is
dedicated to receive and proceed all the requests on this port. This control thread executing
within process contexts has two main properties:

� It shares the process address space and can easily access and modify the memory of the pro-
cess in order to perform text, data, and stack manipulations during signal delivery or during
debugging.

� It is ready to handle asynchronous events, such as signals, which are received by the pro-
cess. These events are implemented as CHORUS messages received on the control port (Fig-
ure 15).

Allowing for multi-threaded processes has impacted the implementation of each process system
context. The UNIX system context attached to a process has been split into two system con-
texts: a process context (Proc) (Table 1) and a u_thread context (UThread) (Table 2).
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Figure 15. − UNIX Process as a CHORUS Actor

Table 1. − Process Context
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Proc Context
� �������������������������������������������������������������������������������������������������������������������������������������������������

Actor implementing the Process actor name, actor priority, ...

Unique Identifiers (UI) PID, PGRP, PPID, ...

Protection Identifiers real user id, effective user id, ...

Ports control port, parent control port, ...

Memory Context text, data, stack, ...

Child Context SIGCLD handler, creation site, ...

File Context root and current directory, open files, ...

Time Context user time, child time, ...

Control Context debugger port, control thread descriptor, ...

UThreads list of process’ UThread contexts,

Semaphore for concurrent access to Proc Context.

IPC context UNIX messages, semaphores, shared memory.
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Table 2. − UThread Context
� �������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������

U-thread Context
� �������������������������������������������������������������������������������������������������������������������������

Thread implementing the u_thread thread descriptor, priority, ...

Owner Process owner process proc descriptor

Signal Context signal handlers, ...

System Call Context system call arguments, ...

Machine execution Context
� �������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������
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The two system contexts, Proc and U_thread, are maintained by the Process Manager of
the current process execution site. These contexts are accessed uniquely by the Process
Manager.

4.3.1 Process Identifiers

Each process is uniquely designated by a 32 bit global PID which results from the concatenation
of two 16 bit integers. These integers consist of the creation-site id and a traditional UNIX pro-
cess id.

4.3.2 Process Execution Site

As an extension to the standard UNIX process semantics, CHORUS/MiX maintains a notion of
the child process creation site for each process. This site identifies the target site to which the
exec operation is applied. By default, the child process creation site is set to the site on which
the process currently resides.

4.3.3 Process Control

The Process Manager attaches a control port6 to each CHORUS/MiX process. A dedicated
thread in the Process Manager (called the control thread) listens on the all PM’s ports for pro-
cess management directives from CHORUS/MiX subsystem servers. These control messages
include: UNIX signal messages, debugging messages, and process exit messages. Only the con-
trol thread may receive messages on the control port; the control port is not exported to the
CHORUS/MiX process.

When the process is the target of a kill system call or of a keyboard-generated signal, a sig-
nal delivery message is sent to its process control port.

When a CHORUS/MiX process performs a ptrace system call to initiate a debugging session,
the PM creates a debug port and sends it to the debugger. All ptrace functions performed by
the debugger are translated into messages and sent to the debug port. Since these interactions
are based on CHORUS IPC, the process and its debugger may reside on different sites.

�������������������������������
6. A single control port is required for CHORUS/MiX processes; multiple control ports may be needed by other sub-

system implementations.
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A process context contains the control port of its parent. When the process exits, an exit status
message is sent to its parent’s control port. This status information is stored in the parent’s pro-
cess context where it can be retrieved using the wait system call.

4.3.4 Process Resources

A process refers to all server-managed resources by using their server-provided capabilities.
Open files and devices, current and root directories, and text and data segments are notable
examples of such resources. These capabilities are standard CHORUS capabilities and therefore
can be used in conjuction with the CHORUS mapper protocol, if appropriate.

For example, opening a device file associates the capability provided by the device’s server with
a UNIX file descriptor. The capability will be constructed from the port of the Device Manager
and a reference to the device within the manager.

All subsequent system calls pertaining to that device will be translated into messages and sent
directly to the appropriate server. There is no need to locate the server again.

4.4 Two Examples

4.4.1 File Access

Current and root directories are represented by capabilities in the UNIX context of a process.
When an open request is issued, the open routine of the Process Manager looks for a free file
descriptor, builds a message containing the pathname of the file to be opened, and sends this
message to the port of the server managing the current or the root directory, depending on
whether the pathname is absolute or relative (Figure 16 [1]).

Suppose that the pathname of the file is /fs/piano/usr/fred/myfile and
/fs/piano is the symbolic port of a File Manager running on a site named piano. This
pathname will be sent to the File Manager containing the root directory of the process (the
pipo File Manager in the example). That File Manager will start the analysis of the pathname,
discover that piano is a symbolic port, and propogate the message with the unanalyzed por-
tion of the pathname (/usr/fred/myfile), to the symbolic port.

The piano File Manager will receive the message, complete the analysis of the pathname,
open the file, build the associated capability and send the capability back to the client process
that issued the open request (Figure 16 [3]).

Any subsequent request on that open file will be sent directly to the File Manager on piano.
The pipo File Manager will not be involved in further interacations.

4.4.2 Remote Exec

This description of the remote exec algorithm will illustrate all the interactions between the
UNIX subsystem servers and the process control threads. To simplify the description, error cases
are not handled in this algorithm.

1. the calling u_thread performs a trap handled by the local Process Manager. The PM will :
a. determine whether the pathname is relative or absolute, and therefore whether to

use the File Manager of the root directory or the current directory;
b. invoke by RPC the File Manager to translate the binary file pathname into two

capabilities, used later to map text and data into the process address space;
c. if the child execution site is different from the current execution site, test the child

execution site for validity;
d. prepare a request with:

� the Proc and UThread contexts of the calling u_thread;
� the arguments and environment given as exec parameters;
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Figure 16. − File Access

� all information returned by the File Manager that characterizes the binary file.
e. perform an RPC to the Process Manager of the target creation site by means of the

Process Manager port group.

2. The Process Manager of the remote creation site receives the request. One of its threads
initializes a Proc context for the new process using information such as PID’s, elapsed
time, and open file capabilities, contained within this message. The Process Manager
creates new CHORUS entities which implement the process, such as an actor, a control
thread, a control port, and memory regions. It then proceeds with UNIX process initiali-
zation:

� it installs arguments and the environment strings in the process address space;
� it sends close messages to appropriate File Managers, Socket Managers and Device

Managers to close open files marked ‘‘close-on-exec’’;
� it creates one u_thread, which will start executing the new program (after exec, all

processes are initially single-threaded). It initializes the signal context of the created
u_thread using the signal context of the calling u_thread which is present in the
request message.

� it sends a reply message to the u_thread that originally invoked the exec system
call.

3. The calling u_thread receives the reply message, frees the Proc and U_thread con-
texts of its process and removes the actor implementing the process. Upon actor destruc-
tion, the CHORUS Nucleus frees all CHORUS entities associated with this actor.

4.5 Other UNIX Extensions

The CHORUS implementation of the UNIX subsystem has lead to several significant extensions
which offer, at the UNIX subsystem level, access to CHORUS functionalities:
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4.5.1 IPC

UNIX processes running on CHORUS can communicate with other UNIX processes, bare
CHORUS actors, or entities from other subsystems using the CHORUS IPC mechanisms. In par-
ticular, processes are able to :

� create and manipulate CHORUS ports;

� send and receive messages;

� issue remote procedure calls.

4.5.2 Memory management

UNIX processes running on CHORUS can create, delete and share memory regions.

4.5.3 Real-Time

CHORUS real-time facilities provided by the Nucleus are available at the UNIX subsystem level
to privileged applications:

� CHORUS provides the ability to dynamically connect handlers to hardware interrupts. This
facility is already used by UNIX Device Managers.

� UNIX processes enjoy the benefit of the priority based preemptive scheduling provided by
the CHORUS Nucleus.

Moreover, for interrupt processing, UNIX servers may immediately process an interrupt within
the interrupt context or defer the majority of the processing to be handled by a dedicated thread
executing within the server context.

This functionality allows CHORUS/MiX device drivers to mask interrupts for shorter periods of
time than they are masked in many standard UNIX implementations. Thus, with a little tuning,
real-time applications can be made to run in a UNIX environment with better response time to
external events.
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5. CONCLUSION

CHORUS was designed with the intention of supporting fully-functional, industrial quality
operating system environments. Thus, the inherent trade-off between performance and richness
of the design was often made in favor of performance.

Making the CHORUS Nucleus facilities generic prevented the introduction of features with com-
plex semantics. Features such as stringent security mechisms, application-oriented protocols,
and fault tolerance strategies, do not appear in the CHORUS Nucleus. The CHORUS Nucleus pro-
vides, instead, the building blocks with which to construct these features inside subsystems.

CHORUS provides effective, high performance solutions to some of the issues known to cause
difficulties to system designers:

� Exceptions are posted by the Nucleus to a port chosen by the actor program. This simple
mechanism allows a user actor to apply its own strategy for handling exceptions and,
because of the nature of ports, it extends transparently to distributed systems.

Exceptions can also be associated directly with actor routines, for high performance within
system actors.

� Debugging within CHORUS distributed systems is facilitated since resources are isolated
within actors and since the message passing paradigm provides explicit and clear interac-
tions between actors.

� The CHORUS modular structure allows binary compatibility with UNIX in CHORUS−V3,
while maintaining a well structured, portable and efficient implementation.

The experience of four CHORUS versions has validated the CHORUS concepts. Unique
Identifiers provide global, location independent names which form the basis for resource loca-
tion within the a CHORUS distributed system. Actors and threads provide modular, high-
performance, multi-threaded computational units. Messages, ports, and port groups provide the
underlying communication mechanism with which CHORUS computational entities are bound
together to construct distributed systems.

The CHORUS technology has the following features:

� it uses a communication-based architecture, relying on a minimal Nucleus which integrates
distributed processing and communication at the lowest level, and which implements gen-
eric services used by a set of subsystem servers to extend standard operating system inter-
faces. A UNIX† subsystem has been developed; other subsystems such as OS/2 and object-
oriented systems are planned;

� the real-time Nucleus provides real-time services which are accessible by system program-
mers;

� it is a modular architecture providing scalability, and allowing, in particular, dynamic
configuration of the system and its applications over a wide range of hardware and network
configurations, including parallel and multiprocessor systems.

The CHORUS technology has been designed to build a new generation of open, distributed, and
scalable operating systems. In addition to providing the basis for the emulation of existing
operating systems, CHORUS technology provides a means by which these subsystem interfaces
can be extended transparently to exploit distributed environments. CHORUS technology can be
used in conjunction with these subsystems, or independently, to assemble high-performance dis-
tributed applications.
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6. GLOSSARY OF CHORUS TERMS

actor A collection of resources within a CHORUS site. A CHORUS actor can
contain memory regions, ports, and threads. When created, an actor
contains only its default port. CHORUS supports user, system, and
supervisor actors.

actor context switch A switch from the context of one actor to another. An actor context
switch may imply switching address space contexts and thread con-
texts.

address space context switch
A switch from one address space to another, causing the contents of
virtual memory to change.

capability A unique handle, the possession of which grants the possessor rights to
perform an operation. Within the CHORUS system, capabilities consist
of the concatenation of a port and a key. The port identifies a server
and the key identifies the object within the server. The port is
represented as a UI. The key is a 64 bit identifier, specific to the
server.

CHORUS An operating system which consists of a small distributed real-time
Nucleus and a set of subsystem servers. The Nucleus supports location
transparent message-passing, thread scheduling, supervisor, and virtual
memory operations. Subsystems supporting more complicated operat-
ing system abstractions are built using these primitives.

CHORUS Domain A collection of interconnected CHORUS sites which define a non-
overlapping unique identifier namespace.

CHORUS Inter-Process Communication Manager
The section of the CHORUS Nucleus that provides asynchronous and
synchronous location transparent message passing facilities.

CHORUS Real-Time Executive
The section of the CHORUS Nucleus that manages scheduling of
threads. It controls allocation of processors, provides fine-grained syn-
chronization and a priority-based preemptive scheduling.

CHORUS Supervisor The section of the CHORUS Nucleus that manages site hardware. It
dispatches interrupts, traps and exceptions delivered by the hardware.

CHORUS Virtual Memory Manager
The section of the CHORUS Nucleus that manipulates virtual memory
hardware and local physical memory resources.

CHORUS/MiX A set of CHORUS actors which cooperate to provide an enhanced UNIX
subsystem interface. CHORUS/MiX exports features from CHORUS

such as CHORUS IPC, multi-threaded processes, real-time scheduling, a
unified network file system, and location transparent naming of entities
within the CHORUS domain. Currently, a CHORUS/MiX subsystem
consists of a Process Manager, and optionally a File Manager, a Socket
Manager, and a Device Manager.

CHORUS/MiX process A UNIX process abstraction, as implemented within CHORUS/MiX. A
CHORUS/MiX process is mapped onto an actor, threads, and memory
regions. In addition, CHORUS/MiX associates a control thread and a
control port with the CHORUS/MiX process. The control thread
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performs actions on behalf of the process; it and the control port are
hidden from the CHORUS/MiX process.

control message A message sent to a CHORUS/MiX process control port as a result of an
exceptional event. Control messages will be sent in response to one of
the following conditions: hardware exceptions, UNIX signals, debug-
ging requests, or upon the exit of a child process.

control port The port that the Process Manager attaches to every CHORUS/MiX pro-
cess. It is used to send control messages to the process. The control
port is not exported to the CHORUS/MiX process.

control thread The thread that the Process Manager attaches to every CHORUS/MiX
process. It accepts control messages on the control port. The control
thread executes as a supervisor thread at a higher priority than all other
threads of the actor. The control thread is not exported to the
CHORUS/MiX process.

default port The port that is attached to each CHORUS actor when it is created. The
unique identifier of this port is the same as that of its actor. The
default port may not be deleted or migrated.

Device Manager A CHORUS/MiX subsystem actor which manages physical devices such
as keyboards, bit-map displays, or magnetic tapes.

DM See Device Manager.

execution privilege See privileged mode.

File Manager A CHORUS/MiX subsystem actor which has two functions: to coordi-
nate with Process Managers to project a unified, domain-wide file sys-
tem and to act as an external mapper to fulfill segment related requests.
All UNIX pathname analysis is done by the File Manager. If a sym-
bolic port or device is encountered during pathname analysis, the
request will be forwarded to the appropriate manager.

FM See File Manager.

group manipulation key
A 64 bit key used to protect a port group on which a port group opera-
tion is to take place.

inter-process communication
A facility that allows threads to exchange information in the form of
collections of bytes called messages. Messages are addressed to ports.
The CHORUS IPC system manages the port namespace. The CHORUS

IPC facility is location transparent; threads executing within actors
residing on different sites may use CHORUS IPC to exchange messages
transparently. As primitive operations, CHORUS IPC supports asyn-
chronous message send operations, message receive operations and
remote procedure call operations.

IPC See inter-process communication.

IPCM See IPC Manager.

IPC Manager A CHORUS/MiX subsystem actor which implements the UNIX IPC
mechanisms: messages, semaphores and shared memory.
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kernel See Nucleus.

key A 64 bit server-specific value which, in conjunction with a server port
identifier, forms a capability. The capability can be used to access a
resource within the server.

Key Manager A CHORUS/MiX subsystem actor which maintains a mapping between
user provided keys and CHORUS/MiX internal descriptor, in the context
of UNIX IPC services.

KM See Key Manager.

Local Cache A local cache is the in-memory representation of the contents of a
CHORUS segment; if an offset within the segment is not in primary
memory when referenced or written, the cache will be loaded by
invoking its mapper. Local caches are created as a result of any
segment-related Nucleus system calls. Multiple simultaneous uses of a
segment on one site always refer to the same local cache. Note that
when multiple sites contain caches for the same segment, consistency
must be maintained by a segment’s mapper; the virtual memory system
merely provides the primitives to make distributed cache consistency
possible.

LI See local identifier.

local identifier A 32 bit context-dependent identifier, used to identify CHORUS

Nucleus resources of a given actor.

mapper A server that conforms to the CHORUS mapper interface and is used to
provide a backing storage facility for CHORUS actors. Mappers imple-
ment objects known as segments. Portions of the information within
these objects can be mapped into actor address spaces. Page faults
generated by reading the memory associated with a mapped object
will, in turn, produce requests to the mapper for the corresponding data
from the object. When the Nucleus wishes to free modified pages, it
generates mapper requests to write back the modified data. CHORUS

also supports an interface that allows actors to directly make changes
to mapper-supported objects.

message An untyped sequence of bytes which represents information to be sent
from one port to another via CHORUS IPC.

NDM See Network Device Manager.

Network Device Manager
A CHORUS server which controls network devices. The Network Dev-
ice Manager is invoked by higher-level communications servers.

network file system A file system whose contents are distributed over a network. Within
CHORUS/MiX, a completely transparent network file system is provided
using symbolic ports to interconnect File Managers. File Managers add
the file hierarchies of newly booted sites to their own hierarchies, using
a network-wide naming convention. Thus, within CHORUS/MiX, any
file within any site is transparently accessible, using an easily con-
structed name.

Network Manager A CHORUS server responsible for aiding the Nucleus during remote
communication. The Network Manager implements the UILS, remote
CHORUS IPC, and RPC. The Network Manager uses the Network
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Device Manager for low-level communication.

NM See Network Manager.

Nucleus A low-level executive which provides the base functions with which
more complex subsystems or applications can be built. In CHORUS,
the Nucleus provides virtual memory, scheduling, and message passing
facilities. It is also responsible for managing site resources.

Object Manager See File Manager.

OM See File Manager.

PM See Process Manager.

port A CHORUS inter-process communication entity. Threads send and
receive messages on ports, which act as globally-named message
queues. Ports are initially attached to a specified actor but can be
migrated to another actor. Only threads within that actor have the right
to receive messages on it. Ports are named by unique identifiers; hav-
ing knowledge of a port UI gives a thread the right to send messages to
that port. Ports are location-transparent; a thread within an actor may
send a message to the port of another actor without knowing the
current location of that port.

port group A collection of ports that are addressed as a group to perform some
communication operation. Port groups can be used to send messages
to one of a set of ports or to multi-cast messages to several ports simul-
taneously. A port can be a member of several port groups.

privileged mode A CHORUS Nucleus concept that governs whether or not a thread is
allowed to perform sensitive hardware instructions, such as modifying
the state of the memory management unit or performing low-level dev-
ice I/O. Typically, this concept maps directly to a hardware facility
controlled by the setting of a status register, maintained within a thread
context.

Process Manager A CHORUS/MiX subsystem actor which implements UNIX process
semantics. In particular, the PM implements UNIX system calls related
to process and signal management such as fork, exec, and kill.
The Process Manager catches all UNIX system call traps and will
invoke other CHORUS/MiX servers if necessary.

protection identifier A fixed-length value associated by the Nucleus with all actors and
ports which is used to stamp outgoing messages. The Nucleus does
not attach any semantic value to these identifiers; it is only responsible
for maintaining them, for protecting them from modification, and for
inserting them into the headers of messages exchanged by actors. The
receiver of the message may use these identifiers to authenticate the
sender.

region A contiguous range of virtual addresses within a process, treated as a
unit by the CHORUS virtual memory system. A region is associated
with a segment by the CHORUS virtual memory system. Requests to
read or modify data within a region are converted by the virtual
memory system into requests to read or modify data within that seg-
ment. Regions are assigned virtual memory protection attributes.
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remote procedure call An inter-process communication facility, through which a thread can
simulate a procedure call using a message transmission and reception.
To perform an RPC, a client thread sends a message which requests a
service and provides arguments to the service request. That thread
then blocks, awaiting a reply to the message. A server receives the
message and performs the service according to the arguments within
the message. The server then replies with any result-arguments the
service may have produced.

reply message A message sent in response to a request for a service, typically holding
the result of the service.

request message A message sent to a request port to request a service.

request port A port on which servers receive service requests. This port does not
have special status among all ports owned by the server.

resource A basic entity used within a CHORUS system. A resource might consist
of data or processors which act upon data. Basic CHORUS resources
include ports, messages, threads, actors and sites. CHORUS subsystems
provide as resources higher-level abstractions such as files and
processes.

RPC See remote procedure call.

segment An encapsulation of data within a CHORUS system. Segments can be
read or written by actors, using direct or mapped interfaces. Portions
of a segment can be mapped into an actor’s address space and the data
within the segment can be read or modified by accessing the associated
address ranges. Segments typically represent some form of backing
store, such as the contents of a file.

server An actor that provides services to a set of clients. Within the client-
server model, a client sends a request to a server which will perform
some action and send a reply. Requests and replies are typically made
using inter-process communication mechanisms.

site A grouping of tightly-coupled physical resources controlled by a single
CHORUS Nucleus. These physical resources include one or more pro-
cessors, central memory, and attached I/O devices.

SM See Socket Manager.

Socket Manager A CHORUS/MiX subsystem actor that implements 4.3 BSD UNIX
socket semantics for the Internet address family. The Socket Manager
uses the Network Device Manager for low-level communication.

subsystem A collection of CHORUS servers and libraries that export a given
operating system interface.

subsystem interface The set of operations exported by a CHORUS subsystem. They typi-
cally represent an operating system interface that is to be emulated
within the CHORUS system.

supervisor actor A CHORUS actor whose threads are always supervisor threads.
Currently, supervisor actors only contain regions within the shared,
protected system address space.

supervisor thread A CHORUS thread that operates in privileged mode. Threads of super-
visor actors are always supervisor threads. Threads of user actors
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temporarily become supervisor threads when they are in the process of
executing hardware traps.

symbolic links CHORUS/MiX symbolic links behave exactly as symbolic links in BSD
UNIX. When a symbolic link is encountered during pathname
analysis, the value of the symbolic link and the remainder of the origi-
nal pathname are concatenated and the analysis continues.

symbolic port An extension to the UNIX file system, which associates a file system
entry with the CHORUS port of a server able to respond to file system
requests. For example, when a symbolic port is encountered during
pathname analysis, the remainder of the pathname is forwarded in a
request to the port with which it is associated. Examples of the use of
symbolic ports include interconnecting file systems, implementing a
mirrored file system, and providing symbolic process tree manipula-
tion.

system actors Actors whose threads are trusted.

system address space A range of virtual addresses, shared by all actors. Only supervisor
threads are allowed to read and modify memory within this range of
addresses.

thread A flow of control within an actor in the CHORUS system. Each thread
is associated with an actor and defines a unique execution state. An
actor may contain multiple threads; the threads share the resources of
that actor, such as memory regions and ports, and are scheduled
independently.

thread context switch A switch from one thread context to another, causing a new machine
state to be loaded. This thread context switch may or may not imply
an address space context switch, depending on whether or not the new
thread executes within the same address space as the previous thread.

trusted thread A CHORUS thread that is allowed by the CHORUS Nucleus to perform
sensitive Nucleus operations, such as changing protection identifier
values. Threads of system actors and supervisor threads are trusted by
the CHORUS Nucleus.

UI See unique identifier.

UILS See unique identifier location service.

unique identifier An identifier used for naming resources within the CHORUS system.
These identifiers are guaranteed to be unique over time for all CHORUS

sites within a CHORUS domain. They are constructed from a large,
sparse name space.

unique identifier location service
A CHORUS service that permits the CHORUS Nucleus to determine the
site location of an object which is represented by a unique identifier.

user actors CHORUS actors whose threads are user threads. Currently, user actors
have private user address spaces.

user address space A range of virtual addresses whose contents are private to each user
actor.

user threads CHORUS threads that operate in unprivileged mode. User threads tem-
porarily become supervisor threads while executing hardware traps.
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u_thread A thread within a CHORUS/MiX process. U_threads are implemented
using CHORUS threads and have extra state associated with them which
is used to provide UNIX semantics. For accounting reasons, most
operations performed by u_threads are dispatched by the Process
Manager.
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