
COEN6741
Chap 2.19/23/2003

(Dr. Sofiène Tahar)

COEN6741

Computer Architecture and Design

Chapter 2

Instruction Set Principles

COEN6741
Chap 2.29/23/2003

Outline
• Introduction
• ISA Classes
•Addressing Modes
•Operands Type and Size
• Instruction Operations
• Instructions Formats
•Compiler Considerations
•MIPS R3000 Case Study

COEN6741
Chap 2.39/23/2003

Review: Organization

• All computers consist of five components
– Processor: (1) datapath and (2) control
– (3) Memory
– (4) Input devices and (5) Output devices

• Not all “memory” are created equally
– Cache: fast (expensive) memory are placed closer to the

processor
– Main memory: less expensive memory--we can have more

• Input and output (I/O) devices have the messiest
organization
– Wide range of speed: graphics vs. keyboard
– Wide range of requirements: speed, standard, cost ...
– Least amount of research (so far)

COEN6741
Chap 2.49/23/2003

Review: Computer System Components

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

• All have interfaces & organizations

COEN6741
Chap 2.59/23/2003

Review: Instruction Set Design

instruction set

software

hardware

Which part is easier to change?

COEN6741
Chap 2.69/23/2003

Review: Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

COEN6741
Chap 2.79/23/2003

Instruction Set Architecture:
What must be specified?

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

• Instruction Format or Encoding
– how is it decoded?

• Location of operands and result
– where other than memory?
– how many explicit operands?
– how are memory operands located?
– which can or cannot be in memory?

• Data type and Size
• Operations

– what are supported
• Successor instruction

– jumps, conditions, branches
- fetch-decode-execute is implicit!

COEN6741
Chap 2.89/23/2003

Basic ISA Classes

Comparison:

Bytes per instruction? Number of Instructions? Cycles per instruction?

COEN6741
Chap 2.99/23/2003

Basic ISA Classes
Accumulator:
1 address add A acc acc + mem[A]
1+x address addx A acc acc + mem[A + x]

Stack:
0 address add tos tos + next

General Purpose Register:
2 address add A B EA(A) EA(A) + EA(B)
3 address add A B C EA(A) EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra Rb + Rc

load Ra Rb Ra mem[Rb]
store Ra Rb mem[Rb] Ra

COEN6741
Chap 2.109/23/2003

Comparing Number of Instructions

Code sequence for C = A + B for four classes of
instruction sets:

Stack Accumulator Register Register
(register-memory) (load-store)

Push A Load A Load R1,A Load R1,A
Push B Add B Add R1,B Load R2,B
Add Store C Store C, R1 Add R3,R1,R2
Pop C Store C,R3

COEN6741
Chap 2.119/23/2003

General Purpose Registers Dominate

• 1975-1995 all machines use general purpose registers

• Advantages of registers
• registers are faster than memory
• registers are easier for a compiler to use

- e.g., (A*B) – (C*B) – (A*D) can do multiplies in any order
vs. stack

• registers can hold variables
- memory traffic is reduced, so program is sped up

(since registers are faster than memory)
- code density improves (since register named with fewer bit

than memory location)

COEN6741
Chap 2.129/23/2003

General Purpose Registers Dominate

• 1975-1995 all machines use general purpose
registers

• Advantages of registers
– registers are faster than memory
– registers are easier for a compiler to use
– e.g., (A*B) – (C*B) – (A*D) can do multiplies in any

order vs. stack
– registers can hold variables
– memory traffic is reduced, so program is sped up

(since registers are faster than memory)
– code density improves (since register named with

fewer bits than memory location)

COEN6741
Chap 2.139/23/2003

Classification of GPR Architectures

Memory Max. # Type of Examples
Addresses Operands Architecture

0 3 Register-Register Alpha,ARM, MIPS,
PowerPC, Sparc

1 2 Register-Memory IBM360/370,Intel80x86,
MC68000, TI TMS320C54x

2 2 Memory-Memory VAX

3 3 Memory-Memory VAX

COEN6741
Chap 2.149/23/2003

Instruction Classes (Summary)

Expect new instruction set architecture to
use general purpose register

Pipelining (performance) expect it to use
Load/Store variant of GPR ISA

COEN6741
Chap 2.159/23/2003

Memory Addressing

• Since 1980 almost every machine uses addresses
to level of 8-bits (byte)

• Two questions for design of ISA:
1. Since we read a 32-bit word as four loads of bytes

from sequential byte addresses or as one load word
from a single byte address, how do byte addresses
map onto words?

2. Can a word be placed on any byte boundary?

COEN6741
Chap 2.169/23/2003

Addressing Objects: Endianess and Alignment
• Big Endian: address of most significant byte =
word address (xx00 = Big End of word)
– IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: address of least significant byte =
word address (xx00 = Little End of word)
– Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

Alignment: require objects fall on
Address that is multiple of their size.

0 1 2 3

Aligned

Not
Aligned

msb lsb
0 1 2 3big endian byte 0

3 2 1 0little endian byte 0
msb lsb

COEN6741
Chap 2.179/23/2003

Addressing Modes
Addressing mode Example Meaning

Register Add R4,R3 R4 R4+R3

Immediate Add R4,#3 R4 R4+3

Displacement Add R4,100(R1) R4 R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 R4+Mem[R1]

Indexed / Base Add R3,(R1+R2) R3 R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 R1+Mem[R2]; R2 R2+d

Auto-decrement Add R1,–(R2) R2 R2–d; R1 R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 R1+Mem[100+R2+R3*d]
COEN6741
Chap 2.189/23/2003

Addressing Mode Usage

COEN6741
Chap 2.199/23/2003

Addressing Mode Usage (Summary)

3 programs measured on machine with all address modes (VAX)

• Displacement: 42% avg, 32% to 55 75%

• Immediate: 33% avg, 17% to 43% 85%

• Register deferred (indirect): 13% avg, 3% to 24%

• Scaled: 7% avg, 0% to 16%

• Memory indirect: 3% avg, 1% to 6%

• Misc: 2% avg, 0% to 3%

75% displacement & immediate

88% displacement, immediate & register indirect
COEN6741
Chap 2.209/23/2003

Displacement Address Size?

0%

10%

20%

30%

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15

Int. Avg. FP Avg.

Address Bits

• Avg. of 5 SPECint92 programs v. avg. 5 SPECfp92 programs
• X-axis is in powers of 2: 4 => addresses > 23 (8) and < 2 4

(16)
• 1% of addresses > 16-bits
• 12 - 16 bits of displacement needed

COEN6741
Chap 2.219/23/2003

Displacement Address Size?

Alpha architecture.
SPEC CPU2000 and CINT2000 and CFP2000

COEN6741
Chap 2.229/23/2003

Alpha architecture.
SPEC CPU2000 and CINT2000 and CFP2000

Immediate Addressing

COEN6741
Chap 2.239/23/2003

Addressing Modes (Summary)

• Data Addressing modes that are important:
Displacement
Immediate
Register Indirect

• Displacement size should be 12 to 16 bits

• Immediate size should be 8 to 16 bits

A similar measurement on the Vax showed that
20% to 25% of immediates were longer than 16 bits.

COEN6741
Chap 2.249/23/2003

Data Types
Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte
16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code
16 bit unicode (used in Java) is gaining popularity

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
2's Complement

Floating Point:
Single Precision
Double Precision
Extended Precision

M x R
E How many +/- #'s?

Where is decimal pt?
How are +/- exponents

represented?

exponent

base
mantissa

IEEE Standard 754

COEN6741
Chap 2.259/23/2003

Operand Size Usage

Support these data sizes and types:
•

• 8-bit, 16-bit, 32-bit integers and
• 32-bit and 64-bit IEEE 754 floating-point COEN6741

Chap 2.269/23/2003

Typical Operations
Data Movement Load (from memory)

Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear
Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return

Interrupt trap, return

Synchronization test & set (atomic r-m-w)

String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)

COEN6741
Chap 2.279/23/2003

Top 10 80x86 Instructions
Rank Instruction Integer average percent executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%

Simple instructions dominate instruction frequency
COEN6741
Chap 2.289/23/2003

Instruction Operation (Summary)

Support these simple instructions, since they
will dominate the number of instructions executed:

load

store

add, subtract, move register-register, and, shift

compare equal, compare not equal

branch, jump, call, return;

COEN6741
Chap 2.299/23/2003

Instruction for Control Flow

• Conditional branches
• Jumps
• Procedure calls
• Procedure returns

COEN6741
Chap 2.309/23/2003

Methods of Testing Condition

• Condition Codes (80x86,ARM,PowerPC,Sparc)
Processor status bits are set as a side-effect of
arithmetic instructions (possibly on Moves) or explicitly by
compare or test instructions.
e.g.: add r1, r2, r3

bz label

• Condition Register (Alpha, MIPS)
e.g.: cmp r1, r2, r3

bgt r1, label

• Compare and Branch (PA-RISC, VAX)
e.g.: bgt r1, r2, label

COEN6741
Chap 2.319/23/2003

Frequency of Types of Compares

Frequency of comparison
types in branches

0% 50% 100%

EQ/NE

GT/LE

LT/GE

37%

23%

40%

86%

7%

7%

Int Avg.

FP Avg.

COEN6741
Chap 2.329/23/2003

Condition Codes
Setting CC as side effect can reduce the # of instructions

X: .
.
.

SUB r0, #1, r0
BRP X

X: .
.
.

SUB r0, #1, r0
CMP r0, #0
BRP X

vs.

But also has disadvantages:

• not all instructions set the condition codes;
which do and which do not often confusing!
e.g., shift instruction sets the carry bit

• dependency between the instruction that sets the CC and the one
that tests it: to overlap their execution, may need to separate them
with an instruction that does not change the CC

ifetch read compute write

ifetch read compute write

New CC computedOld CC read

COEN6741
Chap 2.339/23/2003

Conditional Branch Distance

Bits of Branch Dispalcement

0%
10%
20%
30%
40%

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15

Int. Avg. FP Avg.

Distance from branch in instructions 2i => < ±2i-1 & > 2i-2

25% of integer branches are > 2 to < 4 or -2 to -4 instructions
COEN6741
Chap 2.349/23/2003

How far are branch targets?

COEN6741
Chap 2.359/23/2003

Conditional Branch (Summary)

PC-relative since most branches are
relatively close to the current PC address

At least 8 bits suggested (± 128
instructions)

Less than or Equal most important for integer
programs (76%)

COEN6741
Chap 2.369/23/2003

Instruction Format

• If have many memory operands per
instructions and many addressing modes,

Address Specifier per operand

• If have load-store machine with 1 address per
instruction and one or two addressing modes

Encode addressing mode in the opcode

COEN6741
Chap 2.379/23/2003

Generic Examples of Instruction Format Widths

COEN6741
Chap 2.389/23/2003

Instruction Formats
Variable:
Fixed:

Hybrid:

…

• Addressing modes
– each operand requires address specifier => variable format

• code size => variable length instructions
• performance => fixed length instructions

– simple decoding, predictable operations

• With load/store ISA, only one memory address and
few addressing modes

simple format, address mode given by opcode

COEN6741
Chap 2.399/23/2003

Instruction Formats (Summary)

• If code size is most important, use variable
length instructions

• If performance is over is most important, use
fixed length instructions

• Discuss the different architectures for
different machines, see Appendix D (Intel
80x86), E (VAX), F (IBM 360/370)

COEN6741
Chap 2.409/23/2003

Compiler Considerations

COEN6741
Chap 2.419/23/2003

Compiler Considerations

COEN6741
Chap 2.429/23/2003

Compiler Considerations

• Ease of compilation
Orthogonality: no special registers, few special

cases, all operand modes available with any data
type or instruction type
Completeness: support for a wide range of
operations and target applications
Regularity: no overloading for the meanings of
instruction fields
Streamlined: resource needs easily determined

• Register Assignment is critical too

• Easier if lots of registers

COEN6741
Chap 2.439/23/2003

Compiler Considerations (Summary)

•

Provide at least 16 general purpose
registers plus separate floating-point
registers

Be sure all addressing modes apply to all
data transfer instructions

Aim for a minimalist instruction set

COEN6741
Chap 2.449/23/2003

Case Study: MIPS

• 32-bit fixed format instructions (3 formats: R, I, J)
• 32 64-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

- partitioned by software convention
• 3-address, reg-reg arithmetic instructions
• Single address mode for load/store: base+displacement

– no indirection, scaled
• 16-bit immediate plus LUI
• Simple branch conditions

- compare against zero or two registers for equal zero
- no integer condition codes

• Delayed branch
- execute instruction after the branch (or jump) even if
the branch is taken (Compiler can fill a delayed branch with
useful work about 50% of the time)

COEN6741
Chap 2.459/23/2003

• Use general purpose registers with a load-store
architecture: YES

• Provide at least 16 general purpose registers plus
separate floating-point registers: 31 GPR & 32 FPR

• Support basic addressing modes: displacement (with
an address offset size of 12 to 16 bits), immediate
(size 8 to 16 bits), and register deferred; : YES: 16
bits for immediate, displacement (disp=0 => register
deferred)

• All addressing modes apply to all data transfer
instructions : YES

Case Study: MIPS

COEN6741
Chap 2.469/23/2003

Case Study: MIPS

• Use fixed instruction encoding if interested in
performance and use variable instruction encoding if
interested in code size : Fixed

• Support these data sizes and types: 8-bit, 16-bit,
32-bit integers and 32-bit and 64-bit IEEE 754
floating point numbers: YES

• Support these simple instructions, since they will
dominate the number of instructions executed: load,
store, add, subtract, move register-register, and,
shift, compare equal, compare not equal, branch (with
a PC-relative address at least 8-bits long), jump, call,
and return: YES

• Aim for a minimalist instruction set: YES

COEN6741
Chap 2.479/23/2003

MIPS: Load/Store Architecture

MEM reg

Substantial increase in instructions
Decrease in data BW (due to many registers)
Even more significant decrease in CPI (pipelining)
Cycle time, Real estate, Design time, Design complexity

• 3 address GPR
• Register to register arithmetic
• Load and store with simple addressing
modes (reg + immediate)

• Simple conditionals
- compare ops + branch z
- compare & branch
- condition code + branch on condition

• Simple fixed-format encoding

op

op

op

r r r

r r immed

offset

R
I

J

COEN6741
Chap 2.489/23/2003

MIPS: Instruction Set
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage
2^32 x bytes
31 x 32-bit GPRs (R0=0)
32 x 32-bit FP regs (paired DP)
HI, LO, PC

Data types ?
Format ?
Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL, LWR
SB, SH, SW, SWL, SWR

Control
J, JAL, JR, JALR
BEq, BNE, BLEZ, BGTZ, BLTZ, BGEZ, BLTZAL, BGEZAL

32-bit instructions on word boundary

COEN6741
Chap 2.499/23/2003

MIPS: Addressing Modes & Formats

• Simple addressing modes
• All instructions 32 bits wide

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

COEN6741
Chap 2.509/23/2003

MIPS: Instruction Formats

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

COEN6741
Chap 2.519/23/2003

MIPS: Instruction Formats

COEN6741
Chap 2.529/23/2003

MIPS ISA (Summary)

• Instruction Categories
– Load/Store
– Computational
– Jump and Branch
– Floating Point

» coprocessor
– Memory Management
– Special

R0 - R31

PC
HI
LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

• 3 Instruction Formats: all 32 bits wide

Registers

COEN6741
Chap 2.539/23/2003

Cray-1: The Original RISC

Op
015

Rd Rs1 R2

2689

Load, Store and Branch

35

Op
015

Rd Rs1 Immediate
2689 35 15 0

Register-Register

COEN6741
Chap 2.549/23/2003

VAX-11: The Canonical CISC

• Rich set of orthogonal address modes
– immediate, offset, indexed, autoinc/dec, indirect,

indirect+offset
– applied to any operand

• Simple and complex instructions
– synchronization instructions
– data structure operations (queues)
– polynomial evaluation

OpCode A/M A/M A/M

Byte 0 1 n m

• Variable format, 2 and 3 address instruction

COEN6741
Chap 2.559/23/2003

Chapter 2: Summary#1

• ISA: GPR with Load/Store

• Addressing modes:
– Displacement (12 to 16 bits)
– Immediate (8 to 16 bits)
– Register deferred

• Instruction Set Operations:
– Load, store
– Arithmetic, logic, shift, compare
– Branch (PC-relative 8 bit), jump, call, return

• Type & Size of Operands:
– Integer 8, 16 and 32 bit
– Floating-point (IEEE 754) 32 and 64 bit

COEN6741
Chap 2.569/23/2003

Chapter 2: Summary#2

• Instruction Set Encoding:
– Fixed encoding
– Hybrid encoding

• Size of Register File:
– At least 16 GP registers
– Separate integer (32 bit) and FP (64 bit) register

files

• CISC vs. RISC:
– Pros. and cons
– Intel: typical CISC
– Alpha: typical RISC

• MIPS R3000 Architecture

