

Indium8.9HF Halogen-Free Solder Paste

Technology Drivers

- High reliability
 - Server, telecommunication, automotive
- Miniaturization
 - Multi-Functionality
 - PDA, Cell Phone, IPOD
 - Board Real Estate is a Premium
 - Components Continue to "Shrink"
- High Density on Large Boards
 - 0201 on Servers
 - CSP on Motherboards

Materials & Applications Development Primary Goals

- Full Product Characterization
 - Prior to Release
- Shared Projects & Test Vehicles
- Joint Projects with Industry Leaders
- Research & Development
 - Assist in Product Characterization
 - New Product Design Challenges
- Quality Assurance
 - Testing Methods & Criteria
- Verify Indium Materials exceed Industry & Customer Requirements!

New Solder Paste Technology Performance Requirements

- Printability
 - Area Ratio's below 0.66
 - High Slump Resistance
- Voiding
 - Micro Via-in-Pad
 - BGA
 - QFN (leadless)
- Wetting
 - Pb-Free Finishes
 - R-Nets & QFN's
 - Long Air Profiles
- Residue
 - Halogen-Free
 - Color
 - Probe-ability

Halogen-Free vs. Halide-Free

Halogen-Free

- It does not contain Cl, Br, F, I, At (although most just looking at Cl and Br)
- Concern is Environmental
 - Uncontrolled incineration
 - Dioxin formation
- No legislation around halogen elimination
- Flame Retardants
- Issues:
 - Do the halogen free PCB's impact end product reliability?

Halide-Free

- Should be halide ion free as it is defined in electronics as not containing ionic halides.
- Concern is Reliability
 - Corrosion
 - Dendritic Growth
- Activators in flux
- Issues:
 - Is halide free actually more reliable than halide contained?
 - How do you test fluxes for halide content?

Ionic vs. Covalent Halides

- Ionic halide bonds are typically easily broken; creates free halide to react with moisture to cause corrosion at room temperature
- Covalently bonded halides are much more stable at room temperature; bonds not easily broken
 - At elevated temperatures (such as solder temps) the covalent bonds are broken and halide can react with oxide

Some Ionically Bonded Halides			
Name	Structure	Melting point (°C)	
Dimethylamine hydrochloride	(CH ₃) ₂ NH·HCl	170	
Diethylamine hydrochloride	(C ₂ H ₅) ₂ NH·HCl	227	
Diethylamine hydrobromide	(C ₂ H ₅) ₂ NH·HBr	218	
Aniline hydrochloride	C ₆ H ₅ NH ₂ ·HCl	196	
Pyridine hydrobromide	C ₅ H ₅ N·HBr	200d	
Pyridine hydrochloride	C ₅ H ₅ N·HCl	145	
Ethanolamine hydrochloride	H ₂ NCH ₂ CH ₂ OH·HCl	84	
Diethanolamine hydrochloride	(HOCH ₂ CH ₂) ₂ NH·HCl	liquid	
Triethanolamine hydrochloride	(HOCH ₂ CH ₂) ₃ N·HCl	177	

oken and halide can react with oxide Some Covalently Bonded Halides Image: CH2Cl H2C=CH-CH2B: Allyl bromide 3-Bromo-1-propene CH2-CH2 Image: CH2-CH2

Testing For Halogen Content

- Silver Chromate Paper Test (qualitative)
 - Changes color in the presence of Cl⁻ or Br⁻
 - Does not detect Covalently bonded halides
- Titration (quantitative)
 - Solution titrated to endpoint and CI- equivalent is calculated
 - Only detects ionic halides and many chemicals can cause false positive results
- Ion Chromatography (quantitative)
 - Separation of ions and polar chemicals to quantify the amount of halides in a flux
 - Only detects ionic halides and many chemicals can cause false positive results
- Oxygen Bomb + Ion Chromatography
 - Flux is burned at high temperature breaking covalent bonds, volatilizing organics and leaving behind only halide and inorganics in the ash
 - Ion chromatography is run on the ash providing a "true" identification of halide content.

Indium8.9HF Halogen Summary

- Silver Chromate Paper Test (qualitative)
 - Changes color in the presence of Cl⁻ or Br⁻
 - Does not detect Covalently bonded halides
 - Indium8.9HF: PASS
- Ion Chromatography (quantitative)
 - Separation of ions and polar chemicals to quantify the amount of halides in a flux
 - Only detects ionic halides and many chemicals can cause false positive results
 - Indium8.9HF: PASS

• Oxygen Bomb + Ion Chromatography

- Flux is burned at high temperature breaking covalent bonds, volatilizing organics and leaving behind only halide and inorganics in the ash
- Ion chromatography is run on the ash providing a "true" identification of halide content.
- Indium8.9HF RAW FLUX: PASS
- Indium8.9HF FLUX RESIDUE: PASS

Indium8.9HF: 3rd Party Oxygen Bomb Testing

TEST REPORT

THE REPORTED TEST RESULTS RELATE ONLY TO THE (TEM(S) TESTED

NSL Lab No: 0821541

Sample ID: 8.9HF(F)

Tests	Results/Units	Methods
Br	<0.001%	Parr Bomb followed by Ion Chromatography
CI	<0.001%	Parr Bomb followed by Ion Chromatopraphy
F	<0.001%	Parr Bomb followed by Ion Chromatopraphy

Legend

•(F) Signifies Raw Flux

•(FR) Signifies Flux Residue

NSL Lab No: 0821542

Sample ID: 8.9HF(FR)

Tests	Results/Units	Methods
Br	<0.001%	Parr Bomb followed by ion Chromatooraphy
CI	<0.001%	Parr Bomb followed by Ion Chromatography
F	<0.001%	Parr Bomb followed by Ion Chromatography

Reporting Officer: C Carm D'Agostino , Wet Chem ER 1 Supervisor

Validation of Printability: Response to Pause

- Powder Sizes
 - Type 3
 - Type 4
- Stencil
 - 5 mil thickness
 - Laser-cut
 - No electropolish
- Aperture Pattern
 - Mask design pads (SMD)
 - Area Ratio
 - A.R. = 0.80 [16 mil circle (C16)]
 - A.R. = 0.60 [12 mil circle (C12)]
 - A.R. = 0.50 [10 mil circle (C10)]
- Motorola RTP
 - ZeroHr; OneHr; TwoHr; FourHr

 $A_{(\text{opening})} = (\pi)(D/2)^2$

 $\mathsf{A}_{(\text{walls})} = (\pi)(\mathsf{D})(\mathsf{t})$

Indium8.9HF: Transfer Efficiency vs. Indium8.9

Test Details: 12mil round CSP deposit analyzed; 5-mil laser cut stencil

Procedure: Print 12 boards; pause 1-hour; print 12 boards

Indium8.9HF: Transfer Efficiency vs. Indium5.8LS

D : 2576 COMPID : R8H_SMD

Test Details: 8x50-mil rectangle deposit analyzed; 5-mil laser cut stencil

Procedure: Print 6; pause 1-hour; print 6; pause 1-hour; print 6; pause 2-hours; print 6

Indium8.9HF: No Slumping

Typical Paste

Indium8.9HF

CORPORATION

Indium8.9HF: Ultra-Low Via-in-Pad Voiding

•Profiles P1, P5, and P9 targeted

•4-mil microvia on a 12-mil Entek 106A OSP (11 mil aperture)

14 INDIUM CORPORATION CONFIDENTIAL

Indium8.9HF solder paste exhibits less than 10% voiding across all profiles.

Indium8.9HF: Wide Profile Window

Indium8.9HF: Clear, Pin Testable Residue

Indium8.9HF: Wetting & Solder Balling

Indium8.9HF: Harsh Profile Graping Improvement

18 *INDIU*

Indium8.9HF: Head-in-Pillow (HIP) Reduction

Test Procedure

- Print paste onto Cu coupon
- Reflow paste on hot plate
- Drop sphere into molten solder at 10 second intervals beginning 10 seconds after going molten

Indium8.9HF: HIP Reduction

Discussion

