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Abstract—The convergence of Laplace transforms on time
scales is generalized to the bilateral case. The bilateral Laplace
transform of a signal on a time scale subsumes the continuous
time bilateral Laplace transform, and the discrete time bilateral
z-transform as special cases. As in the unilateral case, the
regions of convergence (ROCs) time scale Laplace transforms
are determined by the time scale’s graininess. ROCs for the
bilateral Laplace transforms of double sided time scale expo-
nentials are defined by two modified Hilger circles. The ROC
is the intersection of points external to modified Hilger circle
determined by behavior for positive time and the points internal
to the second modified Hilger circle determined by negative time.
Since graininess lies between zero and infinity, there can exist
conservative ROCs applicable for all time scales. For continuous
time (ℝ) bilateral transforms, the circle radii become infinite
and results in the familiar ROC between two lines parallel to
the imaginary z axis. Likewise, on ℤ, the ROC is an annulus.
For signals on time scales bounded by double sided exponentials,
the ROCs are at least that of the double sided exponential. The
Laplace transform is used to define the boxminus shift through
which time scale convolution can be defined. Generalizations of
familiar properties of signals on ℝ and ℤ include identification
of the identity convolution operator, the derivative theorem, and
characterizations of wide sense stationary stochastic processes
for an arbitrary time scales including autocorrelation and power
spectral density expressions.

Keywords time scales, Laplace transform, z-transforms,
region of convergence, Hilger circle, stationarity, autocorre-
lation, power spectral density, Hilger delta

I. INTRODUCTION

A time scale, T, is any collection of closed intervals on the
real line. Continuous time, ℝ, and discrete time ℤ, are special
cases. The calculus of time scales was introduced by Hilger
[6]. Time scales have found utility in describing the behavior
of dynamic systems [1], [7] and have been applied to control
theory [2], [3], [5].

This is the second in a series of monographs outlining
regions of convergence and applications of Laplace transforms
on time scales. The first paper was dedicated to the causal (or
one sided) Laplace transform on a time scale [12]. This paper
extends these results to the bilateral Laplace transform on a
time scale and its use in defining convolution on an arbitrary
time scale. Time scale convolution, in turn, allows modeling
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of wide sense stationary stochastic processes on time scales
using autocorrelation and power spectral density descriptors.

For the convergence problem, there are three cases of
bilateral time scales considered.

1) For time scales whose graininess is bounded from above
and below over the entire time scale or asymptotically,

2) For time scales whose asymptotic graininess approaches
a constant. ℝ and ℤ are special cases. All time scales in
this class are also asymptotically a member of the time
scales in 1).

3) For all time scales. This can be considered a limiting
special case of 1) since all time scales are bounded
between zero and infinity.

II. TIME SCALES

Our introduction to time scales is limited to that needed to
establish notation. A more detailed explanation is in our first
paper [12] and a complete rigorous treatment is in the text by
Bohner and Peterson [1].

1) A time scale, T, is any collection of closed intervals
on the real line. We will assume the origin is always a
component of the time scale.

2) The graininess of a time scale at time t ∈ T is defined
by

¹(t) =

(
inf

¿>t,¿∈T
¿

)
− t.

3) The Hilger derivative of an image x(t) at t ∈ T is

xΔ(t) :=
x(t¾)− x(t)

¹(t)

where t¾ := t + ¹(t). When ¹(t) = 0, the Hilger
derivative is interpreted in the limiting sense and

xΔ(t) =
d

dt
x(t).

4) If y(t) = xΔ(t), then the definite time scale integral is
∫ b

a

y(t)Δt = x(b)− x(a).

5) When x(0) = 1, the solution to the Hilger differential
equation,

xΔ(t) = zx(t),
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is x(t) = ez(t) where the generalized exponential is

ez(t) := exp

(∫ t

¿=0

ln (1 + z¹(¿))

¹(¿)
Δ¿

)
.

As a consequence, for z = 0,

e0(t) = 1. (II.1)

6) The circle minus operator is defined by

y ⊖ z :=
y − z

1 + z¹(t)
.

The notation ⊖z in interpreted as y ⊖ z with y = 0.
7) The generalized exponential has the property that [1]

e⊖z(t) =
1

ez(t)
.

III. BILATERAL LAPLACE

Let T denote a bilateral time scale and let f(t) be an image
on T. Define the bilateral Laplace transform as

F (z) :=

∫ ∞

−∞
f(t)e¾⊖z(t)Δt (III.1)

where e¾⊖z(t) := e⊖z(t
¾). The continuous time bilateral

Laplace and discrete time z transforms are special cases.
Here are some properties.
1) Integration property.

F (0) =

∫ ∞

−∞
f(t)Δt.

This follows immediately from (III.1) and (II.1).
2) The derivative theorem. When f(t)e⊖z(t) goes to zero

as t → ±∞ and F (z) converges,

fΔ(t) Ã→ zF (z). (III.2)

Proof:

fΔ(t) Ã→
∫ ∞

−∞
fΔ(t)e¾⊖z(t)Δt.

Using integration by parts [1]

fΔ(t) Ã→ f(t)e⊖z(t)∣∞−∞ −
∫ ∞

−∞
f(t) [e⊖z(t)]

Δ
Δt

= −
∫ ∞

−∞
f(t)(⊖z)e⊖z(t)Δt

Since −(⊖z)e⊖z(t) = ze¾⊖z(t), the result follows im-
mediately.

3) Special cases.
∙ For continuous time, T = ℝ, we have

e¾⊖z(t) = e−zt

and (III.1) becomes the conventional bilateral
Laplace transform

F (z) =

∫ ∞

−∞
f(t)e−ztdt.

∙ For discrete time, T = ℤ, we have

e¾⊖z(tn) = (1 + z)−(n+1)

and (III.1) becomes

F (z) =
∞∑

n=−∞
f(n)(1 + z)−(n+1).

The bilateral z transform is

FZ(z) =
∞∑

n=−∞
f(n)z−n. (III.3)

Thus
F (z) =

FZ(z + 1)

z + 1

or, equivalently

FZ(z) = zF (z − 1).

Note, then, that the conventional z transform is
related to a shifted time scale Laplace transform
for T = ℤ. For example, the unit circle for the
z transform is centered about the origin. The time
scale version is the same circle now shifted to be
centered at z = −1.

4) Variation. An alternate form of the bilateral transform
which will prove useful in the characterization of sta-
tionary stochastic processes on a time scale is

F⊖(z) :=
∫ ∞

−∞
f(t)e¾z (t)Δt. (III.4)

Although the analysis of convergence in this paper is for
F (z), the convergence properties for F⊖(z) are similar
and follow immediately.

We can break up the transform definition in (III.1) as

F (z) = F+(z) + F−(z) (III.5)

where
F+(z) =

∫ ∞

0

f(t)e¾⊖z(t)Δt

and

F−(z) =
∫ 0

−∞
f(t)e¾⊖z(t)Δt

We recognize that
F+(z) = Fu(z)

where Fu(z) is the notation for the causal Laplace transform
on a time scale [12]. Fu(z) is alternately referred to as
the unilateral or one sided Laplace transform. The regions
of convergence for the causal Laplace transform has been
established for causal functions with finite area and for
transcendental functions arising from solution of linear time
invariant differential equations on time scales [12].

A. Asymptotic Graininess Bounds

Here are some graininess bounds useful in determining the
convergence of bilateral transforms. All upper bounds are
bounded by infinity and all lower bounds must equal or exceed
zero.

(1) Constant Asymptotic Graininess. The graininess of some
time scales asymptotically approach a constant at t =
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±∞. In such cases, we define the constant asymptotic
graininesses as

¹̄+ = lim
t→∞

¹(t) and ¹̄− = lim
t→−∞

¹(t)

More rigorously, ¹̄+ is the positive constant asymptotic
graininess if

lim
t→∞

∣¹(t)− ¹̄+∣ = 0.

Likewise, the negative constant asymptotic graininess

lim
t→−∞

∣¹(t)− ¹̄−∣ = 0.

(2) Bounds. Graininess on a time scale is asymptotically be
bounded from above and below.

∙ Entire Bounds.
– The positive upper and lower entire bounds for

graininess are

¹́0
+ = sup

t∈T, t≥0
¹(t)

and
¹̀0
+ = inf

t∈T, t≥0
¹(t).

– The negative upper and lower bounds for graini-
ness are

¹́0
− = sup

t∈T, t<0
¹(t)

and
¹̀0
− = inf

t∈T, t<0
¹(t).

∙ Attained Bounds.
– The positive upper and lower attained bounds for

graininess are

¹́T
+ = sup

t∈T, t≥T
¹(t)

and
¹̀T
+ = inf

t∈T, t≥T
¹(t).

– The negative upper and lower attained bounds for
graininess are

¹́T
− = sup

t∈T, t<T
¹(t)

and
¹̀T
− = inf

t∈T, t<T
¹(t).

∙ Asymptotic Bounds.
– The positive upper and lower asymptotic bounds

for graininess are

¹́∞
+ = lim

T→∞
¹́T
+

= lim
T→∞

(
sup

t∈T, t≥T
¹(t)

)

and

¹̀∞
+ = lim

T→∞
¹̀T
+

= lim
T→∞

(
inf

t∈T, t≥T
¹(t)

)
.

– The negative upper and lower asymptotic bounds
for graininess are

¹́∞
− = lim

T→−∞
¹́T
−

= lim
T→−∞

(
sup

t∈T, t≤T
¹(t)

)

and

¹̀∞
− = lim

T→−∞
¹̀T
−

= lim
T→−∞

(
inf

t∈T, t≤T
¹(t).

)
(III.6)

When the positive or negative asymptotic bounds are
equal, a time scale has a constant positive and/or nega-
tive constant asymptotic graininess.

(3) Global Asymptotic Bounds. Note that, since ¹̀+ and ¹̀−
are nonnegative, and ¹́+ < ∞ and ¹́− < ∞, we can
always set global upper and lower bounds for both the
positive and negative cases as ∞ and 0.

B. Regions of convergence on the z plane.

Define a modified Hilger circle parameterized by a (possibly
complex) number ® and a graininess ¹, as the locus of points
for which ∣∣∣∣z +

1

¹

∣∣∣∣ =
∣∣∣∣®+

1

¹

∣∣∣∣ .

The circle is centered at −1/¹ on the negative real axis on
the z plane and passes through the point ® [12]. From this
definition we offer the following definitions of regions on the
z plane.

(1) The region ℋ(®, ¹) contains all points outside of the
modified Hilger circle with parameters ® and ¹. ℋ̄(®, ¹)
is the region inside of the same circle.

(2) The regions ℛ(®, ¹̀, ¹́) and ℒ(®, ¹̀, ¹́), illustrated in
Figure 1, are defined as the intersections

ℛ(®, ¹̀, ¹́) = ℋ(®, ¹́) ∩ℋ(®, ¹̀) (III.7)

and

ℒ(®, ¹̀, ¹́) = ℋ̄(®, ¹́) ∩ ℋ̄(®, ¹̀). (III.8)

These regions have the obvious properties

ℛ(®, ¹, ¹) = ℋ(®, ¹) (III.9)

and
ℒ(®, ¹, ¹) = ℋ̄(®, ¹). (III.10)

(3) The regions D(®) and ℰ(®) are the limiting cases of ℛ
and ℒ. They are illustrated in Figure 2.

∙ Define
D(®) = ℛ(®, 0,∞).

D(®) consists of the intersection of all points ex-
ternal to a circle of radius ∣®∣ centered on the z
plane and all of the points to the right of the line
z = Re®.

∙ Likewise, let

ℰ(®) = ℒ(®, 0,∞) (III.11)
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These regions have the property that [12]

D(®) ⊂ ℛ(®, ¹̀, ¹́).

and
ℰ(®) ⊂ ℒ(®, ¹̀, ¹́).

Fig. 1. Illustration of the regions ℛ(®, ¹̀, ¹́) and ℒ(®, ¹̀, ¹́). In each case,
the leftmost bold circle is centered on the negative real axis at −1/¹̀ and
the rightmost bold circle is centered on the negative real axis at −1/¹́. Both
circles pass through the point ®. The lightly shaded area, external to all of
the circles, are ℛ(®, ¹̀, ¹́). The darker shaded region, internal to the circles,
are ℒ(®, ¹̀, ¹́). The examples here illustrate the regions for different values
of ®. (a) Re® < 0. (b) Re® > 0. (c) ® is negative and real. Here, the region
ℒ is empty. (d) ® real and positive.

IV. A BILATERAL LAPLACE TRANSFORM

Clearly, if F+(u) converges in a region Z+ and F−(u)
converges in a region Z−, then F (u) converges at least in
the region

Z = Z+ ∩ Z−. (IV.1)

We can use this to find the region of convergence (ROC) of
the double exponential function defined by

e¯:®(t) :=

{
e®(t) ; t ≥ 0
e¯(t) ; t ≤ 0

(IV.2)

We will find useful the following shorthand notation

Fig. 2. Illustration of the regions D(®) and ℰ(®). In each case, the bold
circle is centered at the origin and passes through ®. The vertical line is
defined by the line z = Re®. The lightly shaded area are D(®). The darker
shaded region are ℰ(®). The examples here illustrate the regions for different
values of ®. (a) Re® < 0. (b) Re® > 0. (c) ® is negative and real. Here,
the region ℒ is empty. (d) ® real and positive.

∙ T(¹̄+) means T has a constant positive asymptotic grain-
iness of ¹̄+.

∙ T(¹̄−) means T has a constant negative asymptotic
graininess of ¹̄−.

∙ T(¹̀+, ¹́+) means T has lower and upper positive t
graininess bounds of ¹̀+ and ¹́+. These can be
∘ (¹̀0

+, ¹́
0
+),

∘ (¹̀T
+, ¹́

T
+), or

∘ (¹̀∞
+ , ¹́∞

+ ).
∙ T(¹̀−, ¹́−) means T has lower and upper negative t

graininess bounds of ¹̀− and ¹́−. These can be
∘ (¹̀0

−, ¹́
0
−),

∘ (¹̀T
−, ¹́

T
−), or

∘ (¹̀∞
− , ¹́∞

− ).
∙ T(0+,∞+) means T has lower and upper positive t

graininess bounds of 0 and ∞.
∙ T(0−,∞−) means T has lower and upper negative t
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graininess bounds of 0 and ∞.

Theorem IV.1. The bilateral Laplace transform of the double
exponential function, e¯:®(t), when it exists, is given by
F (z) = F+(z) + F−(z); z ∈ Z where

F+(z) =
1

z − ®
; z ∈ Z+, (IV.3)

F−(z) = − 1

z − ¯
; z ∈ Z− (IV.4)

and Z = Z+ ∩ Z−. The component ROC’s are

Z+ =

⎧
⎨
⎩

ℋ(®, ¹̄+) for T(¹̄+)
ℛ(®, ¹̀+, ¹́+) for T(¹̀+, ¹́+)
D(®) for T(0+,∞+)

(IV.5)

and

Z− =

⎧
⎨
⎩

ℋ̄(¯, ¹̄−) for T(¹̄−)
ℒ(¯, ¹̀−, ¹́−) for T(¹̀−, ¹́−)
ℰ(¯) for T(0−,∞−)

(IV.6)

A. Examples

1) Zero Asymptotic Graininess: Let ¹̄+ = ¹̄− = 0.
Continuous time, T = ℝ, is a special case as is the log time
scale

L = {tn∣tn = sgn(n) log(∣n∣+ 1);−∞ < n < ∞}.
For positive t, the region of convergence is

Z+ = ℋ(®, 0).

The corresponding Hilger circle has infinite radius and ℋ(®, 0)
is recognized as the set of all points to the right of the line
z = Re®. Likewise, for negative time,

Z− = ℋ̄(¯, 0).

contains all of the points to the left of the line z = Re¯. The
resultant slab of convergence, Z = Z+ ∩ Z−, is the familiar
region of convergence in the bilateral Laplace transform. It is
illustrated on the left of Figure 3,

Fig. 3. Left: ROCs for time scales with zero asymptotic graininess for both
positive and negative time. Continuous time, ℝ, is a special case. Right: ROCs
for time scales with unit asymptotic graininess for both positive and negative
time. Discrete time, ℤ, is a special case.

2) Unit Asymptotic Graininess: Let ¹̄+ = ¹̄− = 1.
Discrete time, T = ℤ, is a special case as is the time scale

S =
{
tn

∣∣∣tn = sgn(n)(∣n∣+
√
∣n∣);−∞ < n < ∞

}
.

It follows that

Z+ = ℋ(®, 1)

and

Z− = ℋ̄(¯, 1).

The intersection, an annulus region of convergence illustrated
on the right of Figure 3, is familiar in bilateral z transforms.
Instead of being centered at the origin, however, the circles
are centered at z = −1. This anomaly is an artifact of
inclusion of the bilateral z transform as a special case of the
bilateral Laplace transform on time scales. The conventional
z transform can be generated from Fb(u) using (III.3).

3) Periodic Graininess: A discrete time scale, D, is said
to have periodic graininess1 is there is a period N where
¹(tn) = ¹(tn+N ) for all values of n.

(a) The exponential for time scales with periodic graininess.
In general, for a discrete time scale [12]

ez(tn) =

⎧
⎨
⎩

∏n−1
k=0(1 + ¹(tk)z) ; n > 0

1 ; n = 0∏−1
k=n(1 + ¹(tk)z)

−1 ; n < 0

(IV.7)

We can break the products into periods. For t > 0, assume
there are

P =
⌊ n

N

⌋

replications of the graininess. Then

n−1∏

k=0

=
N−1∏

k=0

×
2N−1∏

k=N

×
3N−1∏

k=2N

× ⋅ ⋅ ⋅

×
(p+1)N−1∏

k=pN

× ⋅ ⋅ ⋅ ×
PN−1∏

k=(P−1)N

×
n−1∏

k=PN

=

⎡
⎣
P−1∏
p=0

⎛
⎝

(p+1)N−1∏

k=pN

⎞
⎠
⎤
⎦×

n−1∏

k=PN

=

[
P−1∏
p=0

Ã
N−1∏
q=0

)]
×

n−PN−1∏

k=0

where, in the second product we let q = k − Np and in the
third product q = k − NP . Imposing the periodicity of the
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graininess, we conclude that, for t > 0,

ez(tn) =

[
P−1∏
p=0

Ã
N−1∏
q=0

(1 + ¹(q + pN)

)]

×
n−PN−1∏

q=0

(1 + ¹(kq + PN)

=

[
P−1∏
p=0

Ã
N−1∏
q=0

(1 + ¹(q)

)]
×

n−PN−1∏
q=0

(1 + ¹(kq)

=
N−1∏
q=0

(1 + ¹(q))
P ×

n−PN−1∏

k=0

(1 + ¹(kq)

=
n−PN−1∏

q=0

(1 + ¹(q))
P+1

×
N−1∏

q=n−PN

(1 + ¹(q))
P (IV.8)

(b) ROCs for bilateral Laplace transforms of signals with
periodic time scales. For periodic time scales,

¹́0
+ = ¹́T

+ = ¹́∞
+ = ¹́0

− = ¹́T
− = ¹́∞

− .

We will collectively refer to all of these upper bounds as

¹́ =
N−1
max
m=0

¹(tn).

Likewise, the lower bound

¹̀0
+ = ¹̀T

+ = ¹̀∞
+ = ¹̀0

− = ¹̀T
− = ¹̀∞

− .

will be referred to collectively as

¹̀ =
N−1
min
n=0

¹(tn).

The ROC for the two sided exponential, e¯:®(t), follows as

Z = Z+ ∩ Z−
= ℛ(®, ¹̀, ¹́) ∩ ℒ(¯, ¹̀, ¹́)

Examples of this ROC are shown in Figures 4 through 7. In
each of these figures,

∙ the locations of ® and ¯ are labelled and depicted by dots
white in the middle fading to black at the dot’s edges,

∙ the center of the modified Hilger circles are shown with
a hollow dot, ∘, corresponding to the value −1/¹̀ on the
negative real axis of the z plane, and a solid dot, ∙, is
at −1/¹́ and is also on the negative real axis of the z
plane2,

∙ the ROC Z , if not empty, is blackened,
∙ the region Z+ = ℛ(®, ¹̀, ¹́) not in Z is shown lightly

shaded, and
∙ the region Z− = ℒ(¯, ¹̀, ¹́) not in Z is shown more

darkly shaded.
Figures 4 and 5 illustrate scenarios where ® and ¯ are real.

ROCs for complex ® and ¯ are shown in Figures 6 and 7. In
all cases, the blackened area, Z , is equal to the intersection
of (1) Z+ corresponding to the area outside the union of the
circles passing through ® with (2) Z− which is the area inside
the intersection of the ¯ circles.

Fig. 4. Illustration of the regions of convergence for time scales with periodic
graininess for the double sided exponential e¯:®(t) in (IV.2) when ® and ¯
are real and ¯ < ®. The regions of convergence are shown blackened in (a)
and (b). As value of ¯ starting from (b) increases with all other values fixed,
the smaller circle passing through ¯ eventually becomes subsumed in the
leftmost circle passing through ®. When this happens, the Z ROC is empty.
This is shown in (c) where, since ¯ = −1/¹̀, the smaller circle passing
through ¯ has shrunk to zero. As ¯ and ® move to the right with the circle
centers fixed, the ROC Z remains empty.

Fig. 5. This is the same case treated in Figure 4 except ¯ > ®. Each
illustration is the mirror image of that in Figure 4.

4) Zero Lower Bound and No Upper Bound: An example is
shown in Figure 8 using a time scale with no upper graininess
bound and a lower graininess bounds of zero.

B. Proof of Theorem IV.1

Using the decomposition in (III.5),

F+(z) =

∫ ∞

0

e®(t)e
¾
⊖z(t)Δt

This integral is equivalent to the causal time scale Laplace
transform of e®(t) and has been derived elsewhere [12].
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Fig. 6. An example of the ROC, Z , for the double exponential , e¯:®(t),
for Re¯ < Re® and Im¯ > Im® > 0. As the leftmost ® circle becomes
larger than the leftmost ¯ circle, there is no intersection and Z is empty. This
is illustrated in (c). Note that if ® and ¯ are interchanged in (a), (b), or (c),
the region Z will be empty.

The other component of the Laplace transform is similar.

F−(z) =

∫ 0

−∞
e¯(t)e

¾
⊖z(t)Δt

=

∫ 0

−∞

1

1 + ¹(t)z
e¯(t)e⊖z(t)Δt

=

∫ 0

−∞

1

1 + ¹(t)z
e¯⊖z(t)Δt

(IV.9)

Motivated by the ⊖ operator definition, we continue

F−(z) =
1

¯ − z

∫ 0

−∞

¯ − z

1 + ¹(t)z
e¯⊖z(t)Δt

=
1

¯ − z

∫ 0

−∞
(¯ ⊖ z)e¯⊖z(t)Δt

=
1

z − ¯
e¯⊖z(t)

∣∣∣∣
0

−∞
(IV.10)

=
1

¯ − z
(IV.11)

The step between (IV.10) and (IV.11) is valid if

e¯⊖z(−∞) = 0. (IV.12)

Fig. 7. The ROC’s here are the mirror images of those in Figure 6. The ROCs,
Z , are for the double exponential e¯:®(t). Like Figure 6, Im¯ > Im® > 0.
However, in the examples shown here, Re¯ < Re®. For (c), we see that Z
is empty. Note that if ® and ¯ are interchanged in (a), (b), or (c), the region
Z will be empty.

Fig. 8. For the values of ® and ¯ shown, the double sided exponential,
e¯:®(t), in Figure IV.2 converges in the ROC, Z , shown shaded black. The
region Z+ is shaded lightly and Z− is more darkly shaded. Their intersection
Z given by (IV.1) is shown shaded black.

For discrete time scales for t < 0 [12],

e¯⊖z(tn) =
−1∏

k=n

1 + ¹(tk)z

1 + ¹(tk)¯
. (IV.13)

∙ T(¹̀0
−, ¹́

0
−).

This product approaches zero if all terms don’t exceed
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one. This is true if

∣1 + ¹(tk)z∣ < ∣1 + ¹(tk)¯∣
or, equivalently

∣∣∣∣z +
1

¹(tk)

∣∣∣∣ <
∣∣∣∣¯ +

1

¹(tk)

∣∣∣∣ .

This is the definition of the region ℋ̄(¯, ¹(tk)). For t < 0,
the graininess varies over the range ¹̀0

− ≤ ¹(tk) ≤ ¹́0
−,

the overall region of convergence is the intersection of
all of the ℋ’s in this interval. However, since3

∩

¹̀≤¹(tk)≤¹́

ℋ̄(¯, ¹(tk)) = ℋ̄(¯, ¹̀) ∩ ℋ̄(¯, ¹́),

we conclude from (III.8) that (IV.12) is true in the ROC

Z− = ℒ(®, ¹̀0
−, ¹́

0
−). (IV.14)

∙ T(¹̀T
−, ¹́

T
−).

From (IV.13),

e¯⊖z(−∞) =
T∏

k=−∞

1 + ¹(tk)z

1 + ¹(tk)¯
×

−1∏

k=¾(T )

1 + ¹(tk)z

1 + ¹(tk)¯
.

(IV.15)
For (IV.12) to be true, only the first product needs to be
zero. We can thus deal with graininesses over the interval
−∞ < t ≤ T and the ROC increases from (IV.14) to

Z− = ℒ(®, ¹̀T
−, ¹́

T
−). (IV.16)

∙ T(¹̀∞
− , ¹́∞

− ).
In the limiting case, the ROC is

Z− = ℒ(®, ¹̀∞
− , ¹́∞

− ). (IV.17)

When the lower and upper asymptotic bounds are equal,
¹̀∞
− = ¹́∞

− = ¹̄− and, using (III.10) applied to (IV.17), we
have the region of convergence for T(¹̄−).

Z− = ℋ(®, ¹̄−). (IV.18)

Lastly, for T(0−,∞−), we apply (III.11) to (IV.17) and
obtain

Z− = ℰ(®).

V. CONVERGENCE OF SIGNALS BOUNDED BY THE DOUBLE
SIDED EXPONENTIAL

In this section, after establishing a sufficient condition for
the bilateral Laplace transform of e¯:®(t) to converge at z (see
Lemma V.1), we show under the same condition, the Laplace
transform of f(t) will converge at z (see Corollary V.1) when

∣f(t)∣ ≤ ∣e¯:®(t)∣ . (V.1)

The result is a special case of a more general theorem
(Theorem V.1) that only requires the bound in (V.1) to be
true for T− ≥ t > T+ for any finite T+ and T−.

Lemma V.1. A sufficient condition for the bilateral Laplace
transform of e¯:®(t) to converge at z is

∫ ∞

−∞

∣∣e¯:®(t) e¾⊖z(t)
∣∣Δt < ∞. (V.2)

Proof: We begin with the magnitude of the Laplace
transform if of e¯:®(t) and write

∣∣∣∣
∫ ∞

−∞
e¯:®(t) e

¾
⊖z(t)Δt

∣∣∣∣

≤
∫ ∞

−∞

∣∣e¯:®(t) e¾⊖z(t)
∣∣Δt

< ∞.

Theorem V.1. If there exists
∙ a bounded function f(t) on regressive time scale, T,
∙ finite values T− < 0 and T+ > 0 such that

∣f(t)∣ ≤ ∣e¯:®(t)∣ for t < T− and t > T+,

and
∙ the sufficient condition in Lemma V.2 is true,

then the bilateral Laplace transform in f(t) converges at z.

Proof: Let F (z) be the Laplace transform of f(t). Then

∣F (z)∣ =

∣∣∣∣
∫ ∞

−∞
f(t)e¾⊖z(t)Δt

∣∣∣∣

≤
∫ ∞

−∞

∣∣f(t)e¾⊖z(t)
∣∣Δt

=

[∫ T−

−∞
+

∫ T+

T−
+

∫ ∞

T+

]
∣∣f(t)e¾⊖z(t)

∣∣Δt

If T is regressive and f(t) is bounded, then the middle integral
is finite. For the remaining integrals we impose (V.2) and write

[∫ T−

−∞
+

∫ ∞

T+

]
∣∣f(t)e¾⊖z(t)

∣∣Δt

≤
[∫ T−

−∞
+

∫ ∞

T+

]
∣∣e¯:®(t)e¾⊖z(t)

∣∣Δt

< ∞
Therefore,

∣F (z)∣ < ∞.

The following corollary follows immediately as a special case.

Corollary V.1. If (V.1), T is regressive and (V.2) applies, then
the Laplace transform of f(t) converges at z.

VI. THE BOX MINUS SHIFT

The box minus (⊟) shift on a time scale can be defined using
the bilateral Laplace transform. The box minus shift, f(t⊟¿),
reduces to the conventional shift operator, f(t− ¿) on ℝ and
ℤ.

Definition VI.1. We define the box minus operation, ⊟,
through

f(t⊟ ¿) Ã→ F (z)e⊖z(¿). (VI.1)

Note that, as a consequence,

ez(t⊟ ¿) = exp

(∫ t

»=¿

ln(1 + ¹(»)z)

¹(»)
Δ»

)
. (VI.2)
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and, interpreting f(⊟¿) = f(0 ⊟ ¿), from the semigroup
property,

ez(t⊟ ¿) = ez(t)ez(⊟¿). (VI.3)

Lemma VI.1.
ez(⊟t) = e⊖z(t).

As a consequence, from (VI.3),

ez(t⊟ ¿) = ez(t)e⊖z(¿).

Proof: Using (VI.2),

ez(⊟t) = exp

(∫ 0

»=t

ln(1 + ¹(»)z)

¹(»)
Δ»

)

= exp

(
−
∫ t

»=0

ln(1 + ¹(»)z)

¹(»)
Δ»

)

=

[
exp

(∫ t

»=0

ln(1 + ¹(»)z)

¹(»)
Δ»

)]−1

= [ez(t)]
−1

= e⊖z(t)

Definition VI.2. Define the Hilger delta as [4]

±H(t⊟ ¿¾) :=

{
±[t− ¿ ]/¹(t) ; ¹(t) > 0
±(t− ¿) ; otherwise (VI.4)

where the Kronecker delta, ±[t], is one for t = 0 and is
otherwise zero, and ±(t) is the Dirac delta [11].

For ℝ and ℤ, the Hilger delta in (VI.4) becomes ±[t − ¿ ]
and ±(t− ¿) respectively.

VII. TIME SCALE CONVOLUTION

The box minus operation allows definition of convolution
of two signals on the same time scale.

Definition VII.1. Convolution on a time scale is defined as

f(t) ∗ ℎ(t) :=
∫

»∈T
f(»)ℎ(t⊟ »¾)Δ» (VII.1)

This definition is consistent with the convolution of transcen-
dental functions defined in Bohner and Peterson [1] and its
generalization [4]. It differs, however, from the time scale
convolutions defined using the Fourier transform on a time
scale [8], [11] which is defined only over a special class
of time scales4. On ℝ and ℤ, (VII.1) becomes conventional
convolution that describes the response, g(t) = f(t) ∗ ℎ(t)
of a linear time invariant system (LTI) system with impulse
response, ℎ(t), to a stimulus of f(t) [11]. The Laplace
transform of the impulse response is the system function or
the transfer function, H(z), which contains the amplitude
and phase changes imposed by the system on the stimulus.
This property is generalized to an arbitrary time scale by the
following theorem.

Theorem VII.1. System function. Convolving a function ℎ(t)
with a time scale exponential function yields, as a result, the

same exponential weighted by the Laplace transform of the
impulse response.

ew(t) ∗ ℎ(t) = ew(t)H(w). (VII.2)

Proof:

ew(t) ∗ ℎ(t) =

∫ ∞

−∞
ℎ(¿)ew(t⊟ ¿¾)Δ¿

= ew(t)

∫ ∞

−∞
ℎ(¿)ew(⊟¿¾)Δ¿

= ew(t)

∫ ∞

−∞
ℎ(¿)e¾⊖w(¿)Δ¿

from which (VII.2) follows.

Theorem VII.2. Convolution on a time scale corresponds to
multiplication in the Laplace domain.

g(t) = f(t) ∗ ℎ(t) Ã→ G(z) = F (z)H(z).

Proof:

g(t) = f(t) ∗ ℎ(t)
=

∫

»∈T
f(»)ℎ(t⊟ »¾)Δ»

Ã→
∫

t∈T

[∫

»∈T
f(»)ℎ(t⊟ »¾)Δ»

]
e¾⊖z(t)Δt

=

∫

»∈T
f(»)

[∫

t∈T
ℎ(t⊟ »¾)e¾⊖z(t)Δt

]
Δ»

=

∫

»∈T
f(»)

[
H(z)e¾⊖z(»)

]
Δ»

= H(z)

∫

»∈T
f(»)e¾⊖z(»)Δ»

= F (z)H(z)

= G(z)

The following results follow immediately.
∙ Convolution on a time scale is commutative, associative

and distributive over addition.
∙ The Sifting Property of the Hilger delta. If we define

f(t) ∗ ±H(t) :=

∫ ∞

t=−∞
f(¿)±H(t⊟ ¿¾)Δ¿

it follows that the Hilger delta is the identity operator for
convolution on a time scale.

f(t) ∗ ±H(t) = f(t).

The sifting properties of the Dirac delta and Kronecker
delta on ℝ and ℤ follow as special cases.

∙ The Shift Property. If g(t) = f(t) ∗ ℎ(t), then

f(t⊟ ») ∗ ℎ(t) = f(t) ∗ ℎ(t⊟ ») = g(t⊟ »)

∙ The Derivative Property. From the derivative theorem in
(III.2), it follows immediately that

gΔ(t) = f(t) ∗ ℎΔ(t) = fΔ(t) ∗ ℎ(t).
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VIII. WIDE SENSE STATIONARITY OF A STOCHASTIC
PROCESS ON A TIME SCALE

Let x(t) be a real stochastic process on a time scale T. Its
autocorrelation [11] is

Rx(t, ¿) = E [x(t)x(¿)] . (VIII.1)

Definition VIII.1. A stochastic process, x(t), on a time scale
T is wide sense stationary (WSS)5 [11], [13] if6

Rx(t, ¿) = Rx(t⊟ ¿) (VIII.2)

As a consequence, the autocorrelation of a wide sense
stationary (WSS) stochastic process on a time scale can be
represented by a single one dimensional function, Rx(t).

Notes.

1) For ℝ and ℤ, (VIII.2) takes on the familiar form

Rx(t, ¿) = Rx(t− ¿)

2) From (VIII.1), Rx(t, ¿) = Rx(¿, t), Thus

Rx(t⊟ ¿) = Rx(¿ ⊟ t).

Definition VIII.2. The Laplace transform of the autocorrela-
tion is the power spectral density, Sx(z).

Rx(t) Ã→ Sx(z)

Theorem VIII.1. On time scale T, let

y(t) = x(t) ∗ ℎ(t). (VIII.3)

Then

Sy(z) = H(z)H⊖(z)Sx(z). (VIII.4)

Proof: Multiply both sides of (VIII.3) by x(¿) and
expectate to give

Rxy(¿, t) = Rx(t⊟ ¿)
t∗ ℎ(t) (VIII.5)

where
t∗ denotes convolution with respect to the variable t.

Rewrite (VIII.3) as y(¿) = x(¿)
¿∗ ℎ(¿), multiply both sides

by y(t), and expectate to give

Ry(t, ¿) = Rxy(¿, t)
¿∗ ℎ(¿).

Substitute (VIII.3) gives

Ry(t, ¿) = ℎ(t)
t∗ Rx(t⊟ ¿)

¿∗ ℎ(¿).

Laplace transform both sides with respect to t gives

Ry(t, ¿)
tÃ→

∫

t∈T

[
ℎ(t)

t∗ Rx(t⊟ ¿)
¿∗ ℎ(¿)

]
e¾⊖z(t)Δt

=

∫

t∈T

[(∫

»∈T
Rx(» ⊟ ¿)ℎ(t⊟ »¾)Δ»

)

¿∗ ℎ(¿)
]
e¾⊖z(t)Δt

=

∫

»∈T
Rx(» ⊟ ¿)

[∫

t∈T
ℎ(t⊟ »¾)e¾⊖z(t)Δt

]

¿∗ ℎ(¿)Δ»

=

(∫

»∈T
Rx(» ⊟ ¿)

[
H(z)e¾⊖z(»)

]
Δ»

)
¿∗ ℎ(¿)

= H(z)

[∫

»∈T
Rx(» ⊟ ¿)e¾⊖z(»)

]
¿∗ ℎ(¿)

= H(z)Sx(z)
[
e⊖z(¿)

¿∗ ℎ(¿)
]

= H(z)Sx(z)

∫

´∈T
ℎ(´)e⊖z(¿ ⊟ ´¾)Δ´

= H(z)Sx(z)

∫

´∈T
ℎ(´)e⊖z(¿)e⊖z(⊟´¾)Δ´

= H(z)Sx(z)e⊖z(¿)

∫

´∈T
ℎ(´)ez(´

¾)Δ´

= H(z)Sx(z)e⊖z(¿)

∫

´∈T
ℎ(´)e¾z (´)Δ´

= H(z)Sx(z)H⊖(z)e⊖z(¿) (VIII.6)

The e⊖z(¿) term reveals Ry(t, ¿) is of the form Ry(t ⊟ ¿).
Therefore (VIII.4) follows immediately.

IX. CONCLUSION

We have generalized establishment of the ROCs from
unilateral to bilateral Laplace transforms. For double sided
exponentials, the ROC, when it exists, are the intersection of
points outside of a modified Hilger circle defined by behavior
for positive time and inside another modified Hilger circle
determined by behavior for negative time. The ROCs revert
to the familiar horizontal slab ROC for continuous time and
annulus for discrete time. Since graininess lies between zero
and infinity, there are conservative ROCs applicable for all
time scales. Signals bounded by double sided exponentials
were shown to converge in at least the ROC of the double
sided exponential. The Laplace transform on a time scale
is used to define a box minus operator that, in turn, allows
definition of time scale convolution. Time scale convolution
allows characterization of wide sense stationary stochastic
processes on a time scale via its autocorrelation and power
spectral density.

NOTES
1Such time scales arise from recurrent nonuniform signal sampling, also

called interlaced or bunched sampling [9], [10], [11], [14], [15], [16], [17].
2Since ¹̀ < ¹́ the solid dot, ∙, is always to the right of the hollow dot, ∘.
3This is graphically evident of in Figure 1 where a sequence of modified

Hilger circles are drawn over a range of graininesses. The points internal to
all of the modified Hilger circles is equal to the points inside both the leftmost
and rightmost circles.
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4Specifically, additively idempotent time scales [8], [11].
5An further requirement of a constant first moment accompanies the classic

definition of WSS stochastic processes [11], [13], [14]. For the treatment in
this paper, however, such an assumption is not needed.

6We use here a common abuse of notation [11], [13], [14]. The function
Rx cannot simultaneously be a two dimensional function, Rx(t, ¿), and a
one dimensional function, Rx(t).
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