
0-7695-2822-8/07 $25.00 © 2007 IEEE 629

An Overview of the Tesseract OCR Engine

Ray Smith
Google Inc.

theraysmith@gmail.com

Abstract

The Tesseract OCR engine, as was the HP Research
Prototype in the UNLV Fourth Annual Test of OCR
Accuracy[1], is described in a comprehensive
overview. Emphasis is placed on aspects that are novel
or at least unusual in an OCR engine, including in
particular the line finding, features/classification
methods, and the adaptive classifier.

1. Introduction – Motivation and History

Tesseract is an open-source OCR engine that was
developed at HP between 1984 and 1994. Like a super-
nova, it appeared from nowhere for the 1995 UNLV
Annual Test of OCR Accuracy [1], shone brightly with
its results, and then vanished back under the same
cloak of secrecy under which it had been developed.
Now for the first time, details of the architecture and
algorithms can be revealed.

Tesseract began as a PhD research project [2] in HP
Labs, Bristol, and gained momentum as a possible
software and/or hardware add-on for HP’s line of
flatbed scanners. Motivation was provided by the fact
that the commercial OCR engines of the day were in
their infancy, and failed miserably on anything but the
best quality print.

After a joint project between HP Labs Bristol, and
HP’s scanner division in Colorado, Tesseract had a
significant lead in accuracy over the commercial
engines, but did not become a product. The next stage
of its development was back in HP Labs Bristol as an
investigation of OCR for compression. Work
concentrated more on improving rejection efficiency
than on base-level accuracy. At the end of this project,
at the end of 1994, development ceased entirely. The
engine was sent to UNLV for the 1995 Annual Test of
OCR Accuracy[1], where it proved its worth against
the commercial engines of the time. In late 2005, HP
released Tesseract for open source. It is now available
at http://code.google.com/p/tesseract-ocr.

2. Architecture

Since HP had independently-developed page layout
analysis technology that was used in products, (and
therefore not released for open-source) Tesseract never
needed its own page layout analysis. Tesseract
therefore assumes that its input is a binary image with
optional polygonal text regions defined.

Processing follows a traditional step-by-step
pipeline, but some of the stages were unusual in their
day, and possibly remain so even now. The first step is
a connected component analysis in which outlines of
the components are stored. This was a computationally
expensive design decision at the time, but had a
significant advantage: by inspection of the nesting of
outlines, and the number of child and grandchild
outlines, it is simple to detect inverse text and
recognize it as easily as black-on-white text. Tesseract
was probably the first OCR engine able to handle
white-on-black text so trivially. At this stage, outlines
are gathered together, purely by nesting, into Blobs.

Blobs are organized into text lines, and the lines and
regions are analyzed for fixed pitch or proportional
text. Text lines are broken into words differently
according to the kind of character spacing. Fixed pitch
text is chopped immediately by character cells.
Proportional text is broken into words using definite
spaces and fuzzy spaces.

Recognition then proceeds as a two-pass process. In
the first pass, an attempt is made to recognize each
word in turn. Each word that is satisfactory is passed to
an adaptive classifier as training data. The adaptive
classifier then gets a chance to more accurately
recognize text lower down the page.

Since the adaptive classifier may have learned
something useful too late to make a contribution near
the top of the page, a second pass is run over the page,
in which words that were not recognized well enough
are recognized again.

A final phase resolves fuzzy spaces, and checks
alternative hypotheses for the x-height to locate small-
cap text.

0-7695-2822-8/07 $25.00 © 2007 IEEE 630

3. Line and Word Finding

3.1. Line Finding

The line finding algorithm is one of the few parts of
Tesseract that has previously been published [3]. The
line finding algorithm is designed so that a skewed
page can be recognized without having to de-skew,
thus saving loss of image quality. The key parts of the
process are blob filtering and line construction.

Assuming that page layout analysis has already
provided text regions of a roughly uniform text size, a
simple percentile height filter removes drop-caps and
vertically touching characters. The median height
approximates the text size in the region, so it is safe to
filter out blobs that are smaller than some fraction of
the median height, being most likely punctuation,
diacritical marks and noise.

The filtered blobs are more likely to fit a model of
non-overlapping, parallel, but sloping lines. Sorting
and processing the blobs by x-coordinate makes it
possible to assign blobs to a unique text line, while
tracking the slope across the page, with greatly reduced
danger of assigning to an incorrect text line in the
presence of skew. Once the filtered blobs have been
assigned to lines, a least median of squares fit [4] is
used to estimate the baselines, and the filtered-out
blobs are fitted back into the appropriate lines.

The final step of the line creation process merges
blobs that overlap by at least half horizontally, putting
diacritical marks together with the correct base and
correctly associating parts of some broken characters.

3.2. Baseline Fitting

Once the text lines have been found, the baselines
are fitted more precisely using a quadratic spline. This
was another first for an OCR system, and enabled
Tesseract to handle pages with curved baselines [5],
which are a common artifact in scanning, and not just
at book bindings.

The baselines are fitted by partitioning the blobs
into groups with a reasonably continuous displacement
for the original straight baseline. A quadratic spline is
fitted to the most populous partition, (assumed to be
the baseline) by a least squares fit. The quadratic spline
has the advantage that this calculation is reasonably
stable, but the disadvantage that discontinuities can
arise when multiple spline segments are required. A
more traditional cubic spline [6] might work better.

Fig. 1. An example of a curved fitted baseline.

Fig.1 shows an example of a line of text with a fitted
baseline, descender line, meanline and ascender line.
All these lines are “parallel” (the y separation is a
constant over the entire length) and slightly curved.
The ascender line is cyan (prints as light gray) and the
black line above it is actually straight. Close inspection
shows that the cyan/gray line is curved relative to the
straight black line above it.

3.3. Fixed Pitch Detection and Chopping

Tesseract tests the text lines to determine whether
they are fixed pitch. Where it finds fixed pitch text,
Tesseract chops the words into characters using the
pitch, and disables the chopper and associator on these
words for the word recognition step. Fig. 2 shows a
typical example of a fixed-pitch word.

Fig. 2. A fixed-pitch chopped word.

3.4. Proportional Word Finding

Non-fixed-pitch or proportional text spacing is a
highly non-trivial task. Fig. 3 illustrates some typical
problems. The gap between the tens and units of
‘11.9%’ is a similar size to the general space, and is
certainly larger than the kerned space between ‘erated’
and ‘junk’. There is no horizontal gap at all between
the bounding boxes of ‘of’ and ‘financial’. Tesseract
solves most of these problems by measuring gaps in a
limited vertical range between the baseline and mean
line. Spaces that are close to the threshold at this stage
are made fuzzy, so that a final decision can be made
after word recognition.

Fig. 3. Some difficult word spacing.

4. Word Recognition

Part of the recognition process for any character
recognition engine is to identify how a word should be
segmented into characters. The initial segmentation
output from line finding is classified first. The rest of
the word recognition step applies only to non-fixed-
pitch text.

0-7695-2822-8/07 $25.00 © 2007 IEEE 631

4.1 Chopping Joined Characters

While the result from a word (see section 6) is
unsatisfactory, Tesseract attempts to improve the result
by chopping the blob with worst confidence from the
character classifier. Candidate chop points are found
from concave vertices of a polygonal approximation
[2] of the outline, and may have either another concave
vertex opposite, or a line segment. It may take up to 3
pairs of chop points to successfully separate joined
characters from the ASCII set.

Fig. 4. Candidate chop points and chop.

Fig. 4 shows a set of candidate chop points with
arrows and the selected chop as a line across the
outline where the ‘r’ touches the ‘m’.

Chops are executed in priority order. Any chop that
fails to improve the confidence of the result is undone,
but not completely discarded so that the chop can be
re-used later by the associator if needed.

4.2. Associating Broken Characters

When the potential chops have been exhausted, if
the word is still not good enough, it is given to the
associator. The associator makes an A* (best first)
search of the segmentation graph of possible
combinations of the maximally chopped blobs into
candidate characters. It does this without actually
building the segmentation graph, but instead maintains
a hash table of visited states. The A* search proceeds
by pulling candidate new states from a priority queue
and evaluating them by classifying unclassified
combinations of fragments.

It may be argued that this fully-chop-then-associate
approach is at best inefficient, at worst liable to miss
important chops, and that may well be the case. The
advantage is that the chop-then-associate scheme
simplifies the data structures that would be required to
maintain the full segmentation graph.

Fig. 5. An easily recognized word.

When the A* segmentation search was first
implemented in about 1989, Tesseract’s accuracy on
broken characters was well ahead of the commercial
engines of the day. Fig. 5 is a typical example. An
essential part of that success was the character
classifier that could easily recognize broken characters.

5. Static Character Classifier

5.1. Features

An early version of Tesseract used topological
features developed from the work of Shillman et. al. [7-
8] Though nicely independent of font and size, these
features are not robust to the problems found in real-
life images, as Bokser [9] describes. An intermediate
idea involved the use of segments of the polygonal
approximation as features, but this approach is also not
robust to damaged characters. For example, in Fig.
6(a), the right side of the shaft is in two main pieces,
but in Fig. 6(b) there is just a single piece.

Fig. 6. (a) Pristine ‘h, (b) broken ‘h’, (c)
features matched to prototypes.

The breakthrough solution is the idea that the
features in the unknown need not be the same as the
features in the training data. During training, the
segments of a polygonal approximation [2] are used for
features, but in recognition, features of a small, fixed
length (in normalized units) are extracted from the
outline and matched many-to-one against the clustered
prototype features of the training data. In Fig. 6(c), the
short, thick lines are the features extracted from the
unknown, and the thin, longer lines are the clustered
segments of the polygonal approximation that are used
as prototypes. One prototype bridging the two pieces is
completely unmatched. Three features on one side and
two on the other are unmatched, but, apart from those,
every prototype and every feature is well matched. This
example shows that this process of small features
matching large prototypes is easily able to cope with
recognition of damaged images. Its main problem is
that the computational cost of computing the distance
between an unknown and a prototype is very high.

0-7695-2822-8/07 $25.00 © 2007 IEEE 632

The features extracted from the unknown are thus 3-
dimensional, (x, y position, angle), with typically 50-
100 features in a character, and the prototype features
are 4-dimensional (x, y, position, angle, length), with
typically 10-20 features in a prototype configuration.

5.2. Classification

Classification proceeds as a two-step process. In the
first step, a class pruner creates a shortlist of character
classes that the unknown might match. Each feature
fetches, from a coarsely quantized 3-dimensional look-
up table, a bit-vector of classes that it might match, and
the bit-vectors are summed over all the features. The
classes with the highest counts (after correcting for
expected number of features) become the short-list for
the next step.

Each feature of the unknown looks up a bit vector of
prototypes of the given class that it might match, and
then the actual similarity between them is computed.
Each prototype character class is represented by a
logical sum-of-product expression with each term
called a configuration, so the distance calculation
process keeps a record of the total similarity evidence
of each feature in each configuration, as well as of each
prototype. The best combined distance, which is
calculated from the summed feature and prototype
evidences, is the best over all the stored configurations
of the class.

5.3. Training Data

Since the classifier is able to recognize damaged
characters easily, the classifier was not trained on
damaged characters. In fact, the classifier was trained
on a mere 20 samples of 94 characters from 8 fonts in a
single size, but with 4 attributes (normal, bold, italic,
bold italic), making a total of 60160 training samples.
This is a significant contrast to other published
classifiers, such as the Calera classifier with more than
a million samples [9], and Baird’s 100-font classifier
[10] with 1175000 training samples.

6. Linguistic Analysis

Tesseract contains relatively little linguistic
analysis. Whenever the word recognition module is
considering a new segmentation, the linguistic module
(mis-named the permuter) chooses the best available
word string in each of the following categories: Top
frequent word, Top dictionary word, Top numeric
word, Top UPPER case word, Top lower case word
(with optional initial upper), Top classifier choice

word. The final decision for a given segmentation is
simply the word with the lowest total distance rating,
where each of the above categories is multiplied by a
different constant.

Words from different segmentations may have
different numbers of characters in them. It is hard to
compare these words directly, even where a classifier
claims to be producing probabilities, which Tesseract
does not. This problem is solved in Tesseract by
generating two numbers for each character
classification. The first, called the confidence, is minus
the normalized distance from the prototype. This
enables it to be a “confidence” in the sense that greater
numbers are better, but still a distance, as, the farther
from zero, the greater the distance. The second output,
called the rating, multiplies the normalized distance
from the prototype by the total outline length in the
unknown character. Ratings for characters within a
word can be summed meaningfully, since the total
outline length for all characters within a word is always
the same.

7. Adaptive Classifier

It has been suggested [11] and demonstrated [12]
that OCR engines can benefit from the use of an
adaptive classifier. Since the static classifier has to be
good at generalizing to any kind of font, its ability to
discriminate between different characters or between
characters and non-characters is weakened. A more
font-sensitive adaptive classifier that is trained by the
output of the static classifier is therefore commonly
[13] used to obtain greater discrimination within each
document, where the number of fonts is limited.

Tesseract does not employ a template classifier, but
uses the same features and classifier as the static
classifier. The only significant difference between the
static classifier and the adaptive classifier, apart from
the training data, is that the adaptive classifier uses
isotropic baseline/x-height normalization, whereas the
static classifier normalizes characters by the centroid
(first moments) for position and second moments for
anisotropic size normalization.

The baseline/x-height normalization makes it easier
to distinguish upper and lower case characters as well
as improving immunity to noise specks. The main
benefit of character moment normalization is removal
of font aspect ratio and some degree of font stroke
width. It also makes recognition of sub and superscripts
simpler, but requires an additional classifier feature to
distinguish some upper and lower case characters. Fig.
7 shows an example of 3 letters in baseline/x-height
normalized form and moment normalized form.

0-7695-2822-8/07 $25.00 © 2007 IEEE 633

Fig. 7. Baseline and moment normalized
letters.

8. Results

Tesseract was included in the 4th UNLV annual test
[1] of OCR accuracy, as “HP Labs OCR,” but the code
has changed a lot since then, including conversion to
Unicode and retraining. Table 1 compares results from
a recent version of Tesseract (shown as 2.0) with the
original 1995 results (shown as HP). All four 300 DPI
binary test sets that were used in the 1995 test are
shown, along with the number of errors (Errs), the
percent error rate (%Err) and the percent change
relative to the 1995 results (%Chg) for both character
errors and non-stopword errors. [1] More up-to-date
results are at http://code.google.com/p/tesseract-ocr.

Table 1. Results of Current and old Tesseract.
Character Word

Ver Set Errs %Err %Chg Errs %Err %Chg
HP bus 5959 1.86 1293 4.27
2.0 bus 6449 2.02 8.22 1295 4.28 0.15
HP doe 36349 2.48 7042 5.13
2.0 doe 29921 2.04 -17.68 6791 4.95 -3.56
HP mag 15043 2.26 3379 5.01
2.0 mag 14814 2.22 -1.52 3133 4.64 -7.28
HP news 6432 1.31 1502 3.06
2.0 news 7935 1.61 23.36 1284 2.62 -14.51
2.0 total 59119 -7.31 12503 -5.39

9. Conclusion and Further Work

After lying dormant for more than 10 years,
Tesseract is now behind the leading commercial
engines in terms of its accuracy. Its key strength is
probably its unusual choice of features. Its key
weakness is probably its use of a polygonal
approximation as input to the classifier instead of the
raw outlines.

With internationalization done, accuracy could
probably be improved significantly with the judicious
addition of a Hidden-Markov-Model-based character n-
gram model, and possibly an improved chopper.

10. Acknowledgements

The author would like to thank John Burns and Tom
Nartker for their efforts in making Tesseract open

source, the ISRI group at UNLV for sharing their tools
and data, as well as Luc Vincent, Igor Krivokon, Dar-
Shyang Lee, and Thomas Kielbus for their comments
on the content of this paper.

11. References

[1] S.V. Rice, F.R. Jenkins, T.A. Nartker, The Fourth Annual
Test of OCR Accuracy, Technical Report 95-03, Information
Science Research Institute, University of Nevada, Las Vegas,
July 1995.

[2] R.W. Smith, The Extraction and Recognition of Text
from Multimedia Document Images, PhD Thesis, University
of Bristol, November 1987.

[3] R. Smith, “A Simple and Efficient Skew Detection
Algorithm via Text Row Accumulation”, Proc. of the 3rd Int.
Conf. on Document Analysis and Recognition (Vol. 2), IEEE
1995, pp. 1145-1148.

[4] P.J. Rousseeuw, A.M. Leroy, Robust Regression and
Outlier Detection, Wiley-IEEE, 2003.

[5] S.V. Rice, G. Nagy, T.A. Nartker, Optical Character
Recognition: An Illustrated Guide to the Frontier, Kluwer
Academic Publishers, USA 1999, pp. 57-60.

[6] P.J. Schneider, “An Algorithm for Automatically Fitting
Digitized Curves”, in A.S. Glassner, Graphics Gems I,
Morgan Kaufmann, 1990, pp. 612-626.

[7] R.J. Shillman, Character Recognition Based on
Phenomenological Attributes: Theory and Methods, PhD.
Thesis, Massachusetts Institute of Technology. 1974.

[8] B.A. Blesser, T.T. Kuklinski, R.J. Shillman, “Empirical
Tests for Feature Selection Based on a Pscychological
Theory of Character Recognition”, Pattern Recognition 8(2),
Elsevier, New York, 1976.

[9] M. Bokser, “Omnidocument Technologies”, Proc. IEEE
80(7), IEEE, USA, Jul 1992, pp. 1066-1078.

[10] H.S. Baird, R. Fossey, “A 100-Font Classifier”, Proc. of
the 1st Int. Conf. on Document Analysis and Recognition,
IEEE, 1991, pp 332-340.

[11] G. Nagy, “At the frontiers of OCR”, Proc. IEEE 80(7),
IEEE, USA, Jul 1992, pp 1093-1100.

[12] G. Nagy, Y. Xu, “Automatic Prototype Extraction for
Adaptive OCR”, Proc. of the 4th Int. Conf. on Document
Analysis and Recognition, IEEE, Aug 1997, pp 278-282.

[13] I. Marosi, “Industrial OCR approaches: architecture,
algorithms and adaptation techniques”, Document
Recognition and Retrieval XIV, SPIE Jan 2007, 6500-01.

