Lecture 12 - Degeneracy pressure

12.1 Key Ideas

Degeneracy pressure arises from the quantum mechanical nature of elementary particles

Degeneracy pressure is form of pressure that withstands gravitational collapse in high density
materials.

White dwarfs supported by electron degeneracy pressure, and neutron stars from neutron de-
generacy pressure.

Pieg o< p®/? and independent of temperature (in contrast to ideal gas P o< T).

12.2 Pauli Exclusion Principle

- Electrons and neutrons are particles called ‘fermions’.

- As well as having electric charge, fermions also have another intrinsic property ‘spin’. 2
possible spin states ‘up’ T and ‘down’ |

- Pauli exclusion principle - states that no two electrons (neutrons) can be in the same quantum
state

- Electrons can have exactly the same energy but must have different spins, i.e. 2 electrons
can occupy any single energy state.

- A degenerate gas is one in which the density is high enough that electrons behavior is determined
by the exclusion principle.

12.3 Wave particle duality

- Already seen that photons can be considered as particles ‘photons’ (F = hv) and as a wave with
wavelength A ¢ = Av.

- de Broglie (10 years after Bohr came up with his model of the atom), came up with an explanation
for why the angular momentum is quantized in electron orbits

- He proposed that particles, e.g. e, demonstrate wave like behavior, observable on quantum
scales.

- He showed that the wavelength associated with the particle, the deBroglie wavelength
Agp is related to the particle momentum
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- In special relativity the energy of a particle is given by

E = \/myc* + p?c? (12.1)

where m,, is the rest mass energy, and p is the particle momentum.
- For a fast moving particle m,c? < pe, E ~ pc

- We can relate the energy to a wavelength using an analogous equation to that for photon

energy
E=hv= % (12.2)
h
Aap = & 12.3
5= (12.3)

e deBroglie proposed that the quantization of electron angular momentum corresponded to re-
quiring the electron orbit to be a whole number of half wavelengths.

e Wave-particle duality was experimentally verified in the Davisson-Germer experiment, in which
electrons were fired at a Nickel crystal with atoms separated by distance ~ Agg. The electrons
underwent diffraction by the atomic lattice, just as X-rays do.

12.4 Heisenberg uncertainty principle

- Heisenberg uncertainty principle - we cannot know everything about a particle on quantum
scales



- Intrinsic fundamental uncertainty in precisely knowing 2 related quantities at once:

e~ s position <« e s speed (12.4

e~ senergy <« e stimein energy state (12.5)

- In a degenerate gas it is the position - speed relationship that we are in interested in. Heisenberg’s
uncertainty principle places a numerical value on the minimum uncertainty we must have when
measuring an electrons position and momentum simultaneously

ApAx > % (12.6)

- If the electrons are closely packed, i.e. their position is known precisely, this means that their
momentum cannot be known as well.
— If uncertainty in momentum is high, momentum itself can be high

— This corresponds to electrons having to populate high energy states (as we saw with the
Pauli exclusion principle earlier.

12.5 Electron degeneracy pressure

- Consider electrons moving as a gas in an enclosed box. No. density of electrons, n., v, is average
speed of an electron in x-direction, A is surface area on side of box being considered
No. of particles hitting area A in time t = nev, At
No. of particles hitting unit area per unit time = n.v,
Change in momentum per unit area per unit time= 2n,v;p,
(Assume elastic recoil - no change in total energy p, — —p, i.e. size of change is 2p,)
Pressure exerted= force/unit area = 2n,v,p,
- Each electron takes up average volume = 1/n,
— Average uncertainty in electron position Az = 1/ né/ 3

- Momentum of electron given roughly by intrinsic uncertainty (using Heisenberg uncertainty

principle)
Pz = Apy (127)
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- Can write this in terms of overall density.

— Assuming electric charge neutrality

no.

of protons = no.

contained in nz nuclei with atomic number Z,

Ne = 4N,
— Total density
p = Angmp+ mene
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(Assume my, = my)
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— Substituting into the pressure expression

P:i <h>2 (2)5/3 L 5/3
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(12.20)

- We have derived the key result describing the behavior of degenerate gases.

P x p°/3 (12.21)

in contrast to ideal gas in which P o T



