
Google Proprietary + Confidential

Bootcamp 2019

eBPF use in Android Networking
(and Android Networking vs Linux Kernel in general)

September 10, 2019

Android ^ micro

Google Proprietary + ConfidentialWho am I?
Maciej Żenczykowski (maze@google.com)

At Google since 2006, initially Crawl SRE.

2009-2018 Linux Kernel Networking on servers

(performance, tuning, configuration, frontend
serving and load balancing, AnyIp, IPv6, ‘glue’)

Since mid-2018 (Q+): Android Core Networking

With a focus on:
- Kernel (upstreaming)
- eBPF & performance
- low level C stuff:

libs, core utils:
iproute2, iptables,
ethtool

My Team
Lorenzo Colitti (lorenzo@)

Manager of Android Core
Networking (5.5 years)

Root cause of this work,
code/design reviews, etc.

Chenbo Feng (fengc@)
ex-Android Kernel Team

Did most of the P and
some of the Q work.

Now working on other
non-Kernel Networking
things.

& others from Android Core Networking and Kernel Teams

mailto:maze@google.com

Google Proprietary + ConfidentialWhy eBPF?
Because:
- Get rid of code divergence vs upstream Linux

- moving kernel hacks into eBPF thus eliminating them (xt_qtaguid, Paranoid Android)
- Performance improvements (and simplicity)

- Clatd xlat464 user space daemon -> eBPF offload (& it’s actually easier!!!)
- Due to multi-network architecture Android has a really complex firewall + routing setup -

this (and/or rndis performance) requires tethering to use HW offload, we hope to offload
this to eBPF SW bypass and simplify things while improving performance.

- More nuanced & more dynamic (then capabilities like CAP_NET_ADMIN)
- Real hard to upgrade kernel on shipped devices, even new devices run old kernels...
- It’s cool (personal bias? I like low level stuff...)

To quote another talk, cause: ‘eBPF is eating the world’

Google Proprietary + ConfidentialWhat we did in Android P
First use of eBPF in Android - eBPF compilation (tool chain) support, bpfloader, etc.

Requires:
- Linux 4.9+ (for Kernel eBPF support)
- Devices launching with Android P

- Treble means we can’t require kernel changes on device upgrade,
even if it’s just enabling kernel config options or backporting fixes (policy may change).

- Trouble figuring out if a 4.9+ device which launched with Android N/O actually supports eBPF or
not - have to assume it does not.

- for Google devices this means: Pixel 3+

Replaced use of ancient ‘xt_qtaguid’ custom Android Linux kernel netfilter patch with eBPF bandwidth
statistics collection. (reverted finally in Q kernels)

Mostly done by fengc@ and predates me.

Google Proprietary + ConfidentialWhat we did in Android P (continued)
See 2017 LPC talks on this topic.

Replacing xt_qtaguid with an upstream eBPF implementation

https://blog.linuxplumbersconf.org/2017/ocw/sessions/4786.html

https://blog.linuxplumbersconf.org/2017/ocw//system/presentations/4786/original/Replacing%20xt_qtagui
d%20with%20an%20upstream%20eBPF%20implementation.pdf

eBPF cgroup filters for data usage accounting on Android

https://blog.linuxplumbersconf.org/2017/ocw/sessions/4791.html

http://www.linuxplumbersconf.net/2017/ocw//system/presentations/4791/original/eBPF%20cgroup%20filt
ers%20for%20data%20usage%20accounting%20on%20Android.pdf

https://blog.linuxplumbersconf.org/2017/ocw/sessions/4786.html
https://blog.linuxplumbersconf.org/2017/ocw//system/presentations/4786/original/Replacing%20xt_qtaguid%20with%20an%20upstream%20eBPF%20implementation.pdf
https://blog.linuxplumbersconf.org/2017/ocw//system/presentations/4786/original/Replacing%20xt_qtaguid%20with%20an%20upstream%20eBPF%20implementation.pdf
https://blog.linuxplumbersconf.org/2017/ocw/sessions/4791.html
http://www.linuxplumbersconf.net/2017/ocw//system/presentations/4791/original/eBPF%20cgroup%20filters%20for%20data%20usage%20accounting%20on%20Android.pdf
http://www.linuxplumbersconf.net/2017/ocw//system/presentations/4791/original/eBPF%20cgroup%20filters%20for%20data%20usage%20accounting%20on%20Android.pdf

Google Proprietary + ConfidentialWhat we did in Android 10 (Q)
‘Paranoid Android’ kernel patch: unpriv apps cannot create AF_INET/AF_INET6 sockets
- this is the app ‘internet’ permission
- now implemented in eBPF (fengc@), requires 4.14+ (and thus newer then Pixel 3)
- kernel patch not ported to Android common 4.19-Q and reverted in 4.14-R
- patch also had a feature auto-granting CAP_NET_ADMIN / CAP_NET_RAW based on process

supplementary group membership, which couldn’t be replicated...

Android has long supported IPv6-only networks (many cell networks are such for simplicity).
The ‘Clatd’ userspace daemon doing XLAT464 packet translation was a performance problem.
- added RX-only TCP & UDP non-fragmented packet eBPF offload (maze@)
- requires 4.9+ with LTS fixes and config changes
- all Android Q devices launched on 4.9+ (and some launched on P)
- ie. Pixel 3+ (launched on 4.9-P, kernel upgraded, now on 4.9-Q)
- tcpdump visibility hack: tc ingress + bpf_redirect(same_ifindex, BPF_F_INGRESS)

See also Android Bootcamp 2019 slides (at end of slide deck)

SynchronizeKernelRCU
or how to synchronize map flips on a multithreaded system…
https://android.googlesource.com/platform/system/bpf/+/refs/heads/master/libbpf_android/BpfUtils.cpp#219

https://android.googlesource.com/platform/system/bpf/+/refs/heads/master/libbpf_android/BpfUtils.cpp#219

Google Proprietary + ConfidentialOur plans for Android R+
More CLAT:
- TX: normal tcp/udp non-fragmented packets (this is the big performance win)
- RX & TX: ip fragments [*] (covers large udp packets)
- RX & TX: icmp packets - complex and ugly
- Hopefully eliminate need for userspace clat daemon entirely

[*] this may be hard to accomplish on 4.9…
bpf_skb_change_proto() only supports IPv4 [20] <-> IPv6 [40], not IPv4 frag [20] <-> IPv6 frag [40+8]
IPv6 -> IPv4 can cheat by using 8 bytes of NOP ip options...

But:
How to make a tx packet visible in tcpdump both pre and post mutation (tc egress)?

May not actually be worth fully completing before Android S, since Android R still needs to support 4.4
kernel devices and thus userspace clatd daemon has to exist on at least some devices anyway...

Google Proprietary + ConfidentialOur plans for Android R+ (continued)
Offload tethering, incl. NAT…

Android multinetwork support causes a pretty complex routing and netfilter setup: presumed to be at least a
cause of poor tethering performance (no multi-gigabit 5G speeds on a phone CPU in 3W power budget).

We’d like to get rid of the current reliance on hardware offload solutions:
hard to debug, and every device is different

Move to some sort of eBPF packet mangling/forwarding offload (or perhaps better call it bypass?).

Try to use XDP…

But: there’s so many different drivers…
Cellular (many...), wireless (many… some don’t even do checksum offload), usb dongles, usb rndis (or cdc?)

Enable BPF JIT (basically an oversight it wasn’t enabled, but CLANG CFI is currently incompatible)

...but been busy dealing with Android Q fallout...

Google Proprietary + ConfidentialChallenges
Security
- loading only ebpf programs that are signed and/or from a dm-verity partition.
- no dynamically generated programs

Filtering and/or modifying netlink messages
- for example MAC addresses in Netlink Route messages (‘ip link show’ output)
- or kernel filtering of uevent to prevent spurious wakeups

Making it all work on old kernels
- or only on new ones and having extra support code for old ones

Huge variance from device to device
- testing is a nightmare… (and eBPF is hard to debug too…)

Google Proprietary + ConfidentialAndroid Common Kernel (Net) vs Upstream
Linus -> Stable/LTS -> Android Common -> Chipset Vendor (ie. Qualcomm) -> Device/OEM (ie. Google Pixel 3)

Android Common is many branches: {3.18, 4.4, 4.9, 4.14, 4.19, 5.x LTS, mainline} x {O, P, Q, R} ...
Similarly many trees from chipset vendors, and most OEMs have one tree per device. It’s a true forest out
there.

Android Networking Tests (UML or QEMU based) pass on 4.20.17 + 11 core networking changes
- 5 patches from upstream (three from 5.0, one from 5.1, one from 5.3) + 1 gki_defconfig
- net: xfrm: make PF_KEY SHA256 use RFC-compliant truncation [1 liner: 96 -> 128]
- xfrm: remove in_compat_syscall() checks [2x remove ‘if (in_compat_syscall()) return -EOPNOTSUPP;’]
- net: ipv6: autoconf routes into per-device tables [4 files: 58 +, 39 -] -> VRF? But also used by Chrome OS
- netfilter: xt_quota2: adding the original quota2 from xtables-addons [4 files: 450 +] -> update xt_quota?
- netfilter: xt_IDLETIMER: Add new netlink msg type [2 files: 245 +, 12 -] -> simplify and upstream?

5.0+ fails (not yet figured out why), 5.1+ required test adjustment (SO_RCV/SNDBUF changes), 5.2+ required
upstream fixes (RTF_ADDRCONF, just landed in net/master, not in 5.3-rc8, hopefully in 5.3?)
But: even further core networking stack divergence in chipset/device/OEM kernels…

Code location in AOSP: (development is entirely in AOSP, including code review visible in AOSP’s Gerrit)

https://android.googlesource.com/kernel/common/ (android-mainline, android-4.9-q, ...)

https://android.googlesource.com/kernel/configs/ (master branch)

https://android.googlesource.com/kernel/tests/ (network tests only a.t.m.)

https://android.googlesource.com/platform/system/bpf/ (support, loader)

https://android.googlesource.com/platform/system/netd/ (In particular /bpf_progs/…)

https://android.googlesource.com/platform/external/android-clat/ (daemon)

Docs

https://source.android.com/devices/tech/datausage/ebpf-traffic-monitor

Resources

https://android.googlesource.com/kernel/common/
https://android.googlesource.com/kernel/configs/
https://android.googlesource.com/kernel/tests/
https://android.googlesource.com/platform/system/bpf/
https://android.googlesource.com/platform/system/netd/
https://android.googlesource.com/platform/external/android-clat/
https://source.android.com/devices/tech/datausage/ebpf-traffic-monitor

Questions?

Thank You

Google Proprietary + Confidential

Bootcamp 2019
eBPF implementation in Android
networking
March 12, 2019

Google Proprietary + Confidential

Introduction

What is eBPF

● Kernel bytecode program that can be loaded and attached at run time

● Can be attached to cgroup, iptables, tc (traffic controller) for networking purposes

● Uses in-kernel data structure eBPF maps to store data and control program behavior

Motivation

● Replace Android kernel modules that cannot be submitted to upstream Linux

● Possibly allow upgrading functionality without upgrading kernel

Usage

● Stats collection

● Packet filtering

Google Proprietary + Confidential

Changes released in Android Pie

Network stats monitoring

● Attach eBPF program to cgroup root directory to monitor per-UID network stats

● Replaced xt_qtaguid to support socket tagging and background foreground stats counting

● xt_bpf iptables module uses eBPF program to collect per-interface networkStats

Packet filtering

● Replaced xt_owner module in FirewallController and BandwidthController to do per-UID packet filtering.

Google Proprietary + Confidential

General design

eBpf kernel programs

System Server

CookieTagMap UidOwnerMatchMap

TrafficControllerBandwidthController FirewallController

UidStatsMap
IfaceStatsMap

Netd

Google Proprietary + Confidential

More applications Better performance More coverage

New cgroup socket filter to control
ipv4/6 socket creation, new tc bpf
action to handle ipv6 to ipv4
translation.

Simplified design for loading eBPF
programs and creating eBPF maps.
Speed up the process of pulling stats
from eBPF maps. Faster packet
processing speed.

Completely replace xt_qtaguid module
and paranoid network feature in
Android kernel.

Next release (Q)

Google Proprietary + Confidential

Module deprecation

● xt_qtaguid

○ Devices shipping with Q and kernel >= 4.9 must have the config turned off

○ Code is removed from 4.9+ common kernels

○ User space support will be removed once the minimum required kernel is 4.9 (presumably S)

● Paranoid network

○ Devices shipping with Q and kernel >= 4.14 must have the config turned off

○ Code is removed from 4.19 kernel

○ Planned to remove from 4.14 common kernel as well

Google Proprietary + Confidential

Cgroup socket filter

Functionality

● Control INET/INET6 socket creation

● Only services and apps that have android.Permission.INTERNET are allowed

Motivation

● Replace the out of tree kernel feature "android paranoid network".

Requirement

● Required for devices shipping with Q and kernel version >= 4.14

Google Proprietary + Confidential

464XLAT eBPF offload

We tentatively plan to have in-kernel translation of incoming unfragmented

ipv6/{tcp,udp} packets to ipv4. Bypasses the userspace clat daemon.

Performance improvement for download direction.

In the future, we expect to handle the remaining receive edge cases and

have support for transmit side offload as well. Our goal is to remove the clat

daemon.

Google Proprietary + Confidential

Requirements
● Kernel version >= 4.9

● The kernel configs MUST be turned on:

○ CONFIG_NETFILTER_XT_MATCH_QTAGUID=n

○ CONFIG_NETFILTER_XT_MATCH_OWNER=y

○ CONFIG_NET_CLS_BPF=y

○ CONFIG_CGROUP_BPF=y

○ CONFIG_BPF=y

○ CONFIG_BPF_SYSCALL=y

○ CONFIG_NETFILTER_XT_MATCH_BPF=y

○ CONFIG_INET_UDP_DIAG=y

● The device MEM_LOCK rlimit MUST be set to 8 MB or

more.

Related tests
● Unit tests:

○ kernel net_tests

○ netd_unit_test

○ libbpf_test

● Integration test:

○ netd_integration_test

○ vtsKernelNetBpfTest

● Debugging tools:

○ adb shell dumpsys netd trafficcontroller

Google Proprietary + Confidential

Future releases

Broader coverage
Will expect more
applications of eBPF in
Android in the future.

Better performance
With more upstream
support, eBPF tools
can be faster in the
future.

Easier to adopt
Simplify the adoption
process to have no
additional changes
required for partners.

Docs

https://source.android.com/devices/tech/datausage/ebpf-traffic-monitor

Code location is in AOSP:

https://android.googlesource.com/platform/system/netd/

https://android.googlesource.com/platform/system/bpf/

Resources

https://source.android.com/devices/tech/datausage/ebpf-traffic-monitor
https://android.googlesource.com/platform/system/netd/
https://android.googlesource.com/platform/system/bpf/

Summary

Android Q will introduce various improvements and more functionalities to eBPF

networking in Android.

Next steps

Try out the new eBPF features available in AOSP on new devices, provide feedback,

suggestions, and bug reports.

Tl;dr

Thank You

