Skip to main content

Transition vitreuse dans les polymères amorphes. Etude phénoménologique

  • Conference paper
  • First Online:
Book cover Fortschritte Der Hochpolymeren-Forschung

Part of the book series: Advances in Polymer Science ((POLYMER,volume 3/3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Adam, G.: Molekularkinetische Theorie der Volumen-Relaxation amorpher Hochpolymeren. Kolloid-Z. 180, 11–26 (1962).

    Google Scholar 

  2. Alfrey, T., G. Goldfinger and H. Mark: The apparent second-order transition point of polystyrene. J. Appl. Phys. 14, 700–704 (1943).

    Article  CAS  Google Scholar 

  3. Allen, G., D. Sims and G. J. Wilson: Intermolecular forces and chain-flexibilities in polymers. III. Internal pressures of polymers below their glass transition temperatures. Polymer 2, 375–382 (1961).

    CAS  Google Scholar 

  4. Andrade, E. N. Da. C.: The viscosity of liquids. Nature 125, 309 et 582 (1930). Voir aussi: J. de Guzman, Anales soc. esp. fis. quim. 11, 353 (1913).

    Google Scholar 

  5. Attarian, V., H. Szwarc et L. Terminassian: Phénomènes cinétiques distribués en énergies d'activation. J. chim. phys. 58, 837–844 (1961).

    CAS  Google Scholar 

  6. Barlow, A., and J. Lamb: The viscoelastic behavior of lubricating oils under cyclic shearing stress. Proc. Roy. Soc. (London) 253 A, 52–69 (1959).

    Google Scholar 

  7. Beevers, R. B., and E. F. T. White: Physical properties of vinyl polymers. Part 1. Dependence of the glass transition temperature of polymethylmetacrylate on molecular weight. Trans. Faraday Soc. 56, 744–752 (1960).

    CAS  Google Scholar 

  8. Bekkedahl, N., and R. B. Scott: Specific heat of the synthetic rubber Hycar O. R. from 15‡ to 340‡ K. J. Research Nat. Bur. Standards 29, 87–95 (1942). Res. Paper RP 1487.

    CAS  Google Scholar 

  9. Berger, E.: Contribution to the theory of glass formation, and the glassy state. J. Am. Ceram. Soc. 15, 647–677 (1932).

    CAS  Google Scholar 

  10. Bernal, J. D.: A geometrical approach to the structure of liquids. Nature 183, 141–147 (1959).

    CAS  Google Scholar 

  11. Bkstul, A. B.: Application of the Williams-Landel-Ferry equation to silicate glasses. Glastechn. Ber. 32 K, VI/59–VI/66 (1959).

    Google Scholar 

  12. -, and A. J. Kovacs: Isothermal volume changes in amorphous selenium (to be submitted).

    Google Scholar 

  13. Bondi, A.: Viscosity and molecular structure. Ann. N. Y. Acad. Sci. II 53, 805–823 (1951).

    Google Scholar 

  14. - Theories of viscosity p. 321–350 dans “'Rheology”, Edité par F. R. Eirich, Vol. I. New-York: Academic Press 1956.

    Google Scholar 

  15. Borelius, G., and K. A. Paulson: Volume, internal energy and entropy of amorphous and crystalline selenium. Ark. Mat. Astro. Fys. 33 A, (n‡ 7), 1–16 (1946).

    Google Scholar 

  16. Bovey, F. A., and G. V. D. Tiers: Polymer NMS spectroscopy. II. The high resolution spectra of methyl-methacrylate polymers prepared with free radical and anionic initiators. J. Polymer Sci. 44, 173–182 (1960).

    CAS  Google Scholar 

  17. -- The high resolution nuclear magnetic resonance spectroscopy of polymers. Fortschr. Hochpol-Forsch. 3, 139–195 (1963).

    CAS  Google Scholar 

  18. Boyer, R. F., and R. S. Spencer: Thermal expension and second-order transition effects in high polymers. Part I. Experimental results. J. Appl. Phys. 15, 398–405 (1944).

    Article  CAS  Google Scholar 

  19. -- Thermal expansion and second-order transition effects in high-polymers. Part III. Time effects. J. Appl. Phys. 17, 398–404 (1946).

    Google Scholar 

  20. -- Transition de second ordre dans les hauts polymères, p. 385–435, dans «Changements de phases», Edité par la Société de Chimie Physique, Paris (1952).

    Google Scholar 

  21. Braun, G., and A. J. Kovacs: Glass transition in powdered polystyrene. Phys. Chem. Glasses. 4, 152–160 (1963).

    CAS  Google Scholar 

  22. BridgmaN, P. W.: The physics of high pressure. New-York: Macmillan 1931.

    Google Scholar 

  23. Bueche, F.: Derivation of the WLF equation for the mobility of molecules in molten glasses. J. Chem. Phys. 24, 418–420 (1956).

    CAS  Google Scholar 

  24. - Rate and pressure effects in polymers and other glass forming substances. J. Chem. Phys. 36, 2940–2946 (1962).

    Article  CAS  Google Scholar 

  25. Cohen, M. H., and D. Turnbull: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959).

    Article  CAS  Google Scholar 

  26. Collyer, P. W.: Study of time and temperature effects on glass in the annealing range. J. Am. Ceram. Soc. 30, 338–344 (1947).

    CAS  Google Scholar 

  27. Condon, E. U.: Comments on the annealing of flat glass. Glass Ind. 33, p. 307 et 322–323 (1952).

    Google Scholar 

  28. - Physics of the glassy state. II. The tranformation range. Am. J. Phys. 22, 132–142 (1954).

    CAS  Google Scholar 

  29. Danusso, F., G. Moraglio, W. Ghiglia, L. Motta e G. Talamini: Proprièta volumetriche e dilatometriche di alcuni polimeri di olefine. Chirn. e ind. 41, 748–758 (1959).

    CAS  Google Scholar 

  30. Daragan, B.: Considérations sur la recuisson du verre plat. Verres et réfractaires 5, 135–143 (1951); voir aussi: Glass Ind. 33, 69–74 et 98–99 (1952).

    CAS  Google Scholar 

  31. Davidson, D., and R. Cole: Dielectric relaxation in glycerol, propylene glycol and n-propanol. J. Chem. Phys. 19, 1484–1490 (1951).

    CAS  Google Scholar 

  32. Davies, R. O., and G. O. Jones: The irreversible approach to equilibrium in glasses. Proc. Roy. Soc. 217 A, 26–42 (1953a).

    Google Scholar 

  33. -- Thermodynamic and kinetic properties of glasses. Advances in Phys. (Phil. Mag. Suppl.) 2, 370–410 (1953b).

    Google Scholar 

  34. De Bast, J., et P. GiLARd: La fonction de distribution des temps de relaxation appliquée à l'étude du comportement des verres sous contrainte. Silicates inds. 27, 531–535 (1962).

    Google Scholar 

  35. De Bast, J., et P. Gilard: Variation of the viscosity of glass and the relaxation of stresses during stabilisation. Phys. Chem. Glasses 4, 117–128 (1963).

    Google Scholar 

  36. De Donder, Th.: Affinity. Stanford University Press, 1936; Paris: Dunod 1936.

    Google Scholar 

  37. De Vries, A. J., and J. Tochon: Non-linear viscoelastic behavior of polymer melts. J. Appl. Polymer Sci. 7, 315–331 (1963).

    Google Scholar 

  38. Dienes, G. J.: Activation energy for viscous flow and short-range order. J. Appl. Phys. 24, 779–782 (1953).

    CAS  Google Scholar 

  39. DiMarzio, E. A., and J. H. Gibbs: Molecular interpretation of glass temperature depression by plasticizers. J. Polymer Sci. A 1, 1417–1428 (1963).

    Google Scholar 

  40. Doolittle, A. K.: Studies in newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Phys. 22, 1471–1475 (1951).

    CAS  Google Scholar 

  41. Douglas, R. W.: Relations between physical properties and structure of glasses. I. Variation of physical properties with time. Trans. Soc. Glass. Techn. 31, 50–73 (1947).

    Google Scholar 

  42. - The flow of glass. Trans. Soc. Glass Techn. 33, 138–162 (1949).

    Google Scholar 

  43. - Variation of the physical properties of glass with time in the transformation range. G. E. C. J. 21, 3–12 (1954).

    Google Scholar 

  44. Ehrenfest, P.: Phasenumwandlungen im üblichen und erweiterten Sinn, klassifiziert nach den entsprechenden Singularitäten des thermodynamischen Potentials. Leiden Comm. Suppl. 75 b, 8–13 (1933); Proc. Kon. Akad. Amsterdam 36, 153 (1933).

    Google Scholar 

  45. Ellerstein, S. M.: A glass temperature relationship. J. Polymer Sci. B 1, 311–312 (1963).

    Google Scholar 

  46. Ewell, R. E., and H. Eyring: Theory of the viscosity of liquids as a function of temperature and pressure. J. Chem. Phys. 5, 726–736 (1937).

    CAS  Google Scholar 

  47. Ferry, J. D., and G. S. Parks: Studies on glass. XIII. Glass formation by a hydrocarbon polymer. J. Chem. Phys. 4, 70–75 (1936).

    Article  CAS  Google Scholar 

  48. - Mechanical properties of substances of high molecular weight. VI. Dispersion in concentrated polymer solutions and its dependence on temperature and concentration. J. Am. Chem. Soc. 72, 3746–3752 (1950).

    Article  CAS  Google Scholar 

  49. -, E. R. Fitzgerald, L. D. Grandine and M. L. Williams: Temperature dependence of dynamic properties of elastomers; relaxation distributions. Ind. Eng. Chem. 44, 703–706 (1952).

    Article  CAS  Google Scholar 

  50. -, and R. S. Stratton: The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure and tensil strain. Kolloid-Z. 171, 107–111 (1960).

    Article  CAS  Google Scholar 

  51. - Viscoelastic properties of polymers. New-York: Wiley & Sons. 1961.

    Google Scholar 

  52. Flory, P. J.: Principles of polymer chemistry. Ithaca, N. Y.: Cornell University Press, 1953.

    Google Scholar 

  53. Fox, T. G., and P. J. Flory: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21, 581–591 (1950); J. Polymer Sci. 14, 315–319 1954).

    Article  CAS  Google Scholar 

  54. -, and S. Loshaek: Influence of molecular weight and degree of crosslinking on the specific volume and the glass temperature of polymers. J. Polymer Sci. 40, 371–390 (1955).

    Google Scholar 

  55. -, S. Gratch and S. Loshaek: Viscosity relationships for polymers in bulk and concentrated solutions. p. 431–493 dans “Rheology”. Ed. F. R. Eirich, Vol. 1, New-York: Academic Press 1956.

    Google Scholar 

  56. -, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell and J. D. Stroupe: Crystalline polymers of methylmethacrylate. J. Am. Chem. Soc. 80, 1768 (1958).

    CAS  Google Scholar 

  57. Frenkel, J.: Kinetic theory of liquids. London: Oxford Univ. Press 1946.

    Google Scholar 

  58. Fulcher, G. S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 et 789 (1925).

    CAS  Google Scholar 

  59. Gast, T.: Messungen der spezifischen Wärme verschiedener Kunststoffe in Abhängigkeit von der Temperatur. Kunststoffe 43, 15–18 (1953); cf. S. Alford and M. Dole: J. Am. Chem. Soc. 77, 4774 (1955).

    CAS  Google Scholar 

  60. Gee, G., P. N. Hartley, J. B. M. Herbert and H. A. Lanceley: The effect of deformation on the transition Rubber-Glass. Polymer. 1, 365–374 (1960).

    CAS  Google Scholar 

  61. Gehrke, P.: Schmelzen und glasige Erstarrung von Hochpolymeren unter hohen Drücken. Dissertation, Techn. Hochschule, Aachen (1960).

    Google Scholar 

  62. Gibbs, J. H., and E. A. Dimarzio: Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383, 807–813 (1958).

    CAS  Google Scholar 

  63. Gibson, G. E., and W. F. Giauque: Third law of thermodynamics. J. Am. Chem. Soc. 45, 93–96 (1923).

    Article  CAS  Google Scholar 

  64. Gilard, P., et J. De Bast: Aspects particuliers des phénomènes de fluage et de relaxation dans l'intervalle de transformation. p. 442–457 dans: Advances in glass technology. VI. International Congress on Glass, Washington, D. C. New York: Planum Press 1962.

    Google Scholar 

  65. Glasstone, S., K. J. Laidler and H. Eyring: The theory of rate processes, p. 477–516. New York: Mc. Graw-Hill Book Co. Inc. 1941.

    Google Scholar 

  66. Goldstein, M.: Phenomenological aspects of the glass transition. Submitted to “Modern Aspects of vitrous State”, Editor J. D. McKenzie. London: Butterworth & Co. Ltd. 1963.

    Google Scholar 

  67. -Some thermodynamic aspects of the glass transition: Free volume, entropy and enthalpy theories. J. Chem. Phys. To be published (1964).

    Google Scholar 

  68. Gordon, M., and J. S. Taylor: Ideal copolymers and the second-order transition of synthetic rubbers. Part I. Non-crystalline copolymers. J. Appl. Chem. 2, 493–500 (1952).

    CAS  Google Scholar 

  69. Gotlib, Yu. Ya., and O. B. Ptitsyn: Theory of annealing of glass as a cooperative process. Sov. Phys. Solid State 3, 2456–2459 (1962); orig. russe: 3, 3383–3388 (1961).

    Google Scholar 

  70. Griffith, J. H., and B. G. Rånby: Dilatometric measurements on poly (4-methyl-1-pentene), glass and melt transition temperatures, crystallization rates and unusual density behavior. J. Polymer. Sci. 44, 369–381 (1960).

    CAS  Google Scholar 

  71. Gutman, F., and L. M. Simmons: The temperature dependence of the viscosity of liquids. J. Appl. Phys. 23, 977–978 (1952).

    Google Scholar 

  72. Hahn, S. J., T. Ree and H. Eyring: Non-newtonian relaxation in amorphous solids in “Non-Crystalline Solids”. Ed. V. D. Frechette; Part 12, p. 297–321. New York: J. Wiley & Sons 1960.

    Google Scholar 

  73. Ham, J. S.: Viscoelastic theory of branched and cross-linked polymers. J. Chem. Phys. 26, 625–633 (1957).

    Article  CAS  Google Scholar 

  74. Handbook of Chemistry and Physics. 41th Ed. Chemical Rubber Publishing Co. Cleveland, Ohio (1959–1960).

    Google Scholar 

  75. Hellwege, K. H., W. Knappe u. P. Lehmann: Die isotherme Kompressibilität einiger amorpher und teilkristalliner Hochpolymeren im Temperaturbereich von 20–250‡C und bei Drücken bis zu 2000 Kp/cm2. Kolloid-Z. 183, 110–120 (1962a).

    CAS  Google Scholar 

  76. -- W. Wetzel: Spezifische Wärme von Polyolefinen und einigen anderen Hochpolymeren im Temperaturbereich von 30–180‡C. Kolloid-Z. 180, 126–134 (1962b).

    CAS  Google Scholar 

  77. Herzfeld, K. F., and T. A. Litovitz: Absorption and Dispersion of Ultrasonic Waves. New York: Academic Press 1959.

    Google Scholar 

  78. Hirai, N., and H. Eyring: Bulk viscosity of liquids. J. Appl. Phys. 29, 810–816 (1958).

    Article  CAS  Google Scholar 

  79. -- Bulk viscosity of polymeric systems. J. Polymer Sci. 37, 51–70 (1959).

    CAS  Google Scholar 

  80. Hoffman, J. D., and J. J. Weeks: Specific volume and degree of crystallinity of semicrystalline polychlorotrifluoroethylene, and estimated specific volumes of the pure amorphous and crystalline phases. J. Research Nat. Bur. Standards 60, 465–479 (1958).

    CAS  Google Scholar 

  81. Illers, K. H.: Die Glastemperatur von Copolymeren. Kolloid-Z. 190, 16–34 (1963).

    CAS  Google Scholar 

  82. Jahnke, E., and F. Emde: Tables of functions. New York: Dover publication 1945.Voir aussi: “Mathematical Tables”, Vol. I. Ed. British Association for the Advancement of Science. 2nd Edition p. 31–33. Cambridge: University Press 1946.

    Google Scholar 

  83. Jenckel, E.: Die Vorgänge bei Abkühlung von Gläsern und Kunstharzen. Z. Elektrochem. 43, 796–806 (1937).

    CAS  Google Scholar 

  84. -, u. R. Heusch: Die Erniedrigung der Einfriertemperatur organischer Gläser durch Lösungsmittel. Kolloid-Z. 130, 89–105 (1953).

    CAS  Google Scholar 

  85. -, u. G. Rehage: Die glasige Erstarrung der Hochpolymeren, p. 608–638, in: Die Physik der Hochpolymeren. Vol. III. Ed. H. A. Stuart. Berlin-Göttingen-Heidelberg: Springer-Verlag 1955.

    Google Scholar 

  86. Kanig, G.: Zur Theorie der Glastemperatur von Polymerhomologen, Copolymeren und weichgemachten Hochpolymeren. Kolloid-Z. 190, 1–16 (1963).

    CAS  Google Scholar 

  87. Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  88. Kelley, F. N., and F. Bueche: Viscosity and glass temperature relations for polymer-diluent systems. J. Polymer Sci. 50, 549–556 (1961).

    CAS  Google Scholar 

  89. Klug, H. P.: X-ray study of red monoclinic selenium. Proof of existence of two red monoclinic varieties of selenium. Z. Krist. A88, 128–135 (1934).

    Google Scholar 

  90. Koglin, W.: Kurzes Handbuch der Chemie. Göttingen. Vandenhoeck & Ruprecht 1951.

    Google Scholar 

  91. Kovacs, A. J.: Sur la contraction isotherme du polystyrolène. Compt. rend. 235, 1127–1129, et 1648–1650 (1952).

    CAS  Google Scholar 

  92. - Contribution à l'étude de l'évolution isotherme du volume des hautspolymères. Thèse Fac. Sci. Paris 1954. Publié dans l'Industrie des Plastiques Modernes (Paris) 1955.

    Google Scholar 

  93. - Sur la cinétique de crystallisation partielle du polychlorure de vinyle. Compt. rend. 243, 50–53 (1956).

    CAS  Google Scholar 

  94. - La contraction isotherme du volume des polymères amorphes. J. Polymer. Sci. 30, 131–147 (1958).

    CAS  Google Scholar 

  95. - Une théorie phénoménologique de l'évolution isotherme des verres trempés. Compt. rend. 250, 109–111 (1960).

    CAS  Google Scholar 

  96. - La viscosité volumétrique des liquides surfondus au voisinage de leur transition vitreuse. p. 191–212 dans «Phénomènes de relaxation et de fluage en rhéologie non-linéaire». Edité par le C. N. R. S. Paris (1961a).

    Google Scholar 

  97. - Bulk creep and recovery in systems with viscosity dependent upon free volume. Trans. Soc. Rheology 5, 285–296 (1961b).

    Article  CAS  Google Scholar 

  98. -, R. A. Stratton and J. D. Ferry: Dynamic mechanical properties of polyvinyl acetate in shear in the glass transition temperature range. J. Phys. Chem. 67, 152–161 (1963).

    CAS  Google Scholar 

  99. Kronig, R. de L.: Zur Theorie der Relaxationserscheinungen. Physik. Z. 39, 823–830 (1938).

    Google Scholar 

  100. Kurkjian, C. R.: Relaxation of torsional stress in the transformation range. Phys. Chem. Glasses, à paraÎtre (1963).

    Google Scholar 

  101. KuvsHiNSKii, E. V., et. A. V. Sidorovich: 6e Conférence sur les polymères, Léningrad, 1959. Référence de Sharonov et Volkenstein (1962).

    Google Scholar 

  102. Landel, R. F.: The dynamic mechanical properties of a model filled system: Polyisobutylene-Glass Beads. Trans. Soc. Rheology 2, 53–75 (1958).

    Article  Google Scholar 

  103. Leaderman, H.: Elastic and creep properties of filamentous materials, p. 175. Textile foundation, Washington, D. C. (1943).

    Google Scholar 

  104. Lillie, H. R.: Viscosity-time-temperature relations in glass at annealing temperatures. J. Am. Ceram. Soc. 16, 619–631 (1933).

    CAS  Google Scholar 

  105. Litovitz, T. A.: Origin of ultrasonic volume viscosity in associated liquids. J. Acoust. Soc. Am. 30, 210–214 (1958).

    Google Scholar 

  106. -, and T. Lyon: Ultrasonic velocity in the liquid-glass transition region. J. Acoust. Soc. Am. 30, 856–859 (1958).

    Google Scholar 

  107. - Ultrasonic spectroscopy of liquids. J. Acoust. Soc. Am. 31, 681–691 (1959).

    Article  Google Scholar 

  108. - Liquid relaxation phenomena and the glass state, in “Non-crystalline solids”. Ed. V. D. Frechette, Part 10, p. 252–268. New York: J. Wiley & Sons, 1960.

    Google Scholar 

  109. -, and C. M. Davis: Structural and shear relaxation in liquids in “Physical Acoustics”. Ed. W. P. Mason (to be published) (1963).

    Google Scholar 

  110. Loshaek, S.: Crosslinked polymers. II. Glass temperatures of copolymers of methyl methacrylate and glycol dimethacrylates. J. Polymer Sci. 15, 391–404 (1955).

    CAS  Google Scholar 

  111. Macedo, P., and T. A. Litovitz: Communication privée à publier (voir Litovitz et Davis, 1963).

    Google Scholar 

  112. Malherbe, F. E., and H. J. Bernstein: Infrared spectra of rapidly solidified vapors. J. Chem. Phys. 19, 1607–1608 (1951).

    Article  CAS  Google Scholar 

  113. Mandelkern, L., G. M. Martin and F. A. Quinn: Glassy state transition of Poly(chlorotrifluoroethylene), Poly(vinylidene fluoride) and their copolymers. J. Research Nat. Bur. Standards 58, 137–143 (1957).

    CAS  Google Scholar 

  114. Martin, G. M., S. S. Rogers and L. Mandelkern: Volume-temperature relations of amorphous polymers over extended temperature range. J. Polymer Sci. 20, 579–581 (1956).

    CAS  Google Scholar 

  115. -, and L. Mandelkern: Glass formation in polymers. II. The system rubbersulfur. J. Research Nat. Bur. Standards 62, 141–146 (1959).

    CAS  Google Scholar 

  116. --Bulk creep and recovery. To be published. J. Appl. Phys. (1963).

    Google Scholar 

  117. Matsuoka, S., and B. Maxwell: Response of linear high polymers to hydrostatic pressure. J. Polymer Sci. 32, 131–159 (1958).

    CAS  Google Scholar 

  118. McDuffie, G. E. jr., and T. A. Litovitz: Dielectric relaxation in associated liquids. J. Chem. Phys. 37, 1699–1706 (1962).

    CAS  Google Scholar 

  119. McKenzie, J. D.: Viscous flow of liquids at constant volume and constant pressure. J. Chem. Phys. 28, 1037–1039 (1958).

    Google Scholar 

  120. McKinney, J. E., H. V. Belcher and R. S. Marvin: The dynamic compressibility of a rubber-sulfur vulcanisate and its relation to free volume. Trans. Soc. Rheology 4, 347–362 (1960).

    Article  CAS  Google Scholar 

  121. -- Dynamic compressibility of polyvinylacetate and its relation to free volume. J. Research Nat. Bur. Standards 67 A, 43–53 (1963).

    Google Scholar 

  122. Meares, P.: The second-order transition of polyvinyl acetate. Trans. Faraday Soc. 53, 31–40 (1957).

    CAS  Google Scholar 

  123. Meister, R., C. J. Marhoeffer, R. Sciamanda, L. Cotter and T. A. Litovitz: Ultrasonic viscoelastic properties of associated liquids. J. Appl. Phys. 31, 854–870 (1960).

    Article  CAS  Google Scholar 

  124. Meixner, J.: Thermodynamische Theorie der elastischen Relaxation. Z. Naturforsch. 9 a, 654–663 (1954).

    Google Scholar 

  125. Miller, A. A.: The reference point for liquid relaxation processes. III. Melt viscosity of n-alkanes. G. E. Report nℴ 62-RL-3142 E (1962). J. Phys. Chem. To be published.

    Google Scholar 

  126. -Relaxation free volume in liquids. Effect of pressure. G. E. Report nℴ 63-RL-3294 E (1963 a).

    Google Scholar 

  127. - The reference point for liquid relaxation processes. II. Melt viscosity of polyisobutylene. J. Polymer Sci. 1 A, 1865–1874 (1963b).

    Google Scholar 

  128. -Free volume in polystyrene and polyisobutylene. J. Polymer Sci. To be published (1963 c).

    Google Scholar 

  129. Miller, R. L., and L. E. Nielsen: Crystallographic data for various polymers. J. Polymer Sci. 44, 391–395 (1960).

    CAS  Google Scholar 

  130. Nakada, O.: Theory of viscoelasticity of amorphous polymers. III. Dispersion of dynamic bulk modulus. J. Polymer Sci 43, 149–165 (1960).

    CAS  Google Scholar 

  131. O'Reilly, J. M.: The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate. J. Polymer Sci. 57, 429–444 (1962).

    Google Scholar 

  132. -Communication privée (1963).

    Google Scholar 

  133. Parks, G. S., H. M. Huffman and F. R. Cattoir: Studies on glass. II. The transition between the glassy and liquid states in the case of glucose. J. Phys. Chem. 32, 1366–1379 (1928).

    CAS  Google Scholar 

  134. -, L. E. Barton, M. E. Spaght and J. W. Richardson: The viscosity of undercooled liquid glucose. Physics 5, 193–199 (1934).

    Article  CAS  Google Scholar 

  135. Partington, J. R.: An advanced treatrise on physical chemistry. Vol. II. p. 36–57 et p. 89–110. 2e Edition. London, New York: Longmans, Green & Co. 1955.

    Google Scholar 

  136. Prigogine, I, et. R. Defay: Thermodynamique chimique. Ed. Desoer, Liège (1950).

    Google Scholar 

  137. Primak, W.: Fast-Neutron-induced changes in quartz and vitreous silica. Phys. Rev. 110, 1240–1254 (1958).

    Article  CAS  Google Scholar 

  138. Prod'Homme, M.: Contribution à l'étude de la viscosité des verres. Thése Fac. Sci. Paris, 1960-voir aussi: Verres et réfractaires 14, 261–273 (1960).

    Google Scholar 

  139. Ptitsyn, O. B.: Cinétique de stabilisation des verres. Doklady akad. Sci. URSS, 103, 1045–1048 (1955).

    CAS  Google Scholar 

  140. Reiner, M.: Phenomenological macrorheology p. 9–60 dans “Rheology”. Ed. F. R. Eirich, vol. I. New York: Academic Press 1956.

    Google Scholar 

  141. Ritland, H. N.: Density phenomena in the transformation of a borosilicate crown glass. J. Am. Ceram. Soc. 37, 370–378 (1954).

    CAS  Google Scholar 

  142. - The stress-time relation in glass during annealing. Trans. Soc. Glass Techn. 39, 99–112 (1955).

    Google Scholar 

  143. - Limitations of the fictive temperature concept. J. Am. Ceram. Soc. 39, 403–406 (1956).

    CAS  Google Scholar 

  144. Rogers, S. S., and L. Mandelkern: Glass formation in polymers. I. The glass transitions of the poly(n-alkyl methacrylates). J. Phys. Chem. 61, 985–990 (1957).

    CAS  Google Scholar 

  145. Peyches, I.: The viscous flow of glass at low temperatures. Trans. Soc. Glass Techn. 36, 164–180 (1952).

    CAS  Google Scholar 

  146. Saito, S., and T. Nakajima: Glass transition in polymers. J. Appl. Polymer. Sci. 2, 93–99 (1959).

    CAS  Google Scholar 

  147. - Temperature dependence of dielectric relaxation behaviour for various polymer systems. Kolloid-Z. 189, 116–125 (1963).

    CAS  Google Scholar 

  148. Schatzki, T. F.: Theory of measurement of transition temperatures by dilatometry. I. Glass transition temperature, Williams-Landel-Ferry Approximations. Techn. Rep. nℴ 55–61, Shell Development Co. Emeryville, California (1961).

    Google Scholar 

  149. Schulz, A. K.: Sur les relations entre la dispersion de la vitesse du son, chaleur spécifique, la densité et la conductivité thermique de la glycérine surfondue et cristallisée. J. chim. phys. 51, 530–533 (1954); voir aussi: J. chim. phys. 51, 324–327 (1954).

    CAS  Google Scholar 

  150. Schwarzl, F., and A. J. Staverman: Time-temperature dependence of linear viscoelastic behavior. J. Appl. Phys. 23, 838–843 (1952).

    Article  CAS  Google Scholar 

  151. Sekiguti, T.: Glass transformation of amorphous selenium. Sci. Papers Inst. Phys. Chem. Res. 54, 281–284 (1960).

    Google Scholar 

  152. Sharonov, Yu. A., and M. V. Volkenstein: Co-operative effects in the annealing and softening range of polyvinyl acetate. Vysokomol. Soed. 4, 917–921 (1962).

    CAS  Google Scholar 

  153. Simha, R., and R. F. Boyer: On a general relation involving the glass temperature and coefficients of expansion of polymers. J. Chem. Phys. 37, 1003–1007 (1962).

    Article  CAS  Google Scholar 

  154. Simon, F.: 25 Jahre Nernstscher Wärmesatz. Ergeb. exakt. Naturw. 9, 222–274 (1930).

    Google Scholar 

  155. - über den Zustand der unterkühlten Flüssigkeiten und Gläser. Z. anorg. allgem. Chem. 203, 220–227 (1931).

    Article  Google Scholar 

  156. Singh, H., and A. W. Nolle: Pressure dependence of the viscoelastic behavior of polyisobutylene. J. Appl. Phys. 30, 337–341 (1959).

    Article  CAS  Google Scholar 

  157. Spencer, R. S.: Volume-temperature-time relationships for polystyrene. J. Colloid Sci. 4, 229–240 (1949).

    CAS  Google Scholar 

  158. Staverman, A. J.: Quantitative relations concerning the glass transition point. Kurzmitteilungen, Symposium über Macromoleküle in Wiesbaden. Sektion I A9. Oct. 1959.

    Google Scholar 

  159. Tammann, G.: über Gläser als unterkühlte Flüssigkeiten. Glastech. Ber. 3, 73–87 (1925/26).

    Google Scholar 

  160. -, u. G. Hesse: Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. anorg. allgem. Chem. 156, 245–251 (1926).

    Google Scholar 

  161. -Der Glaszustand. Ed. L. Voss. Leipzig (1930).

    Google Scholar 

  162. Tool, A. Q., and C. G. Eichlin: Variations caused in heating curves of glass by heat-treatment. J. Am. Ceram. Soc. 14, 276–308 (1931).

    CAS  Google Scholar 

  163. - Viscosity and extraordinary heat effects in glass. J. Research Nat. Bur. Standards 37, 73–90 (1946). Res. Pap. RP1730; voir aussi: J. Am. Ceram. Soc. 29, 240–253 (1946).

    CAS  Google Scholar 

  164. - Effect of heat-treatment on density and constitution of high-silica-glasses of the borosilicate type. J. Am. Ceram. Soc. 31, 177–186 (1948).

    CAS  Google Scholar 

  165. -, and J. B. Saunders: Expansion effects of annealing borosilicate thermometer glasses. J. Research Nat. Bur. Standards 42, 171–182 (1949); Res. Pap. RP1960.

    CAS  Google Scholar 

  166. Turnbull, D., and M. H. Cohen: Cristallization kinetics and glass formation p. 38–60 in “Modern aspects of the vitrous state”; Ed. J. D. McKenzie. London: Butterworth et Co. Ltd. 1960.

    Google Scholar 

  167. -- Free volume model of the amorphous phase: glass transition. J. Chem. Phys. 34, 120–125 (1961).

    CAS  Google Scholar 

  168. Twyman, F.: The annealing of glass. J. Soc. Glass Techn. 1, 61–73 (1917).

    CAS  Google Scholar 

  169. Ueberreiter, K., and G. Kanig: Self-plasticization of polymers. J. Colloid Sci. 7, 569–583 (1952).

    Article  CAS  Google Scholar 

  170. Ueberreiter, K., u. H. J. Orthmann: Die Viscosität glasigen Selens von 0‡-100‡C. Kolloid-Z. 123, 84–91 (1951).

    CAS  Google Scholar 

  171. Vogel, H.: Das Temperaturabhängigkeitsgesetz der Viscosität von Flüssigkeiten. Physik. Z. 22, 645–646 (1921).

    CAS  Google Scholar 

  172. Volkenstein, M. V., et O. B. Ptitsyn: Théorie de relaxation de la vitrification. Doklady Acad. Sci. URSS, 103, 795–798 (1955).

    Google Scholar 

  173. -- The relaxation theory of vitrification. I. Solution and investigation of the basic equation. Sov. Phys. Techn. Phys. 26, 2204–2222 (1956). Traduction anglaise: American Institute of Phys. Inc. New York, J. Techn. Phys. Acad. Sci. URSS, 1, 2138–2156 (1957).

    CAS  Google Scholar 

  174. -, et Yu. A. Sharonov: Influence du recuit sur la variation de chaleur spécifique des polymères vitreux dans le domaine de transition. Vysokomol. Soed. 3, 1739–1745 (1961).

    Google Scholar 

  175. Wada, Y., H. Hirose and T. Asano: On the dynamic mechanical properties of polymers at ultrasonic frequencies in relation to their glass transition phenomena. J. Phys. Soc. Japan 14, 1064–1072 (1959).

    CAS  Google Scholar 

  176. --, H. Umebayashi and M. Otomo: Volume viscoelasticity of polymers and other highly dissipative materials. J. Phys. Soc. Japan 15, 2324–2334 (1960).

    Google Scholar 

  177. Whittaker, E. T., and G. N. Watson: A course of modern analysis, p. 150 to 159. Cambridge Univ. Press 1940.

    Google Scholar 

  178. Williams, M. L., and J. D. Ferry: Dynamic mechanical properties of polyvinylacetate. J. Colloid Sci. 9, 479–492 (1954).

    Article  CAS  Google Scholar 

  179. -, R. F. Landel and J. D. Ferry: The temperature dependence of relaxation mechanisms in amorphous polymers and other glassforming liquids. J. Am. Chem. Soc. 77, 4701–4707 (1955).

    Google Scholar 

  180. - Free volume approach to polystyrene melt viscosity. J. Appl. Phys. 29, 1395–1398 (1958).

    CAS  Google Scholar 

  181. Winter, A.: Transformation region of glass. J. Am. Ceram. Soc. 26, 189–200 (1943).

    CAS  Google Scholar 

  182. Wood, L. A.: Glass transition temperatures of copolymers. J. Polymer. Sci. 28, 319–330 (1958).

    CAS  Google Scholar 

  183. Wunderlich, B.: Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J. Phys. Chem. 64, 1052–1056 (1960).

    CAS  Google Scholar 

  184. Zijlstra, A. L.: The viscosity of some silicate glasses in connection with thermal history. Phys. Chem. Glasses; to be published (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Springer-Verlag

About this paper

Cite this paper

Kovacs, A.J. (1964). Transition vitreuse dans les polymères amorphes. Etude phénoménologique. In: Fortschritte Der Hochpolymeren-Forschung. Advances in Polymer Science, vol 3/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0050366

Download citation

  • DOI: https://doi.org/10.1007/BFb0050366

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-03084-3

  • Online ISBN: 978-3-540-37073-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics