

The Feuerbach Point and the Fuhrmann Triangle

Nguyen Thanh Dung

Abstract. We establish a few results on circles through the Feuerbach point of a triangle, and their relations to the Fuhrmann triangle. The Fuhrmann triangle is perspective with the circumcevian triangle of the incenter. We prove that the perspectrix is the tangent to the nine-point circle at the Feuerbach point.

1. Feuerbach point and nine-point circles

Given a triangle ABC, we consider its intouch triangle $X_0Y_0Z_0$, medial triangle $X_1Y_1Z_1$, and orthic triangle $X_2Y_2Z_2$. The famous Feuerbach theorem states that the incircle $(X_0Y_0Z_0)$ and the nine-point circle (N), which is the common circumcircle of $X_1Y_1Z_1$ and $X_2Y_2Z_2$, are tangent internally. The point of tangency is the Feuerbach point F_e . In this paper we adopt the following standard notation for triangle centers: G the centroid, O the circumcenter, H the orthocenter, I the incenter, N_a the Nagel point. The nine-point center N is the midpoint of OH.

Figure 1

Proposition 1. Let ABC be a non-isosceles triangle.

(a) The triangles $F_eX_0X_1$, $F_eY_0Y_1$, $F_eZ_0Z_1$ are directly similar to triangles AIO, BIO, CIO respectively.

(b) Let O_a , O_b , O_c be the reflections of O in IA, IB, IC respectively. The lines IO_a , IO_b , IO_c are perpendicular to F_eX_1 , F_eY_1 , F_eZ_1 respectively.

Publication Date: July 25, 2016. Communicating Editor: Paul Yiu.

Proof. (a) It is enough to prove the direct similarity of triangles $F_eX_0X_1$ and AOI. We work with the notion of directed angles (see [2, §§16–19]). Assume that AB < AC. Let U and J_a be the intersections of the line AI with BC and the circumcircle (O) respectively. Draw a tangent UT to the incircle (I) (see Figure 1). The points F_e, T, X_1 are collinear (see [1, Theorem 215]). Hence, modulo π ,

$$(X_0X_1, X_0T) \equiv \frac{\pi}{2} - (X_0T, X_0I) \equiv (IX_0, IJ_a)$$

 $\equiv (J_aO, J_aA) \equiv (AJ_a, AO) \equiv (AI, AO) \equiv -(AO, AI).$

On the other hand,

$$\frac{X_0 T}{X_0 X_1} = \frac{2r \sin X_0 I J_a}{\frac{b-c}{2}} = \frac{2r}{R} \cdot \frac{\sin \frac{B-C}{2}}{\sin B - \sin C} = \frac{r}{R \sin \frac{A}{2}} = \frac{AI}{AO}$$

Therefore, triangles X_0TX_1 and AIO are inversely similar.

Since $(F_eX_0, F_eX_1) \equiv -(X_0T, X_0X_1) \pmod{\pi}$, and $(X_1F_e, X_1X_0) \equiv -(X_1X_0, X_1T) \pmod{\pi}$, triangles $F_eX_0X_1$ and X_0TX_1 are oppositely similar. It follows that $F_eX_0X_1$ and AIO are *directly* similar.

(b) Triangle AIO_a is oppositely similar to triangle $F_eX_0X_1$. Since $AO_a \perp X_0X_1$, it follows that $IO_a \perp F_eX_1$. Similarly, $IO_b \perp F_eY_1$ and $IO_c \perp F_eZ_1$. \Box

The Feuerbach point F_e is also the Poncelet point of the quadrilateral ABCI. This means that F_e is the common point of the nine-point circles of the four triangles IBC, ICA, IAB, and ABC. The circles $(F_eX_0X_1)$, $(F_eY_0Y_1)$, $(F_eZ_0Z_1)$ are therefore the nine-point circles of triangles IBC, ICA, IAB respectively. Each of them passes through the midpoints of two of the segments AI, BI, CI. Denote by N_a , N_b , N_c the nine-point centers of the triangles IBC, ICA, IABrespectively. We shall prove in Theorem 5 below that N_a , N_b , N_c are equidistant from N, the nine-point center of ABC.

Figure 2

2. Fuhrmann triangle and Fuhrmann circle

The triangle $N_a N_b N_c$ is closely related to the Fuhrmann triangle. Let $J_a J_b J_c$ be the circumcevian triangle of the incenter *I*, and J'_a , J'_b , J'_c the reflections of J_a in *BC*, J_b in *CA*, J_c in *AB* respectively. These reflections form the Fuhrmann triangle $J'_a J'_b J'_c$. Now, J_a is the center of the circumcircle of *IBC*, which also passes through the excenter I_a . The nine-point center of *IBC* is the midpoint between *I* and the reflection of its circumcenter in the side *BC*. ¹ Therefore, N_a is the midpoint of IJ'_a . Similarly, N_b and N_c are the midpoints of IJ'_b and IJ'_c . In other words, $N_a N_b N_c$ is the image of the Fuhrmann triangle under the homothety h with center *I* and ratio $\frac{1}{2}$.²

Figure 3

Basic results about the Feuerbach point and the Fuhrmann triangle can be found in $[1, \S\S215-216]$ and $[2, \S\S320-324, 367-372]$. A proof of the Feuerbach theorem is given in [4].

The Fuhrmann circle is the circumcircle of the Fuhrmann triangle. It contains $HN_{\rm a}$ as a diameter ([2, Theorem 369]). The center of the Fuhrmann circle is the midpoint $F_{\rm u}$ of $HN_{\rm a}$. Here is an alternative description.

Proposition 2. The center of the Fuhrmann circle is the reflection of I in N.

¹If *ABC* is a triangle with centroid *G* and circumcenter *O*, its nine-point center is $N = \frac{3G-O}{2} = \frac{A+((B+C)-O)}{2} = \frac{A+O'}{2}$, where $O' = B + C - O = 2 \cdot \frac{B+C}{2} - O$ is the reflection of *O* in (the midpoint of) *BC*.

²Throughout this paper, h denotes this specific homothety. For every point P, $h(P) = \frac{1}{2}(I+P)$, the midpoint of IP.

Figure 4

Proof.

$$F_{\rm u} = \frac{H + N_{\rm a}}{2} = \frac{H + (3G - 2I)}{2} = \frac{H + (H + 2 \cdot O) - 2I}{2} = H + O - I = 2N - I$$

Proposition 3. The Fuhrmann triangle $J'_a J'_b J'_c$ and the circumcevian triangle of I are oppositely similar.

Proof. Since the circumcircle of $J'_a J'_b J'_c$ contains H, and $H J'_a \parallel J_c J_b$ etc. (see Figure 3),

$$(J'_a J'_b, J'_a J'_c) \equiv (HJ'_b, HJ'_c) \equiv (J_c J_a, J_b J_a) \equiv -(J_a J_b, J_a J_c) \pmod{\pi}.$$

Similarly, $(J'_b J'_c, J'_b J'_a) \equiv -(J_b J_c, J_b J_a) \pmod{\pi}$. The two triangles $J'_a J'_b J'_c$ and $J_a J_b J_c$ are oppositely similar.

Since the vertices of $J_a J_b J_c$ are on the angle bisectors of ABC and the sides are perpendicular to these bisectors, the triangle $J_a J_b J_c$ has orthocenter *I*. This is also true for the Fuhrmann triangle.

Proposition 4. The Fuhrmann triangle has orthocenter I.

Proof. We begin with the excentral triangle $I_a I_b I_c$, where I_a , I_b , I_c are the excenters of triangle AC. It is well known that it has orthocenter I and circumcenter $I' = 2 \cdot O - I$, the reflection of I in O. Therefore, the centroid of the excentral triangle is

$$\frac{I_a + I_b + I_c}{3} = \frac{2I' + I}{3} = \frac{4 \cdot O - I}{3}.$$

From this we have

$$I_a + I_b + I_c = 4 \cdot O - I.$$

Since J_a is the center of the circle (IBC), which also passes through I_a , $J_a = \frac{I+I_a}{2}$. Now, for the Fuhrmann triangle, we have

$$J'_{a} = 2 \cdot \frac{B+C}{2} - J_{a} = \frac{2(B+C) - (I+I_{a})}{2}.$$

and analogous expressions for J'_b and J'_c . The centroid of the Fuhrmann triangle is therefore

$$G' = \frac{J'_a + J'_b + J'_c}{3} = \frac{4(A + B + C) - 3I - (I_a + I_b + I_c)}{6}$$
$$= \frac{12G - 3I - (4 \cdot O - I)}{6} = \frac{6G - 2 \cdot O - I}{3}$$
$$= \frac{3G + (3G - 2 \cdot O) - I}{3} = \frac{3G + H - I}{3}.$$

Its orthocenter is

$$H' = 3G' - 2F_{\rm u} = (3G + H - I) - (H + N_{\rm a}) = 3G - N_{\rm a} - I = 2I - I = I.$$

Theorem 5. The triangle $N_a N_b N_c$ has circumcenter N, circumradius $\frac{OI}{2}$, and orthocenter I.

Proof. The triangle $N_a N_b N_c$ is the image of the Fuhrmann triangle under h. It has circumcenter $h(2N - I) = \frac{I + (2N - I)}{2} = N$ and orthocenter $h(I) = \frac{I + I}{2} = I$.

Since the Fuhrmann circle has diameter HN_a , which is parallel to and equal to twice OI (see Figure 4), its circumradius is OI. It follows that the circumradius of $N_aN_bN_c$ is $\frac{OI}{2}$.

Corollary 6. The circumcircle of $N_a N_b N_c$ is the nine-point circle of the Fuhrmann triangle.

Proof. Since the Fuhrmann triangle has orthocenter I, the point N_a , being the midpoint of IJ'_a , lies on its nine-point circle. Similarly, N_b and N_c are on the same nine-point circle. Therefore, the circumcircle of $N_a N_b N_c$ is the nine-point circle of the Fuhrmann triangle.

Consider the midpoints A_1 , B_1 , C_1 of AI, BI, CI respectively.

Proposition 7. The orthocenter of triangle $A_1B_1C_1$ lies on the circumcircle of $N_aN_bN_c$.

Proof. Triangle $A_1B_1C_1$ is the image of ABC under the homothety h. Its orthocenter H' is the midpoint of IH. Since I is the orthocenter of the Fuhrmann triangle, and H lies on the Fuhrmann circle, it follows that H' lies on the nine-point circle of the Fuhrmann triangle, which is the circle $(N_aN_bN_c)$.

Theorem 8. The N_aX_1 , N_bY_1 , N_cZ_1 are concurrent at the Spieker center of triangle ABC.

Proof. In triangle J'_aIJ_a , N_a and X_1 are the midpoints of the sides J'_aI and J'_aJ_a . Therefore, N_aX_1 is parallel to J_aI , the bisector of angle A. In the medial triangle $X_1Y_1Z_1$, the line N_aX_1 is the bisector of angle X_1 . Similarly, N_bY_1 and N_cZ_1 are the bisectors of angles Y_1 and Z_1 . The three lines N_aX_1 , N_bY_1 , N_cZ_1 are concurrent at the Spieker center, the incenter of the medial triangle $X_1Y_1Z_1$. \Box

Figure 5

Remark. This point of concurrency is also the antipode of the orthocenter H' of $A_1B_1C_1$ on the circle $N_aN_bN_c$. Since this circle has center N and contains $H' = \frac{I+H}{2}$, the antipode of H' is

$$2N - H' = O + H - \frac{I + H}{2} = \frac{2 \cdot O + H - I}{2} = \frac{3G - I}{2}$$

which divides IG in the ratio 3: -1. This is the Spieker center.

3. The residual triangles of the orthic triangle

Consider the orthic triangle $X_2Y_2Z_2$. Let X_3 , Y_3 , Z_3 be the midpoints of its sides Y_2Z_2 , Z_2X_2 , X_2Y_2 respectively, and let

 O_1 , I_1 , F_1 be the circumcenter, incenter and Feuerbach point of triangle AY_2Z_2 , O_2 , I_2 , F_2 those of BZ_2X_2 , and

 O_3 , I_3 , F_3 those of CX_2Y_2 .

Note that the circumcenter O_1 is the midpoint of AH, and is a point on the nine-point circle of ABC.

Theorem 9. The lines F_1X_3 , F_2Y_3 , F_3Z_3 are perpendicular to OI.

Proof. Let the line AI intersect BC at A'. Draw a line passing through A' parallel to Y_2Z_2 , intersecting AC and AB at B' and C' respectively. Triangle AB'C' is

the reflection of ABC in AI, and is homothetic to triangle AY_2Z_2 . Under this homothety, F_1 corresponds to the reflection F'_a of F_e in AI. Also, X_3 corresponds to the midpoint X' of B'C'. It follows that $F_1X_3 \parallel F'_aX'$. By Lemma 1(ii), $F'_aX' \perp OI$. Therefore, $F_1X_3 \perp OI$. Similarly, F_2Y_3 and F_3Z_3 are also perpendicular to OI.

Theorem 10. The lines O_1I_1 , O_2I_2 , O_3I_3 are concurrent at the Feuerbach point F_{e} .

Proof. Since A, Y_2, H, Z_2 are concyclic, the circumcenter N_1 is the midpoint of AH. Let O' be the reflection of O in AI. By Proposition 1(b), $O'I \perp F_eX_1$. Now, N_1X_1 is a diameter of nine-point circle of ABC. This means that $N_1F_e \perp F_eX_1$. Therefore, O'I and O_1F_e are parallel.

Since the reflection of triangle AY_2Z_2 in AI is homothetic to ABC, the incenter I_1 of AY_2Z_2 is the intersection of AI with the parallel to O'I through O_1 . This is the line N_1F_e . From this we conclude that I_1 is the intersection of N_1F_e with AI. The line O_1I_1 passes through F_e ; similarly for the lines O_2I_2 and O_3I_3 .

4. Perspectivity and orthology of $J_a J_b J_c$ and $J'_a J'_b J'_c$

The triangles $J_a J_b J_c$ and $J'_a J'_b J'_c$ are clearly perspective at O. They are also axis-perspective. This means that the three points

$$X = J_b J_c \cap J'_b J'_c, \quad Y = J_c J_a \cap J'_c J'_a, \quad Z = J_a J_b \cap J'_a J'_b,$$

are collinear.

Figure 7

Theorem 11. The line containing X, Y, Z is the tangent to the nine-point circle at the Feuerbach point.

Figure 8

Proof. Applying Menelaus' theorem to triangle $OJ'_bJ'_c$ with transversal XJ_bJ_c , we have

$$\frac{J_b'X}{XJ_c'} \cdot \frac{J_c'J_c}{J_cO} \cdot \frac{OJ_b}{J_bJ_b'} = -1 \implies \frac{J_b'X}{XJ_c'} = -\frac{J_cO}{J_c'J_c} \cdot \frac{J_bJ_b'}{OJ_b} = -\frac{J_bJ_b'}{J_cJ_c'}.$$

Therefore,

$$\frac{XJ_b'}{XJ_c'} = \frac{J_bJ_b'}{J_cJ_c'} = \frac{\sin^2\frac{B}{2}}{\sin^2\frac{C}{2}} = \left(\frac{\sin\frac{B}{2}}{\sin\frac{C}{2}}\right)^2$$

On the other hand,

$$\frac{IJ_b'}{IJ_c'} = \frac{\sin\frac{B}{2}}{\sin\frac{C}{2}}.$$

Therefore, $\frac{XJ'_b}{XJ'_c} = \left(\frac{IJ'_b}{IJ'_c}\right)^2$. This means that IX is tangent to the circle $(IJ'_bJ'_c)$, and $IX^2 = XJ'_b \cdot XJ'_c$. Thus, X lies on the radical axis of the Fuhrmann circle and the point-circle I. The same is true for Y and Z. This shows that the perspectrix XYZ is perpendicular to the line joining F_u and I, which is the same as the line NI. If XYZ intersects NI at Q,

$$QF_{\rm u}^2 - QI^2 = (QF_{\rm u} - QI)(QF_{\rm u} + QI) = IF_{\rm u} \cdot 2QN = 4NI \cdot QN = 2(R - 2r)QN.$$

It follows that $2(R - 2r)QN = \rho^2 = OI^2 = R(R - 2r)$, and $QN = \frac{R}{2}$. This means that Q lies on the nine-point circle of triangle ABC, and is the Feuerbach point F_e . The line XYZ is the tangent to the nine-point circle at F_e .

Theorem 12. The triangles $J_a J_b J_c$ and $J'_a J'_b J'_c$ are orthologic.

(a) The perpendiculars from J'_a to $J_b J_c$ etc are concurrent at the Nagel point N_a .

(b) The perpendiculars from J_a to $J'_b J'_c$ etc are concurrent at the superior of the Feuerbach point.

Proof. (a) The perpendiculars from J'_a to $J_b J_c$, J'_b to $J_c J_a$, and J'_c to $J_a J_b$ are the lines

$$(b-c)x+$$
 by- $cz = 0,$
 $-ax+(c-a)y+$ $cz = 0,$
 $ax-$ by+ $(a-b)z = 0.$

These three lines are concurrent at the point (x : y : z), where

$$\begin{aligned} x:y:z &= \begin{vmatrix} c-a & c \\ -b & a-b \end{vmatrix} : - \begin{vmatrix} -a & c \\ a & a-b \end{vmatrix} : \begin{vmatrix} -a & c-a \\ a & -b \end{vmatrix} \\ &= a(b+c-a):a(c+a-b):a(a+b-c) \\ &= b+c-a:c+a-b:a+b-c. \end{aligned}$$

This is the Nagel point.

Figure 10

(b) The perpendiculars from J_a to $J'_b J'_c$, J_b to $J'_c J'_a$, and J_c to $J'_a J'_b$ are the lines -(b+c)(b-c)x+ a(c-a)y+ a(a-b)z = 0, b(b-c)x-(c+a)(c-a)y+ b(a-b)z = 0,c(b-c)x+ c(c-a)y-(a+b)(a-b)z = 0. These three lines are concurrent at the point (x : y : z), where

$$\begin{aligned} (b-c)x &: (c-a)y : (a-b)z \\ &= \begin{vmatrix} -(c+a) & b \\ c & -(a+b) \end{vmatrix} : - \begin{vmatrix} b & b \\ c & -(a+b) \end{vmatrix} : \begin{vmatrix} b & -(c+a) \\ c & c \end{vmatrix} \\ &= a(a+b+c) : b(a+b+c) : c(a+b+c). \end{aligned}$$

Therefore, $(x : y : z) = \left(\frac{a}{b-c} : \frac{b}{c-a} : \frac{c}{a-b}\right)$. This is the triangle center X(100) in [3]. It is the superior of the Feuerbach point.

Remarks. (1) The Nagel point N_a is the triangle center X(74) of the Fuhrmann triangle.

(2) The superior of the Feuerbach point is the triangle center X(100). It is X(74) of $J_a J_b J_c$.

Theorem 13. The seven circles $IJ_aJ'_a$, $IJ_bJ'_b$, $IJ_cJ'_c$, $AJ'_bJ'_c$, $BJ'_cJ'_a$, $CJ'_aJ'_b$ and the circumcircle (O) have a common point K. Moreover, let J be the intersection point of the ray HF_e and the circumcircle (O) and I be the incenter of ABC. Then, K, I, J are collinear.

Figure 11

Proof. The equation of the circle $AJ'_bJ'_c$ is

$$(b^{2} - bc + c^{2} - a^{2})(a^{2}yz + b^{2}zx + c^{2}xy) - (x + y + z)f(x, y, z) = 0$$

where

$$f(x, y, z) = c^{2}(c - a)(c + a - b)y - b^{2}(a - b)(a + b - c)z.$$

This contains the point

$$X(109) = \left(\frac{a^2}{(b-c)(b+c-a)} : \frac{a^2}{(b-c)(b+c-a)} : \frac{a^2}{(b-c)(b+c-a)}\right)$$

on the circumcircle since

$$f\left(\frac{a^2}{(b-c)(b+c-a)}, \frac{a^2}{(b-c)(b+c-a)}, \frac{a^2}{(b-c)(b+c-a)}\right)$$

= $c^2b^2 - b^2c^2 = 0.$

Therefore, the circle $AJ'_bJ'_c$ contains X(109). Similarly, the circles $BJ'_cJ'_a$ and $CJ'_aJ'_b$ also contain the same point.

The equation of the circle $IJ_aJ'_b$ is

 $(b-c)(a+b+c)(b+c-a)(a^2yz+b^2zx+c^2xy)-(x+y+z)g(x,y,z)=0,$ where

$$g(x, y, z) = bc(b-c)(b+c)(b+c-a)x - a^{2}c(c-a)(c+a-b)y - a^{2}b(a-b)(a+b-c)z.$$

310

This contains the point X(109) with coordinates given above since

$$g\left(\frac{a^2}{(b-c)(b+c-a)}, \frac{a^2}{(b-c)(b+c-a)}, \frac{a^2}{(b-c)(b+c-a)}\right)$$

= $a^2bc(b+c) - a^2b^2c - a^2bc^2 = 0.$

Similarly, the circles $IJ_bJ'_b$ and $IJ_cJ'_c$ contain the same point.

References

- [1] N. A. Court, College Geometry, Dover reprint, 2007.
- [2] R. A. Johnson, Advanced Euclidean Geometry, Dover reprint, 2007.
- [3] C. Kimberling, *Encyclopedia of Triangle Centers*, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- [4] M. J. G. Scheer, A simple vector proof of Feuerbach's theorem, *Forum Geom.*, 11 (2011) 205–210.
- [5] J. Vonk, The Feuerbach point and reflections of the Euler line, Forum Geom., 9 (2009) 47-55.

Nguyen Thanh Dung: Chu Van An high school for Gifted students, 55 To Son street, Chi Lang ward, Lang son province, Viet Nam

E-mail address: nguyenthanhdungcva@gmail.com