The Feuerbach Point and the Fuhrmann Triangle

Nguyen Thanh Dung

Abstract

We establish a few results on circles through the Feuerbach point of a triangle, and their relations to the Fuhrmann triangle. The Fuhrmann triangle is perspective with the circumcevian triangle of the incenter. We prove that the perspectrix is the tangent to the nine-point circle at the Feuerbach point.

1. Feuerbach point and nine-point circles

Given a triangle $A B C$, we consider its intouch triangle $X_{0} Y_{0} Z_{0}$, medial triangle $X_{1} Y_{1} Z_{1}$, and orthic triangle $X_{2} Y_{2} Z_{2}$. The famous Feuerbach theorem states that the incircle $\left(X_{0} Y_{0} Z_{0}\right)$ and the nine-point circle (N), which is the common circumcircle of $X_{1} Y_{1} Z_{1}$ and $X_{2} Y_{2} Z_{2}$, are tangent internally. The point of tangency is the Feuerbach point F_{e}. In this paper we adopt the following standard notation for triangle centers: G the centroid, O the circumcenter, H the orthocenter, I the incenter, N_{a} the Nagel point. The nine-point center N is the midpoint of $O H$.

Figure 1

Proposition 1. Let $A B C$ be a non-isosceles triangle.
(a) The triangles $F_{\mathrm{e}} X_{0} X_{1}, F_{\mathrm{e}} Y_{0} Y_{1}, F_{\mathrm{e}} Z_{0} Z_{1}$ are directly similar to triangles AIO, BIO, CIO respectively.
(b) Let O_{a}, O_{b}, O_{c} be the reflections of O in $I A, I B, I C$ respectively. The lines $I O_{a}, I O_{b}, I O_{c}$ are perpendicular to $F_{\mathrm{e}} X_{1}, F_{\mathrm{e}} Y_{1}, F_{\mathrm{e}} Z_{1}$ respectively.

Proof. (a) It is enough to prove the direct similarity of triangles $F_{\mathrm{e}} X_{0} X_{1}$ and $A O I$. We work with the notion of directed angles (see [2, §§16-19]). Assume that $A B<$ $A C$. Let U and J_{a} be the intersections of the line $A I$ with $B C$ and the circumcircle (O) respectively. Draw a tangent $U T$ to the incircle (I) (see Figure 1). The points F_{e}, T, X_{1} are collinear (see [1, Theorem 215]). Hence, modulo π,

$$
\begin{aligned}
\left(X_{0} X_{1}, X_{0} T\right) & \equiv \frac{\pi}{2}-\left(X_{0} T, X_{0} I\right) \equiv\left(I X_{0}, I J_{a}\right) \\
& \equiv\left(J_{a} O, J_{a} A\right) \equiv\left(A J_{a}, A O\right) \equiv(A I, A O) \equiv-(A O, A I)
\end{aligned}
$$

On the other hand,

$$
\frac{X_{0} T}{X_{0} X_{1}}=\frac{2 r \sin X_{0} I J_{a}}{\frac{b-c}{2}}=\frac{2 r}{R} \cdot \frac{\sin \frac{B-C}{2}}{\sin B-\sin C}=\frac{r}{R \sin \frac{A}{2}}=\frac{A I}{A O}
$$

Therefore, triangles $X_{0} T X_{1}$ and $A I O$ are inversely similar.
Since $\left(F_{\mathrm{e}} X_{0}, F_{\mathrm{e}} X_{1}\right) \equiv-\left(X_{0} T, X_{0} X_{1}\right)(\bmod \pi)$, and $\left(X_{1} F_{\mathrm{e}}, X_{1} X_{0}\right) \equiv$ $-\left(X_{1} X_{0}, X_{1} T\right)(\bmod \pi)$, triangles $F_{\mathrm{e}} X_{0} X_{1}$ and $X_{0} T X_{1}$ are oppositely similar. It follows that $F_{\mathrm{e}} X_{0} X_{1}$ and $A I O$ are directly similar.
(b) Triangle $A I O_{a}$ is oppositely similar to triangle $F_{\mathrm{e}} X_{0} X_{1}$. Since $A O_{a} \perp$ $X_{0} X_{1}$, it follows that $I O_{a} \perp F_{\mathrm{e}} X_{1}$. Similarly, $I O_{b} \perp F_{\mathrm{e}} Y_{1}$ and $I O_{c} \perp F_{\mathrm{e}} Z_{1}$.

The Feuerbach point F_{e} is also the Poncelet point of the quadrilateral $A B C I$. This means that F_{e} is the common point of the nine-point circles of the four triangles $I B C, I C A, I A B$, and $A B C$. The circles $\left(F_{\mathrm{e}} X_{0} X_{1}\right),\left(F_{\mathrm{e}} Y_{0} Y_{1}\right),\left(F_{\mathrm{e}} Z_{0} Z_{1}\right)$ are therefore the nine-point circles of triangles $I B C, I C A, I A B$ respectively. Each of them passes through the midpoints of two of the segments $A I, B I, C I$. Denote by N_{a}, N_{b}, N_{c} the nine-point centers of the triangles $I B C, I C A, I A B$ respectively. We shall prove in Theorem 5 below that N_{a}, N_{b}, N_{c} are equidistant from N, the nine-point center of $A B C$.

Figure 2

2. Fuhrmann triangle and Fuhrmann circle

The triangle $N_{a} N_{b} N_{c}$ is closely related to the Fuhrmann triangle. Let $J_{a} J_{b} J_{c}$ be the circumcevian triangle of the incenter I, and $J_{a}^{\prime}, J_{b}^{\prime}, J_{c}^{\prime}$ the reflections of J_{a} in $B C, J_{b}$ in $C A, J_{c}$ in $A B$ respectively. These reflections form the Fuhrmann triangle $J_{a}^{\prime} J_{b}^{\prime} J_{c}^{\prime}$. Now, J_{a} is the center of the circumcircle of $I B C$, which also passes through the excenter I_{a}. The nine-point center of $I B C$ is the midpoint between I and the reflection of its circumcenter in the side $B C .{ }^{1}$ Therefore, N_{a} is the midpoint of $I J_{a}^{\prime}$. Similarly, N_{b} and N_{c} are the midpoints of $I J_{b}^{\prime}$ and $I J_{c}^{\prime}$. In other words, $N_{a} N_{b} N_{c}$ is the image of the Fuhrmann triangle under the homothety h with center I and ratio $\frac{1}{2}$. ${ }^{2}$

Figure 3
Basic results about the Feuerbach point and the Fuhrmann triangle can be found in $[1, \S \S 215-216]$ and $[2, \S \S 320-324,367-372]$. A proof of the Feuerbach theorem is given in [4].

The Fuhrmann circle is the circumcircle of the Fuhrmann triangle. It contains $H N_{\mathrm{a}}$ as a diameter ([2, Theorem 369]). The center of the Fuhrmann circle is the midpoint F_{u} of $H N_{\mathrm{a}}$. Here is an alternative description.

Proposition 2. The center of the Fuhrmann circle is the reflection of I in N.

[^0]

Figure 4

Proof.
$F_{\mathrm{u}}=\frac{H+N_{\mathrm{a}}}{2}=\frac{H+(3 G-2 I)}{2}=\frac{H+(H+2 \cdot O)-2 I}{2}=H+O-I=2 N-I$.

Proposition 3. The Fuhrmann triangle $J_{a}^{\prime} J_{b}^{\prime} J_{c}^{\prime}$ and the circumcevian triangle of I are oppositely similar.

Proof. Since the circumcircle of $J_{a}^{\prime} J_{b}^{\prime} J_{c}^{\prime}$ contains H, and $H J_{a}^{\prime} \| J_{c} J_{b}$ etc. (see Figure 3),

$$
\left(J_{a}^{\prime} J_{b}^{\prime}, J_{a}^{\prime} J_{c}^{\prime}\right) \equiv\left(H J_{b}^{\prime}, H J_{c}^{\prime}\right) \equiv\left(J_{c} J_{a}, J_{b} J_{a}\right) \equiv-\left(J_{a} J_{b}, J_{a} J_{c}\right) \quad(\bmod \pi)
$$

Similarly, $\left(J_{b}^{\prime} J_{c}^{\prime}, J_{b}^{\prime} J_{a}^{\prime}\right) \equiv-\left(J_{b} J_{c}, J_{b} J_{a}\right)(\bmod \pi)$. The two triangles $J_{a}^{\prime} J_{b}^{\prime} J_{c}^{\prime}$ and $J_{a} J_{b} J_{c}$ are oppositely similar.

Since the vertices of $J_{a} J_{b} J_{c}$ are on the angle bisectors of $A B C$ and the sides are perpendicular to these bisectors, the triangle $J_{a} J_{b} J_{c}$ has orthocenter I. This is also true for the Fuhrmann triangle.

Proposition 4. The Fuhrmann triangle has orthocenter I.
Proof. We begin with the excentral triangle $I_{a} I_{b} I_{c}$, where I_{a}, I_{b}, I_{c} are the excenters of triangle $A C$. It is well known that it has orthocenter I and circumcenter $I^{\prime}=2 \cdot O-I$, the reflection of I in O. Therefore, the centroid of the excentral triangle is

$$
\frac{I_{a}+I_{b}+I_{c}}{3}=\frac{2 I^{\prime}+I}{3}=\frac{4 \cdot O-I}{3} .
$$

From this we have

$$
I_{a}+I_{b}+I_{c}=4 \cdot O-I .
$$

Since J_{a} is the center of the circle ($I B C$), which also passes through $I_{a}, J_{a}=$ $\frac{I+I_{a}}{2}$. Now, for the Fuhrmann triangle, we have

$$
J_{a}^{\prime}=2 \cdot \frac{B+C}{2}-J_{a}=\frac{2(B+C)-\left(I+I_{a}\right)}{2} .
$$

and analogous expressions for J_{b}^{\prime} and J_{c}^{\prime}. The centroid of the Fuhrmann triangle is therefore

$$
\begin{aligned}
G^{\prime} & =\frac{J_{a}^{\prime}+J_{b}^{\prime}+J_{c}^{\prime}}{3}=\frac{4(A+B+C)-3 I-\left(I_{a}+I_{b}+I_{c}\right)}{6} \\
& =\frac{12 G-3 I-(4 \cdot O-I)}{6}=\frac{6 G-2 \cdot O-I}{3} \\
& =\frac{3 G+(3 G-2 \cdot O)-I}{3}=\frac{3 G+H-I}{3} .
\end{aligned}
$$

Its orthocenter is

$$
H^{\prime}=3 G^{\prime}-2 F_{\mathrm{u}}=(3 G+H-I)-\left(H+N_{\mathrm{a}}\right)=3 G-N_{\mathrm{a}}-I=2 I-I=I
$$

Theorem 5. The triangle $N_{a} N_{b} N_{c}$ has circumcenter N, circumradius $\frac{O I}{2}$, and orthocenter I.

Proof. The triangle $N_{a} N_{b} N_{c}$ is the image of the Fuhrmann triangle under h. It has circumcenter $\mathrm{h}(2 N-I)=\frac{I+(2 N-I)}{2}=N$ and orthocenter $\mathrm{h}(I)=\frac{I+I}{2}=I$.

Since the Fuhrmann circle has diameter $H N_{\mathrm{a}}$, which is parallel to and equal to twice $O I$ (see Figure 4), its circumradius is $O I$. It follows that the circumradius of $N_{a} N_{b} N_{c}$ is $\frac{O I}{2}$.
Corollary 6. The circumcircle of $N_{a} N_{b} N_{c}$ is the nine-point circle of the Fuhrmann triangle.

Proof. Since the Fuhrmann triangle has orthocenter I, the point N_{a}, being the midpoint of $I J_{a}^{\prime}$, lies on its nine-point circle. Similarly, N_{b} and N_{c} are on the same nine-point circle. Therefore, the circumcircle of $N_{a} N_{b} N_{c}$ is the nine-point circle of the Fuhrmann triangle.

Consider the midpoints A_{1}, B_{1}, C_{1} of $A I, B I, C I$ respectively.
Proposition 7. The orthocenter of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of $N_{a} N_{b} N_{c}$.

Proof. Triangle $A_{1} B_{1} C_{1}$ is the image of $A B C$ under the homothety h. Its orthocenter H^{\prime} is the midpoint of $I H$. Since I is the orthocenter of the Fuhrmann triangle, and H lies on the Fuhrmann circle, it follows that H^{\prime} lies on the nine-point circle of the Fuhrmann triangle, which is the circle $\left(N_{a} N_{b} N_{c}\right)$.

Theorem 8. The $N_{a} X_{1}, N_{b} Y_{1}, N_{c} Z_{1}$ are concurrent at the Spieker center of triangle $A B C$.

Proof. In triangle $J_{a}^{\prime} I J_{a}, N_{a}$ and X_{1} are the midpoints of the sides $J_{a}^{\prime} I$ and $J_{a}^{\prime} J_{a}$. Therefore, $N_{a} X_{1}$ is parallel to $J_{a} I$, the bisector of angle A. In the medial triangle $X_{1} Y_{1} Z_{1}$, the line $N_{a} X_{1}$ is the bisector of angle X_{1}. Similarly, $N_{b} Y_{1}$ and $N_{c} Z_{1}$ are the bisectors of angles Y_{1} and Z_{1}. The three lines $N_{a} X_{1}, N_{b} Y_{1}, N_{c} Z_{1}$ are concurrent at the Spieker center, the incenter of the medial triangle $X_{1} Y_{1} Z_{1}$.

Figure 5
Remark. This point of concurrency is also the antipode of the orthocenter H^{\prime} of $A_{1} B_{1} C_{1}$ on the circle $N_{a} N_{b} N_{c}$. Since this circle has center N and contains $H^{\prime}=$ $\frac{I+H}{2}$, the antipode of H^{\prime} is

$$
2 N-H^{\prime}=O+H-\frac{I+H}{2}=\frac{2 \cdot O+H-I}{2}=\frac{3 G-I}{2},
$$

which divides $I G$ in the ratio $3:-1$. This is the Spieker center.

3. The residual triangles of the orthic triangle

Consider the orthic triangle $X_{2} Y_{2} Z_{2}$. Let X_{3}, Y_{3}, Z_{3} be the midpoints of its sides $Y_{2} Z_{2}, Z_{2} X_{2}, X_{2} Y_{2}$ respectively, and let O_{1}, I_{1}, F_{1} be the circumcenter, incenter and Feuerbach point of triangle $A Y_{2} Z_{2}$, O_{2}, I_{2}, F_{2} those of $B Z_{2} X_{2}$, and O_{3}, I_{3}, F_{3} those of $C X_{2} Y_{2}$.

Note that the circumcenter O_{1} is the midpoint of $A H$, and is a point on the nine-point circle of $A B C$.

Theorem 9. The lines $F_{1} X_{3}, F_{2} Y_{3}, F_{3} Z_{3}$ are perpendicular to $O I$.
Proof. Let the line $A I$ intersect $B C$ at A^{\prime}. Draw a line passing through A^{\prime} parallel to $Y_{2} Z_{2}$, intersecting $A C$ and $A B$ at B^{\prime} and C^{\prime} respectively. Triangle $A B^{\prime} C^{\prime}$ is

Figure 6
the reflection of $A B C$ in $A I$, and is homothetic to triangle $A Y_{2} Z_{2}$. Under this homothety, F_{1} corresponds to the reflection F_{a}^{\prime} of F_{e} in $A I$. Also, X_{3} corresponds to the midpoint X^{\prime} of $B^{\prime} C^{\prime}$. It follows that $F_{1} X_{3} \| F_{a}^{\prime} X^{\prime}$. By Lemma 1(ii), $F_{a}^{\prime} X^{\prime} \perp O I$. Therefore, $F_{1} X_{3} \perp O I$. Similarly, $F_{2} Y_{3}$ and $F_{3} Z_{3}$ are also perpendicular to $O I$.

Theorem 10. The lines $O_{1} I_{1}, O_{2} I_{2}, O_{3} I_{3}$ are concurrent at the Feuerbach point F_{e}.

Proof. Since A, Y_{2}, H, Z_{2} are concyclic, the circumcenter N_{1} is the midpoint of $A H$. Let O^{\prime} be the reflection of O in $A I$. By Proposition 1(b), $O^{\prime} I \perp F_{\mathrm{e}} X_{1}$. Now, $N_{1} X_{1}$ is a diameter of nine-point circle of $A B C$. This means that $N_{1} F_{\mathrm{e}} \perp F_{\mathrm{e}} X_{1}$. Therefore, $O^{\prime} I$ and $O_{1} F_{\mathrm{e}}$ are parallel.

Since the reflection of triangle $A Y_{2} Z_{2}$ in $A I$ is homothetic to $A B C$, the incenter I_{1} of $A Y_{2} Z_{2}$ is the intersection of $A I$ with the parallel to $O^{\prime} I$ through O_{1}. This is the line $N_{1} F_{\mathrm{e}}$. From this we conclude that I_{1} is the intersection of $N_{1} F_{\mathrm{e}}$ with $A I$. The line $O_{1} I_{1}$ passes through F_{e}; similarly for the lines $O_{2} I_{2}$ and $O_{3} I_{3}$.

4. Perspectivity and orthology of $J_{a} J_{b} J_{c}$ and $J_{a}^{\prime} J_{b}^{\prime} J_{c}^{\prime}$

The triangles $J_{a} J_{b} J_{c}$ and $J_{a}^{\prime} J_{b}^{\prime} J_{c}^{\prime}$ are clearly perspective at O. They are also axis-perspective. This means that the three points

$$
X=J_{b} J_{c} \cap J_{b}^{\prime} J_{c}^{\prime}, \quad Y=J_{c} J_{a} \cap J_{c}^{\prime} J_{a}^{\prime}, \quad Z=J_{a} J_{b} \cap J_{a}^{\prime} J_{b}^{\prime},
$$

are collinear.

Figure 7

Theorem 11. The line containing X, Y, Z is the tangent to the nine-point circle at the Feuerbach point.

Figure 8

Proof. Applying Menelaus' theorem to triangle $O J_{b}^{\prime} J_{c}^{\prime}$ with transversal $X J_{b} J_{c}$, we have

$$
\frac{J_{b}^{\prime} X}{X J_{c}^{\prime}} \cdot \frac{J_{c}^{\prime} J_{c}}{J_{c} O} \cdot \frac{O J_{b}}{J_{b} J_{b}^{\prime}}=-1 \Longrightarrow \frac{J_{b}^{\prime} X}{X J_{c}^{\prime}}=-\frac{J_{c} O}{J_{c}^{\prime} J_{c}} \cdot \frac{J_{b} J_{b}^{\prime}}{O J_{b}}=-\frac{J_{b} J_{b}^{\prime}}{J_{c} J_{c}^{\prime}} .
$$

Therefore,

$$
\frac{X J_{b}^{\prime}}{X J_{c}^{\prime}}=\frac{J_{b} J_{b}^{\prime}}{J_{c} J_{c}^{\prime}}=\frac{\sin ^{2} \frac{B}{2}}{\sin ^{2} \frac{C}{2}}=\left(\frac{\sin \frac{B}{2}}{\sin \frac{C}{2}}\right)^{2}
$$

On the other hand,

$$
\frac{I J_{b}^{\prime}}{I J_{c}^{\prime}}=\frac{\sin \frac{B}{2}}{\sin \frac{C}{2}} .
$$

Therefore, $\frac{X J_{b}^{\prime}}{X J_{c}^{\prime}}=\left(\frac{I J_{b}^{\prime}}{I J_{c}^{\prime}}\right)^{2}$. This means that $I X$ is tangent to the circle $\left(I J_{b}^{\prime} J_{c}^{\prime}\right)$, and $I X^{2}=X J_{b}^{\prime} \cdot X J_{c}^{\prime}$. Thus, X lies on the radical axis of the Fuhrmann circle and the point-circle I. The same is true for Y and Z. This shows that the perspectrix $X Y Z$ is perpendicular to the line joining F_{u} and I, which is the same as the line $N I$. If $X Y Z$ intersects $N I$ at Q,
$Q F_{\mathrm{u}}^{2}-Q I^{2}=\left(Q F_{\mathrm{u}}-Q I\right)\left(Q F_{\mathrm{u}}+Q I\right)=I F_{\mathrm{u}} \cdot 2 Q N=4 N I \cdot Q N=2(R-2 r) Q N$.
It follows that $2(R-2 r) Q N=\rho^{2}=O I^{2}=R(R-2 r)$, and $Q N=\frac{R}{2}$. This means that Q lies on the nine-point circle of triangle $A B C$, and is the Feuerbach point F_{e}. The line $X Y Z$ is the tangent to the nine-point circle at F_{e}.

Theorem 12. The triangles $J_{a} J_{b} J_{c}$ and $J_{a}^{\prime} J_{b}^{\prime} J_{c}^{\prime}$ are orthologic.
(a) The perpendiculars from J_{a}^{\prime} to $J_{b} J_{c}$ etc are concurrent at the Nagel point N_{a}.
(b) The perpendiculars from J_{a} to $J_{b}^{\prime} J_{c}^{\prime}$ etc are concurrent at the superior of the Feuerbach point.

Proof. (a) The perpendiculars from J_{a}^{\prime} to $J_{b} J_{c}, J_{b}^{\prime}$ to $J_{c} J_{a}$, and J_{c}^{\prime} to $J_{a} J_{b}$ are the lines

$$
\begin{array}{rlrl}
(b-c) x+ & b y- & c z & =0, \\
-a x+(c-a) y+ & c z & =0, \\
a x-\quad b y+(a-b) z & =0 .
\end{array}
$$

These three lines are concurrent at the point $(x: y: z)$, where

$$
\begin{aligned}
x: y: z & =\left|\begin{array}{cc}
c-a & c \\
-b & a-b
\end{array}\right|:-\left|\begin{array}{cc}
-a & c \\
a & a-b
\end{array}\right|:\left|\begin{array}{cc}
-a & c-a \\
a & -b
\end{array}\right| \\
& =a(b+c-a): a(c+a-b): a(a+b-c) \\
& =b+c-a: c+a-b: a+b-c .
\end{aligned}
$$

This is the Nagel point.

Figure 9

Figure 10
(b) The perpendiculars from J_{a} to $J_{b}^{\prime} J_{c}^{\prime}, J_{b}$ to $J_{c}^{\prime} J_{a}^{\prime}$, and J_{c} to $J_{a}^{\prime} J_{b}^{\prime}$ are the lines

$$
\begin{array}{rlrl}
-(b+c)(b-c) x+ & a(c-a) y+ & a(a-b) z & =0 \\
b(b-c) x-(c+a)(c-a) y+ & b(a-b) z & =0 \\
c(b-c) x+ & c(c-a) y-(a+b)(a-b) z & =0
\end{array}
$$

These three lines are concurrent at the point $(x: y: z)$, where

$$
\begin{aligned}
& (b-c) x:(c-a) y:(a-b) z \\
= & \left|\begin{array}{cc}
-(c+a) & b \\
c & -(a+b)
\end{array}\right|:-\left|\begin{array}{cc}
b & b \\
c & -(a+b)
\end{array}\right|:\left|\begin{array}{cc}
b & -(c+a) \\
c & c
\end{array}\right| \\
= & a(a+b+c): b(a+b+c): c(a+b+c) .
\end{aligned}
$$

Therefore, $(x: y: z)=\left(\frac{a}{b-c}: \frac{b}{c-a}: \frac{c}{a-b}\right)$. This is the triangle center $X(100)$ in [3]. It is the superior of the Feuerbach point.

Remarks. (1) The Nagel point N_{a} is the triangle center $X(74)$ of the Fuhrmann triangle.
(2) The superior of the Feuerbach point is the triangle center $X(100)$. It is $X(74)$ of $J_{a} J_{b} J_{c}$.

Theorem 13. The seven circles $I J_{a} J_{a}^{\prime}, I J_{b} J_{b}^{\prime}, I J_{c} J_{c}^{\prime}, A J_{b}^{\prime} J_{c}^{\prime}, B J_{c}^{\prime} J_{a}^{\prime}, C J_{a}^{\prime} J_{b}^{\prime}$ and the circumcircle (O) have a common point K. Moreover, let J be the intersection point of the ray $H F_{\mathrm{e}}$ and the circumcircle (O) and I be the incenter of $A B C$. Then, K, I, J are collinear.

Figure 11

Proof. The equation of the circle $A J_{b}^{\prime} J_{c}^{\prime}$ is

$$
\left(b^{2}-b c+c^{2}-a^{2}\right)\left(a^{2} y z+b^{2} z x+c^{2} x y\right)-(x+y+z) f(x, y, z)=0
$$

where

$$
f(x, y, z)=c^{2}(c-a)(c+a-b) y-b^{2}(a-b)(a+b-c) z
$$

This contains the point

$$
X(109)=\left(\frac{a^{2}}{(b-c)(b+c-a)}: \frac{a^{2}}{(b-c)(b+c-a)}: \frac{a^{2}}{(b-c)(b+c-a)}\right)
$$

on the circumcircle since

$$
\begin{aligned}
& f\left(\frac{a^{2}}{(b-c)(b+c-a)}, \frac{a^{2}}{(b-c)(b+c-a)}, \frac{a^{2}}{(b-c)(b+c-a)}\right) \\
= & c^{2} b^{2}-b^{2} c^{2}=0
\end{aligned}
$$

Therefore, the circle $A J_{b}^{\prime} J_{c}^{\prime}$ contains $X(109)$. Similarly, the circles $B J_{c}^{\prime} J_{a}^{\prime}$ and $C J_{a}^{\prime} J_{b}^{\prime}$ also contain the same point.

Figure 12
The equation of the circle $I J_{a} J_{b}^{\prime}$ is
$(b-c)(a+b+c)(b+c-a)\left(a^{2} y z+b^{2} z x+c^{2} x y\right)-(x+y+z) g(x, y, z)=0$,
where
$g(x, y, z)=b c(b-c)(b+c)(b+c-a) x-a^{2} c(c-a)(c+a-b) y-a^{2} b(a-b)(a+b-c) z$.

This contains the point $X(109)$ with coordinates given above since

$$
\begin{aligned}
& g\left(\frac{a^{2}}{(b-c)(b+c-a)}, \frac{a^{2}}{(b-c)(b+c-a)}, \frac{a^{2}}{(b-c)(b+c-a)}\right) \\
= & a^{2} b c(b+c)-a^{2} b^{2} c-a^{2} b c^{2}=0 .
\end{aligned}
$$

Similarly, the circles $I J_{b} J_{b}^{\prime}$ and $I J_{c} J_{c}^{\prime}$ contain the same point.

References

[1] N. A. Court, College Geometry, Dover reprint, 2007.
[2] R. A. Johnson, Advanced Euclidean Geometry, Dover reprint, 2007.
[3] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[4] M. J. G. Scheer, A simple vector proof of Feuerbach's theorem, Forum Geom., 11 (2011) 205210.
[5] J. Vonk, The Feuerbach point and reflections of the Euler line, Forum Geom., 9 (2009) 47-55.
Nguyen Thanh Dung: Chu Van An high school for Gifted students, 55 To Son street, Chi Lang ward, Lang son province, Viet Nam

E-mail address: nguyenthanhdungcva@gmail.com

[^0]: ${ }^{1}$ If $A B C$ is a triangle with centroid G and circumcenter O, its nine-point center is $N=\frac{3 G-O}{2}=$ $\frac{A+((B+C)-O)}{2}=\frac{A+O^{\prime}}{2}$, where $O^{\prime}=B+C-O=2 \cdot \frac{B+C}{2}-O$ is the reflection of O in (the midpoint of) $B C$.
 ${ }^{2}$ Throughout this paper, h denotes this specific homothety. For every point $P, \mathrm{~h}(P)=\frac{1}{2}(I+P)$, the midpoint of $I P$.

