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Abstract. In 1907 Hagge constructed a circle associated with eaghrcewint

P of triangle ABC. If P is on the circumcircle this circle degenerates to a
straight line through the orthocenter which is paralleh® Wallace-Simson line
of P. We give a new proof of Hagge's result by a method based orctiefies.
We introduce an axis associated with the construction, gizdah areal anal-
ysis) a conic which generalizes the nine-point circle. Trecige locus of the
orthocenter in a Brocard porism is identified by using Haggjf@orem as a tool.
Other natural loci associated with Hagge’s constructiendiscussed.

1. Introduction

One hundred years ago, Karl Hagge wrote an articieitschrift fir Mathema-
tischen und Naturwissenschaftliche Unterrighmititled (in loose translation) “The
Fuhrmann and Brocard circles as special cases of a geneskd construction”
[5]. In this paper he managed to find an elegant extensioneofMallace-Simson
theorem when the generating point is not on the circumcitagtead of creating a
line, one makes a circle through seven important point§2 e give a new proof
of the correctness of Hagge’s construction, extend andyappl idea in various
ways. As a tribute to Hagge’s beautiful insight, we presaid work as a cente-
nary celebration. Note that the name Hagge is also assdamtk other circles
[6], but here we refer only to the construction just desatilidere we present new
synthetic arguments to justify Hagge’s construction, It first author has also
performed detailed areal calculations which provide arlalgic alternative in [2].

The triangleABC has circumcircld’, circumcenteiO and orthocentefl. See
Figure 1. Choosé a point in the plane oA BC. The cevian linesAP, BP, CP
meetl" again atD, F and F' respectively. ReflecD in BC' to a pointU, Ein CA
to a pointV and F' in AB to a pointWW. LetUP meetAH at X, VP meetBH
atY andW P meetC H at Z. Hagge proved that there is a circle passing through
X, Y, Z, U, V,WandH [5, 7]. See Figure 1. Our purpose is to amplify this
observation.

Hagge explicitly notes [5] the similarities betwedBC' and XY Z, between
DEF andUV W, and the fact that both pairs of triangld$3C, DEF and XY Z,
UVW are in perspective througR. There is an indirect similarity which carries
the pointsABCDEFPto XY ZUVW P.

Peiser [8] later proved that the centgfP) of this Hagge circle is the rotation
throughz about the nine-point center gfBC' of the isogonal conjugatf* of P.
His proof was by complex numbers, but we have found a diremifdoy classical
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Figure 1. The Hagge construction

means [4]. In our proof of the validity of Hagge's constroatiwe work directly
with the center of the circle, whereas Hagge worked with thiatpat the far end

of the diameter througlif. This gives us the advantage of being able to study the
distribution of points on a Hagge circle by means of refletion lines through its
center, a device which was not available with the origingrapch.

The pointP* is collinear withGG andT, the far end of the diameter frofd. The
vector argument which justifies this is given at the staig®of.. Indeed, we show
thatP*G : GT =1: 2.

There are many important special cases. Here are some esrbpt Hagge
[5] listed even more.

0] V\llhenP = K, the symmedian point, the Hagge circle is the orthocerditoid
circle.

(i) When P = I, the incenter, the Hagge circle is the Fuhrmann circle.

(iif) When P = O, the circumcenter, the Hagge circle and the circumcirate ar
concentric.

In [5] Hagge associates the name Boklen with the study efdincle (there were two geometers
with this name active at around that time), and refers theeet a work of Prof Dr Lieber, possibly
H. Lieber who wrote extensively on advanced elementary emagtics in thdin de siecle
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(iv) When P = H, the orthocenter, the Hagge circle degenerates to the foint
(v) The circumcenter is the orthocenter of the medial trliengnd the Brocard
circle on diameteO K arises as a Hagge circle of the medial triangle with respect

to the centroid~ of ABC.

Note thatl H is the doubled Wallace-Simson line B%, by which we mean the
enlargement of the Wallace-Simson line with scale fagttnom centerD. Sim-
ilarly VH and W H are the doubled Wallace-Simson linesfofand F'. Now it
is well known that the angle between two Wallace-Simsorslisehalf the angle
subtended a® by the generating points. This applies equally well to dedbl
Wallace-Simson lines. A careful analysis (taking care &iidguish between an-
gles and their supplements) will yield the angles betwééh V H andW H, from
which it can be deduced th&tV W is indirectly similar toD EF'. We will not ex-
plain the details but rather we present a robust argumerRrgposition 2 which
does not rely on scrupulous bookkeeping.

Incidentally, if P is onT’, then the Hagge circle degenerates to the doubled
Wallace-Simson line oP. For the rest of this paper, we make the explicit assump-
tion that P is not onT". The work described in the rest of this introduction is not
foreshadowed in [5]. Sincd BCDEFP is similar to XY ZUVW P, it follows
that ABC' is indirectly similar toXY Z and the similarity send® FF to UV V.
The pointP turns out to be the unique fixed point of this similarity. Thisnilarity
must carry a distinguished poif™ on T to H. We will give a geometric recipe
for locating H in Proposition 3.

This process admits of extension both inwards and outw&rds.may construct
the Hagge circle ofX'Y Z with respect toP, or find the triangleRST so that the
Hagge circle ofRST with respect toP is T' (with ABC playing the former role
of XY Z). The composition of two of these indirect similarities isenlargement
with positive scale factor froni.

Proposition 2 sheds light on some of our earlier work [3]. &zdte the centroid,
K the symmedian point, andthe Brocard angle of triangld BC'. Also, letJ be
the center of the orthocentroidal circle (the circle on dé¢enGG H). We have long

- OK? JK?
been intrigued by the fact thatR— =7 since areal algebra can be used to

show that each quantity is-3 tan? w. In §3.3 we will explain how the similarity is
a geometric explanation of this suggestive algebraic adémce. In [3] we showed
how to construct the sides of (non-equilateral) triandlBC' given only the data
O, G, K. The method was based on finding a cubic which iad?, ¢? as roots.

We will present an improved algebraic explanatio33n2.

We show in Proposition 4 that there is a pointwhich when used as a cevian
point, generates the same Hagge circle for every triangidBrocard porism. Thus
the locus of the orthocenter in a Brocard porism must be cedfio a circle. We
describe its center and radius. We also exhibit a point whieés rise to a fixed
Hagge circle with respect to the medial triangles, as thereeice triangle ranges
over a Brocard porism.
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We make more observations about Hagge’s configuration.nGheslarge num-
ber of points lying on conics (circles), it is not surprisititat Pascal’'s hexagon
theorem comes into play. L&W meetAH at L, WU meetBH at M, andUV
meetsC'H at N. In §4 we will show thatL.M N P are collinear, and we introduce
the term Hagge axis for this line.

In §5 we will exhibit amidpoint coniovhich passes through six points associated
with the Hagge construction. In special case (iv), wiier= H, this conic is the
nine-point circle ofABC'. Drawings lead us to conjecture that the center of the
midpoint conic isNV.

In §6 we study some natural loci associated with Hagge's coctitru

2. The Hagge Similarity

We first locate the center of the Hagge circle, but not, assiP8$ did, by using
complex numbers. A more leisurely exposition of the nextiltesppears in [4].

Proposition 1. Given a pointP in the plane of triangleA BC, the centeri(P) of
the Hagge circle associated wiff is the point such the nine-point cent¥ris the
midpoint ofh(P) P* where P* denotes the isogonal conjugate Bf

Proof. Let AP meet the circumcircle ab, and reflectD in BC to the pointU.
The lineU H is the doubled Simson line @, and the reflections ab in the other
two sides are also on this line. The isogonal conjugat® @$ well known to be
the point at infinity in the direction parallel tdP* . (This is the degenerate case
of the result that ifD’ is not on the circumcircle, then the isogonal conjugat®bof
is the center of the circumcircle of the triangle with veziche reflections ab’

in the sides ofABC).

ThusUH L AP*. To finish the proof it suffices to show that@U’ is the
rotation throughr of UH about N, then AP* is the perpendicular bisector of
OU’. However,AO = R so it is enough to show thatU’ = R. Let A’ denote
the rotation throughr of A aboutN. From the theory of the nine-point circle it
follows thatA’ is also the reflection ab in BC'. ThereforeOU D A’ is an isosceles
trapezium withOA’//UD. ThereforeAU’ = A’'U = OD = R. O

We are now in a position to prove what we call the Hagge siibflavhich is
the essence of the construction [5].

Proposition 2. The triangleABC' has circumcirclel’, circumcenteiO and ortho-
centerH. Choose a poinP in the plane ofABC other thanA, B, C. The cevian
lines AP, BP, C' P meetl’ again atD, F, F respectively. Refledd in BC to a
pointU, E in CAto apointV and F'in AB to a pointWV. LetU P meetAH at X,
VP meetBH atY andW P meetCH at Z. The pointsXY ZUVW H are con-
cyclic, and there is an indirect similarity carryind BCDEFPto XY ZUVW P.

Discussion. The strategy of the proof is as follows. We consider six limeseting
at a point. Any point of the plane will have reflections in tlve Isnes which are
concyclic. The angles between the lines will be arrangetiathere is an indirect
similarity carryingABC D E F' to the reflections off in the six lines. The location
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of the point of concurrency of the six lines will be chosen Isat the relevant six
reflections ofH areUVW X1Y1Z; where Xy, Y; and Z; are to be determined,
but are placed on the appropriate altitudes so that theyargidates to become
X, Y and Z respectively. The similarity then ensures th&t'W and X,Y; 2,
are in perspective from a poift’. Finally we show that” = P/, and it follows
immediately thatX = X;,Y = Y; andZ = Z;. We rely on the fact that we know
where to make the six lines cross, thanks to Proposition 1s iShmot the proof
given in [5].

Proof of Proposition 2.Let /ZDAC = ay andZBAD = ay. Similarly we define
b1, b2, ¢ andcy. We deduce that the angles subtendediby’, B, D, D andFE at
O as shown in Figure 2.

Figure 2. Angles subtended at the circumcented 8fC

By Proposition 1,(P) is on the perpendicular bisector Gff which is parallel
to AP* (and similar results by cyclic change).

Draw three lines through(P) which are parallel to the sides dfBC and three
more lines which are parallel td P* , BP* andC P* . See Figure 3.

Let X1, Y7 andZ; be the reflections off in the lines parallel taBC', C A and
AB respectively. Alsd/, V andW are the reflections off in the lines parallel to
AP*, BP*andC P*. ThusX Y1 Z;UVW are all points on the Hagge circle. The
angles between the lines are as shown, and the consequenttes $ix reflections
of H are thatX,1 Y, Z,UV W is a collection of points which are indirectly similar
to ABCDEF:. Itis not necessary to know the locationffin Figure 3 to deduce
this result. Just compare Figures 2 and 4. The point isAl&th(P)V = ZEOA.

A similar argument works for each adjacent pair of vertiaeshie cyclic list
X1V Z1UY1W and an indirect similarity is established. Let this simtiacarrying
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Figure 3. Reflections of the orthocenter

ABCDEF to X1Y1Z,UVW bek. It remains to show that(P) = P (for then it
will follow immediately thatX; = X,Y; =Y andZ; = 2).

X1

Figure 4. Two reflections off

Now XY7 Z; is similar toABC, and the vertices oK Y7 Z; are on the altitudes
of ABC. Also UVW is similar to DEF, and the linesX U, Y1V andZ, W are
concurrent at a poinP;. Consider the directed line segment® and XU which
meet atQ). The linesAX; andU D are parallel scd X, Q) and DUQ are similar
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triangles, so in terms of lengthgl@ : QD = X10Q : QU. Sincek carriesAD
to XU, it follows that@ is a fixed point ofx. Now if x had at least two fixed
points, then it would have a line of fixed points, and would lreféection in that
line. Howeverx takesDEF to UVW, to this line would have to b&C, C A and
AB. This is absurd, s@ is the unique fixed point of. By cyclic chang&) is on
AD,BE andCF so@ = P. AlsoQisonX U, Y7V andZ;W so(@ = P;. Thus
XU, Y1V andZ, W concur atP. ThereforeX; = X, Y, =Y andZ; =Z. O

Proposition 3. The similarity of Proposition 2 applied td BC', P carries a point
H* onT to H. The same result applied t§Y Z, P carries H to the orthocenter
H~ of XY Z. We may construckl ™ by drawing the rayPH ~ to meefl’ at H .

Proof. The similarity associated witA BC' and P is expressible as: reflect iRA,
scale by a factor ok from P, and rotate abouP through a certain angle. Note that
if we repeat the process, constructing a similarity usirgXty” Z as the reference
triangle, but still with cevian poinP, the resulting similarity will be expressible
as: reflect inX P, scale by a factor of from P, and rotate abouP through a
certain angle. Sinc&Y ZP is indirectly similar toABC P, the angles through
which the rotation takes place are equal and opposite. Taetef composing the
two similarities will be an enlargement with centBrand (positive) scale factor
A2, O

Thus in a natural example one would expect the péiritto be a natural point.
Drawings indicate that when we consider the Brocard cilg,is the Tarry point.
3. Implications for the Symmedian Point and Brocard geomety

3.1 Standard formulasWe first give a summary of useful formulas which can
be found or derived from many sources, including Wolfram ivairld [11]. The
variables have their usual meanings.

abc = 4RA, Q)

a2+ b+ =4Acotw, (2

a?b? + b?c + a® = 4A? esc® w, 3)
at b 4t =8A%(escPw — 2), 4)

where (3) can be derived from the formula
R — abcvat + bt 4+ ¢ — a2b? — b2c2 — c2a?
5= 4(a®> + 02+ A)A

RvV1 —4sin?2w

2cosw

for the radiusR g of the Brocard circle given in [11]. The square of the dis&anc
between the Brocard points was determined by Shail [9]:

Q02 = 4R%*sin? w(1 — 4sin® w) (5)
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which in turn is an economical way of expressing
a0 (at + 0% + ¢t — a20? — B2 — 2a?)
(a2b? + b2c2 + 2a?)?

We will use these formulas in impending algebraic maniporhest

3.2 The symmedian pointet G be the centroid K the symmedian point, and
be the Brocard angle of trianglé BC. Also let J be the center of the orthocen-
troidal circle (the circle on diamet&¥H). It is an intriguing fact that
2 2

since one can calculate that each quantity-s3 tan? w. The similarity of Propo-
sition 2 explains this suggestive algebraic coincidenegh following paragraph.

We first elaborate on Remark (v) 1. Let h,,q denote the function which
assigns to a poinP the centerh,q(P) of the Hagge circle associated with
when the triangle of reference is the medial triangle. Thelialdriangle is the
enlargement oA BC from G with scale factor—%. Let K,,.q be the symmedian
point of the medial triangle. NouK ,,,.q, G, K are collinear and{,,,.qG : GK =
1:2 = QG : GN, where@ is the midpoint ofON. Thus, triangleGN K and
GQKeq are similar andy is the nine-point center of the medial triangle. By [8],
hmed(G) is the reflection i of K ,.q. But the lineQh,.q(G) is parallel toN K
and@ is the midpoint ofON. Therefore si,.q(G) is the midpoint ofO K, and so
is the center of the Brocard circle dfBC. The similarity of Proposition 2 and the
one between the reference and medial triangle, serve taiax().

3.3 The Brocard porism A Brocard porism is obtained in the following way. Take
a triangle ABC and its circumcircle. Draw cevian lines through the symraedi
point. There is a unique conic (the Brocard ellipse) whickarggent to the sides
where the cevians cuts the sides. The Brocard points areotheff the ellipse.
There are infinitely many triangle with this circumcircledathis inconic. Indeed,
every point of the circumcircle arises as a vertex of a ungpah triangle.

These poristic triangles have the same circumcenter, sylmam@oint, Brocard
points and Brocard angle. For each of them, the inconic is Brecard ellipse.
Any geometrical feature of the triangle which can be exmésxclusively in terms
of R, w and the locations aP and K will give rise to a conserved quantity among
the poristic triangles.

This point of view also allows an improved version of the algec proof that,

b andc are determined bg, G and K [3]. Because of the ratios on the Euler line,
the orthocenter H and the orthocentroidal center are de@iedmNow Equation (6)
determinesk and angles. However9R? — (a? +b? + ¢?) = OH? soa? + b2 + ¢?

is determined. Also the area of ABC' is determined by (2). Now (1) means
abe and soa?b?c? is determined. Also, (3) determinadb? + b2c? + ¢%a®. Thus
the polynomial( X — a?)(X — b?)(X — ¢?) is determined and so the sides of the
triangle can be deduced.
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As we move through triangles in a Brocard porism using a fixedben pointP,
the Hagge circles of the triangles vary in general, but i chosen appropriately,
the Hagge circle if each triangle in the porism is the same.

Proposition 4. Let F’ be the fourth power poirftof a triangle in a Brocard porism,
so that it has areal coordinate&?, b*, ¢*). The fourth power poinf is the same
point for all triangles in the porism. Moreover, whéh= F’, the Hagge circle of
each triangle is the same.

Proof. Our plan is to show that the point F') is the same for all triangles in the
porism, and then to show that the distarigd”) H is also constant (though the
orthocentersH vary). Recall that the nine-point center is the midpoinCoand
H, and of F* and h(P). Thus there is a (variable) parallelogradh (F')H F*
which will prove very useful.

The fourth power poinf’ is well known to lie on the Brocard axis where the
tangents to the Brocard circle & and 2’ meet. ThusF is the same point for
all triangles in the Brocard porism. The isogonal conjugsté’ (incidentally the
isotomic conjugate of the symmedian pointffis = K; = (%, 7, %).

In any triangleO K is parallel toF* H. To see this, note tha@? K has equation

VA% — A+ Ea®(® — a®)y + a*b*(a® — b))z = 0.
Also F* H has equation
ZbQQ Hr+ 2 —a)z =0.

cyclic

These equations are linearly dependent withy 4+ z = 0 and hence the lines are
parallel. (DERIVE confirms that th&x 3 determinant vanishes). In a Hagge circle
with P = F, P* = F* and F*Hh(F)O is a parallelogram. Thu9 K is parallel
to F*H and because of the parallelograhiF") is a (possibly variable) point on
the Brocard axi® K.

Next we show that the poirit(F") us a common point for the poristic triangles.
The first component of the normalized coordinateg'dfand H are
b2 c?

*

T T 0202 + B2C2 + 2a2

and
(a% + b2 — )(? + a? — b?)
162

whereA is the area of the triangle in question. The components ofligEace-
mentF™* H are therefore

a? +b% + 2
162

H, =

(a®b? + b%c? + a?)(z,y, 2)

2Geometers who speak trilinear rather than areal are aplité'¢he third power point for obvious
reasons.
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wherez = a?(a?b? + a%c? — b* — ¢*), with yy and z found by cyclic change of,
b, c. Using the areal distance formula this provides

a’b?c2(a® + b* + 2)%(a* + bt + ¢t — a?b? — b2 — c*a?)
16A2(a2b? + b2c? 4 c%a?)? ’
Using the formulas 0§3.1 we see that

Oh(F) = F*H = 2RcoswV 1 — 4sin?w

is constant for the poristic triangles. The poitis fixed so there are just two
candidates for the location @f(F') on the common Brocard axis. By continuity
h(F') cannot move between these places antl(€0) is a fixed point.

To finish this analysis we must show that the distalc€) H is constant for the
poristic triangles. This distance is the saméd&6é) by the parallelogram. If a point
X has good areal coordinates, it is often easy to find a fornaul@f? using the
generalized parallel axis theorem [10] beca(s€? = R? — 0% ando% denotes
the mean square distance of the triangle vertices from tbeas given that they
carry weights which are the corresponding areal coordénaiteX .

In our caseF™* = (a2, b=2, ¢72), s0

1
a2 +b2+4c2)
a’b?c?

T a?b? + b2 + c2a?
This can be tidied using the standard formulas to showrfiat = R(1—4sin?w).
The distanceH h(F) = F*O is constant for the poristic triangles andF) is a
fixed point, so the Hagge circle associated withs the same for all the poristic
triangles. a

F*H? =

o2, = ( 5 (@®b 22 + a2 2+ a2

(a* +b* + ).

Corollary 5. In a Brocard porism, as the poristic triangles vary, the leaf their
orthocenters is contained in a circle with their common eeh{ F") on the Brocard
axis, whereF’ is the(areal)fourth power point of the triangles. The radius of this
circle is R(1 — 4sin?w).

In fact there is a direct method to show that the locu&/oh the Brocard porism
is a subset of a circle, but this approach reveals neithéeceaor radius. We have
JK? . . .
already observed th% =1 —3tan?w so for triangles in a Brocard porism

. JK? 1-3tan’w .
(with commonO and K) we have 707 = A % s constant. So as you
consider the various triangle in the porisshis constrained to move on a circle of
Apollonius with center some point on the fixed lio’. Now the vectorOH is
%OJ, SOH is constrained to move on a circle with its centéron the lineO K. In
fact H can occupy any position on this circle but we do not need #sslt (which
follows from K ranging over a circle centef for triangles in a Brocard porism
[3]).

There is a point which, when used Bdor the Hagge construction using medial
triangles, gives rise to a common Hagge circle as we rangerefgrence triangles
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in a Brocard porism. We use dashes to indicate the namesmbpoith respect to
the medial triangled’ B’C” of a poristic triangleA BC. We now know that is a

common point for the porism, so the distar@é’ is fixed. SinceO is fixed in the

Brocard porism and the locus &f is a circle, it follows that the locus oW is a

circle with center half way between and the center of the locus é&f.

Proposition 6. Let P be the center of the Brocard ellipse (the midpoint of the
segment joining the Brocard points afBC"). When the Hagge construction is
made for the medial triangld’ B’C’ using this pointP, then for eachA BC'in the
porism, the Hagge circle is the same.

Proof. If the areal coordinates of a point aflem, n) with respect toABC, then
the areal coordinates of this point with respect to the miédgmgle are(m + n —
I,n +1—m,l+n—m). The reference areals @ are (a(b*> + ¢?),b(c* +
a?),c?(a® + b)) so the medial areals afé*c?, c2a?, a®b*). The medial areals of
the medial isogonal conjugafe’ of P are(a?, b*, ¢*). Now the similarity carrying
ABC to A'B'C’ takesO to N and F to Pf. Thus in terms of distancO@F =
2PT N and moreove© F is parallel toPT N. Now, OP N1/ (P) is a parallelogram
with center the nine-point center of the medial triangle af(d) is the center of
the medial Hagge circle. It follows that(P) lies onOK at the midpoint oD F.
Therefore all triangles in the Brocard porism give rise toaayéke circle ofP (with
respect to the medial triangle) which is the circle diaméxér. O

Incidentally, P is the center of the locus @¥ in the Brocard porism. To see this,
note thatV is the midpoint ofO H, so it suffices to show th& P = PX whereX
is the center of the locus df in the Brocard cycle (given thdt is on the Brocard
axis of ABC). However, it is well known thaDP = R+/1 — 4sin’w and in
Proposition 4 we showed th@tX = 2R cosw+/1 — 4sin? w. We must eliminate
the possibility thatX and P are on different sides ab. If this happened, there
would be at least one triangle for whiechHOK = x. However,K is confined to
the orthocentroidal disk [3] so this is impossible.

4. The Hagge axis

Proposition 7. In the Hagge configuration, 18f1/ meetAH at L, WU meetBH
at M andUV meetC H and N. Then the pointd,, M, N and P are collinear.

We prove the following more general result. In order to applyhe letters
should be interpreted in the usual manner for the Hagge aoafign, andX
should be taken as the Hagge circle.

Proposition 8. Let three pointsX, Y and Z lie on a conicX and letly, Iy, I3 be
three chordsX H, Y H, Z H all passing through a poin{ on X. Suppose further
that P is any point in the plane of, and letX P, Y P, ZP meetX again atU, V
and W respectively. Now, I8 W meetl; at L, WU meetl, at M, UV meetls at
N. ThenLM N is a straight line passing througR.
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Figure 5. The Hagge axiBM N

Proof. Consider the hexagoHY VUW Z inscribed inX.. Apply Pascal’'s hexagon
theorem. It follows thaf\/, P, N are collinear. By taking another hexagdn P,
L are collinear. O

5. The Hagge configuration and associated Conics

In this section we give an analysis of the Hagge configuraiging barycentric
(areal) coordinates. This is both an enterprise in its oghtriserving to confirm
the earlier synthetic work, but also reveals the existeries interesting sequence
of conics. In what followsA BC' is the reference triangle and we taReto have
homogeneous barycentric coordinatesv, w). The algebra computer package
DERIVE is used throughout the calculations.

5.1 The Hagge circle and the Hagge axig he equation oAP is wy = vz. This
meets the circumcircle, with equatiafy z + b2z + czy = 0, at the pointD with
coordinates(—a?vw, v(b?*w + c*v), w(b*w + c*v)). Note that the sum of these
coordinates is-a?vw + v(b*w + c*v) + w(b*w + c*v)). We now want to find the
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coordinates ot/ (l,m,n), the reflection ofD in the sideBC'. It is convenient to
take the normalization ab to be the same as that bfso that

I+ m+n=—ad?vw+ v(b*w + ) + wb?w + 2v)). (7)

In order that the midpoint of/ D lies on BC the requirement is thdt = avw.
There is also the condition that the displacemént0, —1, 1) andU D(—a?vw—

1, v(b*w+c?v) —m, w(b?w+c*v) —n) should be at right angles. The condition for
perpendicular displacements may be found in [1, p.180]. Mthese conditions
are taken into account we find the coordinateg/aire

(I, m,n) = (a®>vw,v( (v + w) — a*w), wb*(v + w) — a®v)). (8)

The coordinates o, F', V, W can be obtained from those &1, U by cyclic

permutations of, b, c andu, v, w.
The Hagge circle is the circle throudgh V, W and its equation, which may be
obtained by standard means, is

(a®vw + b2wu + Cuv)(a®yz + b2 za + ay)
—(z +y+ 2)(a®(* + 2 — a®)vwz + b*(* + a® — bV )wuy + 2(a® + b — )uvz)
—0. (9)

It may now be checked that this circle has the charactefistiperty of a Hagge
circle that it passes througt, whose coordinates are

1 1 1
V+c2—a? 24+a? -0 a?2+b02—-c2)

Now the equation ofAH is (¢ + a® — b?)y = (a® + b*> — ¢?)z and this meets the
Hagge circle with Equation (9) again at the poitwith coordinateg —a?vw +
b2wu + uv, (a? + b? — )vw, (¢ + a® — b?)vw). The coordinates of, Z can
be obtained from those of by cyclic permutations of, b, ¢ andu, v, w.

Proposition 9. XU, YV, ZW are concurrent atP.

This has already been proved in Proposition 2, but may béeeiy checking
that when the coordinates of, U, P are placed as entries in the rows of & 3
determinant, then this determinant vanishes. This shoas\thU, P are collinear
asarey,V,PandZ, W, P.

If the equation of a conic i&? + my? + nz? + 2fyz + 2gzx + 2hxy = 0, then
the first coordinate of its center {gwn — gm — hn — f? + fg + hf) and other
coordinates are obtained by cyclic change of letters. Bhimecause it is the pole
of the line at infinity. Thez-coordinate of the centét(P) of the Hagge circle is
therefore—a® (b2 + ¢ — a?)vw + (a*(b? + ¢2) — (b* — ¢*)?)(b*wu + c2uv) with
y- andz-coordinates following by cyclic permutations @fb, ¢ andu, v, w.



244 C. J. Bradley and G. C. Smith
In §4 we introduced the Hagge axis and we now deduce its equaitomlines
VW and AH meet at the poinL with coordinates
(u(a®(b?w(u +v)(w +u —v) + v(w +u)(u+v —w)) + brw(u +v)(v+w — )
— b2 (U (v 4+ w) + u(v? + w?) 4+ 20w(v + w)) + cto(w + u) (v +w — u)),
vw(a® + % — ) (a®(u + v)(w + u) — u(d®(u +v) + A (w +u))),
vw(c® + a® — b)) (a®(u + v)(w + u) — u(b*(u +v) + (w + u)))).

The coordinates oM and N follow by cyclic permutations ofi, b, c andu, v, w.
From these we obtain the equation of the Hagge &XiEN as

Z vw(a® (u+v)(w+u) —u(d? (u+v)+c(w+u))) (e (v—w)— (b* — ) (v+w))z = 0.
cyclic

' (10)
It may now be verified that this line passes through

5.2 The midpoint Hagge conic\We now obtain a dividend from the areal analysis
in §5.1. The midpoints in question are thoseAdX, BY,CZ, DU, EV, FW and

in Figure 6 these points are label&d, Y, Z1, Uy, V1, Wi. This notation is not to
be confused with the now discarded notatip, Y; andZ; of Proposition 2. We
now show these six points lie on a conic.

Proposition 10. The pointsXy, Y1, Z1, Uy, Vi, Wy lie on a conic (the Hagge
midpoint conic).

Their coordinates are easily obtained and are
X1 (2u(b?w + *v),vw(a® + b* — %), vw(c® + a® — b)),
Uy (0,v(2¢%0 + w(b? + ¢ — a?)), w(2b?w + v(b?* + & — a?))),

with coordinates ofvy, 71, V4, Wi following by cyclic change of letters. It may
now be checked that these six points lie on the conic with tamua

4(a*vw + b*wu + Cuw) ( Z u?(—a*vw + b2 (v + w)w + v(v + w))yz)
cyclic

—(r+y+=2) ( Z v*w?((a® + 0% — )u + 2a%0)((? + a® — b*)u + 2a°w)x | = 0.
cyclic

(11)

Following the same method as before for the center, we findtheoordinates
are(u(b*w + c*v), v(Fu + a®w), w(a*v + b*u)).
Proposition 11. Uy, X4, P are collinear.

This is proved by checking that when the coordinateX'of U;, P are placed

as entries in the rows of &ix 3 determinant, then this determinant vanishes. This
shows thatX;, Uy, P are collinear as ar&;, V1, P andZ;, Wy, P.

Proposition 12. The center of the Hagge midpoint conic is the midpoir@b{ P).
It divides P*G in the ratio3 : —1.
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The proof is straightforward and is left to the reader.

In similar fashion to above we define the six poixis, Y, Z, U, Vi, Wy that
divide the six linesAX, BY,CZ, DU, EV, FW respectively in the ratié : 1 (k
real and£ 1).

Proposition 13. The six pointsXy, Y, Z;, Ug, Vi, W} lie on a conic and the
centers of these conics, for all valueskoflie on the lineOh(P) and divide it in
the ratiok : 1.

This proposition was originally conjectured by us on thadakdrawings by the
geometry software package CABRI and we are grateful to thieEdr confirming
the conjecture to be correct. We have rechecked his calmuland for the record
the coordinates ok, andU,, are

(1 = k)a*vw + (1 + E)u(b®w + ), k(a® + b* — A)ow, k(2 + a® — b?)ow),
and

(—a?(1—k)vw, v((1+k) v+ 0>+ ke —ka®)w), w((1+k)b*w(+kb* —ka?)v)),
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respectively. The conic involved has center with coorainat
((a®(0* + ¢* — a®)(a®vw + b*wu + uv)
+ k(=a*(0* + ¢ — a®)vw + (@*(b* + 2) — (b? — 2)H) (u(b*w + *v)),
)
Proposition 14. Uy, X}, P are collinear.

The proof is by the same method as for Proposition 11.

6. Loci of Haggi circle centers

The Macbeath conic o BC' is the inconic with foci at the circumcentér and
the orthocentef{. The center of this conic i8/, the nine-point center.

Proposition 15. The locus of centers of those Hagge circles which are tanigent
the circumcircle is the Macbeath conic.

Proof. We address the elliptical case (see Figure 7) wA&ITC is acute and{ is
inside the circumcircle of radiuR. The major axis of the Macbeath ellipieis
well known to have lengttR. Suppose thaP is a point of the plane. Now(P) is
onX if and only if Oh(P) + h(P)H = R, buth(P)H is the radius of the Hagge
circle, so this condition holds if and only if the Hagge aird$ internally tangent
to the circumcircle. Note thai(P) is on X if and only if P* is on X, and as
P* moves continuously rountl, the Hagge circle moves around the inside of the
circumcircle. The poinf> moved around the ‘deltoid’ shape as shown in Figure 7.

The case wherel BC' is obtuse and the Macbeath conic is a hyperbola is very
similar. The associated Hagge circles are externally tanigethe circumcircle.

O

Proposition 16. The locus of centers of those Hagge circles which cut theigirc
circle at diametrically opposite points is a straight linerpendicular to the Euler
line.

Proof. Let ABC have circumcente® and orthocenteir/. ChooseH’ on HO
produced so thalfO - OH' = R? whereR is the circumradius oA BC. Now if

X, Y are diametrically opposite points ¢h(but not on the Euler line), then the
circumcircleS” of XY H is of interest. By the converse of the power of a point
theorem,H’ lies on eachS’. These circless” form an intersecting coaxal system
throughH and H’ and their centers lie on the perpendicular bisectaiféf’. [
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