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On a Construction of Hagge

Christopher J. Bradley and Geoff C. Smith

Abstract. In 1907 Hagge constructed a circle associated with each cevian point
P of triangle ABC. If P is on the circumcircle this circle degenerates to a
straight line through the orthocenter which is parallel to the Wallace-Simson line
of P . We give a new proof of Hagge’s result by a method based on reflections.
We introduce an axis associated with the construction, and (via an areal anal-
ysis) a conic which generalizes the nine-point circle. The precise locus of the
orthocenter in a Brocard porism is identified by using Hagge’s theorem as a tool.
Other natural loci associated with Hagge’s construction are discussed.

1. Introduction

One hundred years ago, Karl Hagge wrote an article inZeitschrift f̈ur Mathema-
tischen und Naturwissenschaftliche Unterrichtentitled (in loose translation) “The
Fuhrmann and Brocard circles as special cases of a general circle construction”
[5]. In this paper he managed to find an elegant extension of the Wallace-Simson
theorem when the generating point is not on the circumcircle. Instead of creating a
line, one makes a circle through seven important points. In§2 we give a new proof
of the correctness of Hagge’s construction, extend and apply the idea in various
ways. As a tribute to Hagge’s beautiful insight, we present this work as a cente-
nary celebration. Note that the name Hagge is also associated with other circles
[6], but here we refer only to the construction just described. Here we present new
synthetic arguments to justify Hagge’s construction, but the first author has also
performed detailed areal calculations which provide an algebraic alternative in [2].

The triangleABC has circumcircleΓ, circumcenterO and orthocenterH. See
Figure 1. ChooseP a point in the plane ofABC. The cevian linesAP , BP , CP
meetΓ again atD, E andF respectively. ReflectD in BC to a pointU , E in CA
to a pointV andF in AB to a pointW . Let UP meetAH at X, V P meetBH
at Y andWP meetCH at Z. Hagge proved that there is a circle passing through
X, Y , Z, U , V , W andH [5, 7]. See Figure 1. Our purpose is to amplify this
observation.

Hagge explicitly notes [5] the similarities betweenABC andXY Z, between
DEF andUV W , and the fact that both pairs of trianglesABC, DEF andXY Z,
UV W are in perspective throughP . There is an indirect similarity which carries
the pointsABCDEFP to XY ZUV WP .

Peiser [8] later proved that the centerh(P ) of this Hagge circle is the rotation
throughπ about the nine-point center ofABC of the isogonal conjugateP ∗ of P .
His proof was by complex numbers, but we have found a direct proof by classical
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Figure 1. The Hagge construction

means [4]. In our proof of the validity of Hagge’s construction we work directly
with the center of the circle, whereas Hagge worked with the point at the far end
of the diameter throughH. This gives us the advantage of being able to study the
distribution of points on a Hagge circle by means of reflections in lines through its
center, a device which was not available with the original approach.

The pointP ∗ is collinear withG andT , the far end of the diameter fromH. The
vector argument which justifies this is given at the start of§5.1. Indeed, we show
thatP ∗G : GT = 1 : 2.

There are many important special cases. Here are some examples, but Hagge
[5] listed even more.

(i) WhenP = K, the symmedian point, the Hagge circle is the orthocentroidal
circle. 1

(ii) WhenP = I, the incenter, the Hagge circle is the Fuhrmann circle.
(iii) When P = O, the circumcenter, the Hagge circle and the circumcircle are

concentric.

1In [5] Hagge associates the name Böklen with the study of this circle (there were two geometers
with this name active at around that time), and refers the reader to a work of Prof Dr Lieber, possibly
H. Lieber who wrote extensively on advanced elementary mathematics in thefin de siècle.
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(iv) WhenP = H, the orthocenter, the Hagge circle degenerates to the pointH.
(v) The circumcenter is the orthocenter of the medial triangle, and the Brocard

circle on diameterOK arises as a Hagge circle of the medial triangle with respect
to the centroidG of ABC.

Note thatUH is the doubled Wallace-Simson line ofD, by which we mean the
enlargement of the Wallace-Simson line with scale factor2 from centerD. Sim-
ilarly V H andWH are the doubled Wallace-Simson lines ofE andF . Now it
is well known that the angle between two Wallace-Simson lines is half the angle
subtended atO by the generating points. This applies equally well to doubled
Wallace-Simson lines. A careful analysis (taking care to distinguish between an-
gles and their supplements) will yield the angles betweenUH, V H andWH, from
which it can be deduced thatUV W is indirectly similar toDEF . We will not ex-
plain the details but rather we present a robust argument forProposition 2 which
does not rely on scrupulous bookkeeping.

Incidentally, if P is on Γ, then the Hagge circle degenerates to the doubled
Wallace-Simson line ofP . For the rest of this paper, we make the explicit assump-
tion thatP is not onΓ. The work described in the rest of this introduction is not
foreshadowed in [5]. SinceABCDEFP is similar toXY ZUV WP , it follows
thatABC is indirectly similar toXY Z and the similarity sendsDEF to UV W .
The pointP turns out to be the unique fixed point of this similarity. Thissimilarity
must carry a distinguished pointH+ on Γ to H. We will give a geometric recipe
for locatingH+ in Proposition 3.

This process admits of extension both inwards and outwards.One may construct
the Hagge circle ofXY Z with respect toP , or find the triangleRST so that the
Hagge circle ofRST with respect toP is Γ (with ABC playing the former role
of XY Z). The composition of two of these indirect similarities is an enlargement
with positive scale factor fromP .

Proposition 2 sheds light on some of our earlier work [3]. LetG be the centroid,
K the symmedian point, andω the Brocard angle of triangleABC. Also, letJ be
the center of the orthocentroidal circle (the circle on diameterGH). We have long

been intrigued by the fact that
OK2

R2
=

JK2

JG2
since areal algebra can be used to

show that each quantity is1−3 tan2 ω. In §3.3 we will explain how the similarity is
a geometric explanation of this suggestive algebraic coincidence. In [3] we showed
how to construct the sides of (non-equilateral) triangleABC given only the data
O, G, K. The method was based on finding a cubic which hada2, b2, c2 as roots.
We will present an improved algebraic explanation in§3.2.

We show in Proposition 4 that there is a pointF which when used as a cevian
point, generates the same Hagge circle for every triangle ina Brocard porism. Thus
the locus of the orthocenter in a Brocard porism must be confined to a circle. We
describe its center and radius. We also exhibit a point whichgives rise to a fixed
Hagge circle with respect to the medial triangles, as the reference triangle ranges
over a Brocard porism.
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We make more observations about Hagge’s configuration. Given the large num-
ber of points lying on conics (circles), it is not surprisingthat Pascal’s hexagon
theorem comes into play. LetV W meetAH at L, WU meetBH at M , andUV
meetsCH at N . In §4 we will show thatLMNP are collinear, and we introduce
the term Hagge axis for this line.

In §5 we will exhibit amidpoint conicwhich passes through six points associated
with the Hagge construction. In special case (iv), whenP = H, this conic is the
nine-point circle ofABC. Drawings lead us to conjecture that the center of the
midpoint conic isN .

In §6 we study some natural loci associated with Hagge’s construction.

2. The Hagge Similarity

We first locate the center of the Hagge circle, but not, as Peiser [8] did, by using
complex numbers. A more leisurely exposition of the next result appears in [4].

Proposition 1. Given a pointP in the plane of triangleABC, the centerh(P ) of
the Hagge circle associated withP is the point such the nine-point centerN is the
midpoint ofh(P )P ∗ whereP ∗ denotes the isogonal conjugate ofP .

Proof. Let AP meet the circumcircle atD, and reflectD in BC to the pointU .
The lineUH is the doubled Simson line ofD, and the reflections ofD in the other
two sides are also on this line. The isogonal conjugate ofD is well known to be
the point at infinity in the direction parallel toAP ∗ . (This is the degenerate case
of the result that ifD′ is not on the circumcircle, then the isogonal conjugate ofD′

is the center of the circumcircle of the triangle with vertices the reflections ofD′

in the sides ofABC).
ThusUH ⊥ AP ∗. To finish the proof it suffices to show that ifOU ′ is the

rotation throughπ of UH aboutN , thenAP ∗ is the perpendicular bisector of
OU ′. However,AO = R so it is enough to show thatAU ′ = R. Let A′ denote
the rotation throughπ of A aboutN . From the theory of the nine-point circle it
follows thatA′ is also the reflection ofO in BC. ThereforeOUDA′ is an isosceles
trapezium withOA′//UD. ThereforeAU ′ = A′U = OD = R. �

We are now in a position to prove what we call the Hagge similarity which is
the essence of the construction [5].

Proposition 2. The triangleABC has circumcircleΓ, circumcenterO and ortho-
centerH. Choose a pointP in the plane ofABC other thanA, B, C. The cevian
linesAP , BP , CP meetΓ again atD, E, F respectively. ReflectD in BC to a
pointU , E in CA to a pointV andF in AB to a pointW . LetUP meetAH at X,
V P meetBH at Y andWP meetCH at Z. The pointsXY ZUV WH are con-
cyclic, and there is an indirect similarity carryingABCDEFP to XY ZUV WP .

Discussion.The strategy of the proof is as follows. We consider six linesmeeting
at a point. Any point of the plane will have reflections in the six lines which are
concyclic. The angles between the lines will be arranged so that there is an indirect
similarity carryingABCDEF to the reflections ofH in the six lines. The location
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of the point of concurrency of the six lines will be chosen so that the relevant six
reflections ofH areUV WX1Y1Z1 whereX1, Y1 andZ1 are to be determined,
but are placed on the appropriate altitudes so that they are candidates to become
X, Y andZ respectively. The similarity then ensures thatUV W andX1Y1Z1

are in perspective from a pointP ′. Finally we show thatP = P ′, and it follows
immediately thatX = X1, Y = Y1 andZ = Z1. We rely on the fact that we know
where to make the six lines cross, thanks to Proposition 1. This is not the proof
given in [5].

Proof of Proposition 2.Let ∠DAC = a1 and∠BAD = a2. Similarly we define
b1, b2, c1 andc2. We deduce that the angles subtended byA, F , B, D, D andE at
O as shown in Figure 2.

O
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B C

D

E

F

2a2

2b1

2b22c1

2c2

2a1

Figure 2. Angles subtended at the circumcenter ofABC

By Proposition 1,h(P ) is on the perpendicular bisector ofUH which is parallel
to AP ∗ (and similar results by cyclic change).

Draw three lines throughh(P ) which are parallel to the sides ofABC and three
more lines which are parallel toAP ∗ , BP ∗ andCP ∗ . See Figure 3.

Let X1, Y1 andZ1 be the reflections ofH in the lines parallel toBC, CA and
AB respectively. AlsoU , V andW are the reflections ofH in the lines parallel to
AP ∗, BP ∗ andCP ∗. ThusX1Y1Z1UV W are all points on the Hagge circle. The
angles between the lines are as shown, and the consequences for the six reflections
of H are thatX1Y1Z1UV W is a collection of points which are indirectly similar
to ABCDEF . It is not necessary to know the location ofH in Figure 3 to deduce
this result. Just compare Figures 2 and 4. The point is that∠X1h(P )V = ∠EOA.

A similar argument works for each adjacent pair of vertices in the cyclic list
X1V Z1UY1W and an indirect similarity is established. Let this similarity carrying
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Figure 3. Reflections of the orthocenter

ABCDEF to X1Y1Z1UV W beκ. It remains to show thatκ(P ) = P (for then it
will follow immediately thatX1 = X, Y1 = Y andZ1 = Z).
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Figure 4. Two reflections ofH

NowX1Y1Z1 is similar toABC, and the vertices ofX1Y1Z1 are on the altitudes
of ABC. Also UV W is similar toDEF , and the linesX1U , Y1V andZ1W are
concurrent at a pointP1. Consider the directed line segmentsAD andX1U which
meet atQ. The linesAX1 andUD are parallel soAX1Q andDUQ are similar
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triangles, so in terms of lengths,AQ : QD = X1Q : QU . Sinceκ carriesAD
to X1U , it follows thatQ is a fixed point ofκ. Now if κ had at least two fixed
points, then it would have a line of fixed points, and would be areflection in that
line. Howeverκ takesDEF to UV W , to this line would have to beBC, CA and
AB. This is absurd, soQ is the unique fixed point ofκ. By cyclic changeQ is on
AD, BE andCF soQ = P . Also Q is onX1U , Y1V andZ1W soQ = P1. Thus
X1U , Y1V andZ1W concur atP . ThereforeX1 = X, Y1 = Y andZ1 = Z. �

Proposition 3. The similarity of Proposition 2 applied toABC, P carries a point
H+ on Γ to H. The same result applied toXY Z, P carriesH to the orthocenter
H− of XY Z. We may constructH+ by drawing the rayPH− to meetΓ at H+.

Proof. The similarity associated withABC andP is expressible as: reflect inPA,
scale by a factor ofλ from P , and rotate aboutP through a certain angle. Note that
if we repeat the process, constructing a similarity using the XY Z as the reference
triangle, but still with cevian pointP , the resulting similarity will be expressible
as: reflect inXP , scale by a factor ofλ from P , and rotate aboutP through a
certain angle. SinceXY ZP is indirectly similar toABCP , the angles through
which the rotation takes place are equal and opposite. The effect of composing the
two similarities will be an enlargement with centerP and (positive) scale factor
λ2. �

Thus in a natural example one would expect the pointH+ to be a natural point.
Drawings indicate that when we consider the Brocard circle,H+ is the Tarry point.

3. Implications for the Symmedian Point and Brocard geometry

3.1. Standard formulas.We first give a summary of useful formulas which can
be found or derived from many sources, including Wolfram Mathworld [11]. The
variables have their usual meanings.

abc = 4R△, (1)

a2 + b2 + c2 = 4△ cot ω, (2)

a2b2 + b2c2 + c2a2 = 4△2 csc2 ω, (3)

a4 + b4 + c4 = 8△2(csc2 ω − 2), (4)

where (3) can be derived from the formula

RB =
abc

√
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

4(a2 + b2 + c2)△

=
R

√

1 − 4 sin2 ω

2 cos ω

for the radiusRB of the Brocard circle given in [11]. The square of the distance
between the Brocard points was determined by Shail [9]:

ΩΩ′2 = 4R2 sin2 ω(1 − 4 sin2 ω) (5)
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which in turn is an economical way of expressing

a2b2c2(a4 + b4 + c4 − a2b2 − b2c2 − c2a2)

(a2b2 + b2c2 + c2a2)2
.

We will use these formulas in impending algebraic manipulations.

3.2. The symmedian point.Let G be the centroid,K the symmedian point, andω
be the Brocard angle of triangleABC. Also let J be the center of the orthocen-
troidal circle (the circle on diameterGH). It is an intriguing fact that

OK2

R2
=

JK2

JG2
(6)

since one can calculate that each quantity is1− 3 tan2 ω. The similarity of Propo-
sition 2 explains this suggestive algebraic coincidence via the following paragraph.

We first elaborate on Remark (v) of§1. Let hmed denote the function which
assigns to a pointP the centerhmed(P ) of the Hagge circle associated withP
when the triangle of reference is the medial triangle. The medial triangle is the
enlargement ofABC from G with scale factor−1

2
. Let Kmed be the symmedian

point of the medial triangle. NowKmed, G, K are collinear andKmedG : GK =
1 : 2 = QG : GN , whereQ is the midpoint ofON . Thus, triangleGNK and
GQKmed are similar andQ is the nine-point center of the medial triangle. By [8],
hmed(G) is the reflection inQ of Kmed. But the lineQhmed(G) is parallel toNK
andQ is the midpoint ofON . Therefore,hmed(G) is the midpoint ofOK, and so
is the center of the Brocard circle ofABC. The similarity of Proposition 2 and the
one between the reference and medial triangle, serve to explain (6).

3.3. The Brocard porism.A Brocard porism is obtained in the following way. Take
a triangleABC and its circumcircle. Draw cevian lines through the symmedian
point. There is a unique conic (the Brocard ellipse) which istangent to the sides
where the cevians cuts the sides. The Brocard points are the foci of the ellipse.
There are infinitely many triangle with this circumcircle and this inconic. Indeed,
every point of the circumcircle arises as a vertex of a uniquesuch triangle.

These poristic triangles have the same circumcenter, symmedian point, Brocard
points and Brocard angle. For each of them, the inconic is their Brocard ellipse.
Any geometrical feature of the triangle which can be expressed exclusively in terms
of R, ω and the locations ofO andK will give rise to a conserved quantity among
the poristic triangles.

This point of view also allows an improved version of the algebraic proof thata,
b andc are determined byO, G andK [3]. Because of the ratios on the Euler line,
the orthocenter H and the orthocentroidal center are determined. Now Equation (6)
determinesR and angleω. However,9R2− (a2 + b2 + c2) = OH2 soa2 + b2 + c2

is determined. Also the area△ of ABC is determined by (2). Now (1) means
abc and soa2b2c2 is determined. Also, (3) determinesa2b2 + b2c2 + c2a2. Thus
the polynomial(X − a2)(X − b2)(X − c2) is determined and so the sides of the
triangle can be deduced.
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As we move through triangles in a Brocard porism using a fixed cevian pointP ,
the Hagge circles of the triangles vary in general, but ifP is chosen appropriately,
the Hagge circle if each triangle in the porism is the same.

Proposition 4. LetF be the fourth power point2 of a triangle in a Brocard porism,
so that it has areal coordinates(a4, b4, c4). The fourth power pointF is the same
point for all triangles in the porism. Moreover, whenP = F , the Hagge circle of
each triangle is the same.

Proof. Our plan is to show that the pointh(F ) is the same for all triangles in the
porism, and then to show that the distanceh(F )H is also constant (though the
orthocentersH vary). Recall that the nine-point center is the midpoint ofO and
H, and ofF ∗ and h(P ). Thus there is a (variable) parallelogramOh(F )HF ∗

which will prove very useful.
The fourth power pointF is well known to lie on the Brocard axis where the

tangents to the Brocard circle atΩ and Ω′ meet. ThusF is the same point for
all triangles in the Brocard porism. The isogonal conjugateof F (incidentally the
isotomic conjugate of the symmedian point) isF ∗ = Kt =

(

1
a2 , 1

b2
, 1

c2

)

.
In any triangleOK is parallel toF ∗H. To see this, note thatOK has equation

b2c2(b2 − c2)x + c2a2(c2 − a2)y + a2b2(a2 − b2)z = 0.

Also F ∗H has equation
∑

cyclic

b2c2(b2 − c2)(b2 + c2 − a2)x = 0.

These equations are linearly dependent withx + y + z = 0 and hence the lines are
parallel. (DERIVE confirms that the3×3 determinant vanishes). In a Hagge circle
with P = F , P ∗ = F ∗ andF ∗Hh(F )O is a parallelogram. ThusOK is parallel
to F ∗H and because of the parallelogram,h(F ) is a (possibly variable) point on
the Brocard axisOK.

Next we show that the pointh(F ) us a common point for the poristic triangles.
The first component of the normalized coordinates ofF ∗ andH are

F ∗
x =

b2c2

a2b2 + b2c2 + c2a2

and

Hx =
(a2 + b2 − c2)(c2 + a2 − b2)

16△2

where△ is the area of the triangle in question. The components of thedisplace-
mentF ∗H are therefore

a2 + b2 + c2

16△2
(a2b2 + b2c2 + c2a2)(x, y, z)

2Geometers who speak trilinear rather than areal are apt to call F the third power point for obvious
reasons.
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wherex = a2(a2b2 + a2c2 − b4 − c4), with y andz found by cyclic change ofa,
b, c. Using the areal distance formula this provides

F ∗H2 =
a2b2c2(a2 + b2 + c2)2(a4 + b4 + c4 − a2b2 − b2c2 − c2a2)

16△2(a2b2 + b2c2 + c2a2)2
.

Using the formulas of§3.1 we see that

Oh(F ) = F ∗H = 2R cos ω
√

1 − 4 sin2 ω

is constant for the poristic triangles. The pointO is fixed so there are just two
candidates for the location ofh(F ) on the common Brocard axis. By continuity
h(F ) cannot move between these places and soh(F ) is a fixed point.

To finish this analysis we must show that the distanceh(F )H is constant for the
poristic triangles. This distance is the same asF ∗O by the parallelogram. If a point
X has good areal coordinates, it is often easy to find a formula for OX2 using the
generalized parallel axis theorem [10] becauseOX2 = R2 − σ2

X andσ2
X denotes

the mean square distance of the triangle vertices from themselves, given that they
carry weights which are the corresponding areal coordinates ofX.

In our caseF ∗ = (a−2, b−2, c−2), so

σ2
F ∗ =

1

(a−2 + b−2 + c−2)2
(a2b−2c−2 + a−2b2c−2 + a−2b−2c2)

=
a2b2c2

a2b2 + b2c2 + c2a2
(a4 + b4 + c4).

This can be tidied using the standard formulas to show thatF ∗O = R(1−4 sin2 ω).
The distanceHh(F ) = F ∗O is constant for the poristic triangles andh(F ) is a
fixed point, so the Hagge circle associated withF is the same for all the poristic
triangles. �

Corollary 5. In a Brocard porism, as the poristic triangles vary, the locus of their
orthocenters is contained in a circle with their common center h(F ) on the Brocard
axis, whereF is the(areal)fourth power point of the triangles. The radius of this
circle isR(1 − 4 sin2 ω).

In fact there is a direct method to show that the locus ofH in the Brocard porism
is a subset of a circle, but this approach reveals neither center nor radius. We have

already observed that
JK2

JG2
= 1 − 3 tan2 ω so for triangles in a Brocard porism

(with commonO andK) we have
JK2

JO2
=

1 − 3 tan2 ω

4
is constant. So as you

consider the various triangle in the porism,J is constrained to move on a circle of
Apollonius with center some point on the fixed lineOK. Now the vectorOH is
2
3
OJ, soH is constrained to move on a circle with its centerM on the lineOK. In

factH can occupy any position on this circle but we do not need this result (which
follows from K ranging over a circle centerJ for triangles in a Brocard porism
[3]).

There is a point which, when used asP for the Hagge construction using medial
triangles, gives rise to a common Hagge circle as we range over reference triangles



On a construction of Hagge 241

in a Brocard porism. We use dashes to indicate the names of points with respect to
the medial triangleA′B′C ′ of a poristic triangleABC. We now know thatF is a
common point for the porism, so the distanceOF is fixed. SinceO is fixed in the
Brocard porism and the locus ofH is a circle, it follows that the locus ofN is a
circle with center half way betweenO and the center of the locus ofH.

Proposition 6. Let P be the center of the Brocard ellipse (the midpoint of the
segment joining the Brocard points ofABC). When the Hagge construction is
made for the medial triangleA′B′C ′ using this pointP , then for eachABC in the
porism, the Hagge circle is the same.

Proof. If the areal coordinates of a point are(l,m, n) with respect toABC, then
the areal coordinates of this point with respect to the medial triangle are(m + n−
l, n + l − m, l + n − m). The reference areals ofP are (a2(b2 + c2), b2(c2 +
a2), c2(a2 + b2)) so the medial areals are(b2c2, c2a2, a2b2). The medial areals of
the medial isogonal conjugateP † of P are(a4, b4, c4). Now the similarity carrying
ABC to A′B′C ′ takesO to N andF to P †. Thus in terms of distanceOF =
2P †N and moreoverOF is parallel toP †N . Now,OP †Nh′(P ) is a parallelogram
with center the nine-point center of the medial triangle andh′(P ) is the center of
the medial Hagge circle. It follows thath′(P ) lies onOK at the midpoint ofOF .
Therefore all triangles in the Brocard porism give rise to a Hagge circle ofP (with
respect to the medial triangle) which is the circle diameterOF . �

Incidentally,P is the center of the locus ofN in the Brocard porism. To see this,
note thatN is the midpoint ofOH, so it suffices to show thatOP = PX whereX
is the center of the locus ofH in the Brocard cycle (given thatP is on the Brocard
axis of ABC). However, it is well known thatOP = R

√

1 − 4 sin2 ω and in
Proposition 4 we showed thatOX = 2R cos ω

√

1 − 4 sin2 ω. We must eliminate
the possibility thatX andP are on different sides ofO. If this happened, there
would be at least one triangle for which∠HOK = π. However,K is confined to
the orthocentroidal disk [3] so this is impossible.

4. The Hagge axis

Proposition 7. In the Hagge configuration, letV W meetAH at L, WU meetBH
at M andUV meetCH andN . Then the pointsL, M , N andP are collinear.

We prove the following more general result. In order to applyit, the letters
should be interpreted in the usual manner for the Hagge configuration, andΣ
should be taken as the Hagge circle.

Proposition 8. Let three pointsX, Y andZ lie on a conicΣ and letl1, l2, l3 be
three chordsXH, Y H, ZH all passing through a pointH onΣ. Suppose further
thatP is any point in the plane ofΣ, and letXP , Y P , ZP meetΣ again atU , V
andW respectively. Now, letV W meetl1 at L, WU meetl2 at M , UV meetl3 at
N . ThenLMN is a straight line passing throughP .
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Figure 5. The Hagge axisLMN

Proof. Consider the hexagonHY V UWZ inscribed inΣ. Apply Pascal’s hexagon
theorem. It follows thatM , P , N are collinear. By taking another hexagonN , P ,
L are collinear. �

5. The Hagge configuration and associated Conics

In this section we give an analysis of the Hagge configurationusing barycentric
(areal) coordinates. This is both an enterprise in its own right, serving to confirm
the earlier synthetic work, but also reveals the existence of an interesting sequence
of conics. In what followsABC is the reference triangle and we takeP to have
homogeneous barycentric coordinates(u, v,w). The algebra computer package
DERIVE is used throughout the calculations.

5.1. The Hagge circle and the Hagge axis .The equation ofAP is wy = vz. This
meets the circumcircle, with equationa2yz+b2zx+c2xy = 0, at the pointD with
coordinates(−a2vw, v(b2w + c2v), w(b2w + c2v)). Note that the sum of these
coordinates is−a2vw + v(b2w + c2v) + w(b2w + c2v)). We now want to find the
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coordinates ofU(l,m, n), the reflection ofD in the sideBC. It is convenient to
take the normalization ofD to be the same as that ofU so that

l + m + n = −a2vw + v(b2w + c2v) + w(b2w + c2v)). (7)

In order that the midpoint ofUD lies onBC the requirement is thatl = a2vw.
There is also the condition that the displacementsBC(0,−1, 1) andUD(−a2vw−
l, v(b2w+c2v)−m,w(b2w+c2v)−n) should be at right angles. The condition for
perpendicular displacements may be found in [1, p.180]. When these conditions
are taken into account we find the coordinates ofU are

(l,m, n) = (a2vw, v(c2(v + w) − a2w), w(b2(v + w) − a2v)). (8)

The coordinates ofE, F , V , W can be obtained from those ofD, U by cyclic
permutations ofa, b, c andu, v, w.

The Hagge circle is the circle throughU, V,W and its equation, which may be
obtained by standard means, is

(a2vw + b2wu + c2uv)(a2yz + b2zx + c2xy)

−(x + y + z)(a2(b2 + c2 − a2)vwx + b2(c2 + a2 − b2)wuy + c2(a2 + b2 − c2)uvz)

=0. (9)

It may now be checked that this circle has the characteristicproperty of a Hagge
circle that it passes throughH, whose coordinates are

(

1

b2 + c2 − a2
,

1

c2 + a2 − b2
,

1

a2 + b2 − c2

)

.

Now the equation ofAH is (c2 + a2 − b2)y = (a2 + b2 − c2)z and this meets the
Hagge circle with Equation (9) again at the pointX with coordinates(−a2vw +
b2wu + c2uv, (a2 + b2 − c2)vw, (c2 + a2 − b2)vw). The coordinates ofY,Z can
be obtained from those ofX by cyclic permutations ofa, b, c andu, v,w.

Proposition 9. XU , Y V , ZW are concurrent atP .

This has already been proved in Proposition 2, but may be verified by checking
that when the coordinates ofX,U,P are placed as entries in the rows of a3 × 3
determinant, then this determinant vanishes. This shows thatX, U , P are collinear
as areY , V , P andZ, W , P .

If the equation of a conic islx2 + my2 + nz2 + 2fyz + 2gzx+ 2hxy = 0, then
the first coordinate of its center is(mn − gm − hn − f2 + fg + hf) and other
coordinates are obtained by cyclic change of letters. This is because it is the pole
of the line at infinity. Thex-coordinate of the centerh(P ) of the Hagge circle is
therefore−a4(b2 + c2 − a2)vw + (a2(b2 + c2) − (b2 − c2)2)(b2wu + c2uv) with
y- andz-coordinates following by cyclic permutations ofa, b, c andu, v, w.
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In §4 we introduced the Hagge axis and we now deduce its equation.The lines
V W andAH meet at the pointL with coordinates

(u(a2(b2w(u + v)(w + u − v) + c2v(w + u)(u + v − w)) + b4w(u + v)(v + w − u)

− b2c2(u2(v + w) + u(v2 + w2) + 2vw(v + w)) + c4v(w + u)(v + w − u)),

vw(a2 + b2 − c2)(a2(u + v)(w + u) − u(b2(u + v) + c2(w + u))),

vw(c2 + a2 − b2)(a2(u + v)(w + u) − u(b2(u + v) + c2(w + u)))).

The coordinates ofM andN follow by cyclic permutations ofa, b, c andu, v,w.
From these we obtain the equation of the Hagge axisLMN as
∑

cyclic

vw(a2(u+v)(w+u)−u(b2(u+v)+c2(w+u)))(a2(v−w)−(b2−c2)(v+w))x = 0.

(10)
It may now be verified that this line passes throughP .

5.2. The midpoint Hagge conic .We now obtain a dividend from the areal analysis
in §5.1. The midpoints in question are those ofAX, BY , CZ, DU , EV , FW and
in Figure 6 these points are labeledX1, Y1, Z1, U1, V1, W1. This notation is not to
be confused with the now discarded notationX1, Y1 andZ1 of Proposition 2. We
now show these six points lie on a conic.

Proposition 10. The pointsX1, Y1, Z1, U1, V1, W1 lie on a conic (the Hagge
midpoint conic).

Their coordinates are easily obtained and are

X1 (2u(b2w + c2v), vw(a2 + b2 − c2), vw(c2 + a2 − b2)),

U1 (0, v(2c2v + w(b2 + c2 − a2)), w(2b2w + v(b2 + c2 − a2))),

with coordinates ofY1, Z1, V1, W1 following by cyclic change of letters. It may
now be checked that these six points lie on the conic with equation

4(a2vw + b2wu + c2uv)





∑

cyclic

u2(−a2vw + b2(v + w)w + c2v(v + w))yz





− (x + y + z)





∑

cyclic

v2w2((a2 + b2 − c2)u + 2a2v)((c2 + a2 − b2)u + 2a2w)x



 = 0.

(11)

Following the same method as before for the center, we find that its coordinates
are(u(b2w + c2v), v(c2u + a2w), w(a2v + b2u)).

Proposition 11. U1, X1, P are collinear.

This is proved by checking that when the coordinates ofX1, U1, P are placed
as entries in the rows of a3 × 3 determinant, then this determinant vanishes. This
shows thatX1, U1, P are collinear as areY1, V1, P andZ1, W1, P .

Proposition 12. The center of the Hagge midpoint conic is the midpoint ofOh(P ).
It dividesP ∗G in the ratio3 : −1.



On a construction of Hagge 245

H

O

A

B C

P

D

E

F

U1

V1

W1

X

Y

Z

U

V

W

X1

Y1

Z1

Figure 6.

The proof is straightforward and is left to the reader.
In similar fashion to above we define the six pointsXk, Yk, Zk, Uk, Vk, Wk that

divide the six linesAX, BY , CZ, DU , EV , FW respectively in the ratiok : 1 (k
real and6= 1).

Proposition 13. The six pointsXk, Yk, Zk, Uk, Vk, Wk lie on a conic and the
centers of these conics, for all values ofk, lie on the lineOh(P ) and divide it in
the ratiok : 1.

This proposition was originally conjectured by us on the basis of drawings by the
geometry software package CABRI and we are grateful to the Editor for confirming
the conjecture to be correct. We have rechecked his calculation and for the record
the coordinates ofXk andUk are

((1 − k)a2vw + (1 + k)u(b2w + c2v), k(a2 + b2 − c2)vw, k(c2 + a2 − b2)vw),

and

(−a2(1−k)vw, v((1+k)c2v+(b2+kc2−ka2)w), w((1+k)b2w+(c2+kb2−ka2)v)),
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respectively. The conic involved has center with coordinates

((a2(b2 + c2 − a2)(a2vw + b2wu + c2uv)

+ k(−a4(b2 + c2 − a2)vw + (a2(b2 + c2) − (b2 − c2)2)(u(b2w + c2v)),

· · · , · · · ).

Proposition 14. Uk, Xk, P are collinear.

The proof is by the same method as for Proposition 11.

6. Loci of Haggi circle centers

The Macbeath conic ofABC is the inconic with foci at the circumcenterO and
the orthocenterH. The center of this conic isN , the nine-point center.

Proposition 15. The locus of centers of those Hagge circles which are tangentto
the circumcircle is the Macbeath conic.

Proof. We address the elliptical case (see Figure 7) whenABC is acute andH is
inside the circumcircle of radiusR. The major axis of the Macbeath ellipseΣ is
well known to have lengthR. Suppose thatP is a point of the plane. Nowh(P ) is
on Σ if and only if Oh(P ) + h(P )H = R, buth(P )H is the radius of the Hagge
circle, so this condition holds if and only if the Hagge circle is internally tangent
to the circumcircle. Note thath(P ) is on Σ if and only if P ∗ is on Σ, and as
P ∗ moves continuously roundΣ, the Hagge circle moves around the inside of the
circumcircle. The pointP moved around the ‘deltoid’ shape as shown in Figure 7.

The case whereABC is obtuse and the Macbeath conic is a hyperbola is very
similar. The associated Hagge circles are externally tangent to the circumcircle.

�

Proposition 16. The locus of centers of those Hagge circles which cut the circum-
circle at diametrically opposite points is a straight line perpendicular to the Euler
line.

Proof. Let ABC have circumcenterO and orthocenterH. ChooseH ′ on HO
produced so thatHO · OH ′ = R2 whereR is the circumradius ofABC. Now if
X, Y are diametrically opposite points onS (but not on the Euler line), then the
circumcircleS′ of XY H is of interest. By the converse of the power of a point
theorem,H ′ lies on eachS′. These circlesS′ form an intersecting coaxal system
throughH andH ′ and their centers lie on the perpendicular bisector ofHH ′. �
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