Skip to main content
Log in

Influence of Soil Moisture Content on the Corrosion Behavior of X60 Steel in Different Soils

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The influence of soil moisture content on the corrosion behavior of X60 steel in soils of different cities of Saudi Arabia (Riyadh, Rabigh and Jeddah) was investigated at ambient temperature (29 ± 1 C) using weight loss (WL) method and various electrochemical methods [open circuit potential (OCP), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS)]. Optical photographs for X60 steel surface at different conditions were obtained. It was found that WL data followed the power law kinetic relationship with a penetration factor (n) more than unity. The data of E OCP and E corr revealed that with increasing the soil moisture content, the corrosion of X60 steel becomes under cathodic control. The EIS spectra suggested two corrosion processes. One process related to the dissolution of corrosion products formed on the metal surface and the other process related to the charge transfer process at the metal/film and metal/soil interfaces. WL, PDP and EIS measurements indicated that the corrosion rate of X60 increases with increasing the moisture content of the studied soils up to critical limit (10 wt%), then it starts to decrease with further increase of moisture content. Various corrosion patterns (general, striations, general deep pitting and channel form corrosion) were detected on X60 steel surface after prolonged immersion in the studied soils at different moisture contents. At the critical moisture content, the corrosivity of the studied soils is given in the order: Jeddah > Rabigh > Riyadh. Correlation between the soils variables and the order of soils corrosivity was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shreir, L.L.: Corrosion, vol. 1. Newnes, London (1963)

  2. Al-Hazzaa, M.I.: A Comparative Study of Soil Corrosivity of the University Compass. Research Center, College of Engineering, King Saud University, Al-Riyadh (2007)

  3. Durr, C.L.; Beavers, J.A.: Techniques for assessment of soil corrosivity, Corrosion. Paper 667, NACE International (1998)

  4. Wilmott, M.J.; Jack, T.R.: Corrosion by soils. In: Revie, R.W. (eds.) Ulig's Corrosion Handbook. Wiley, New York (2000)

  5. Lins,V. de F. C.; Ferreira, M. L. M.; Saliba, P.A.: Corrosion resistance of API X52 carbon steel in soil environment. J. Mater. Res. Technol. 1(3), 161–166 (2012)

  6. La Susa, P.: Lab testing reveals relationships among soil quality, corrosion and the pipeline environment. Pipeline Gas J. 237(5) (2010)

  7. Roberge, P.R.: Handbook of Corrosion Engineering. McGrow Hill, New York (2000)

  8. Moucheng L., Haichao L., Chu’nan C.: Influence of moisture content on soil corrosion behavior of carbon steel. Corros. Sci. Prot. Technol. 12, 219–221 (2000)

    Google Scholar 

  9. Yuan-Hui W., Cheng S., Shu-Quan Z., Duo-Chang C., Guo-Hua L., Xia L.: Influence of soil humidity on corrosion behavior of X70 pipeline steel in saline soils of Qinghai salt lake region. Corros. Sci. Prot. Technol. 17, 87–90 (2005)

    Google Scholar 

  10. Xiao-dan F., Ming-qi L., Hong-mei X., Yong-qiang L., Duo-chang C.: Influence of soil humidity on corrosion behavior of X70 steel in yellow pebble soil. Corros. Sci. Prot. Technol. 19, 35–37 (2007)

    Google Scholar 

  11. Nie, X.; Li, X.; Du, C.; Huang, Y.; Du, H.: Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy. J. Raman Spectrosc. 40, 76–79 (2009)

  12. Oguzie, E.E.; Agochukwu, I.B.; Onuchukwu, A.I.: Monitoring the corrosion susceptibility of mild steel in varied soil textures by corrosion product count technique. Mater. Chem. Phys. 84, 1–6 (2004)

  13. Katano, Y.; Jigami, H.; Iwamatsu, J.: Life prediction for pipes in aggressive soils, life prediction of corrodible structures-Kauai, HI. Paper 22, NACE International, Houston, TX (1991)

  14. Natesan, M.; Venkatachari, G. Palaniswamy, N.: Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India. Corros. Sci. 48, 3584–3608 (2006)

  15. Gupta S.K., Gupta B.K.: The critical soil moisture content in the underground corrosion of mild steel. Corros. Sci. 19, 171–178 (1979)

    Article  Google Scholar 

  16. Murray, J.N.; Moran, P.J.: Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy. Corrosion 45, 34–43 (1989)

  17. Thomashov, N.D.: Theory of Corrosion and Protection of Metals: The Science of Corrosion. McMillan, New York (1966)

  18. Cole, I.S.; Marney, D.: The science of pipe corrosion: a review of the literature on the corrosion of ferrous metals in soils. Corros. Sci. 56, 5–16 (2012)

  19. Escalante, E.: Underground Corrosion. Special Technical Publication 741 (ed.). ASTM, Philadelphia (1990)

  20. Szklarska-Smialowska, Z.: Pitting Corrosion of Metals. NACE International, Houston (1986)

  21. Katano, Y.; Miyata, K.; Shimizu H.; Isogai, T.: Predictive model for pit growth on underground pipes. Corrosion 59, 155–161 (2003)

  22. Alamilla, J.L.; Espinosa-Medina, M.A.; Sosa, E.: Modelling steel corrosion damage in soil environment. Corros. Sci. 51, 2628–2638 (2009)

  23. Marcus, P.: Corrosion Mechanisms in Theory and Practice (ed.). Marcel Dekker Inc., New York (2002)

  24. Burstein G.T., Liu C., Souto R.M., Vines S.P.: Origins of pitting corrosion. Corr. Eng. Sci. Technol. 39, 25–30 (2004)

    Article  Google Scholar 

  25. Szklarska-Smialowska, Z.: Pitting and Crevice Corrosion. NACE International, Houston (2005)

  26. Tres, G.; Saborío, E.; Urruchurtu, J.; Malo, J.: Electrochemical evaluation of pipelines materials of the miravalles geothermal field in Costa Rica. Port. Electrochim. Acta 25, 409–417 (2007)

  27. Bueno, A.H.; Gomes, J.A.: Environmentally induced cracking of API grade steel in near-neutral pH soil. J. Braz. Soc. Mech. Sci. Eng. XXXI, 97–104 (2009)

  28. Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions. NACE International, Houston (1974)

  29. Baboian, R.: Corrosion Test and Standards, Application and Interpretation. 2nd edn. ASTM Manual Series MNL 20, Baltimore, USA (2005)

  30. Arpaia, M.; Frignani, A.; Pernice, P., Trabanelli, G.: Soil corrosivity determination by electrochemical methods. In: 8th European Congress on Corrosion, Paris, France, 19–21 November, vol. 1, pp. 11.1–11.8 (1985)

  31. Pernice P., Arpaia M., Costantini A.: Steel corrosion rate in soils by a.c. and d.c. electrochemical methods. Mater. Chem. Phys. 26, 323–330 (1990)

    Article  Google Scholar 

  32. Cole R.H., Cole K.S.: Dispersion and absorption in dielectrics. J. Chem. Phys. 9, 341–351 (1941)

    Article  Google Scholar 

  33. Hladky, K.; Callow, L.M.; Dawson, J.L.: Corrosion rates from impedance measurements: an introduction. Br. Corros. J. 15, 20–25 (1980)

  34. Hitzig, J.; Titz, J.; Juettner, K.; Lorenz, W.J.; Schmidt, E.: Frequency response analysis of the Ag/Ag+ system: apartially active electrode approach. Electrochim. Acta 29, 287–296 (1984)

  35. Bessone, J.B.; Salinas, D.R.; Mayer, C.E.; Ebert, M.; Lorenz, W.: An EIS study of aluminum barrier-type oxide films formed in different media. Electrochim. Acta 37, 2283–2290 (1992)

  36. Abdel-Gaber, A.M.; Abd-El-Nabey B.A.; Saadawy, M.: The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract. Corros. Sci. 51, 1038–1042 (2009)

  37. Robain, H., Camerlynck, C.; Bellier, G.; Tabbagh, A.: Laboratory measurements of electrical resistivity versus water content on small soil cores. Geophys. Res. Abstracts vol. 5, 03830 (2003)

  38. Ozcep, F.; Asci, M.; Tezel, O.; Yas, T.; Alpaslan, N.; Gundogdu, D.: Relationships between electrical properties (in situ) and water content (in the laboratory) of some soils in Turkey. European Geosciences Union General Assembly, Wien (2005)

  39. Alodan, M.A.: Investigation of Coating’s Protection in Soil Environment. Research Center, College of Engineering, King Saud University, Al-Riyadh (2007)

  40. Romanoff, M.: Underground corrosion. National Bureau of Standards Circular 579. U.S. Department of Commerce, National Bureau of Standards, Washington (1957)

  41. Penhale H.R.: Corrosion of mild steel plates in some New Zealand soils after 20 years. N. Z. J Sci. 27, 57–68 (1984)

    Google Scholar 

  42. Jacobs J.A., Hewes F.W.: Underground corrosion of water pipes in Calgary, Canada. Mater. Perform. 26, 42–49 (1987)

    Google Scholar 

  43. Roberge P.R.: Corrosion Engineering Principles and Practice. Mc Grow Hill, New York (2008)

    Google Scholar 

  44. Norin M., Vinka T-G.: Corrosion of carbon steel in filling material in an urban environment. Mater. Corros. 54, 641–651 (2003)

    Article  Google Scholar 

  45. Ismail A.I.M., El-Shamy A.M.: Engineering behaviour of soil materials on the corrosion of mild steel. Appl. Clay Sci. 42, 356–362 (2009)

    Article  Google Scholar 

  46. Al-Judaibi A., Al-Moubaraki A.: Microbial analysis and surface characterization of SABIC carbon steel corrosion in soils of different moisture levels. Adv. Biol. Chem. 3, 264–273 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehteram A. Noor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noor, E.A., Al-Moubaraki, A.H. Influence of Soil Moisture Content on the Corrosion Behavior of X60 Steel in Different Soils. Arab J Sci Eng 39, 5421–5435 (2014). https://doi.org/10.1007/s13369-014-1135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1135-2

Keywords

Navigation