Skip to main content
Log in

Geosiphon pyriforme, a fungus forming endocytobiosis withNostoc (Cyanobacteria), is an ancestral member of the glomales: Evidence by SSU rRNA Analysis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Geosiphon pyriforme inhabiting the surface of humid soils represents the only known example of endocytobiosis between a fungus (Zygomycotina; macrosymbiont) and cyanobacteria (Nostoc; endosymbiont). In order to elucidate the taxonomical and evolutionary relationship ofGeosiphon pyriforme to fungi forming arbuscular mycorrhiza (AM fungi), the small-subunit (SSU) ribosomal RNA genes ofGeosiphon pyriforme andGlomus versiforme (Glomales; a typical AM fungus) were analyzed and aligned with SSU rRNA sequences of several Basidiomycetes, Ascomycetes, Chytridiomycetes, and Zygomycetes, together with all AM-fungal (Glomales) sequences published yet.

The distinct group of the order Glomales, which includesGeosiphon, does not form a clade with any other group of Zygomycetes. Within the Glomales, two main lineages exist. One includes the families Gigasporaceae and Acaulosporaceae; the other one is represented by the genusGlomus, the members of which are very divergent.Glomus etunicatum andGeosiphon pyriforme both form independent lineages ancestral to the Glomales. The data provided by the present paper confirm clearly thatGeosiphon represents a fungus belonging to the Glomales. The question remains still open as to whether or notGeosiphon is to be placed within or outside the genusGlomus, since this genus is probably polyphyletic and not well defined yet.Geosiphon shows the ability of aGlomus-like fungus to form a “primitive” symbiosis with a unicellular photcautotrophic organism, in this case a cyanobacterium, leading to the conclusion that a hypothetical association of aGlomus-like fungus with a green alga as a step during the evolution of the land plants appears probable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benjamin RK (1979) Zygomycetes and their spores. In: Kendrick B (ed) The whole fungus, vol 2. National Museum of Natural Sciences and National Museum of Canada, Ottawa, pp 573–622.

    Google Scholar 

  • Bonfante P, Faccio A, Perotto S, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungusGlomus versiforme. Mycol Res 94:157–165

    Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of colonization by arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:321

    Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM,Gonzales D, Hibbett DS, Lane DJ, Simon JL, Stickel S, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phyl Evol 1:231–241

    CAS  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:525–564

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–1104

    Google Scholar 

  • Felsenstein J (1983) Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP (Phylogeny Inference Package) version 3.2. Cladistics 5:164–166

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    CAS  PubMed  Google Scholar 

  • Gray MW, Sankoff D, Cedergren RJ (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 12:5837–5852

    CAS  PubMed  Google Scholar 

  • Hengen PN (1994) Recovering DNA from agarose gels. Trends Biochem Sci 19:388–389

    Google Scholar 

  • Kendrick B (1991) Fungal symbioses and evolutionary innovations. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA, pp 249–261

    Google Scholar 

  • Kimura M (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R (1994)Geosiphon pyrifonne (Kützing) von Wettstein, a promising system for studying endocyanoses. Prog Bot 55:130–141

    Google Scholar 

  • Knapp E (1933) ÜberGeosiphon pyriforme Fr. Wettst, eine intrazelluläre Pilz-Algen-Symbiose. Ber Dtsch Bot Ges 51:210–217

    Google Scholar 

  • Lewis DH (1991) Mutualistic symbioses in the origin and evolution of land plants. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA, pp 289–300

    Google Scholar 

  • Ligrone R (1988) Ultrastructure of a fungal endophyte inPhaeoceros laevis (L.) Prosc. (Anthocerophyta). Bot Gaz 149:92–100

    Article  Google Scholar 

  • Ligrone R, Lopes C (1989) Cytology and development of a mycorrhiza-like infection in the gametophyte ofConocephalum conicum (L.) Dum. (Marchantiales, Hepatophyta). New Phytol 111:423–433

    Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbiosis in vascular plants. Proc Natl Acad Sci USA 77:2113–2118

    Google Scholar 

  • Mollenhauer D, Kluge M (1994)Geosiphon pyriforme. Endocytobios Cell Res 10:29–34

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders. Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Nei M, Takezaki N, Sitnikova T (1995) Assessing molecular phylogenies. Science 267:253–254

    CAS  PubMed  Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48

    CAS  PubMed  Google Scholar 

  • Parke JL, Linderman RG (1980) Association of vesicular-arbuscular mycorrhizal fungi with the mossFunaria hygrometrica. Can J Bot 58:1898–1904

    Google Scholar 

  • Peterson RL, Howarth MJ, Whittier DP (1981) Interactions between a fungal endophyte and gametophyte cells inPsilotum nodum. Can J Bot 59:711–720

    Google Scholar 

  • Pirozynski KA (1981) Interactions between fungi and plants through the ages. Can J Bot 59:1824–1827

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Price PW (1991) The web of life: development over 3.8 billion years of trophic relationships. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA, pp 262–272

    Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-millionyear-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schmid E, Oberwinkler F (1993) Mycorrhiza-like interactions between the achlorophyllous gametophyte ofLycopodium clavatum L. and its fungal endophyte studied by light and electron microscopy. New Phytol 124:69–81

    Google Scholar 

  • Schnepf E (1964) Zur Feinstruktur vonGeosiphon pyriforme—Ein Versuch zur Deutung cytoplasmatischer membranen und Kompartimente. Arch Mikrobiol 49:112–131

    Article  Google Scholar 

  • Schüßler A, Mollenhauer D, Schnepf E, Kluge M (1994)Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Bot Acta 107:36–45

    Google Scholar 

  • Schüßler A, Bonfante P, Schnepf E, Mollenhauer D, Kluge M (1996) Characterization of theGeosiphon pyriforme symbiosome by affinity techniques: confocal laser scanning microscopy (CLSM) and electron microscopy. Protoplasma 190:53–67

    Article  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993a) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed  Google Scholar 

  • Simon L, Lévesque RC, Lalonde M (1993b) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl Environ Microbiol 59:4211–4215

    CAS  Google Scholar 

  • Stahl M (1949) Die Mycorrhiza der Lebermoose mit besonderer Beriicksichtigung der thallösen Formen. Planta 37:103–148

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237:59–60

    Google Scholar 

  • von Wettstein F (1915)Geosiphon Fr. Wettstein, eine neue interessante Siphonee. Österr Bot Z 65:145–156

    Google Scholar 

  • Walker C (1992) Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)—a possible way forward. Agronomie 12:887–897

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA pp 315–322

    Google Scholar 

  • Wyss P, Bonfante P (1993) Amplification of genomic DNA of arbuscular-mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycol Res 97:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: H. Gehrig

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrig, H., Schüßler, A. & Kluge, M. Geosiphon pyriforme, a fungus forming endocytobiosis withNostoc (Cyanobacteria), is an ancestral member of the glomales: Evidence by SSU rRNA Analysis. J Mol Evol 43, 71–81 (1996). https://doi.org/10.1007/BF02352301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02352301

Key words

Navigation