Skip to main content

The Phototrophic Way of Life

  • Reference work entry
The Prokaryotes

Abstract

Photosynthesis is the utilization of radiant energy for the synthesis of complex organic molecules. The phototrophic way of life implies the capture of electromagnetic energy (see section “Light Absorption and Excitation Transfer in Prokaryotes” in this chapter), its conversion into chemical energy (see section “Conversion of Light into Chemical Energy” in this chapter), and its use for cellular maintenance and growth (see section “Efficiency of Growth and Maintenance Energy Requirements” in this chapter). The mode of growth in which photosynthesis is coupled to the reduction of carbon dioxide into organic molecules is defined as photoautotrophy. The solar electromagnetic energy reaching the Earth’s surface (163 W·m–2; see section “Light Energy and the Spectral Distribution of Radiation”) represents 48 % of the electromagnetic energy reaching the top of the atmosphere (solar constants = 1.361 kW·m–2, corresponding to 340 W·m–2 per surface of the Earth, equivalent to a total incoming energy of 173 PW; Kopp and Lean 2011). Despite its losses in the atmosphere due to reflection, absorption/reflection, or evaporation, the electromagnetic energy available still surpasses the energy contributed by all other sources by at least 4–5 orders of magnitude. Thus, present-day geothermal energy derived from stored heat and heat produced by radioactive decay is ≤0.08 W·m–2 or 47 TW total (Davies and Davies 2010; for primordial Earth the estimate is ∼0.0062 W·m–2, and was delivered by electric discharge, radioactivity, volcanism, or meteoritic impacts; Mauzerall 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    PubMed  CAS  Google Scholar 

  • Alberti M, Burke DH, Hearst JE (1995) Structure and sequence of the photosynthesis gene cluster. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht/Boston/London, pp 1083–1106

    Google Scholar 

  • Amesz J (1995) The antenna-reaction center complex of Heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 687–697

    Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of the cyanophytes. 3. Oscillatoriales. Arch Hydrobiol/Algol Stud 53(Suppl 80):327–472

    Google Scholar 

  • Angerhofer A, Cogdell RJ, Hipkins MF (1986) A spectral characterization of the light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila. Biochim Biophys Acta 848:333–341

    Article  CAS  Google Scholar 

  • Armitage JP (1997) Behavioral responses of bacteria to light and oxygen. Arch Microbiol 168:249–261

    Article  PubMed  CAS  Google Scholar 

  • Armitage JP, Kelly DJ, Sockett RE (1995) Flagellate motility, behavioral responses and active transport in purple non-sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 1005–1028

    Google Scholar 

  • Arnheim K, Oelze J (1983) Differences in the control of bacteriochlorophyll formation by light and oxygen. Arch Microbiol 135:299–304

    Article  CAS  Google Scholar 

  • Asao M, Madigan MT (2010) Taxonomy, phylogeny, and ecology of the helicobacteria. Photosynth Res 104:103–111

    Article  PubMed  CAS  Google Scholar 

  • Asao M, Takaichi S, Madigan MT (2012) Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and ‘Candidatus Heliomonas lunata’. Extremophiles 16:585–595

    Article  PubMed  CAS  Google Scholar 

  • Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33:75–89

    Article  PubMed  CAS  Google Scholar 

  • Barry BA, Boerner RJ, de Paula JC (1994) The use of cyanobacteria in the study of the structure and function of photosystem II. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht/Boston/London, pp 217–257

    Chapter  Google Scholar 

  • Bauer CE (1995) Regulation of photosynthesis gene expression. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 1221–1234

    Google Scholar 

  • Bauer CE, Bird TH (1996) Regulatory circuits controlling photosynthesis gene expression. Cell 85:5–8

    Article  PubMed  CAS  Google Scholar 

  • Bauer CE, Bollivar DW, Suzuki JY (1993) Genetic analyses of photopigment biosynthesis in eubacteria: a guiding light for algae and plants. J Bacteriol 175:3919–3925

    PubMed  CAS  Google Scholar 

  • Beale SI (1995) Biosynthesis and structures of porphyrins and hemes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 153–177

    Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, VanDover CL, Martinson TA, Plumley GF (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci 102:9306–9310

    Article  PubMed  CAS  Google Scholar 

  • Bebout BM, Garcia-Pichel F (1995) UVB-induced vertical migrations of cyanobacteria in a microbial mat. Appl Environm Microbiol 61:4215–4222

    CAS  Google Scholar 

  • Beck H, Hegeman GD, White D (1990) Fatty acid and lipopolysaccharide analyses of three Heliobacterium spp. FEMS Microbiol Lett 69:229–232

    Article  CAS  Google Scholar 

  • Beer-Romero P, Favinger JL, Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49:451–454

    Article  CAS  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  Google Scholar 

  • Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789

    Article  PubMed  Google Scholar 

  • Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong ED (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633

    Article  PubMed  Google Scholar 

  • Bergh Ø, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Biebl H, Drews G (1969) Das in vivo Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung der Athiorhodaceae. Zbl Bakt Abt II 123:425–452

    CAS  Google Scholar 

  • Biel AJ (1986) Control of bacteriochlorophyll accumulation by light in Rhodobacter capsulatus. J Bacteriol 168:655–659

    PubMed  CAS  Google Scholar 

  • Biel AJ (1995) Genetic analysis and regulation of bacteriochlorophyll biosynthesis. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 1125–1134

    Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 399–435

    Google Scholar 

  • Bobe FW, Pfennig N, Swanson KL, Smith KM (1990) Red shift of absorption maxima in Chlorobiaceae through enzymic methylation of their antenna bacteriochlorophylls. Biochemistry 29:4340–4348

    Article  PubMed  CAS  Google Scholar 

  • Boomer SM, Lodge DP, Dutton BE, Pierson B (2002) Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Appl Environ Microbiol 68:346–355

    Article  PubMed  CAS  Google Scholar 

  • Borrego CM, Garcia-Gil LJ (1995) Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynth Res 45:21–30

    Article  CAS  Google Scholar 

  • Bowyer JR, Hunter CN, Ohnishi T, Niederman RA (1985) Photosynthetic membrane development in Rhodopseudomonas sphaeroides. J Biol Chem 260:3295–3304

    PubMed  CAS  Google Scholar 

  • Boxer SG (1992) Some speculations concerning the evolution of photosynthetic function. Photosynth Res 33:113–119

    Article  CAS  Google Scholar 

  • Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539

    Article  PubMed  CAS  Google Scholar 

  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870

    Article  PubMed  CAS  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128:835–844

    CAS  Google Scholar 

  • Bryant DA, Garcia Costas AM, Maresca JA, Gomez Maqueo Chew A, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526

    Article  PubMed  CAS  Google Scholar 

  • Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acids in exposed. rock-inhabiting cyanobacterial lichens. Oecologia 112:165–172

    Article  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77

    Article  PubMed  CAS  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Phil TRans R Soc B 363:2731–2743

    Article  PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138

    Article  PubMed  CAS  Google Scholar 

  • Caldwell DE, Tiedje JM (1975) The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Can J Microbiol 21:377–385

    Article  PubMed  CAS  Google Scholar 

  • Camacho A, Garcia-Pichel F, Vicente E, Castenholz RW (1996) Adaptation to sulfide and to the underwater light field in three cyanobacterial isolates from lake Arcas (Spain). FEMS Microbiol Ecol 21:293–301

    Article  CAS  Google Scholar 

  • Campbell L, Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Res 40:2043–2060

    Article  Google Scholar 

  • Campbell L, Nolla HA, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961

    Article  CAS  Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1977) Trichodesmium, a globally significant cyanobacterium. Science 276:1221–1229

    Article  Google Scholar 

  • Carr NG, Mann NH (1994) The oceanic cyanobacterial picoplankton. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht/Boston/London, pp 27–48

    Chapter  Google Scholar 

  • Castenholz RW (1982) Motility and taxes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific, Oxford, pp 413–440

    Google Scholar 

  • Castenholz RW (2001a) Phylum BX. Oxygenic photosynthetic bacteria. In: Garrity GM (chief ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 473–599

    Google Scholar 

  • Castenholz RW (2001b) Class I. “Chloroflexi”. In: Garrity GM (chief ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 427–446

    Google Scholar 

  • Castenholz RW, Garcia-Pichel F (1999) Cyanobacterial responses to UV-radiation. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, p 704

    Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Potts M, Whitton BA (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 591–611

    Google Scholar 

  • Castenholz RW, Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 87–103

    Google Scholar 

  • Castenholz RW, Utkilen HC (1984) Physiology of sulfide tolerance in a thermophilic Oscillatoria. Arch Microbiol 138:299–305

    Article  CAS  Google Scholar 

  • Castenholz RW, Bauld J, Jørgensen BB (1990) Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbio Ecol 74:325–336

    Article  CAS  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai Z-L, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  PubMed  CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Clarke KJ, Finlay BJ, Vicente E, Lloréns H, Miracle MR (1993) The complex life-cycle of a polymorphic prokaryote epibiont of the photosynthetic bacterium Chromatium weissei. Arch Microbiol 159:498–505

    Article  CAS  Google Scholar 

  • Cohen Y, Jørgensen BB, Padan E, Shilo M (1975) Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:489–492

    Article  CAS  Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbech NP, Poplawski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37(Suppl 1):D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Coolen MJL, Overmann J (1998) Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol 64:4513–4521

    PubMed  CAS  Google Scholar 

  • Cotrell MT, Mannino A, Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic bight and the North Pacific Gyre. Appl Environ Microbiol 72:557–564

    Article  CAS  Google Scholar 

  • Crowe SA, Jones CA, Katsev S, Magen C, O’Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowle DA (2008) Photoferrotrophs thrive in an Archean ocean analogue. Proc Natl Acad Sci USA 105:15938–15943

    Article  PubMed  CAS  Google Scholar 

  • Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov VV (2008) Novel halophilic aerobic anoxygenic phototrophs from a Canadian hypersaline spring system. Extremophiles 12:529–539

    Article  PubMed  CAS  Google Scholar 

  • Davies JH, Davies DR (2010) Earth’s Surface heat flux. Solid Earth 1:5–24

    Article  Google Scholar 

  • Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–2520

    Article  PubMed  CAS  Google Scholar 

  • De Ruyter, YS, Fromme P (2008) Molecular structure of the photosynthetic Apparatus. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Horizon Scientific Press, London, pp 217–270

    Google Scholar 

  • De Wit R, van Gemerden H (1987a) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45:117–126

    Article  Google Scholar 

  • De Wit R, van Gemerden H (1987b) Oxidation of sulfide to thiosulfate by Microcholeus chtonoplastes. FEMS Microbiol Ecol 45:7–13

    Article  Google Scholar 

  • De Wit R, van Gemerden H (1990a) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154:459–464

    Article  Google Scholar 

  • De Wit R, van Gemerden H (1990b) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73:69–76

    Article  Google Scholar 

  • De Wit R, van Boekel WHM, van Gemerden H (1988) Growth of the cyanobacterium Microcoleus chtonoplastes on sulfide. FEMS Microbiol Ecol 53:203–209

    Article  Google Scholar 

  • De Wit R, Jonkers HM, van den Ende FP, van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J Sea Res 23:271–281

    Article  Google Scholar 

  • Dierstein R (1984) Synthesis of pigment-binding protein in toluene-treated Rhodopseudomonas capsulata and in cell-free systems. Eur J Biochem 138:509–518

    Article  PubMed  CAS  Google Scholar 

  • Dietrich G, Kalle K, Krauss W, Siedler G (1975) Allgemeine Meereskunde. Gebrüder Bornträger, Berlin/Stuttgart, p 593

    Google Scholar 

  • Drews G, Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 231–257

    Google Scholar 

  • DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen (2012) http://www.dsmz.de/bacterial-diversity/bacterial-nomenclature-up-to-date.html

  • Dubinina GA, Gorlenko VM (1975) New filamentous photosynthetic green bacteria containing gas vacuoles. Mikrobiologiya 44:511–517

    CAS  Google Scholar 

  • Ehlers K, Oster G (2012) On the mysterious propulsion of Synechococcus. PLoS One 7:e36081

    Article  PubMed  CAS  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UVB induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    PubMed  CAS  Google Scholar 

  • Eichler B, Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium Amoebobacter pedioformis sp. nov. Arch Microbiol 146:295–300

    Article  CAS  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Strauß G, Werz U, Fuchs G, Bacher A (1993) Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 215:619–632

    Article  PubMed  CAS  Google Scholar 

  • Essen L-O, Oesterhelt D (1998) A cold break for photoreceptors. Nature 392:131–133

    Article  PubMed  CAS  Google Scholar 

  • Esteve I, Gaju N, Mir J, Guerrero R (1992) Comparison of techniques to determine the abundance of predatory bacteria attacking Chromatiaceae. FEMS Microbiol Ecol 86:205–211

    Article  Google Scholar 

  • Euzéby JP (2012) LPSN, List of Prokaryotic names with Standing in Nomenclature. http://www.bacterio.cict.fr/

  • Evans WR, Fleischman DE, Calvert HE, Pyati PV, Alter GM, Rao NSS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTA:1. Appl Environ Microbiol 56:3445–3449

    PubMed  CAS  Google Scholar 

  • Fenchel T, Bernard C (1993a) A purple protist. Nature 362:300

    Article  Google Scholar 

  • Fenchel T, Bernard C (1993b) Endosymbiotic purple non-sulphur bacteria in an anaerobic ciliated protozoon. FEMS Microbiol Lett 110:21–25

    Article  CAS  Google Scholar 

  • Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM, Ward DM (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050

    PubMed  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  • Fleischman DE, Evans WR, Miller IM (1995) Bacteriochlorophyll-containing Rhizobium species. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 123–136

    Google Scholar 

  • Foy RH, Gibson CE (1982) Photosynthetic characteristics of planktonic blue-green algae: changes in photosynthetic capacity and pigmentation of Oscillatoria redekei Van Goor under high and low light. Br Phycol 17:183–193

    Article  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antactc Cold Desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Takaishi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll aggregates. Arch Microbiol 167:343–349

    Article  CAS  Google Scholar 

  • Frigaard N-U, Gomez Maqueo Chew A, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850

    Article  PubMed  CAS  Google Scholar 

  • Fröstl JM, Overmann J (1998) Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135

    Article  PubMed  Google Scholar 

  • Fründ C, Cohen Y (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol 58:70–77

    PubMed  Google Scholar 

  • Fry B (1986) Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York state. Limnol Oceanogr 31:79–88

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Gomez Maqueo Chew A, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Garcia-Pichel F (2011) Microbial Ultraviolet Sunscreens. Nature Reviews Microbiol 9:791–802

    Article  CAS  Google Scholar 

  • Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2012a) Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ Microbiol 14:177–190

    Article  PubMed  CAS  Google Scholar 

  • Garcia Costas AM, Tsukatani Y, Rijpstra IC, Schouten S, Welander PV, Summons RE, Bryant DA (2012b) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F (1994) A model for internal self-shading in planktonic microorganisms and its implications for the usefulness of sunscreens. Limnol Ocean 39:1704–1717

    Article  Google Scholar 

  • Garcia-Pichel F (1995) A scalar irradiance fiber-optic microprobe for the measurement of ultraviolet radiation at high spatial resolution. Photochem Photobiol 61:248–254

    Article  Google Scholar 

  • Garcia-Pichel F (1999) Cyanobacteria. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San Diego

    Google Scholar 

  • Garcia-Pichel F (2008) Molecular ecology and environmental genomics. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Horizon Scientific Press, London, pp 59–88

    Google Scholar 

  • Garcia-Pichel F, Bebout B (1996) The penetration of ultraviolet radiation into shallow water sediments: high exposure for photosynthetic communities. Mar Ecol Prog Ser 131:257–262

    Article  Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1990) Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Arch Microbiol 153:344–355

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1994) On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats. Structure, development and environmental significance. Springer, Heidelberg, pp 77–84

    Chapter  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1999) Photomovements of microorganisms in sediments and soils. In: Häder D-P (ed) Photomovements. Elsevier, Amsterdam

    Google Scholar 

  • Garcia-Pichel F, Wojciechowski MF (2009) The Evolution of a Capacity to Build Supra-Cellular Ropes Enabled Filamentous Cyanobacteria to Colonize Highly Erodible Substrates. PLoS One 4:e7801

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Mechling M, Castenholz RW (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, Belnap J, Neuer S, Schanz F (2003) Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl 148:213–227

    CAS  Google Scholar 

  • Gates DM (1962) Energy exchange in the biosphere. Harper & Row, New York, p 151

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. Akademische Verlagsgesellschaft, Leipzig, p 1035

    Google Scholar 

  • Gest H (1993) Photosynthetic and quasi-photosynthetic bacteria. FEMS Microbiol Lett 112:1–6

    Article  Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum: an anoxygenic brownish-green photosynthetic bacterium containing a new form of bacteriochlorophyll. Arch Microbiol 136:11–16

    Article  CAS  Google Scholar 

  • Gest H, Schopf JW (1983) Biochemical evolution of anaerobic energy conversion: the transition from fermentation to anoxygenic photosynthesis. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, pp 135–148

    Google Scholar 

  • Gich F, Garcia-Gil J, Overmann J (2001) Unknown and phylogenetically diverse members of the Green Nonsulfur Bacteria are indigenous to freshwater lakes. Arch Microbiol 177:1–10

    Article  PubMed  CAS  Google Scholar 

  • Giovanonni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3548–3592

    Google Scholar 

  • Glaeser J, Overmann J (1999) Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171:405–416

    Article  PubMed  CAS  Google Scholar 

  • Glaeser J, Overmann J (2003) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Glaeser J, Overmann J (2004) Biogeography, evolution and diversity of the epibionts in phototrophic consortia. Appl Environ Microbiol 70:4821–4830

    Article  PubMed  CAS  Google Scholar 

  • Glaeser J, Baneras L, Rütters H, Overmann J (2002) Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch Microbiol 177:475–485

    Article  PubMed  CAS  Google Scholar 

  • Göbel F (1978) Quantum efficiencies of growth. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 907–925

    Google Scholar 

  • Goericke R, Welschmeyer NA (1993) The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep-Sea Res 40:2283–2294

    Article  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht/Boston/London, pp 319–360

    Chapter  Google Scholar 

  • Golden SS (1994) Light responsive gene expression and the biochemistry of photosystem II reaction center. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 693–714

    Chapter  Google Scholar 

  • Golecki JR, Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148:236–241

    Article  CAS  Google Scholar 

  • Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c C-82 and C-121 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Consarnau L, Gonzalez JM, Coll-Llado M, Gourdon P, Pascher T, Neutze R, Pedros-Alio C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko VM, Krasilánikova EN, Kikina OG, Tatarinova NY (1979) The new motile purple sulfur bacterium Lamprobacter modestohalophilus nov. gen., nov. sp. with gas vacuoles. Izv Akad Nauk S S S R Ser Biol 5:755–767

    Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism. Springer, New York, p 359

    Book  Google Scholar 

  • Granick S (1965) Evolution of heme and chlorophyll. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 67–88

    Google Scholar 

  • Gregersen LH, Bryant DA, Frigaard N-U (2011) Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2:116

    PubMed  Google Scholar 

  • Griffin BM, Schott J, Schink B (2007) Nitrite, an electron donor for anoxygenic photosynthesis. Science 316:870

    Article  CAS  Google Scholar 

  • Grossmann AR, Bhaya D, He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 286:1149–11452

    Google Scholar 

  • Grote M, O’Malley MA (2011) Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev 35:1082–1099

    Article  PubMed  CAS  Google Scholar 

  • Guerrero R, Pedrós-Alió C, Esteve I, Mas J, Chase D, Margulis L (1986) Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83:2138–2142

    Article  PubMed  CAS  Google Scholar 

  • Guyoneaud R, Matheron R, Baulaigue R, Podeur K, Hirschler A, Caumette P (1996) Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the French Mediterranean and Atlantic Coasts. Hydrobiologia 329:33–43

    Article  CAS  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12945

    Article  PubMed  CAS  Google Scholar 

  • Häder D-P (1987) Photosensory behavior in prokaryotes. Microbiol Rev 51:1–21

    PubMed  Google Scholar 

  • Hanada S, Takaishi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hansen TA, van Gemerden H (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Mikrobiol 86:49–56

    Article  PubMed  CAS  Google Scholar 

  • Hansen TA, Veldkamp H (1973) Rhodopseudomonas sulfidophila nov. sp., a new species of the purple nonsulfur bacteria. Arch Microbiol 92:45–58

    CAS  Google Scholar 

  • Harashima K, Shiba T, Totsuka T, Simidu U, Taga N (1978) Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agricult Biol Chem Tokyo 42:1627–1628

    Article  CAS  Google Scholar 

  • Harder W, van Dijken JP (1976) Theoretical considerations on the relation between energy production and growth of methane-utilizing bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Symposium on microbial production and utilization of gases (H2, CH4, CO). E Goltze KG, Göttingen, pp 403–418

    Google Scholar 

  • Hartman H (1992) Conjectures and reveries. Photosynth Res 33:171–176

    Article  CAS  Google Scholar 

  • Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825

    Article  PubMed  CAS  Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, pp 93–134

    Google Scholar 

  • Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol 172:116–124

    Article  PubMed  CAS  Google Scholar 

  • Hellingwerf KJ (2002) The molecular basis of sensing and responding to light in microorganisms. Ant van Leeuwenhoek 81:51–59

    Article  CAS  Google Scholar 

  • Hess WR (2008) Comparative genomics of marine cyanobacteria and their phages. In: Herrero A, Flores E (eds) The cyanobacteria. Molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 89–116

    Google Scholar 

  • Hirabayashi H, Ishii T, Takaishi S, Inoue K, Uehara K (2004) The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem Photobiol 79:280–285

    Article  PubMed  CAS  Google Scholar 

  • Hofman PAS, Veldhuis MJW, van Gemerden H (1985) Ecological significance of acetate assimilation by Chlorobium phaeobacteroides. FEMS Microbiol Ecol 31:271–278

    Article  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151:252–256

    Article  CAS  Google Scholar 

  • Homann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  Google Scholar 

  • Hoppe W, Lohmann W, Markl H, Ziegler H (1983) Biophysik. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Hudnell HK (2008) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 950

    Google Scholar 

  • Hübschmann T, Jorissen HJMM, Börner T, Gärtner W, Tandeau de Marsac N (2001) Phosphorylation of proteins in the light-dependent signalling pathway of a filamentous cyanobacterium. Eur J Biochem 268:3383–3389

    Article  PubMed  Google Scholar 

  • Iino T, Mori K, Uchino Y, Naka-gawa T, Harayama S, Suzuki K (2010) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60:1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF, Caumette P (2004) Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 54:1415–1421

    Article  PubMed  Google Scholar 

  • Imhoff JF, Trüper HG (1989) Purple nonsulfur bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1658–1682

    Google Scholar 

  • Imhoff JF, Tindall BJ, Grant WD, Trüper HG (1981) Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Arch Microbiol 130:238–242

    Article  CAS  Google Scholar 

  • International Committee on Systematics of Prokaryotes (2007) Subcommittee on the taxonomy of phototrophic bacteria. Int J Syst Evol Microbiol 57:1169–1171

    Article  Google Scholar 

  • Jannasch HW (1989) Chemosynthetically sustained ecosystems in the deep sea. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, New York, pp 147–166

    Google Scholar 

  • Jeon J, Dobryinin AV (2005) Polymer confinement and bacterial gliding motility. Eur Phys J E 17:361–372

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil Trans Royal Soc Lond B 298:543–561

    Article  Google Scholar 

  • Jorgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic microbial mats. Limnol Oceanogr 22:657–666

    Article  Google Scholar 

  • Jørgensen BB, Des Marais DJ (1986) A simple fiber-optic microprobe for high resolution light measurements: applications in marine sediments. Limnol Oceanogr 31:1374–1383

    Google Scholar 

  • Jørgensen BB, Des Marais DJ (1988) Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol Oceanogr 33:99–113

    Article  PubMed  Google Scholar 

  • Jørgensen BB, Kuenen JG, Cohen Y (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24:799–822

    Article  Google Scholar 

  • Kämpf C, Pfennig N (1986) Chemoautotrophic growth of Thiocystis violacea, Chromatium gracile and C. vinosum in the dark at various O2-concentrations. J Basic Microbiol 26:517–531

    Article  Google Scholar 

  • Kana T, Gilbert PM, Goericke R, Welschmeyer NA (1988) Zeaxanthin and beta-carotene in Synechococcus WH7803 respond differently to irradiation. Limnol Oceanogr 33:1623–1627

    Article  CAS  Google Scholar 

  • Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  PubMed  CAS  Google Scholar 

  • Keppen OI, Baulina OI, Kondratieva EN (1994) Oscillochloris trichoides neotype strain DG-6. Photosynthesis Res 41:29–33

    Article  CAS  Google Scholar 

  • Keppen OI, Tourova TP, Kuznetsov BB, Ivanovsky RN, Gorlenko VM (2000) Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 50:1529–1537

    Article  PubMed  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267

    Article  CAS  Google Scholar 

  • Kirk JTO (1983) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, p 401

    Google Scholar 

  • Klappenbach JA, Pierson BK (2004) Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp. nov., recovered from hypersaline microbial mats. Arch Microbiol 181:17–25

    Article  PubMed  CAS  Google Scholar 

  • Knoll A (2008) Cyanobacteria and Earth's history. In: The cyanobacteria: molecular biology, genomics and evolution, A. Herrero & E. Flores (Eds), Horizon Sci.Press, London. pp.1–20

    Google Scholar 

  • Kok B (1973) Photosynthesis. In: Gibbs M, Hollaender A, Kok B, Krampitz LO, San Pietro A (eds) Proceedings of the workshop on bio-solar conversion. National Science Foundation, Bethesda

    Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4. Nostocales. Arch Hydrobiol/Algol Stud 56(Suppl 823):247–345

    Google Scholar 

  • Kømpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135

    Article  Google Scholar 

  • Kondratieva EN (1979) Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria. In: Quale JR (ed) Microbial biochemistry. University Park Press, Baltimore, pp 117–175

    Google Scholar 

  • Konopka A, Brock TD, Walsby AE (1978) Buoyancy regulation by planktonic blue-green algae in Lake Mendota. Wisconsin Arch Hydrobiol 83:524–537

    Google Scholar 

  • Kopp G, Lean J (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L01706

    Article  Google Scholar 

  • Kromkamp JC, Mur LR (1984) Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content. FEMS Microbiol Lett 25:105–109

    Article  CAS  Google Scholar 

  • Krutschel C, Castenholz RW (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypesaline waters. FEMS Microbiol Ecol 27:53–72

    Article  Google Scholar 

  • Kühl M, Jørgensen BB (1992) Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector. Limnol Oceanogr 37:1813–1823

    Article  Google Scholar 

  • Lancaster CRD, Michel H (1996) Three-dimensional structures of photosynthetic reaction centers. Photosynth Res 48:65–74

    Article  CAS  Google Scholar 

  • Lang AS, Beatty JT (2006) Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol 15:54–62

    Article  PubMed  CAS  Google Scholar 

  • Lascelles J (1978) Regulation of pyrrole synthesis. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 795–808

    Google Scholar 

  • Lassen C, Plough H, Jørgensen BB (1992) A fiber-optic scalar irradinace microsensor: application for spectral light measurements in sediments. FEMS Microbiol Ecol 86:247–254

    Article  Google Scholar 

  • Lewin RA (1981) Prochloron and the theory of symbiogenesis. Ann N Y Acad Sci 361:325–329

    Article  PubMed  CAS  Google Scholar 

  • Lewin RA, Withers NW (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256:735–737

    Article  CAS  Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695

    Article  PubMed  CAS  Google Scholar 

  • Lindholm T, Weppling K, Jensen HS (1985) Stratification and primary production in a small brackish lake studied by close-interval siphon sampling. Verh Internat Verein Limnol 22:2190–2194

    CAS  Google Scholar 

  • Liu H, Nolla HA, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12:39–47

    Article  Google Scholar 

  • Liu Z, Frigaard N-F, Vogl K, Iino T, Kosako Y, Overmann J, Bryant DA (2012a) Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi. Frontiers Evol Genomic Microbiol 3:185

    Google Scholar 

  • Liu Z, Klatt C, Ludwig M, Rusch DB, Jensen SI, Kühl M, Ward DM, Bryant DA (2012b) ‘Candidatus Thermochlorobacter aerophilum:’ an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J. doi:10.1038/ismej.2012.24

    Google Scholar 

  • Loach PA, Parkes-Loach PS (1995) Structure-function relationships in core light-harvesting complexes (LHI) as determined by characterization of the structural subunit and by reconstitution experiments. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 437–471

    Google Scholar 

  • Los DA, Suzuki I, Zinchencko V, Murata N (2008) Stress resposes comparative genomics of marine cyanobacteria and their phages. In: Herrero A, Flores E (eds) The Cyanobacteria. Molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 89–116

    Google Scholar 

  • Madigan MT (1992) The family Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 1982–1992

    Google Scholar 

  • Madigan MT, Ormerod JG (1995) Taxonomy, physiology and ecology of Heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 17–30

    Google Scholar 

  • Madigan MT, Takigiku R, Lee RG, Gest H, Hayes JM (1989) Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations. Appl Environ Microbiol 55:639–644

    PubMed  CAS  Google Scholar 

  • Mague TH (1977) Ecological aspects of dinitrogen fixation by blue-green algae. In: Hardy RWF, Gibson AH (eds) A treatise on dinitrogen fixation. Wiley, New York, pp 85–140

    Google Scholar 

  • Mann NH, Cook A, Millard A, Bialey S, Clokie M (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424:741

    Article  PubMed  CAS  Google Scholar 

  • Marschall E, Jogler M, Henssge U, Overmann J (2010) Large scale distribution and activity patterns of an extremely low-light adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol 12:1348–1362

    Article  PubMed  CAS  Google Scholar 

  • Mas J, Pedrós-Alió C, Guerrero R (1990) In situ specific loss and growth rates of purple sulfur bacteria in Lake Cisó. FEMS Microbiol Ecol 73:271–281

    Google Scholar 

  • Masamoto K, Furukawa KI (1997) Accumulation of zeaxanthin in the cell of the cyanobacterium Synechococcus sp. strain PCC7942 grown under high irradiance. J Plant Physiol 151:257–261

    Article  CAS  Google Scholar 

  • Masuda S, Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–623

    Article  PubMed  CAS  Google Scholar 

  • Matthijs HCP, van der Staay GWM, Mur LR (1994) Prochlorophytes: the “other” cyanobacteria? In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 49–64

    Chapter  Google Scholar 

  • Mauzerall D (1992) Light, iron, Sam Granick and the origin of life. Photosynth Res 33:163–170

    Article  CAS  Google Scholar 

  • McConnell MD, Koop R, Vasil’ev S, Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 103:1201–1212

    Article  CAS  Google Scholar 

  • Menendez C, Bauer Z, Huber H, Gad’on N, Stetter K-O, Fuchs G (1999) Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098

    PubMed  CAS  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102:850–855

    Article  PubMed  CAS  Google Scholar 

  • Millie DF, Ingram DA, Dionigi CP (1990) Pigment and photosynthetic responses of Oscillatoria aghardii (Cyanophyta) to photon flux and spectral quality. J Phycol 26:660–666

    Article  Google Scholar 

  • Miyachi S, Strassdat K, Miyashita H, Senger H (1997) Quantum requirement of photosynthesis in the primarily Chlorophyll d containing prokaryote Acaryochloris marina. Z Naturforsch C-A 52:636–638

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Moezelaar R, Stal LJ (1994) Anaerobic dark energy generation in the mat-building cyanobacterium Microcoleus chthonoplastes. In: Stal LJ, Caumette P (eds) Microbial mats. Springer, New York, pp 273–278

    Chapter  Google Scholar 

  • Mojzsis SJ, Arrhenius G, Mckeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3800 million years ago. Nature 383:55–59

    Article  Google Scholar 

  • Montaño GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565

    Article  PubMed  Google Scholar 

  • Montesinos ML, Herrero A, Flores E (1997) Amino acid transport in taxonomically diverse cyanobacteria and identification of two genes encoding elements of a neutral aminoacid permease putatively involved in recapture of leaked hydrophobic amino acids. J Bacteriol 179:853–862

    PubMed  CAS  Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  PubMed  CAS  Google Scholar 

  • Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2011) Release LTPs104 of the all-species living tree. Syst Appl Microbiol 34:169–170

    Article  PubMed  Google Scholar 

  • Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jørgensen BB, Kuypers MMM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA 105:17861–17866

    Article  PubMed  CAS  Google Scholar 

  • Nagashima KVP, Shimada K, Matsuura K (1993) Phylogenetic analysis of photosynthesis genes of Rhodocyclus gelatinosus: possibility of horizontal gene transfer in purple bacteria. Photosynth Res 36:185–191

    Article  CAS  Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K, Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45:131–136

    Article  PubMed  CAS  Google Scholar 

  • Nagashima S, Shimada K, Matsuura K, Nagashima KVP (2002) Transcription of three sets of genes coding for the core light-harvesting proteins in the purple sulfur bacterium, Allochromatium vinosum. Photosynth Res 74:269–280

    Article  PubMed  CAS  Google Scholar 

  • Nelissen B, van de Peer Y, Wilmotte A, de Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rDNA sequences. Mol Biol Evol 12:1166–1173

    PubMed  CAS  Google Scholar 

  • Nelson DC, Castenholz RW (1982) Light responses in Beggiatoa. Arch Microbiol 131:146–155

    Article  Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364

    Article  Google Scholar 

  • Nickens D, Fry CJ, Ragatz L, Bauer CE, Gest H (1996) Biotype of the purple nonsulfur photosynthetic bacterium, Rhodospirillum centenum. Arch Microbiol 165:91–96

    Article  CAS  Google Scholar 

  • Nogales B, Guerrero R, Esteve I (1997) A heterotrophic bacterium inhibits growth of several species of the genus Chlorobium. Arch Microbiol 167:396–399

    Article  CAS  Google Scholar 

  • Noguchi T, Hayashi H, Shimada K, Takaichi S, Tasumi M (1992) In vivo states and function of carotenoids in an aerobic photosynthetic bacterium, Erythrobacter longus. Photosynth Res 31:21–30

    Article  CAS  Google Scholar 

  • Nonnengießer A, Schuster A, Koenig F (1996) Carotenoids and reaction center II-D1 protein in light regulation of the photosynthetic apparatus in Aphanocapsa. Bot Acta 109:115–124

    Google Scholar 

  • Nübel U (1999) Diversität und Salinitätsabhängiges Verhalten benthischer, cyanobakterieller Lebensgemeinschaften. PhD thesis, University of Bremen, Bremen

    Google Scholar 

  • Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus. J Bacteriol 174:5021–5026

    PubMed  CAS  Google Scholar 

  • Oesterhelt D, Krippahl G (1983) Phototropic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann Microbiol (Inst Pasteur) 134B:137–150

    Article  CAS  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Function of a new photoreceptor membrane. Proc Natl Acad Sci USA 70:2853–2857

    Article  PubMed  CAS  Google Scholar 

  • Oh-Hama T (1989) Evolutionary consideration of the two pathways of 5-aminolevulinic acid biosynthesis in organelles and prokaryotes. Endocytology IV:589–592

    Google Scholar 

  • Oh-Hama T, Santander PJ, Stolowich NJ, Scott AI (1991) Bacteriochlorophyll c formation via the C5 pathway of 5-aminolevulinic acid synthesis in Chloroflexus aurantiacus. FEBS Lett 281:173–176

    Article  PubMed  CAS  Google Scholar 

  • Okamura K, Takamiya K, Nishimura M (1985) Photosynthetic electron transfer system is inoperative in anaerobic cells of Erythrobacter species strain OCh114. Arch Microbiol 142:12–17

    Article  CAS  Google Scholar 

  • Okubo Y, Futamata H, Hiraishi A (2006) Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl Environ Microbiol 72:6225–6233

    Article  PubMed  CAS  Google Scholar 

  • Oliver RL, Walsby AE (1984) Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae. Limnol Oceanogr 29:879–886

    Article  Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75

    Article  CAS  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  PubMed  CAS  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1990a) Pigment, size and distribution of Synechococcus in the North Atlantic and Pacific oceans. Limnol Oceanogr 35:45–58

    Article  CAS  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Altabet MA, Dusenberry JA (1990b) Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res 37:1033–1051

    Article  Google Scholar 

  • Oparin AI (1938) The origin of life. Macmillan, New York

    Google Scholar 

  • Oren A (2004) A proposal for further integration of the cyanobacteria under the bacteriological code. Int J Syst Evol Microbiol 54:1895–1902

    Article  PubMed  Google Scholar 

  • Oren A, Padan E, Avron M (1977) Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc Natl Acad Sci USA 74:2152–2156

    Article  PubMed  CAS  Google Scholar 

  • Overmann J (1997) Mahoney Lake: a case study of the ecological significance of phototrophic sulfur bacteria. In: Jones JG (ed) Advances in microbial ecology, vol 15. Plenum Press, New York, pp 251–288

    Google Scholar 

  • Overmann J (2008) Green nonsulfur bacteria. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0000457

    Google Scholar 

  • Overmann J, Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406

    Article  CAS  Google Scholar 

  • Overmann J, Pfennig N (1992) Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney Lake. FEMS Microbiol Ecol 101:67–79

    CAS  Google Scholar 

  • Overmann J, Tilzer MM (1989) Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake, Mittlerer Buchensee, West-Germany. Aquatic Sci 51:261–278

    Article  Google Scholar 

  • Overmann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG (1991a) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36:846–859

    Article  CAS  Google Scholar 

  • Overmann J, Lehmann S, Pfennig N (1991b) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (green sulfur bacteria). Arch Microbiol 157:29–37

    Article  CAS  Google Scholar 

  • Overmann J, Beatty JT, Hall KJ (1994) Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake. FEMS Microbiol Ecol 15:309–320

    Article  CAS  Google Scholar 

  • Overmann J, Beatty JT, Krouse HR, Hall KJ (1996) The sulfur cycle in the chemocline of a meromictic salt lake. Limnol Oceanogr 41:147–156

    Article  CAS  Google Scholar 

  • Overmann J, Hall KJ, Northcote TG, Beatty JT (1999a) Grazing of the copepod Diaptomus connexus on purple sulfur bacteria in a meromictic salt lake. Environ Microbiol 1:213–222

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Coolen MJL, Tuschak C (1999b) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172:83–94

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Hall KJ, Ebenhöh W, Chapman MA, Beatty JT (1999c) Structure of the aerobic food chain in a meromictic lake dominated by purple sulfur bacteria. Arch Hydrobiol 144:127–156

    Google Scholar 

  • Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. System Appl Microbiol 9:47–53

    Article  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Padan E (1979) Impact of facultative anaerobic phototrophic metabolism and ecology of cyanobacteria. Adv Microb Ecol 3:1–48

    Article  CAS  Google Scholar 

  • Padan E, Cohen Y (1982) Anoxygenic photosynthesis. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Botanical monographs, vol 19. Blackwell Scientific, Oxford, pp 215–235

    Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538

    Article  PubMed  CAS  Google Scholar 

  • Parkin TB, Brock TD (1980a) The effects of light quality on the growth of phototrophic bacteria in lakes. Arch Microbiol 125:19–27

    Article  CAS  Google Scholar 

  • Parkin TB, Brock TD (1980b) Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol Oceanogr 25:711–718

    Article  Google Scholar 

  • Parkin TB, Brock TD (1981) The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnol Oceanogr 26:880–890

    Article  CAS  Google Scholar 

  • Pedrós-Alió C, Sala MM (1990) Microdistribution and diel vertical migration of flagellated vs gas-vacuolate purple sulfur bacteria in a stratified water body. Limnol Oceanogr 35:1637–1644

    Article  Google Scholar 

  • Peltier G, Schmidt GW (1991) Chlororespiration: An adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:4791–4795

    Article  PubMed  CAS  Google Scholar 

  • Pentecost A (1984) Effects of sedimentation and light intensity on mat-forming Oscillatoriaceae with particular reference to Microcoleus lyngyaceus Gomont. J Gen Microbiol 130:983–990

    Google Scholar 

  • Permentier HP, Neerken S, Overmann J, Amesz J (2001) A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40:5573–5578

    Article  PubMed  CAS  Google Scholar 

  • Pfannes KR, Vogl K, Overmann J (2007) Heterotrophic symbionts of phototrophic consortia: members of a novel diverse cluster of Betaproteobacteria characterised by a tandem rrn operon structure. Environ Microbiol 9:2782–2794

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 3–18

    Google Scholar 

  • Pfennig N, Trüper HG (1974) The phototrophic bacteria. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 24–64

    Google Scholar 

  • Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1635–1709

    Google Scholar 

  • Pfennig N, Lünsdorf H, Süling J, Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168:39–45

    Article  PubMed  CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1974) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305

    Article  CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 31–47

    Google Scholar 

  • Pierson BK, Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In: Cogen Y, Rosenberg E (eds) Microbial mats: Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 402–427

    Google Scholar 

  • Pierson BK, Oesterle A, Murphy GL (1987) Pigments, light penetration and photosynthetic activity in the multi-layered microbial mats of Great Sippewisset Salt Marsh, Massachussets. FEMS Microbiol Ecol 45:365–376

    Article  CAS  Google Scholar 

  • Pierson BK, Sands VM, Frederick JL (1990) Spectral irradinace and distribution of pigments in a highly layered microbial mat. Appl Environ Microbiol 56:2327–2340

    PubMed  CAS  Google Scholar 

  • Pierson BK, Valdez D, Larsen M, Morgan E, Mack EE (1994) Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynthesis Res 41:35–52

    Article  CAS  Google Scholar 

  • Post AF, de Wit R, Mur LR (1985) Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J Plankton Res 7:487–495

    Article  Google Scholar 

  • Potts M (1994) Desiccation tolerance in prokaryotes. Microbiol Rev 58:755–805

    PubMed  CAS  Google Scholar 

  • Pradella S, Allgaier M, Hoch C, Päuker O, Stackebrandt E, Wagner-Döbler I (2004) Genome organization and localization of the pufLM genes of the photosynthesis reaction center in phylogenetically diverse marine Alphaproteobacteria. Appl Environ Microbiol 70:3360–3369

    Article  PubMed  CAS  Google Scholar 

  • Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62

    Article  Google Scholar 

  • Prufert-Bebout L, Garcia-Pichel F (1994) Field and cultivated Microcoleus chthonoplastes: the search for clues to its prevalence in marine microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Springer, New York/Heidelberg, pp 265–271

    Chapter  Google Scholar 

  • Psencik J, Ma Y-Z, Arellano JB, Garica-Gil J, Holzwarth AR, Gillbro T (2002) Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth Res 71:5–18

    Article  PubMed  CAS  Google Scholar 

  • Psencik J, Ikonen TP, Laurinmäki PA, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Ragatz L, Jiang Z-Y, Bauer C, Gest H (1994) Phototactic purple bacteria. Nature 370:104

    Article  Google Scholar 

  • Ragatz L, Jiang Z-Y, Bauer CE, Gest H (1995) Macroscopic phototactic behaviour of the purple photosynthetic bacterium Rhodospirillum centenum. Arch Microbiol 163:1–6

    Article  PubMed  CAS  Google Scholar 

  • Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA 105:15099–15104

    Article  CAS  Google Scholar 

  • Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynthesis Res 81:113–128

    Article  CAS  Google Scholar 

  • Rau GH (1980) Carbon-13/Carbon-12 variation in subalpine lake aquatic insects: food source implications. Can J Fish Aquat Sci 37:742–746

    Article  CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole genome analysis of photosynthetic prokaryotes. Science 298:1616–1620

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Lascelles J (1982) Biosynthesis of pigments in plants and bacteria. In: Godvindjee (ed) Energy conversion by plants and bacteria, vol I. Academic, New York, pp 699–780

    Google Scholar 

  • Reeves RH (1996) 16S ribosomal RNA and the molecular phylogeny of the Cyanobacteria. Nova Hedwiga 112:55–67

    Google Scholar 

  • Repeta DJ, Simpson DJ, Jørgensen BB, Jannasch HW (1989) Evidence for the existence of anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342:69–72

    Article  PubMed  CAS  Google Scholar 

  • Richaud P, Marrs BL, Vermiglio A (1986) Two modes of interaction between photosynthetic and respiratory electron chains in whole cells of Rhodopseudomonas capsulata. Biochim Biophys Acta 850:256–263

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rödig J, Jock S, Klug G (1999) Coregulation of the synthesis of bacteriochlorophyll and pigment-binding proteins in Rhodobacter capsulatus. Arch Microbiol 171:198–204

    Article  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Article  PubMed  CAS  Google Scholar 

  • Rücker O, Köhler A, Behammer B, Sichau K, Overmann J (2012) Puf operon sequences and inferred structures of light-harvesting complexes of three closely related Chromatiaceae exhibiting different absorption characteristics. Arch Microbiol 194:123–134

    Article  PubMed  CAS  Google Scholar 

  • Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:697–704

    PubMed  CAS  Google Scholar 

  • Sackett MJ, Armitage JP, Sherwood EE, Pitta TP (1997) Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides. J Bacteriol 179:6764–6768

    PubMed  CAS  Google Scholar 

  • Sánchez O, van Gemerden H, Mas J (1998) Acclimation of the photosynthetic response of Chromatium vinosum to light-limiting conditions. Arch Microbiol 170:405–410

    Article  PubMed  Google Scholar 

  • Schenk HEA (1992) Cyanobacterial symbioses. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3819–3854

    Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyashi S, Dau H (1997) Light-harvesting in Acaryochloris marina—Spectroscopic characterization of a Chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410:433–436

    Article  PubMed  CAS  Google Scholar 

  • Schott J, Griffin BM, Schink B (2010) Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodospeudomonas sp. strain LQ17. Microbiol UK 156:2428–2437

    Article  CAS  Google Scholar 

  • Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463–469

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Zhaxybayeva O, Papke TR, Doolittle WF (2008) Actinorhodopsins: proteorhodopsin-like sequences found predominantly in non-marine environments. Environ Microbiol 10:1039–1056

    Article  PubMed  CAS  Google Scholar 

  • Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F et al (2009) Photosystem I gene cassettes are present in marine virus genomes. Nature 461:258–262

    Article  PubMed  CAS  Google Scholar 

  • Shiba T (1989) Overview of the aerobic photosynthetic bacteria. In: Harashima K, Shiba T, Murata N (eds) Aerobic photosynthetic bacteria. Springer, Berlin, pp 1–8

    Google Scholar 

  • Shiba T, Harashima K (1986) Aerobic photosynthetic bacteria. Microbiol Sci 3:377–378

    Google Scholar 

  • Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38:43–45

    PubMed  CAS  Google Scholar 

  • Shimada K (1995) Aerobic anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 105–122

    Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht/Boston/London, pp 139–216

    Chapter  Google Scholar 

  • Sinninghe Damsté JS, Wakeham SG, Kohnen MEL, Hayes JM, de Leeuw JW (1993) A 6, 000-year sedimentary molecular record of chemocline excursions in the Black Sea. Nature 362:827–829

    Article  PubMed  Google Scholar 

  • Sirevåg R (1995) Carbon metabolism in green bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 871–883

    Google Scholar 

  • Skyring GW, Bauld J (1990) Microbial mats in coastal environments. Adv Microb Ecol 11:461–498

    Article  CAS  Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest seawaters Appl. Optics 20:177–184

    CAS  Google Scholar 

  • Sorokin YI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66:391–446

    Google Scholar 

  • Sprenger WW, Hoff WD, Armitage JP, Hellingwerf KJ (1993) The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J Bacteriol 175:3096–3104

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Embley M, Weckesser J (1988) Phylogenetic, evolutionary, and taxonomic aspects of phototrophic bacteria. In: Olson JM, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Publishing Cooperation, New York, pp 201–215

    Chapter  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey N (1996) Anoxygenic phototrophy across the phylogenetic spectrum: current understanding and future perspectives. Arch Microbiol 166:211–223

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY (1977) The position of cyanobacteria in the world of phototrophs. Carlsberg Res Comm 42:77–98

    Article  CAS  Google Scholar 

  • Steenbergen CLM, Korthals HJ (1982) Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Limnol Oceanogr 27:883–895

    Article  CAS  Google Scholar 

  • Steudel R (1989) On the nature of the “elemental sulfur” (So) produced by sulfur-oxidizing bacteria-a model for So globules. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, New York, pp 289–303

    Google Scholar 

  • Steudel R, Holdt G, Visscher PT, van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437

    Article  CAS  Google Scholar 

  • Strauß G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the hydroxypropionate cycle. Eur J Biochem 215:633–643

    Article  PubMed  Google Scholar 

  • Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006) Steroids, triterpenoids and molecular oxygen. Phil Trans R Soc B 361:951–968

    Article  PubMed  CAS  Google Scholar 

  • Suttle CA, Chan AM, Cottrell MT (1990) Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347:467–469

    Article  Google Scholar 

  • Suttle CA, Chan AM, Feng C, Garza DR (1993) Cyanophages and sunlight: a paradox. In: Guerrero R, Pedrós-Alió C (eds) Trends in microbial ecology. Spanish Society for Microbiology, Barcelona, pp 303–307

    Google Scholar 

  • Suwanto A, Kaplan S (1989) Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J Bacteriol 171:5840–5849

    PubMed  CAS  Google Scholar 

  • Suzuki JY, Bauer CE (1995) A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci USA 92:3749–3753

    Article  PubMed  CAS  Google Scholar 

  • Swoager WC, Lindstrom ES (1971) Isolation and counting of Athiorhodaceae with membrane filters. Appl Microbiol 22:683–687

    PubMed  CAS  Google Scholar 

  • Takahashi K, Wada E, Sakamoto M (1990) Carbon isotope discrimination by phytoplankton and photosynthetic bacteria in monomictic Lake Fukami-ike. Arch Hydrobiol 120:197–210

    Google Scholar 

  • Takaishi S, Inoue K, Akaikie M, Kobayashi M, Oh-oka H, Madigan MT (1997) The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4′- diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281

    Article  Google Scholar 

  • Takaishi S, Oh-oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100

    Google Scholar 

  • Tanada T, Kitadokoro K, Higuchi Y, Inaka K, Yasui A, Deruiter PE, Eker APM, Miki K (1997) Crystal structure of DNA photolyase from Anacystis nidulans Nature Struct. Biol 4:887–891

    Google Scholar 

  • Tang KH, Yue H, Blankenship RE (2010) Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiol 10:150

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriolog Rev 41:100–180

    CAS  Google Scholar 

  • Theroux SJ, Redlinger TE, Fuller RC, Robinson SJ (1990) Gene encoding the 5.7-kilodalton chlorosome protein of Chloroflexus aurantiacus: regulated message levels and a predicted carboxy-terminal protein extension. J Bacteriol 172:4497–4504

    PubMed  CAS  Google Scholar 

  • Thomas RH, Walsby AE (1985) Buoyancy regulation in a strain of Microcystis. J Gen Microbiol 131:799–809

    Google Scholar 

  • Thorne SW, Newcomb EH, Osmond CB (1977) Identification of chlorophyll b in extracts of prokaryotic algae by fluorescence spectroscopy. Proc Natl Acad Sci 74:575–578

    Article  PubMed  CAS  Google Scholar 

  • Tice MM, Lowe DR (2006) Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34:37–40

    Article  CAS  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447

    Article  PubMed  CAS  Google Scholar 

  • Tronrud DE, Wen J, Gay L, Blankenship RE (2009) The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res 100:443–454

    Article  CAS  Google Scholar 

  • Trüper HG, Pfennig N (1978) Taxonomy of the Rhodospirillales. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 19–27

    Google Scholar 

  • Trüper HG, Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria. Springer, New York, pp 299–312

    Google Scholar 

  • Tsukatani Y, Wen J, Blankenship RE, Bryant DA (2010) Characterization of the FMO protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Photosynth Res 201:201–209

    Article  CAS  Google Scholar 

  • Turner S (1887) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11:13–52

    Article  Google Scholar 

  • Tuschak C, Beatty JT, Overmann J (2004) Photosynthesis genes and LH1 proteins of Roseospirillum parvum 930I, a purple non-sulfur bacterium with unusual spectral properties. Photosynthesis Res 81:181–199

    Article  CAS  Google Scholar 

  • Tuschak C, Leung MM, Beatty JT, Overmann J (2005) The puf operon of the purple sulfur bacterium Amoebobacter purpureus: Structure, transcription and phylogenetic analysis. Arch Microbiol 183:431–443

    Article  PubMed  CAS  Google Scholar 

  • Urakami T, Komagata K (1984) Protomonas, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 34:188–201

    Article  CAS  Google Scholar 

  • Utkilen HC, Skulberg OM, Walsby AE (1985) Buoyancy regulation and chromatic adaptation in planktonic Oscillatoria species: alternative strategies for optimizing light absorption in stratified lakes. Arch Hydrobiol 104:407–417

    Google Scholar 

  • van den Ende FP, Laverman AM, van Gemerden H (1996) Coexistence of aerobic chemotrophic and anaerobic phototrophic sulfur bacteria under oxygen limitation. FEMS Microbiol Ecol 19:141–151

    Article  Google Scholar 

  • van Gemerden H (1967) In the bacterial sulfur cycle of inland waters. University of Leiden

    Google Scholar 

  • van Gemerden H (1974) Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microb Ecol 1:104–119

    Article  Google Scholar 

  • van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49–85

    Google Scholar 

  • van Gemerden H, Tughan CS, de Wit R, Herbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbial Ecol 62:87–102

    Google Scholar 

  • van Thor JJ, Mullineaux CW, Matthijs HPC, Hellingwert KJ (1998) Light harvesting and state transitions in cyanobacteria. Bot Acta 111:430–443

    Google Scholar 

  • van Valen LM, Maiorana VC (1980) The archaebacteria and eukaryotic origins. Nature 287:248–250

    Article  PubMed  Google Scholar 

  • Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard N-U, Inoue-Sakamoto K, Baker MA, Sotak A, Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochemistry 41:4358–4370

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis MJW, van Gemerden H (1986) Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate, and light as limiting factors. FEMS Microbiol Ecol 38:31–38

    Article  CAS  Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294

    Article  PubMed  CAS  Google Scholar 

  • Vogl K, Glaeser J, Pfannes KR, Wanner G, Overmann J (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185:363–372

    Article  PubMed  CAS  Google Scholar 

  • Vogl K, Wenter R, Dreßen M, Schlickenrieder M, Plöscher M, Eichacker L, Overmann J (2008) Identification and analysis of four candidate symbiosis genes from “Chlorochromatium aggregatum”, a highly developed bacterial symbiosis. Environ Microbiol 10:2842–2856

    Article  PubMed  CAS  Google Scholar 

  • Wagner-Huber R, Brunisholz R, Frank G, Zuber H (1988) The BChl c/e-binding polypeptides from chlorosomes of green photosynthetic bacteria. FEBS Lett 239:8–12

    Article  CAS  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayachi M, Kise H, Iwaki M, Itoh S, Takaishi S, Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–896

    Article  CAS  Google Scholar 

  • Wakim B, Oelze J (1980) The unique mode of adjusting the composition of the photosynthetic apparatus to different environmental conditions by Rhodospirillum tenue. FEMS Microbiol Lett 7:221–223

    Article  CAS  Google Scholar 

  • Walsby AE (1978) The properties and buoyancy-providing role of gas vacuoles in Trichodesmium Ehrenberg. Br Phycol J 13:103–116

    Article  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    PubMed  CAS  Google Scholar 

  • Wanner G, Vogl K, Overmann J (2008) Ultrastructural characterization of the prokaryotic symbiosis in “Chlorochromatium aggregatum”. J Bacteriol 190:3721–3730

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW, Cohen Y (1989) Hot springs microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 3–15

    Google Scholar 

  • Waterbury JB, Valois FW (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol 59:3393–3399

    PubMed  CAS  Google Scholar 

  • Waterbury JB, Wiley JM, Franks DG, Valois FW, Watson SW (1985) A cyanobacterium capable of swimming motility. Science 230:74–76

    Article  PubMed  CAS  Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Can Bull Fish Aquat Sci 214:71–120

    Google Scholar 

  • Watson SW, Novitsky TJ, Quinby HL, Valois FW (1977) Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol 33:940–946

    PubMed  CAS  Google Scholar 

  • Weller R, Bateson MM, Heimbuch BK, Kopczynski ED, Ward DM (1992) Uncultivated cyanobacteria. Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58:3964–3969

    PubMed  CAS  Google Scholar 

  • Wellington CL, Bauer CE, Beatty JT (1992) Photosynthesis gene superoperons in purple non-sulfur bacteria: the tip of the iceberg? Can J Microbiol 38:20–27

    Article  CAS  Google Scholar 

  • Wenter R, Hütz K, Dibbern D, Reisinger V, Li T, Plöscher M, Eichacker L, Eddie B, Hanson T, Bryant D, Overmann J (2010) Expression-based identification of genetic determinants of the bacterial symbiosis in “Chlorochromatium aggregatum”. Environ Microbiol 12:2259–2276

    PubMed  CAS  Google Scholar 

  • Wessels DCJ, Büdel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens Sandstone Cliffs in the Golden Gate Highlands National Park. South Africa Bot Acta 108:220–226

    Google Scholar 

  • Whittaker RH, Likens GE (1975) The biosphere and man. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, New York, pp 305–328

    Chapter  Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Article  CAS  Google Scholar 

  • Woese CE (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Gibson J, Fox GE (1980) Do genealogical patterns in photosynthetic bacteria reflect interspecific gene transfer? Nature 283:212–214

    Article  PubMed  CAS  Google Scholar 

  • Wraight CA, Clayton RK (1973) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim Biophys Acta 333:246

    Google Scholar 

  • Wu H, Green M, Scranton MI (1997) Acetate cycling in the water column and surface sediment of Long Island Sound following a bloom. Limnol Oceanogr 42:705–713

    Article  CAS  Google Scholar 

  • Xiong J (2006) Photosynthesis: what color was its origin? Genome Biol 7:245

    Article  PubMed  Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer W, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Yeager CM, Kornosky JL, Morgan RL, Cain EC, Belnap J, Garcia-Pichel F, Kuske CR (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol 60:85–97

    Article  PubMed  CAS  Google Scholar 

  • Yildiz FH, Gest H, Bauer CE (1992) Conservation of the photosynthesis gene cluster in Rhodospirillum centenum. Mol Microbiol 6:2683–2691

    Article  PubMed  CAS  Google Scholar 

  • Yurkov W, Beatty JT (1998) Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64:337–341

    PubMed  CAS  Google Scholar 

  • Yurkov V, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter CN, Daldal F, Thurnauer M, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 31–55

    Chapter  Google Scholar 

  • Yurkov V, van Gemerden H (1993) Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84–89

    Article  CAS  Google Scholar 

  • Yurkov V, Gad’on N, Angerhofer A, Drews G (1994) Light-harvesting complexes of aerobic bacteriochlorophyll-containing bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosum, E5 and the transfer of excitation energy from carotenoids to bacteriochlorophyll. Z Naturforsch 49(c):579–586

    Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley-Liss, New York, pp 1–38

    Google Scholar 

  • Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112

    Article  PubMed  CAS  Google Scholar 

  • Zevenboom W, Mur LR (1984) Growth and photosynthetic response of the cyanobacterium Microcystis aeruginosa in relation to photoperiodicity and irradiance. Arch Microbiol 139:232–239

    Article  CAS  Google Scholar 

  • Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553

    Article  PubMed  CAS  Google Scholar 

  • Zuber H, Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 315–348

    Google Scholar 

  • Zucconi AP, Beatty JT (1988) Posttranscriptional regulation by light of the steady state levels of mature B800-850 light-harvesting complex in Rhodobacter capsulatus. J Bacteriol 170:877–882

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Overmann .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to the memory of Prof. Dr. Dr. h.c. Norbert Pfennig (July 8, 1925—February 11, 2008), one of the great pioneers in the research field of photosynthetic bacteria and other anaerobes.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Overmann, J., Garcia-Pichel, F. (2013). The Phototrophic Way of Life. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_51

Download citation

Publish with us

Policies and ethics