
Segmentation of electronic dance music

Tim Scarfe, Wouter M. Koolen and Yuri Kalnishkan
Computer Learning Research Centre and Department of Computer Science,

Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom
{tim,wouter,yura}@cs.rhul.ac.uk

November 5, 2014

Abstract

We consider the problem of annotating song changes
in DJ-mixed dance music recordings (pod-casts, ra-
dio shows, live events). It is an extremely laborious
process to perform this task manually. We present an
algorithm to reconstruct segment boundaries as close
as possible to what a human domain expert would
create in respect of the same task given a fixed num-
ber of boundaries. The algorithm is optimized for the
scenario when the number of tracks is known a priori
although is also capable of estimating the number of
tracks and is evaluated in both circumstances. As
the number of segments is known in advance we do
not have to rely on local points-of-change heuristics
prevalent in common segmentation algorithms.

The goal of DJ-mixing is to render track bound-
aries effectively invisible from human perception.
Segmentation is performed on a self-similarity ma-
trix which is derived from normalized cosines of vari-
ous cost matrices which have themselves been derived
from a time-series of Fourier based spectral features.
The cost matrices introduced in this paper introduce
notions of general self-similarity and also specific no-
tions such as; symmetry, contiguity and evolution in
respect of time. The segmentation configuration is
parametrized and an evolutionary algorithm is exe-
cuted on a small test set to find optimal parameters
for the task of segmentation.

Our work is quantitatively assessed on a large cor-
pus (640 hours) of radio show recordings which have
been hand-labelled by a domain expert. The method

presented could be used on other segmentation tasks
and other domains.

Keywords. music, segmentation, DJ, mix, dynamic
programming

1 Introduction

Electronic Dance Music tracks are usually mixed by a
disc jockey (DJ). For this reason EDM music streams
are unique compared to other genres of music. Mix-
ing is the modus operandi in electronic music. We
first transform the audio file into a time series of
features discretized into adjacent tiles and transform
them into a domain where most pairs from the same
track would be distinguishable by their cosine.

Contiguous-segmentation differs from the standard
clustering problem in that the clusters arrive se-
quentially and are contiguous (AAABBBCCCDDD, not
AAABBBCCCBBB). This may also be known as time-
dependent clustering and is related to homogeneous
clustering. For brevity we will use the term segmen-
tation from now on to describe this configuration.
The intuition behind the word homogeneous is that
we desire segments that have intra-segment similar-
ity and inter-segment dissimilarity to the maximum
extent possible.

Music and mixes of music have the property that
they are made up of recursively repeating self-similar
regions within segments. Our method does not
strictly require any training or tenuous heuristics to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

perform well. The distinguishing feature of our prob-
lem domain is that the number of segments is known
a priori but the segmentation boundaries are not
known, or ambiguous and subjective. However, com-
puting the best solution is desirable.

Our features are based on a Fourier transformation
with convolution filtering to accentuate prominent in-
struments and therefore self-similarity within tracks.
We create a similarity matrix from these cosines and
then derive cost matrices showing the costs of fitting a
track at a given time with a given length. We use dy-
namic programming to create the cost matrices and
again to perform the most economical segmentation
of the cost matrices to fit a fixed and predetermined
number of tracks. The number of tracks can be esti-
mated using the same framework, and we will explore
that option. Dynamic programming means solutions
to a problem are described in terms of overlapping
sub-solutions to achieve a significant improvement in
time complexity and therefore execution time.

The intended purpose of the algorithm is to re-
construct globally optimal boundaries given a fixed
number of tracks known a priori. The self-similarity
of segments over a time horizon is scrutinised avoid-
ing some transient point-of-change heuristic pitfalls.
The track listing is usually published by the DJ which
is why the number of tracks is known. The use case
is when one has recorded a show (perhaps automat-
ically), downloaded a track list and needs to recon-
struct the indices given that track list. The order of
the reconstructed indices is critical so that we can
align the correct track names with the appropriate
indices.

One of the interesting features of audio is that
you cannot scrub through it, and get an overview
in the same way you can with video. Audio has a re-
duced continuum of context when one scrubs through
it. Perhaps due to the lack of redundant, persistent
scene-setting information or indeed a psychological
reason. Even in video applications, discovery, con-
text and scrubbing are an active area of research [2].
Time meta-data would allow click through moneti-
sation, and allow improved use-case scenarios. For
example; publishing track names to social networks,
information discovery and retrieval. Capturing meta-
data in audio is a time consuming and error-prone

process. Tzanetakis [3] found that it took users on
average 2 hours to segment 10 minutes of audio using
standard tools. While not directly relevant we might
glean from those findings that there is a strong mo-
tivation to automate this process.

DJs always match the speed or beats per minute
(BPM) of each adjacent track during a transition
and align the major percussive elements in the time
domain. This is the central concept of removing
any cognitive dissonance from playing overlapping
tracks. Tracks can overlap by any amount. DJs in-
crease adjacent track compatibility further by select-
ing pairs that are harmonically compatible (aligned
and congruent in the frequency domain) and by ap-
plying spectral transformations; such as equalizer fil-
ters (EQ).

The dance music sub-culture has grown signifi-
cantly over the last 20 years and music mixing has
become an art-form. High quality music streams of
DJ mixed music are increasingly ubiquitous.

1.1 Literature Review

Audio segmentation in the literature is often imple-
mented colloquially in the context of structural anal-
ysis. Music structure denotes the organization of
a composition by its melody, harmony, timbre and
rhythm. Repetitions, transformations and evolutions
of music structure also contribute to its identity and
it is this semantic information that structural anal-
ysis algorithms aim to extract from music. An ex-
ample structure for a song might be ABCABA. Speaker
diarization is another example of structural analysis.

Segmentation in the context of structural analysis
has been thus far been concerned with creating a nov-
elty function to find points-of-change using distance-
based metrics, rather than trying to find a fixed num-
ber of segments in the most optimal way. Heuristics
with hard decision boundaries have been used to find
the best change points, for example Tzanetakis [3]
used first-order derivatives of a time series of audio
features.

The use of a similarity matrix to visualize and anal-
yse local time dependencies (at the time referred to as
recurrence plots) was first proposed by Eckmann[4].

J. Foote [5, 6, 7, 8, 9, 10] was the first to use local

2

self-similarity to spot musically significant changes
in music. The distance or cosine angle between fea-
ture vectors can be used to construct a self-similarity
matrix to visualise and exploit time dependencies in
music data. The key assumption is that there is some
kind of repetition in the audio that can be spotted.
The similarity matrix contains the distance between
all feature vectors and a characteristic pattern devel-
ops where the diagonal elements are maximally self-
similar and regions emerge representing segments of
interest in the audio.

Foote correlated a Gaussian tapered checkerboard
kernel[9] along the diagonal of a music self similar-
ity (cosine) matrix to create a 1-dimensional novelty
function that had the notion of self-similarity over a
fixed time horizon. The kernel was ‘tapered’ down
to zero towards the edges by a multiplicative Gaus-
sian kernel to reduce edge noise. Our approach in
this paper can be thought of as having a soft time
horizon up to a fixed limit (Foote’s work had a fixed
kernel size). However, the drawback of our method
is that we find a fixed number of tracks. Naturally;
the width of the kernel strongly determines the shape
of the resulting novelty function. Small kernels will
highlight transient changes in the audio while larger
kernels will operate over a larger time horizon.

Goodwin et al. used a dynamic program for seg-
mentation [11]. Their approach was to perform lin-
ear discriminant analysis to project features into an
a priori learned feature space. Afterwards, Goodwin
formulated the problem into one of finding the glob-
ally minimum cost path through a state graph (the so
called ‘cluster space trajectory’) modelling local and
transition costs between segments. Goodwin already
demonstrated in [12] that novelty peaks often exist
within segments, not only on the boundary of seg-
ments and took the approach of modelling all possible
sequential transitions between all possible segments.

A possible drawback to the approach by Goodwin
and all other approaches in scene analysis segmenta-
tion that; is that they are somewhat local methods
that focus on points-of-change rather than optimiz-
ing for the best possible results given a fixed number
of segments to find. As Goodwin did not provide
any results, we cannot conclude that a new distance
function derived from learning a feature subspace im-

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Novelty Peak Finding, Show: examples/arminvanbuurenastateoftrance 453
Minimum Peak Distance: 1 Kernel Size: 158 Tile Size: 5 Threshold: 0.5

Cosine Normalization: 1.1, lpf: 1780 hpf: 85 Shift: 4 Bandwidth: 1

N
or

m
al

iz
ed

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Tiles

Figure 1: Foote’s novelty function for one of the radio
shows in the corpus. The actual track indices are
shown with dotted lines, and the predicted tracks are
shown with the markers. Some of the parameters are
drawn from our own method of constructing the self-
similarity matrix (see Section 4.2)

Tiles

T
ile

s

Gaussian Tapered Checkerboard Kernel

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: An example of Foote’s Gaussian tapered
checkerboard kernel, width 50.

3

proves segmentation accuracy.
Clustering algorithms do exist that find a fixed

number of segments but we have the added constraint
that these segments need to be homogeneous, con-
tiguous and time-dependent. Radu [1] demonstrated
a time-dependent modification of agglomerative (hi-
erarchical) clustering for segmentation of music. A
constraint was added such that during the algorithm
clusters could only be merged if they were adjacent
in time. Radu preprocessed the feature vectors to
increase the homogeneity by averaging them over a
sliding window of fixed size. Radu used a fixed num-
ber of clusters found as a stopping condition. The
approach is model-free but by Radu’s own admis-
sion lacks any form of regularization, possibly pro-
ducing clusters that vary in size significantly. Radu
modelled the segmentation as a binary classification
problem (later also used by Badawy et al [13]) subject
to threshold time horizons allowing standard perfor-
mance metrics such as precision, recall and F1 score
to be used.

Stochastic model-based approaches to segmenta-
tion also have been devised. Levy et al use hid-
den Markov models in their approach to music seg-
mentation in [14], building on their previous work
[15, 16]. Their HMM is based upon a generative
Gaussian mixture model where each segment has a
set of states, each generating a Gaussian distribution
of feature vectors. A musical audio file can then be
regarded as having an underlying sequence of states
that generates the observed feature sequence. The
HMM can then be trained with a priori knowledge.

Plotz et al also used a an HMM for segmenting
DJ mixed music streams, further developing the con-
cept of generic acoustic generators first described in
[17]. Unfortunately Plotz only evaluated his method
against a small corpus of unknown origin (222 min-
utes with 65 song changes, compared to our 640 hours
with 6757 song changes) and did not elaborate on the
ground truth annotation methodology.

Badawy implemented a Foote ([9]) inspired seg-
mentation scheme to segment 61 hours of recorded
Montreux jazz festival concerts and compared to hu-
man captured ground truth meta-data.

In the coming sections we describe the corpus (Sec-
tion 2), human annotation accuracy (Section 3), how

we handle data and deal with feature extraction and
cost matrices (Section 4), computing the best seg-
mentation (Section 5), discussion of confidence inter-
vals (Section 6), experiments (Section 7), and finally
the conclusion (Section 8).

2 Corpus

We have been supplied with several broadcasts from
three popular radio shows. See Table 2 for a descrip-
tion. The show genres are a mix of so called ‘progres-
sive trance’, ‘uplifting trance’ and ‘tech-trance’.

There are no silent gaps in the recordings. The
shows come in 44100 samples per second, 16 bit stereo
MP3 files sampled at 192Kbs. We re-sampled these
to 4000Hz 16 bit mono (left+right channel) WAV files
to allow us to process them faster. We have used the
Sound eXchange1 program to do this. These shows
are all 2 hours long. The overall average track length
is 5 and a half minutes (slightly less for Magic Island,
see Figure 4) and normally distributed.

An additional dataset of 36 radio shows have been
mixed by and annotated by Mikael Lindgren (the so
called lindmik dataset). These shows are extremely
useful because the DJ is the same person who cre-
ated the ground truth time indices which should in
theory reduce the amount of human confusion present
in his annotations. Also there is less noise, for exam-
ple voice-overs, guest mixes, radio show sounds, in-
troductions etc. These shows also vary significantly
in length from 1 hour to nearly 5 hours. There are
339 shows in total.

We believe this corpus is the largest of its kind used
in the literature going on the comparative table of
segmentation corpora listed by Peiszer et al in their
literature review of audio segmentation [18]. More
recently Badawy et al [13] used a corpus of 61 hours.
The corpus we are using is longer than 640 hours in
length.

There is already a large community of people inter-
ested in getting time annotations for DJ sets. Cue-
Nation2 is an example of this. CueNation is a website
allowing people to submit cue-sheets for popular DJ

1http://sox.sourceforge.net
2http://www.cuenation.com

4

http://sox.sourceforge.net
http://www.cuenation.com

Table 1: Descriptive statistics about the corpus.

Reference Name DJ Hours Mean Tracks Sum Tracks Shows Trk. Length (S)

ASOT A State of Trance Armin van Buuren 198 20.6 2247 109 317.9
MAGIC Magic Island Roger Shah 198 17.3 1839 106 388.2
TATW Trance Around The World Above & Beyond 162 20.1 1771 88 329.8
LINDMIK On Cue Mikael Lindgren 83 25 900 36 331.1

641 20.7 6757 339 341.7

mixes and radio shows. A cue-sheet is a text file
containing time annotation meta-data (indices) for a
media file.

The three main radio shows in the corpus were
hand captured by Denis Goncharov; a domain ex-
pert and one of the principal contributors to Cue-
Nation. One of the significant problems with this
task is that there is a small but apparent amount
of confusion associated with the human captured in-
dices (see Section 3 for details) where 5% of tracks
get placed on a different bar. On some tracks, it
is unclear where to place the optimal index on the
macro scale and when analysing our results, we have
noticed what we assume to be obvious human errors.
Many of the cue-sheet authors themselves reject the
idea of automating the task, citing the poor preci-
sion of any such result (they often place indices on
the exact MP3 frame). However this sentiment seems
misplaced given that they frequently make mistakes
or that it is a matter of opinion where to place the
track and some consistent method may be preferen-
tial. A potential outcome of our method could be an
assistance mechanism to help with initial placements.
Our results demonstrate that it is indeed possible to
automate this task and that while there is some un-
certainty attached to the optimal placement, it is still
predictable. Indeed on the majority of track indices
the uncertainty is ostensibly small.

Denis Goncharov provided us with the following
description of how he captures the indices. To quote
from a personal email exchange with Denis:

Trance music is made in slices of 8 bars. 1
bar is 4 beats. At 135 beats per minute, 8
bars is (60 / 135) × 4 × 8 = 14.8 sec.
Trance music tends to be around 130-135
BPM. It is a matter of personal preference

which point of the transition to call the in-
dex. My preference is to consider the index
to be the point at which the second track
becomes the focus of attention and the first
track is sent to the background. Most of
the time the index is the point at which the
bass line (400Hz and lower) of the previous
track is cut and the bass line of the second
track is introduced. If the DJ decides to
exchange the adjacent tracks gradually over
the time instead of mixing them abruptly
then it is up to the cue-sheet maker to lis-
ten further into the second track noting the
musical qualities of both tracks and then go
back and choose at which point the second
track actually becomes the focus of atten-
tion.

The most obvious and pervasive element in dance
music is the percussion (the beats). We believe on
balance that ignoring the percussive information is
advantageous, because DJs use percussion primar-
ily to blur boundaries between tracks. We tried
to capture percussive based features and found that
the transitions between tracks and indeed groups of
tracks appeared as stronger self-similar regions than
the actual tracks. The percussive feature extractor
transformed the autocorrelation of the audio samples
in the time domain tiles, and compared the cosine
of their absolute values. It was reasonably clear from
that research that track boundaries are revealed with
less uncertainty between instruments and harmonic
content. However. We do not rule out looking at
percussive features again the future because we are
currently ignoring potentially useful information.

Some DJs mix harmonically (by matching instru-
ments instead of percussion) but this preys on human

5

200 300 400 500 600
0

50

100

150

200

250

300

350

400

Seconds

T
ra

ck
 In

st
an

ce
s

Track Length Histogram

ASOT (std: 65.1)
MAGIC (std: 60.9)
TATW (std: 56.1)
LINDMIK (std: 69.4)

Figure 3: Track length histogram for all shows in the
corpus.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18
Number Of Tracks By Dataset

Number of Tracks

N
um

be
r

of
 S

ho
w

s

ASOT (std: 0.9)
MAGIC (std: 0.8)
TATW (std: 0.7)
LINDMIK (std: 10.7)

Figure 4: Number of tracks in each show for each
dataset. The lindmik dataset is highly variable.

hearing and perception. An algorithm capturing the
harmonic information would still be able to distin-
guish two harmonically compatible tracks.

3 Human Accuracy

We did some analysis on how accurate the humans
themselves are at creating indices. In the absence
of a perfect data set our analysis instead hinged on
the amount to which the humans disagreed with each
other aggregated over a large amount of historical
data. Mikael Lindgren was kind enough to send us
a dump of his cuesheet database to experiment with.
As ASOT is such a popular show there were many in-
dependently captured cuesheets to compare against
for all of the historical shows. We selected all the
shows having at least 3 distinct cuesheets (not copies
or shifted/misaligned copies of each other) and such
that all the cuesheets had the same number of tracks.
The first track was ignored (as it was always 0 sec-
onds). We ended up with 115 shows with 3 authors.
65 shows with 4 authors and 30 shows with 5 au-
thors. We generated a histogram of distances from
the median time for each track, for each cuesheet and
assumed values greater than 100 seconds or less than
−100 seconds were outliers. The standard deviation
of the human disagreement variable is 9.13 seconds.
See Figure 5 for an illustration. So at this stage it
does not seem feasible for us to achieve a higher accu-
racy when we are evaluating against a method which
is intrinsically error prone. An important caveat here
is that ASOT turned out to be the most error-prone
show to segment out of our corpus. The standard de-
viation of the bumps could be reduced if we normal-
ized the times by the BPM of each transition. The
bar-scale confusion peaks centered around ±14.8 sec-
onds, and ±29.6 seconds represented 5 percent of the
total annotations.

4 Data Handling

4.1 Preprocessing

The corpus had some outliers that may have slightly
distorted the analysis of our method. Many of the

6

−60 −40 −20 0 20 40
0

200

400

600

800

1000

1200

cuenation.com −− Human Confusion on ASOT shows

Seconds

T
ra

ck
 In

st
an

ce
s

Figure 5: Illustration of the ‘human disagreement’
random variable (zoomed in at the bottom, the peak
at 0 seconds is 4708 tracks), standard deviation 9.13
seconds. Peaks are visible at intervals of 8 bars (14.8
seconds) which corroborates the analysis from Denis
Goncharov in Section 2. The 4 adjacent error clusters
account for roughly 5 percent of the total number of
tracks. The variance around the peaks represents the
BPM variance in asot.

tracks in the ground truth annotations for our corpus
were actually introductions or voice-overs. Almost all
of these outlier tracks were short in length. To ame-
liorate the situation we simply removed any tracks
that were shorter than 180 seconds (which are clearly
not normal according to Figure 4). We also removed
any end tracks that were shorter than 240 seconds as
very often the end tracks on a radio show contain pe-
culiar elements (for example voice-overs, interviews,
show-related ‘jingles’). This required some manipu-
lation of the cue-sheets and audio files. The unde-
sirable segments of the audio files were chopped out,
and the cue-sheets were re-flowed so that the time
indices point to the correct location in the file.

The algorithm still performs similarly when remov-
ing just these indices and leaving the audio intact
underneath, so it would not significantly affect any
real-world implementation.

For those wishing to use this algorithm in prac-
tice with pre-recorded shows; the introductions at the
start of the shows are often fixed length or at least
predictable so error would be small on average.

The lindmik dataset which was noise-free did not
require any preprocessing whatsoever.

4.2 Feature Extraction

4.2.1 Music

We used Sound eXchange (see Section 2) to down-
sample the shows to 4000Hz. We are not interested
in frequencies above around and above 2000Hz be-
cause instrument harmonics become less visible in
the spectrum as the frequency increases. The Nyquist
theorem [19] states that the highest representable fre-
quency is half the sampling rate, so this explains our
reason to use 4000Hz. We will refer to the sample rate
as R. Let L be the length of the show in samples.

Fourier analysis facilitates the representation of a
time domain process as a set of integer oscillations
of trigonometric functions. We transform the tiles
into the frequency domain using the discrete Fourier
transform

F (xk) = Xk =

N−1∑
n=0

xn · e−i2π
k
N n

7

which transforms a sequence of complex numbers
x0, . . . , xN into another sequence of complex num-
bers X0, . . . , XN where

e−i2π
k
N n

are points on the complex unit circle. Note that the
fftw algorithm [20] that we used to perform this com-
putation operates significantly faster when N is a
power of 2 so we zero pad the input to the next power
of 2. We denote the tile width by M in seconds (an
algorithm parameter). Note that

N =
L

M

denotes the tile size in samples (length of show in
samples over the tile size). Let

T =

⌊
L

M̃

⌋
be the total number of tiles, and

M̃ =
L

N

the tile width in samples. Because we are passing real
values into the F (xk), the second half of the result is
a rotational copy of the first half.

Show samples are collated into a time series Qyi
(T×N) of contiguous, non-overlapping, adjacent tiles
of equal size where i = 1, 2, . . . , T . Samples at the
end of the show that do not fill a complete tile get
discarded. The affect of this is increasingly negligible
with decreasing tile size. Since we zero-pad N to the
next power of two, this also decreases the affect.

As we are not always interested in the entire range
of the spectrum, we use l to represent a low pass filter
(in Hz) and h the high pass filter (in Hz). So we will
capture the range from h to l on the first half of the
result of F . Let ĥ = d h · N

R e + 1 be the position

of h in the spectrum, and l̂ = d l · N
R e + 1 be the

position of l in the spectrum.
Let Dy

e (T × l̂ − ĥ+ 1) denote the feature matrix.
For each tile ī = 1, 2, . . . , T we assign

D1,...,l̂−ĥ+1
ī

=
∣∣∣ F (Q1,...,M̃

ī
)ĥ, ĥ+1, ..., l̂

∣∣∣

selecting the part of the spectrum between the high
and low pass filters h and f . We take the absolute
values of the complex result of F (xk) (defined as its
distance in the complex plane from the origin using
the Pythagorean theorem).

To accentuate instrument harmonics we perform
convolution filtering on the feature vectors in D, us-
ing a Gaussian first derivative filter. This works like
an edge detection/transient filter but also expands
the width of the transients (instrument harmonics)
to ensure that feature vectors from the same song
appear similar because their harmonics are aligned
on any distance measure (we use the cosines). This
is an issue because of the extremely high frequency
resolution from having such large inputs into F (ti).
For example with a tile size of 10 seconds and a sam-
ple rate of 4000 we have a frequency resolution of
0.5 · 10 · 4000 = 20KHz.

Typically a ‘short-time discrete Fourier transform’
is used which has smaller sized inputs (windows) into
F (ti) which are usually overlapping and are multi-
plied by a window function, attenuating the tails to
reduce spectral leakage. Usually these window func-
tions look similar to a Gaussian, for example;

Hanni = 0.5− 0.5 cos
2πi

n− 1
w(i)

where n is the window size (see [21] for an exam-
ple). The short-time Fourier transform is relevant
when increased time precision is needed as there is
a frequency-time resolution trade-off with respect of
the input size to F (ti). This is not a concern in this
particular application as our time resolution is never
required to be better than 1 second which would still
produce adequate frequency resolution.

The Gaussian first derivative filter is defined as

−2λ̂

υ2
e−

λ̂2

υ2

where

λ̂ = { − b2υc, b−2υ + 1c, . . . , b2υc } ,

and

υ = b
N

R
.

8

b is the bandwidth of the filter in Hz and this is a pa-
rameter of the algorithm. After the convolution filter
is applied to each feature vector in D, we take the
absolute values and normalize on the vector lengths.

Because the application domain is well defined in
this setting, we can design features that look specif-
ically for what we are interested in (musical instru-
ments). Typically in the literature; algorithms use an
amalgam of general purpose feature extractors. For
example; spectral centroid, spectral moments, pitch,
harmonicity [3]. We construct a dissimilarity matrix
of cosines as is common in the literature for similar
applications [6]. The cosines are computable easily
because they are the the inner products of the re-
spective features (the features have been normalized
to unit length).

4.2.2 Self-Similarity Matrix

Let
Sij = 1− 〈Di, Dj〉,

define the dissimilarity matrix of cosines.
Then we apply some normalizing transformations.

First we center S around 0.5 by raising each element
to the power 2s, where s = 1

T 2

∑T
i,j=1 Sij . Since for

x ∈ [0, 1] and y > 0 we have xy ≤ x if y ≥ 1 and xy ≥
x if y ≤ 1, the transformation Sij → S2s

ij increases
the values Sij whenever the mean value s < 0.5 and
decreases them whenever s > 0.5. Note that the
transformation keeps the values Sij in the interval
[0, 1]. We find this a convenient and gentle way to
rescale S.

Secondly we raise each value Sij to a power ĉ ∈
[0.5, 1.5] and then rescale and translate them to [0, 1]
using Si,j → 2Sij − 1. The parameter ĉ is tuned
so as to achieve the right balance between negative
incentives and positive disincentives for meaningful
track placement. We discovered in [22] that there
was a pitfall of self-dissimilar regions within tracks
negatively affecting the cost of placement. The dis-
tribution of values in S after the transformations will
have a raised tail on left. This will become relevant
when we discuss cost matrices as some of them de-
pend on the sign of the value in S.

See Figure 7 for an illustration of S and Figure 6
for an illustration of the normalization.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7 Cosine Matrix Histogram, Normalization = 0.7

Value

N
um

be
r

of
 C

el
ls

Figure 6: Illustration of the effect of normalization
parameter ĉ = 0.7 on the values in S on radio show
asot 453. The small raised section on the left corre-
spond to the tracks down the diagonal.

4.2.3 Cost Matrices

Let w and W denote the minimum and maximum
track length in seconds, these are be parameters of
the algorithm that will help improve the time com-
plexity.

We proceed to constructing a cost matrix C(f, t)
that describes the cost of placing a track starting at f
and finishing at t (and having length t−f+1). After
making some observations in Sij , we have created
cost matrices that exploit observed phenomena. We
caveat this by saying we believe this phenomena is not
unique to dance music and is prevalent in nature.

We also provide an additional cost matrix which is
just a 1-dimensional Gaussian random function cen-
tred around the mean track length for all times which
can be used to regularize the other matrices or used
on its own as a comparator to a more näıve method
of placement.

The cost matrices described in this section exploit
themes such as contiguity, symmetry and evolution
as well as simple summation of S as reported in [22].
In [22], S was on the interval [0, 1] and the summa-
tion method could only consider disincentives. The
new cost matrices have a parameter to shift the con-

9

sideration of incentive versus disincentive and values
on the interval [−1, 1].

On the whole, a significant number of tile pairs
within one track are similar to each other. Pairs of
tiles that do not belong to the same track are ex-
pected to be dissimilar, most of the time. However,
tracks have contiguous regions within them that are
dissimilar to each other. Transitions between songs
may appear as a self-similar region but usually also
similar to each adjacent track to varying degrees.

Summation The most obvious strategy of all is to
sum up all relevant tiles in S for each candidate track
from tile f through tile t. We define C(f, t), the cost
of a candidate track from tile f through tile t, to be
the sum of the similarities between all pairs of tiles
inside it

C(f, t, ω, S̄) =

t∑
i,j=f

S̄

(t− f + 1)ω

where

S̄ ← Ŝij(Ω)

=

{
ΩSij , if Sij > 0
(1− Ω)Sij , otherwise

for all i, j ∈ S. On this cost matrix, S̄ and ΩSij are
the same. Later we will use this summation function
for modified S̄. The quantity Ŝ is a modification
of S incorporating the incentive bias parameter Ω
which controls the balance of positive and negative
values. Direct computation using the definition takes
O(TW 3) time. We can improve this to O(TW) by
using the following recursion for the unnormalized
quantity C̃ (assume that f + 1 ≤ t− 1, and note that
the incentive bias parameter Ω has been temporarily
removed for clarity):

C̃(f, t) = C̃(f + 1, t) + C̃(f, t− 1)

− C̃(f + 1, t− 1) + Ŝft + Ŝtf .

The recursion implies that the cost of a track of
length L = t− f + 1 can be calculated from the costs
of shorter tracks using a constant number of opera-
tions. The following picture provides an illustration:

Ŝf,t

Ŝf,t

Ŝ

C̃(f, t− 1)

C̃(f + 1, t− 1)

C̃(f + 1, t)

.

It is useful to scale cost matrices onto the interval
[0, 1]. Let normalization function

N(x) =
x−minft x(f, t)

maxft x(f, t)−minft x(f, t)

and

N̂(x) = (2N(x))− 1

We proceed by applying this normalization; Let
C ← N̂(C).

See Figures 8 and 9 for an image visualization of
the summation cost matrix with different incentive
biases.

Symmetry A common feature on dance music
tracks is partial mirror-symmetry. We build a cost
matrix to capture that.

Let Λ(f, t, d) be the diagonal parallel to the minor
diagonal of S and at the ‘distance’ d from it. We
represent it as an ordered set

Λ(f, t, d)

= 〈Sf+d,f , Sf+d+1,f+1, Sf+d+2,f+2, . . . , St,t−d〉.

For each such diagonal in one triangle/half of S we
want to compare each element against its mirror
counterpart. For an ordered set Λ we define its cost
as

C̄(f, t, Ω̄)(Λ, ω̄) =

|Λ|∑
i=1

δ(Λi,Λ|Λ|−i+1, Ω̄)

iω̄

where

δ(p, q,Ω)

=

 0, if sign(p) 6= sign(q),
Ωpq, if sign(p) ≥ 0 and sign(q) ≥ 0,
(1− Ω)pq, if sign(p) < 0 and sign(q) < 0,

10

i.e., ‘symmetric’ pairs that have the same sign make
positive contributions and pairs that have a different
sign contribute 0 to the cost. We define the cost
matrix as

C̄(f, t, Ω̄, ω̄) =

t−f+1∑
d=1

C̄(Λ(f, t, d, Ω̄), ω̄)

Finally, let C̄ ← N̂(C̄).
Clearly, one can reuse the cost for shorter intervals

to calculate the cost of longer ones, namely, C̄f+1,t−1

can be used to calculate C̄ft this saving computa-
tion time. We currently have an implementation on
GitHub (see Section 10) with a time complexity of
O(TW 2)

Ŝ

p

q

p

q

pq

pq

Λ
(f
,t
,d

=
0)

Λ
(f
,t
,d

=
1)

Λ
(f
,t
,d

=
2)

δ(p,q,Ω)
dω̄

.

Static Contiguity Horizontal contiguous traces in
Ŝ indicate that the track is self-similar (negative val-
ues) or self-dissimilar (positive values) due to repeti-
tion. If a given tile is the same as a set of contiguous
tiles following it, then there is some static contiguous
region in the show. The word static denotes that the
music is not evolving in respect of time (which would
instead create a diagonal trace in S).

We used the approach of modifying Sij in place
(See Algorithm 2) so that we can use the fast sum-
mation algorithm described in Section 4.2.3. The al-
gorithm takes the nth order differences (note that

diff(x, 2) = diff(diff(x))) in two dimensions of Sij ,
past and future. For simplicity our version of the
diff function will return a matrix of equal size, zero-
padded at the beginning.

Note that this algorithm introduces new parame-
ters: ṗ for the past nth order differences, ḟ the future

nth order differences,
←−
Ω the past differences incentive

bias,
−→
Ω the future differences incentive bias. p̄, how

much contribution the past differences make, and f̄
the future differences contribution. n̄ is the normal-
ization coefficient for this cost matrix.

Algorithm 1: Construct contig-static dissimilar-
ity matrix by modifying Sij in-place.

1 ṡij = sign(Sij)

2 Pij ← diff(Ŝ(
←−
Ω)ᵀ, ṗ)ᵀ; (ṗth order differences,

zero-padded at the start by ṗ so the size of F
remains unchanged)

3 Pij ← N(P)
4 Pij ← p̄Pij , for all i, j ∈ P
5 Fij ← diff(Ŝ(

−→
Ω), ḟ); (ḟth order differences,

zero-padded at the start by ḟ so the size of F
remains unchanged)

6 Fij ← N(P)
7 Fij ← f̄Fij , for all i, j ∈ F
8 Ṡ ← ṡ|P + F |
9 Ṡ ← N̂(Ṡ)

10 diag(Ṡ, d)← diag(Ṡ, d)dn̄ for all
d ∈ {1, 2, . . . ,W}; (multiply all elements in
diagonals d of Ṡ by dn̄)

11 Ṡ ← N̂(Ṡ)

12 return Ṡ

Ṡ is then transformed into a cost matrix
~C(f, t, n̄, ṡ, ṗ, ḟ) = C(f, t, ω, Ṡ) using the summation
function described in Section 4.2.3.

Evolutionary Contiguity Any diagonal traces in
S that are parallel to the main diagonal are partial
copies of the track in the future which evolve in re-
spect of time (self-similar tiles or groups of tiles that
are dissimilar to the previous or following tiles). Evo-
lutionary contiguity is a diagonal version of the static

11

contiguity cost matrix described in Section 4.2.3.

Algorithm 2: Construct contig-evolution dissim-
ilarity matrix by modifying Sij in-place.

1 S
¯ij
← Ŝij(Ω̇)

2 for d← 1 to W do
3 g ← diag(S

¯ij
, d); (d is the diagonal of S

¯ij
)

4 si = sign(g); take a recording of the signs
5 g ← diff(d, ė); (ėth order differences,

zero-padded at the start by ė so the size of g
remains unchanged)

6 gi = gid
ṅ, for all i ∈ g; apply normalization

7 gi = sigi, for all i ∈ g; place the original signs
back

8 diag(S
¯ij
, d) = gi; place diagonal back into S

¯ij
at d

9 S
¯ij

= N̂(S
¯ij

); normalize S
¯ij

= ēS
¯ij

; scale by its
contribution ē

10 return S
¯

S
¯

is then transformed into a cost matrix
~C(f, t, n̄, ṡ, ṗ, ḟ) = C(f, t, ω, S

¯
) using the summation

function described in Section 4.2.3.

Gaussian Let

G($,N)tw = e
− 1

2
$n
1
2
W

2

for all n = 1, 2, . . . ,W denote the Gaussian matrix
cost function of N×W . G($,N) is time-independent
and every row is the same. We will use this cost func-
tion for regularizing the others. It could also be used
on its own for comparison against a ‘näıve’ cost ma-
trix. Increasing values of $ will tighten up the Gaus-
sian. Note that we used values of $ ∈ {1, 2, . . . , 5}

Mixing Cost Functions We mix cost matrices to-
gether by adding them. In our experiments we will
have a parameter for each cost matrix ∈ [0, 1] to show
its contribution to the mixture. The cost matrices
will be multiplied by this number before being mixed.

Solution Shift We will also allow the estimated
solution to be shifted in time by parameter Ξ seconds
∈ {−5,−4, . . . , 5}.

Above and Beyond − Trance Around the World 364
mean=106.4 heuristic=6.6 meandiff=−5.5 shift=0.0

Tiles

T
ile

s

20 40 60 80 100 120 140

200

400

600

800

1000

1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8: Summation cost matrices for Magic Island
episode 110 with an incentive bias Ω = 1 and there-
fore containing disincentives.

Above and Beyond − Trance Around the World 364
mean=27.5 heuristic=10.5 meandiff=1.7 shift=0.0

Tiles

T
ile

s

20 40 60 80 100 120 140

200

400

600

800

1000

1200

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure 9: Summation cost matrices for Magic Island
episode 110 with an incentive bias Ω = 0 and there-
fore containing incentives.

12

5 Computing Best Segmenta-
tion

We obtain the cost of a full segmentation by summing
the costs of its tracks. The goal is now to efficiently
compute the segmentation of least cost.

We want to reconstruct m track boundaries (m+1
tracks).

A sequence t = (t1, . . . , tm+1) is called an m/T -
segmentation if and only if

1 = t1 < . . . < tm < tm+1 = T + 1.

m is the number of tracks we are trying to find and
is a parameter of the algorithm. We use the inter-
pretation that track i ∈ {1, . . . ,m} comprises times
{ti, . . . , ti+1 − 1}. Let STm be the set of all m/T -
segmentations. Note that there are a very large num-
ber of possible segmentations

|STm| =

(
T − 1

m− 1

)
=

(T − 1)!

(m− 1)! (T −m)!
=

(T − 1)(T − 2) · · · (T −m+ 1)

(m− 1)!
≥
(
T

m

)m−1

.

For large values of T , considering all possible segmen-
tations using brute force is infeasible. For example, a
two hour long show with 25 tracks would have more
than (

602 × 2

25

)24

≈ 1.06 · 1059

possible segmentations.
We can reduce this number slightly by imposing

upper and lower bounds on the song length. Recall
that W is the upper bound (in seconds) of the song
length, w the lower bound (in seconds) and m the
number of tracks. With the track length restriction
in place, the number of possible segmentations is still
massive. A number now on the order of 1056 for a two
hour show with 25 tracks, w = 190 and W = 60 · 15.

Let N(T,W,w,m) be the number of segmentations
with time T (in tiles),

We can write the recursive relation

N(T,W,w,m) =
∑

N(tm − 1,W,w,m− 1),

where the sum is taken over tm such that

tm ≤ T − w + 1 tm ≥ T −W + 1

tm ≥ (m− 1)w + 1 tm ≤ (m− 1)W + 1

The first two inequalities mean that the length of
the last track is within an acceptable boundary be-
tween w and W . The last two inequalities mean that
the lengths of the first m − 1 tracks are within the
same boundaries.

We calculated the value of N(7000, 60 · 15, 190, 25)
and got 5.20 ·1056 which is still infeasible to compute
with brute force.

Our solution to this problem is to find a dynamic
programming recursion.

The loss of an m/T -segmentation t is

`(t) =

m∑
i=1

C(ti, ti+1 − 1)

We want to compute

VTm = min
t∈STm

`(t)

To this end, we write the recurrence

Vt1 = C(1, t)

and for i ≥ 2

Vti = min
t∈Sti

`(t)

= min
ti

min
t∈Sti−1

i−1

`(t) + C(ti, t)

= min
ti

C(ti, t) + min
t∈Sti−1

i−1

`(t)

= min
ti

C(ti, t) + Vti−1
i−1

In this formula ti ranges from t−W to t−w. We
have T ×m values of VTm and calculating each takes
at most O(W) steps. The total time complexity is
O(TWm).

13

6 Confidence Intervals

It may be useful for some applications to build a
framework to allow confidence intervals for our pre-
dicted indices. This may also be useful for meaningful
comparison of cost matrices.

6.1 Posterior Marginal of Song
Boundary

Fix a learning rate η, and fix T and m. Let

P (j, s) =

∑
t∈STm:tj=s

e−η `(t)

∑
t∈STm

e−η `(t)

That is, P (j, s) is the “posterior probability” that
song j starts at time s.

To compute P (j, s), we need an extended notion of
segmentation. We call t a m/F : T segmentation if

F = t1 < . . . < tm < tm+1 = T + 1.

Let SF :T
m be the set of all m/F − T -segmentations.

We have∑
t∈STm:tj=s

e−η `(t) =
∑

t∈Ss−1
j−1,

t′∈Ss:Tm−j+1

e−η(`(t)+`(t′)) =

 ∑
t∈Ss−1

j−1

e−η `(t)

 ∑

t∈Ss:Tm−j+1

e−η `(t)

which upon abbreviating

Htm =
∑
t∈Stm

e−η `(t) T fm =
∑

t∈Sf:T
m

e−η `(t)

means that we can write

P (j, s) =
Hs−1
j−1 · T sm−j+1

HTm
.

So it suffices to compute Htm and T tm for all relevant
t and m. We use

Ht1 = e−ηC(1,t) T f1 = e−ηC(f,T−f+1)

and for m ≥ 2

Htm =
∑
tm

∑
t∈Stm−1

m−1

e−η(`(t)+C(tm,t−tm+1))

=
∑
tm

e−ηC(tm,t−tm+1)
∑

t∈Stm−1
m−1

e−η `(t)

=
∑
tm

e−ηC(tm,t−tm+1)Htm−1
m−1

T fm =
∑
t2

∑
t∈St2:T

m−1

e−η(C(f,t2−f)+`(t))

=
∑
t2

e−ηC(f,t2−f)
∑

t∈St2:T
m−1

e−η `(t)

=
∑
t2

e−ηC(f,t2−f)T t2m−1

See Figure 10 for an example of the posterior for a
radio show.

6.2 Posterior Marginal of Song Posi-
tion

Fix a learning rate η, and fix T and m. Let

P (j, s, f) =

∑
t∈STm:tj=s∧tj+1−1=f

e−η `(t)

∑
t∈STm

e−η `(t)

That is, P (j, s, f) is the “posterior probability” that
song j starts at time s and finishes at time f . In the
same vein as the last section, we now get

P (j, s, f) =
Hs−1
j−1 · e−ηC(s,f−s+1) · T f+1

m−j

HTm
.

6.3 Confidence Measures

We can use the posterior marginal of song boundaries
to give estimates of confidence on reconstructed in-
dices where there are ambiguous options. The key
scenarios where the algorithm is likely to make an er-
ror of judgement due to uncertainty are; getting the

14

time wrong or the order of tracks wrong (for exam-
ple, predicting the correct time in the wrong track
index).

Note that the posterior marginal of song bound-
aries P (j, s) contains values all in the interval [0, 1].
The sum of all times for a fixed track index (every
row) in P (j, s) is 1.

6.3.1 Index (Order)

To estimate the uncertainty of correct track align-
ment, we select the probability of all boundary place-
ments for all track indices at the predicted best time.

Let

ζi = P
(
j,Π

(
VTm, j

))
for all j = 1, 2, . . . ,m where Π(V, i) will return the
best time placement for index i in the optimal seg-
mentation V.

Let the track index confidence measure

Ψ(m̄) = 1−

(
ζ̃m̄

)
2(

ζ̃m̄

)
1

where ζ̃i corresponds to ζi placed into in descending
order of value. Note that Ψ ∈ [0, 1]. The index confi-
dence measure is a function of the ratio between the
two largest values in P (j, s) for all j = 1, 2, . . . ,m
and at the optimal time s as estimated by the main
algorithm.

6.3.2 Time

The track time confidence is estimated by the ratio of
the two highest peaks in P (j, s) for all s = 1, 2, . . . , T ,
for all j = 1, 2, . . . ,m.

Let

ξ(m̄) = 1−
γ̃ (m̄)2

γ̃ (m̄)1

where

γ(j) = P (j, t)

for all t ∈ 1, 2, . . . , T and γ̃(j) are the peaks found in
γ(j) sorted in descending order. Note that ξ ∈ [0, 1]

Log−Posterior for lindmikoncue 200 90323

Tiles

T
ra

ck

200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

12

−120

−100

−80

−60

−40

−20

0

Log−Posterior for arminvanbuurenastateoftrance 468

Tiles

T
ra

ck

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

2

4

6

8

10

12

14

16

18

20

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Figure 10: A visualization of log(P (j, s)) (η = 10)
for two of the shows in the training set. Ostensi-
bly; uncertainty pertaining to the correct time and
index (i.e. track number 2, 3, 4) placement increases
towards the middle of the shows.

15

7 Experiments

7.1 Training Set

We selected 6 shows at random (two of each show
type) to create a training set, which we will refer to
as the GitHub training set. See Table 2 to see the
shows we selected.

7.2 Number Of Tracks Known A Pri-
ori

The primary goal of this research is to reconstruct op-
timal track boundaries when the number of tracks is
known a priori. This experiment will pass the actual
number of tracks as a parameter into the algorithm
input variable m. The advantage of this is that the
number of predicted tracks will equal the number of
actual tracks so intuitive measures of predictive per-
formance can be employed.

7.2.1 Evaluation

The inherent challenge with quantifying the perfor-
mance of our approach is that if we misplace any
tracks, it may have a cascade effect. For example
if we place one track too many early on in a show,
many of the subsequent tracks may be correctly de-
tected but placed out of alignment.

For the task of computing the best cost segmenta-
tion when the number of tracks are known a priori,
we can use simple statistical descriptions of the track
residuals |Pst−As′t′ | where P is the predicted track,
A the actual track, for show s and track t (for all s,t
and s′,t′ in the corpus). The mean average will give a
good indication of the amount of misplacements (how
robust the method is). The median of the residuals
will indicate the actual track accuracy invariant to
any catastrophic misplacements. The standard devi-
ation of the residuals will indicate the spread of error.

7.2.2 Finding The Best Parameters

We used the GitHub (see Section 7.1) training set to
find robust algorithm parameters using a stochastic
optimization (genetic algorithm) search. The genetic

algorithm was selected because it allows integer con-
straints. We selected a population size of 50, an elite
count of 7 and crossover fraction of 0.5. The stopping
limit for the algorithm was when the optimization
objective function had stalled for 5 generations. The
ga3 function from the MATLAB global optimization
toolbox was used.

We considered two objective functions; minimiz-
ing the mean absolute track error and secondly the
median absolute track error (see Section 7.2.1).

For each of these objective functions we devised 5
conditional experiments involving a selection of cost
matrices described in Section 4.2.3; sum and Gaus-
sian, symmetry and Gaussian, contiguity and Gaus-
sian, evolution and Gaussian, and all cost matrices
allowed. When cost matrices were not allowed to
participate in an experiment, their contribution vari-
able was fixed at 0. Therefore; there are 10 exper-
iments defined. Robust parameters were found for
each experiment using the genetic algorithm as de-
scribed and the parameters found are listed in Ta-
ble 5. An experiment number has been assigned to
each configuration.

7.2.3 Results

Please see Tables 3 and 4 for the results and Fig-
ure 11 for a histogram comparing track errors for ex-
periments 1 to 5.

We notice that the contig-static, evolution and
symmetry cost matrices fail to perform well on their
own. It was not really our intention to design these
cost matrices to work well on their own but rather
to augment the summation matrix. The Gaussian
cost matrix then adds regularization. As reported in
[22], the sum cost matrix performs robustly indepen-
dently. When we consider the best combination of
all cost matrices as defined by the results of the ge-
netic algorithm (experiments 1, 6); the overall mean
performance is improved substantially which means
there are fewer catastrophic misplacements.

TATW has the best overall performance (median 5
seconds on experiment 6) and this is likely to indicate
that it has an overall lower ‘complexity’ of DJ-mixing.

3http://www.mathworks.co.uk/help/gads/ga.html

16

http://www.mathworks.co.uk/help/gads/ga.html

Table 2: The shows randomly selected for inclusion in the GitHub training set.

Show Name Artist Date Broadcast

1 A State Of Trance 453 Armin Van Buuren April 2010
2 A State Of Trance 462 Armin Van Buuren June 2010
3 Magic Island 098 Roger Shah March 2010
4 Magic Island 112 Roger Shah July 2010
5 Trance Around The World 364 Above & Beyond March 2011
6 Trance Around The World 372 Above & Beyond May 2011

We can conclude from these results that taking the
best mixture of cost matrices significantly improves
the robustness (mean-absolute of track errors) and
spread (standard deviation of track errors) of the re-
sults.

On [22] we were effectively using a disincentive-
only summation matrix, and found that normalizing
costs on the square root of track length produced the
best result. Something similar is happening here as
the genetic algorithm has selected values less than
1 on the sum normalization (experiments 4,9) which
would encourage placement of longer tracks. As op-
posed to [22], we no longer discard any shows from
evaluation. To save time on the experiments we
set the smallest tile size to be 3, and this was the
value returned for both mixtures (mean-optimized
and median-optimized). Therefore it is possible that
the results would improve further if we ran the ex-
periment down to a tile size of 1 second.

7.2.4 Confidence Interval Analysis

See Figure 14 for illustrations of the time index con-
fidence ξ(m̄), index placement confidence Ψ(m̄) and
track error residuals averaged and shown as a func-
tion of progression through the shows. See Section 6
for definitions. Because the number of tracks varies
greatly, the confidence measures for all shows have
been re-sampled into the set of indices 1, 2, . . . , 15 for
the number of tracks. Thus it is possible to get an in-
dication of aggregate confidence measures in relation
to the progress of the show.

We can conclude from these illustrations that the
likelihood of placing the correct index statistically
declines towards the middle of the shows. Perhaps
this means that the summation matrix would have

performed increasingly poorly as show lengths got
longer. But mixing the cost matrices together in the
optimal way (as dictated by the results of the evolu-
tionary algorithm) apparently removes this tendency
to a large extent.

A low index confidence would increase the proba-
bility of a catastrophic misplacement causing a signif-
icant deterioration on the overall mean performance
metric. So these illustrations give us some insight on
why mixing the cost matrices together significantly
affected the overall mean evaluation metric as de-
scribed in Section 7.2.3.

Mixing the cost matrices had little effect on the
time placement of indices.

7.3 Number Of Tracks Not Known A
Priori

The main goal of our research is providing the
best possible time dependent contiguous segmenta-
tion given a fixed number of tracks m, rather than
estimating m. This problem has not been addressed
before to our knowledge; namely that the number of
segments is known a priori but segmentation itself is
not. However, the number of tracks could be esti-
mated in a näıve sense because the variable of track
lengths is Gaussian (see Figure 4).

We propose the following method of adapting our
framework to estimate the number of contiguous seg-
ments in a data stream. For every possible candidate
number of tracks M, compute the cost of fitting M
tracks using the algorithm described in Section 5 and
normalize it by M and take the solution n on the
saddle point where the normalized quantity achieves
the minimum (see Figure 15 for an illustration). We
ran the same genetic algorithm as described in Sec-

17

Table 3: These are the main results for all cost matrices with parameters optimized for the best mean
absolute accuracy. The tuple 〈a, b, c〉 is used to indicate the results where a is the median absolute error in
seconds, b the mean absolute error in seconds and c the standard deviation in seconds (see Section 7.2.3).
The experiment number is shown on the left.

lindmik magic tatw asot all

2 contig 〈14, 70.3, 133.4〉 〈9, 18.6, 52.6〉 〈11, 34.6, 93.7〉 〈13, 58.5, 121.1〉 〈12, 42.9, 102.8〉
3 evolution 〈14, 54.8, 110.2〉 〈12, 27.1, 58.4〉 〈9, 23.5, 54.6〉 〈15, 50.2, 101.8〉 〈12, 37.5, 83.3〉
4 sum 〈8, 34.3, 81.1〉 〈8, 14, 34.3〉 〈6, 16.6, 50.26〉 〈8, 33.1, 77.3〉 〈7, 23.7, 62.1〉
5 symmetry 〈10, 20.4, 49.8〉 〈9, 16.6, 43.7〉 〈8, 11.7, 16.8〉 〈11, 26.2, 60.4〉 〈9, 19, 46.3〉
1 all 〈8, 19.5, 54.3〉 〈8, 16.9, 50.9〉 〈6, 8.9, 14.2〉 〈7, 24.3, 58.3〉 〈7, 17.6, 47.9〉

Table 4: These are the main results for all cost matrices with parameters optimized for the best median
absolute accuracy.

lindmik magic tatw asot all shows

7 contig 〈15, 96.3, 173.7〉 〈9, 28.4, 78.8〉 〈8, 51.5, 124.6〉 〈16, 78.1, 146.7〉 〈10, 60, 131.1〉
8 evolution 〈20, 96.6, 149.8〉 〈13, 33.9, 69.8〉 〈8, 30.9, 76〉 〈18, 16.6, 114.8〉 〈12, 50.3, 104.5〉
9 sum 〈8, 39.9, 95〉 〈8, 15.8, 42.5〉 〈6, 18.6, 59.7〉 〈7, 38.2, 90.2〉 〈7, 27.2, 73.0〉
10 symmetry 〈12, 84.6, 161.8〉 〈9, 19.6, 51.5〉 〈9, 52.5, 127.9〉 〈18, 92.1, 171.2〉 〈11, 61, 135.5〉
6 all 〈6, 13.1, 28.7〉 〈9, 17.6, 44.7〉 〈5, 8.9, 15〉 〈6, 25.7, 62.4〉 〈6, 17.4, 44.8〉

tion 7.2.2 to find the best set of parameters for this
task. This is referred to as experiment 11 in Table 5.

For comparison; we have implemented Footes
method of segmentation [9]. Foote correlated a Gaus-
sian tapered checkerboard kernel of a fixed width β
down the diagonal of S to produce a novelty func-
tion. The multiplicative Gaussian kernel has a width
and standard deviation of β. Any peaks found to be
above a threshold ι are counted as novelty peaks. The
kernel can be constructed with the Kronecker tensor
product.

To improve upon Foote’s method; we introduced a
radius parameter R̂ which adds the constraint that
no two peaks are allowed to be within a radius R̂
of each other. This seemed like an obvious piece of
domain knowledge which we added to the algorithm
in the interests of fairness. The peaks are found in
the (time) order of the dataset. A genetic search
as described in Section 7.2.2 was executed to find
parameters that perform robustly for this task. The
parameters found were β = 120, ι = 0.3, R̂ = 50. We

will henceforth refer to this algorithm as the enhanced
Foote novelty peak approach.

We also compared to a näıve method of guessing
how many tracks were in a show, diving the show
length by the overall average track size.

See Figure 16 for an comparison of these three
methods of track estimation. Our method estimates
the correct number of tracks 45.7% of the time, the
novelty peak finding approach 44.5% of the time and
the näıve approach in 11.5% of cases. There is not
a significant difference in performance between the
enhanced version of Foote’s approach and ours. An
interesting feature of Foote’s enhanced algorithm is
that it almost never overestimates the number of
tracks. It seems likely that some combination of the
methods would yield improved results.

7.3.1 Comparison of Methods For Segmenta-
tion

It is useful to compare our algorithm for reconstruct-
ing track boundaries with Foote’s novelty peak find-

18

−60 −40 −20 0 20 40 60

100

200

300

400

500

600

700

Track Error For Mean Score Optimized Cost Matrices

Error (Seconds)

T
ra

ck
 In

st
an

ce
s

Mixture
Contig−Static
Contig−Evolution
Summation
Symmetry

−60 −40 −20 0 20 40 60
0

0.5

1

1.5

2

2.5

Error (Seconds)

N
or

m
al

iz
ed

 T
ra

ck
 In

st
an

ce
s

Track Error For Mean Score Optimized Cost Matrices

LINDMIK
MAGIC
TATW
ASOT

Figure 11: Histogram of the residuals (errors) be-
tween reconstructed and human captured time in-
dices per experiment (top) and with best mean-
optimized mixture broken down by show (bottom).
Apart from obvious noise there appears to be a ten-
dency for the algorithm to place an index slightly
earlier.

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold (Seconds)
F

−
M

ea
su

re

F
1
 Scores (ALL)

Our Algorithm
Our Algorithm (Track # Estimated)
Novelty Peak Finding Enhanced
Guessing
Novelty No Radius

Figure 13: Comparison between our algorithm and
the Foote novelty peak finding approach on all of the
datasets.

ing method in a general sense. The drawback of
Foote’s method is that it is problematic to find a fixed
number of novelty peaks. It is clearly adaptable to
find a maximum number of peaks but this does not
help because it already has the interesting feature
that it apparently rarely overestimates the number
of tracks, it almost always underestimates.

We will henceforth transform the problem into one
of binary classification subject to a variable thresh-
old. When a predicted boundary is within a threshold
time horizon t̃ of an actual boundary, it will be called
a true positive. Otherwise, a true negative. We can
borrow machine learning evaluators for binary classi-
fication problems; precision, recall and F1 score.

Let

F1 = 2
P ·R
P +R

be the harmonic mean of precision

P =
|TP |
|P |

19

11 22 33 44 55 66 77 88 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Time Placement Confidence

Show Progression (%)

T
ra

ck
 P

la
ce

m
en

t A
ve

ra
ge

 C
on

fid
en

ce

mixture
sum−only

11 22 33 44 55 66 77 88 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Show Progression (%)

In
de

x
P

la
ce

m
en

t A
ve

ra
ge

 C
on

fid
en

ce

Index Placement Confidence

mixture
sum−only

11 22 33 44 55 66 77 88 100

10

13

16

19

22

25

28

Show Progression (%)

A
ve

ra
ge

 R
es

id
ua

l E
rr

or
 (

S
)

Average Residual Error Over Show Progress

mixture
sum−only

Figure 14: Confidence intervals and error residuals
averaged over show progression.

0 5 10 15 20 25 30
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
examples/arminvanbuurenastateoftrance 453

Number Of Tracks

S
um

 c
os

t n
or

m
al

iz
ed

 b
y

nu
m

be
r

tr
ac

ks

cost curve
actual (19)
minima (19)

Figure 15: Number of tracks estimated correctly a
show in the GitHub training set after a genetics algo-
rithm was executed to select a robust set of algorithm
parameters.

20

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

Seconds

T
ra

ck
s

Track Errors/Residuals By Method

Ours (std: 2.35 155/339)
Novelty (std: 1.98, acc: 151/339)
Naive (std: 2.24, acc: 39/339)

Figure 16: Track estimation error on our method as
described in Section 7.3, Foote’s novelty function and
näıve guessing.

and recall (true positive rate)

R =
|TP |
|A|

subject to threshold time horizon t̃. Note |P | denotes
the number of predicted tracks tracks and |A| the
number of actual tracks in a given show.

7.3.2 Results

See Figure 12 for a break down of F1 scores for each
data set and Figure 13 for the overall F1 scores for
the entire corpus, for all time thresholds. Note that
guessing refers to placing tracks every q̇ seconds until
no more can be placed, where q̇ is the average track
length. What is clear is that adding the radius en-
hancement to Foote’s method significantly improves
its performance and it slightly out-performs our algo-
rithm when we estimate the number of tracks apart
from on the lindmik dataset.

Plotz [23] achieved a true positive rate of 81%
within 10 second boundaries from ground truth for

a similar task. Considering the standard deviation of
human disagreement on annotations for dance music
can be over 9 seconds (see Section 3), this seems un-
obtainable with the corpus we have. Our overall true
positive average is 63% at the 10 seconds threshold.
For tatw we achieve 72.2% which may be more like
the corpora Plotz worked with.

When the number of tracks is known a priori, we
significantly out-perform Foote’s method. And there
is no obvious way to modify Foote’s method to select
the correct number of tracks even if it is known a
priori.

It should be noted that our method of track es-
timation may be not be optimal. We only trained
the evolutionary algorithm on 6 shows on the GitHub
training set and estimated them all correctly. This
meant the parameters found could possibly have been
better. Increasing the size of the training set would
address this issue.

8 Conclusion

We believe our algorithm would be useful for seg-
menting DJ-mixed audio streams in batch mode. The
algorithm segments a 2 hour long show with all the
cost matrices enabled in less than 2 seconds on the
authors computer with a tile size of 3, implemented
in MATLAB (including loading the wave file from the
hard drive). Note that this does not include the con-
version time to wave from mp3. MATLAB includes
features to perform executions on multiple cores and
the GPU which we have used for running the genetic
algorithm parameter search.

It would be excellent if SoundCloud4 for example
started to do something similar. SoundCloud is an
on-line music service with many electronic dance mu-
sic radio shows with the track listing in text. This
method would allow them to reliably segment the
shows, and they could display an interactive segmen-
tation in the music player with the track names an-
notated.

It is important to note that the cost matrices and
high level algorithm are not encoded with any do-
main specific knowledge pertaining to dance music.

4http://www.soundcloud.com

21

http://www.soundcloud.com

They are looking for abstract and obvious patterns
of self-similarity, which would be present in nature.
We would expect this algorithm to perform well on
any segmentation task of similar description (for ex-
ample, video) with a different set of features to build
the similarity matrix from.

The new cost matrices in combination improve ro-
bustness significantly over a summation cost matrix
alone. Rather than improving the time accuracy;
they eliminate many circumstances in which tracks
get placed in erroneous order. They are also partly
immunised against dissimilar regions within tracks
which was a weakness in [22]. One problem that we
are aware of is the rare instances when there are head
or tail segments to a track that seem independent
from the rest of the track. When these are small
they usually get absorbed without any problems but
they can cause misplacements. Preprocessing Sij us-
ing heuristics to remove these pariah segments is po-
tential solution.

We are able to operate in the scenario when the
number of tracks is not known a priori and perform
comparably with our enhanced version of Foote’s [9]
method for both segmentation and estimation of how
many tracks exist in a recording. When Foote’s
method was implemented by its literal description it
performed quite poorly. On the lindmik dataset, we
out-perform the enhanced Foote method when esti-
mating the number of tracks. Our method comes into
its own however in the scenario when the number of
tracks is known a priori. We significantly out perform
Foote’s method for this and there is no constructive
way to adapt Foote’s method to find a fixed number
of tracks. In this task it is essential to avoid getting
the order of tracks wrong, so any potential advantage
should be capitalised on.

Further work includes the plan to write an on-line
version of the algorithm in the future which will op-
erate on a sliding lagged window of audio where the
number of tracks could be estimated and the algo-
rithm executed on the window. We would also like
to implement a regularised version of Radu’s time
dependent agglomerative (hierarchical) clustering al-
gorithm [1] to see if it is suitable for this task.

One of the interesting properties of the algorithm
presented here is that is it does not directly consider

inter-segment dissimilarity. The costs are computed
only from intra-segment similarity. Therefore; there
is only an implied notion of dissimilarity between seg-
ments. An interesting direction would be reformulat-
ing the algorithm to consider transitional switching
and sticking costs through a state graph where the
number of switches was fixed a priori. This would be
a somewhat similar direction to [11, 12] apart from
the likelihood that fixing the number of segments a
priori if they were known would likely improve the
accuracy of the annotations as we have reported for
this configuration.

9 Acknowledgements

We would like to thank Mikael Lindgren and Denis
Goncharov from cuenation5 for their help explaining
how they make cue-sheets and for providing the data
set to test the algorithm on.

10 Materials

All the code presented in this paper with the training
set is available on GitHub6. The corpus (≈ 150GB)
we received from Denis Goncharov and Mikael Lind-
gren will be made available on request (it is in a cloud
storage account).

References

[1] R. Curticapean, “Clustering-based audio seg-
mentation with applications to music structure
analysis,”

[2] J. Matejka, T. Grossman, and G. Fitzmaurice,
“Swifter: Improved online video scrubbing,” in
Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’13,
(New York, NY, USA), pp. 1159–1168, ACM,
2013.

5http://www.cuenation.com
6github.com/ecsplendid/DanceMusicSegmentation

22

http://www.cuenation.com
github.com/ecsplendid/DanceMusicSegmentation

[3] G. Tzanetakis and F. Cook, “A framework for
audio analysis based on classification and tem-
poral segmentation,” in EUROMICRO Confer-
ence, 1999. Proceedings. 25th, vol. 2, pp. 61–67,
IEEE, 1999.

[4] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle,
“Recurrence plots of dynamical systems,” EPL
(Europhysics Letters), vol. 4, no. 9, p. 973, 1987.

[5] M. L. Cooper and J. Foote, “Automatic music
summarization via similarity analysis.,” in IS-
MIR, 2002.

[6] J. Foote, “Visualizing music and audio using
self-similarity,” in Proceedings of the seventh
ACM international conference on Multimedia
(Part 1), pp. 77–80, ACM, 1999.

[7] J. Foote, “A similarity measure for automatic
audio classification,” in Proc. AAAI 1997 Spring
Symposium on Intelligent Integration and Use of
Text, Image, Video, and Audio Corpora, 1997.

[8] J. Foote, “Automatic audio segmentation using
a measure of audio novelty,” in Multimedia and
Expo, 2000. ICME 2000. 2000 IEEE Interna-
tional Conference on, vol. 1, pp. 452–455, IEEE,
2000.

[9] J. T. Foote and M. L. Cooper, “Media segmen-
tation using self-similarity decomposition,” in
Electronic Imaging 2003, pp. 167–175, Interna-
tional Society for Optics and Photonics, 2003.

[10] J. Foote and M. Cooper, “Visualizing musi-
cal structure and rhythm via self-similarity,” in
Proceedings of the 2001 International Computer
Music Conference, pp. 419–422, 2001.

[11] M. M. Goodwin and J. Laroche, “A dynamic
programming approach to audio segmentation
and speech/music discrimination,” in Acoustics,
Speech, and Signal Processing, 2004. Proceed-
ings.(ICASSP’04). IEEE International Confer-
ence on, vol. 4, pp. iv–309, IEEE, 2004.

[12] M. M. Goodwin and J. Laroche, “Audio seg-
mentation by feature-space clustering using lin-
ear discriminant analysis and dynamic program-
ming,” in Applications of Signal Processing to
Audio and Acoustics, 2003 IEEE Workshop on.,
pp. 131–134, IEEE, 2003.

[13] D. El Badawy, P. Marmaroli, and H. Lissek,
“Audio novelty-based segmentation of music
concerts,”

[14] M. Levy and M. Sandler, “Structural segmen-
tation of musical audio by constrained cluster-
ing,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 16, no. 2, pp. 318–
326, 2008.

[15] M. Levy and M. Sandler, “New methods in
structural segmentation of musical audio,” in
Proceedings of the European Signal Processing
Conference (EUSIPCO), Florence, Italy, 2006.

[16] M. Levy, M. B. Sandler, and M. A. Casey, “Ex-
traction of high-level musical structure from au-
dio data and its application to thumbnail gen-
eration.,” in ICASSP (5), pp. 13–16, Citeseer,
2006.

[17] E. Batlle, J. Masip, and E. Guaus, “Automatic
song identification in noisy broadcast audio,”

[18] E. Peiszer, T. Lidy, and A. Rauber, “Auto-
matic audio segmentation: Segment boundary
and structure detection in popular music,” Proc.
of LSAS, 2008.

[19] H. Nyquist, “Certain topics in telegraph trans-
mission theory,” American Institute of Electrical
Engineers, Transactions of the, vol. 47, no. 2,
pp. 617–644, 1928.

[20] M. Frigo and S. G. Johnson, “The fftw web
page,” 2004.

[21] G. Tzanetakis and P. Cook, “Multifeature audio
segmentation for browsing and annotation,” in
Applications of Signal Processing to Audio and
Acoustics, 1999 IEEE Workshop on, pp. 103–
106, IEEE, 1999.

23

[22] T. Scarfe, W. M. Koolen, and Y. Kalnishkan, “A
long-range self-similarity approach to segment-
ing dj mixed music streams,” in Artificial Intel-
ligence Applications and Innovations, pp. 235–
244, Springer, 2013.

[23] T. Plotz, G. A. Fink, P. Husemann, S. Ka-
nies, K. Lienemann, T. Marschall, M. Martin,
L. Schillingmann, M. Steinrucken, and H. Sudek,
“Automatic detection of song changes in mu-
sic mixes using stochastic models,” in Pattern
Recognition, 2006. ICPR 2006. 18th Interna-
tional Conference on, vol. 3, pp. 665–668, IEEE,
2006.

24

1−Cosine Matrix
examples/arminvanbuurenastateoftrance 453

Cosine Matrix Histogram (Cosine Normalization=0.7, 1429 Tiles)

Tiles

T
ile

s

450 500 550 600 650 700 750 800

450

500

550

600

650

700

750

800

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: An illustration of the similarity matrix S (cosines) with the actual indices drawn on with black
crosses, and our reconstructed annotations indicated with the dotted white lines. Note that to save time on
the computation we do not calculate the entire matrix which is why there are some empty regions on the
corners.

25

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold (Seconds)

F
−

M
ea

su
re

F
1
 Scores (ASOT)

Our Algorithm
Our Algorithm (Track # Estimated)
Novelty Peak Finding Enhanced
Guessing
Novelty No Radius

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold (Seconds)

F
−

M
ea

su
re

F
1
 Scores (MAGIC)

Our Algorithm
Our Algorithm (Track # Estimated)
Novelty Peak Finding Enhanced
Guessing
Novelty No Radius

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold (Seconds)

F
−

M
ea

su
re

F
1
 Scores (LINDMIK)

Our Algorithm
Our Algorithm (Track # Estimated)
Novelty Peak Finding Enhanced
Guessing
Novelty No Radius

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold (Seconds)

F
−

M
ea

su
re

F
1
 Scores (TATW)

Our Algorithm
Our Algorithm (Track # Estimated)
Novelty Peak Finding Enhanced
Guessing
Novelty No Radius

Figure 12: Comparison of the F1 scores against time thresholds on the 4 data sets. On the lindmik dataset
where the number of tracks is highly unpredictable, our method combined with track estimation beats
Foote’s enhanced novelty method at higher thresholds.

26

D
o
m
a
in

N
o
t
a
t
io
n

M
e
a
n
A
l
l

M
e
a
n
C
o
n
t
ig

M
e
a
n
E
v
o
l
u
t
io
n

M
e
a
n
S
u
m

M
e
a
n
S
y
m
m
e
t
r
y

M
e
d
ia
n
A
l
l

M
e
d
ia
n
C
o
n
t
ig

M
e
d
ia
n
E
v
o
l
u
t
io
n

M
e
d
ia
n
S
u
m

M
e
d
ia
n
S
y
m
m
e
t
r
y

T
r
a
c
k

E
st

im
a
t
io
n

Experiment Number 1 2 3 4 5 6 7 8 9 10 11

Seconds Per Tile (S) 3, . . . , 50 M 3 3 6 5 8 3 7 3 5 9 38
Min. Track Length (S) 80, . . . , 180 w 167 146 108 165 140 88 98 173 94 85 155
Max. Track Length (S) 600, . . . , 900 W 691 879 897 894 811 631 801 889 642 635 619
Bandwidth (Hz) 1, . . . , 15 b 1 2 2 2 3 2 4 4 2 5 3
Low Pass Filter (Hz) 800, . . . , 1950 l 1039 1912 1893 1387 874 888 1065 1206 1880 1005 1019
High Pass Filter (Hz) 50, . . . , 500 h 62 73 81 69 54 55 54 70 75 51 201
Solution Shift (S) −3, . . . , 5 Ξ -1 5 -3 -2 2 -4 -2 -2 -2 -1 5
Cosine Normalization [0.4, 1.4] ĉ 1.17 0.77 0.92 1.19 1.36 0.88 0.71 0.73 1.15 1.14 0.98

Sum Contribution [0, 1] 0.99 0.81 0.77 0.63 0.55
Sum Normalization [0, 1] Ω 1.36 0.73 1.11 0.47 0.71
Sum Incentive [0, 1] ω 0.68 0.52 0.23 0.30 0.05

Gaussian Contribution [0, 1] 0.52 0.08 0.69 0.17 0.29 0.63 0.11 0.51 0.08 0.02 0.15
Gaussian Incentive [0, 1] 0.85 0.82 0.43 0.47 0.56 0.10 0.14 0.40 0.85 0.54 0.53
Gaussian Width 1, . . . , 4 $ 1 1 1 4 1 1 2 1 1 2 4

Evolution Contribution [0, 1] ē 0.05 0.63 0.49 0.35 0.48

Evolution Incentive [0, 1] Ω̇ 0.53 0.60 0.15 0.66 0.71
Evolution Normalization [0.1, 3] ṅ 1.30 0.08 1.10 0.06 1.79
Evolution Diff. Order 1, . . . , 50 ė 45 1 7 40 16

Contig Past Contribution [0, 1] p̄ 0.50 0.10 0.62 0.69 0.27
Contig Past Diff. Order 1, . . . , 50 ṗ 13 44 41 46 30

Contig Past Incentive [0, 1]
←−
Ω 0.50 0.24 0.95 0.53 0.98

Contig Normalization [0.1, 3] n̄ 0.74 0.26 1.60 0.33 1.91
Contig Future Contribution [0, 1] f̄ 0.59 0.81 0.54 0.27 0.95

Contig Future Diff. Order 1, . . . , 50 ḟ 35 3 30 21 45

Contig Future Incentive [0, 1]
−→
Ω 0.08 0.24 0.60 0.89 0.96

Symmetry Contribution [0, 1] 0.18 0.66 0.11 0.98 0.19
Symmetry Incentive [0, 1] Ω̄ 0.16 0.78 0.24 0.45 0.26
Symmetry Normalization [0.1, 3] ω̄ 0.73 0.77 0.72 0.55 1.09

Table 5: Results for stochastic optimization (evolutionary algorithm) search of parameter space. Note that
the search space T was limited to a minimum of 3 seconds to save computation time.

27

	Introduction
	Literature Review

	Corpus
	Human Accuracy
	Data Handling
	Preprocessing
	Feature Extraction
	Music
	Self-Similarity Matrix
	Cost Matrices

	Computing Best Segmentation
	Confidence Intervals
	Posterior Marginal of Song Boundary
	Posterior Marginal of Song Position
	Confidence Measures
	Index (Order)
	Time

	Experiments
	Training Set
	Number Of Tracks Known A Priori
	Evaluation
	Finding The Best Parameters
	Results
	Confidence Interval Analysis

	Number Of Tracks Not Known A Priori
	Comparison of Methods For Segmentation
	Results

	Conclusion
	Acknowledgements
	Materials

