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(Introductory remarks)

The title I have chosen Tor my talk today is The Interface

Messapge Processor, Its Algorithms, and Their Implementation.

Tn the talk I propose to discuss the system design of the com-
munications subnétwork of Interface Message Processors (or
TMPs) in the ARPA Computer Network, and how this communications
system has been implemented with hardware and software. The
fact is that a significant portion of the IMP design has been
implemented in hardware, and the operational IMP is far from
being a standard Honeywell computer. HoweVer, in keeping with
the area the organizers of this conference suggested, the talk
wlll emphasize those portions of the system implemented in
software. This emphasis 1s appropriate as it 1s the sof%ware
we have been readily able to change as we gained experie%oe with
the network and the functioning of our algorithms, and néar the
end of the talk I shall report on a major modification to the
IMP program correcting several significant flaws found during

the first two and one-half years of the ARPA Networks operation.
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You will probably have noticed by now that the documents
you have in front of you do not include the text of my talk,
I trust you will forgive me for this as there is a good reason
for not submitting the written text of my talk. The reason 1s
this. The IMP project is very much a team effort and 1t 1is as
a team we have written the major papers discussing the IMP. How-
ever, our work schedile does not now permit us to spend the time
and effort to produce the team effort necessary to write the
major paper required for the important topic the organizers of
this conference'picked for me. Therefore, in lieu of the
complete written text, you have been given an extended abstract.
At the end of the abstract is a 1list of papers written by the
IMP group, and by reading these papers you will perhaps get a
more accurate view of how the IMP group sees the ARPA Network
and the IMP than the view you will hear from me today. The
papers are listed 1n more or less chronological order. Al-
though I have listed exclusively papers written by
members of the IMP group at Bolt Beranek and Newman, that does
not mean that we do not recognize the efforts of others in the
field. In faot,‘each of the papers in the list
has an extensive bibliography. We have particularly been
influenced by Dr. Lawrence Roberts and Mr. Steve Crocker of the
Advanced Research Projects Agency (or ARPA), Professor Leonard
Kleinrock and hls students at the Network Measurement Center at
the University of California at Los Angeles, Dr. Howard Frank
and his colleagues at the Network Analysis Corporation, and the

network group at the National Physical Laboratory in England.
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(figure ~-- geovraphic map of the ARPANET)

As can be seen from the map, the ARFANET conslsts of
o number of =zeographically separated sitegs spread across

the United Statec.
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(fizure -- tyvical site)

Le consists of one to (potentially) four

boal
4
o

Fach sl
independent compuler sysbtems called Hosts and one
communication compubter system caelled an Interface
Message Processor or IKFP, All of the Hostg at a site

are connected directly to the INP.
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(fisure -- example INF and Host network)

The 1KPs themselves are connected together by
phone lines, although each InNP 1s only connected to two-to-five
other IsPs. The phone lines typlcally have a bandwidth of
50 kiloblts per second. The IMPs provide a communlications

gubnetwork througn which the Hosts comnunicate,

Suppcse one Host wishes to send data to snother Host.
The first Host presents a chunk of data, called a message

and required to be less than about 8100 bits long, to its

w

1P for transmiésion, Cn the messaze is written an address

or destination. The IMP promptly breaks the message into
things which are one thousand or less bits long and are called
packets., fach packet 1s given the address the message had

2s a8 wnhole. The INP locks at each packet's address and makes
a declision to which of the neighboring IliPs to send the packet
and sends it. The next IFP looks at the packet's address

and agzain makes a routing declsion and passes the packet

along toward its destination. Finally, the packets of the
message arrive at an IFP which passes them into the destination
Host~ So that the source Host may know that the message

has been successfully transmitted to the destination, the
destination IMP contructs an acknowledgment message,which

we call Ready For Next Message or RFNM, which is sent back

across the network to the source Host.
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(fimure -~ logical map of the ARPANET)

In the actuval ARPANZT, which 1s shown in the figure
25 of PMarch this year, the process of passing packets
from IiP to InP can involve a rather large number of IiPs
with a routing decision at each. For instance, consider
sending a message from HULTICS at MIT to the IBM360/91
at UCLA. There are a minimum of five hops between the two

sites and nunerous alternate routes,

All right. ©Now you have heard a once over lightly
description of the opveration of the I#P subnetwork. So far
probably most of you have heard 1little that 1s new to you.

So let us now consider the operation of the IMP subnetwork

in a little greater detail. 1I'11 try to point out some

of the more significant algorithms used in the INMP subnetwork
-as I go along, and I'11l try to say a few words about the

implementation of each.
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({"ieure -- Zost/INF interface)

We already noted that a iHost presents messazes To 1ts

IiP which are less than aboubt 8100 bite long These

messages are transmitted between the Host and IMP over
the Host/InP interface which is rigorously defined in

reference 7. Thils interface has two partg, the hardware

vart and the software part.

I'ne hardware part 1ltself has two parts, a standard
nortion supplied with the IMP which is identical (almost)
for all Hosts and a special portion supplied by the

Host., For simplicity and greater power, the standard interface

5
&

s been defined to be full~duplex. FElectrically, the
standard interface follows a bit by bit handshakinz procedure.
The procedure is something like vI'm ready to send a bit.n
"I'm ready to recelve a2 bit." rHere's the bit." vl.got the
bit." n"Goodl" The procedure also provides Tfor saying "That's
the last bit in the message." In our opinion this

procedure is important, We lmve to connect together all
kinds of disimilar computers with different word lengths,
different Speeds,.different loadings, and so forth; and we
did not want to place constraints on the Host's behavior.

We wanted both the Host and IMP to be able to start and

stop transmission whenever they wished., That 1s why an
asynchronous, bit by bit serial interface is used, Note

that the algorithm I have Jjust described is implemented

entirely with hardware,.



The software interface between an INP and a Host
is also sinmple, using a minimum numb~r of control
nmessazes. The Host specifies to its IMP the destination of
a message and a few other things in the first 32 bits of .
the messaze. This 32 bits is called the leader, lessages
arriving at the Hosts have the same information in the first
32 bits of the message except the destination is replaced

by the source,.

Neither the hardware nor the scftware interface between
the IMP and a Host puts any constraint on the content of
mesgsages other thaﬁ that they must have legal leaders and must
have less than the maximum length. In particular, messages
mzy be sent through the network contalilning arbitrary sequences

of bilts,
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(fimure -- segmentation of a message into packets)

Cn the left of the flgure we sece an examnple of a
messaze, thls one something over 2000 bite long., Noticse
the leader on the front of the umessazge which includes
some control informatlion, the destination of the message, and
something called the link number which is used as a message

identifier, between the Host and the IMP.

As stated before, the INMF brekks messages arriving
from its Hosts into packets 1000 or less bits long. There
are several reasons for breaking messages into packets:

1) a packet 1s more convenient to buffer in the IKPs than
messazes would be; 2) shorter checksums are sufficient for
vackets than would be required for messages; bdbut, mainly,

3) the earlier packets in a message can begin their journey
across the network while the later packets are still coming
into the IMP from the Host. This last point we feel 1is

very important. So important, in fact, that we go to

all of the tréuble of handling multl-packet messages when

a system based on only one packet messages would be enormously

more simple.

As the INMP segments a message into packets, 1t appends
to the front of each packet some control information called
the header. The header contalins the destination, the packet
number, & seguence number wnhich 1s used for ordering messages
upon thelr arrival at the destination and for discarding

duplicate packets and messages, and so forth.
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This segmentatlion into packets is completely invisible
to the YHosts as the packets of a message are réassembled
into the message at the destlination INF before the message

is sent into the destination Host.
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(fimure -- three color message/packet/ack/RFNI)

In this figure we can agailn see a message belng hroken
into packets -- this 1s the message leader., We can see the packets

heing transmitted bLebween INPS -~ these are the packets!

R

headers. And we can see the reassembled messame beling passed

4

into the destination Host. The figure also shows the Ready
For Next lMesgsage or RENM which we mentioned earlier, the
aciinowledamnent of the message, belng passed back across the

netwerk from the destinaticn IHNP to the source Host.

Also shown in the figure are these 1ittle m"ack" things.

) N -
neese

o}
%

re positive acknowledgments of packets as they are

]

transmitted between I¥Ps.. Packets are transmitted onto the phone

lines via a 24-bit feedback shift register which computes a

ot

check sum for the packet. This is the check sum, As

a packet 1s received from the phone line by the IIKP, the

packet 1is drawn through a matching 24-bit feedback shift

register which recomputes the packett!s check sum and checks
whether the packet stlill has the same checksum as when 1t was
trensmitted, If the packet has been recelved incorrectly,

it is discarded. If the packet has been rorrectly recelved,

a pocsitive acknowledgment is return to the transmitting IMNF.

Fach IMP holds on to a packet until it gets a positive acknowledgment
from the next IMP down the line that the packet has been properly
received. If it gets the acknowledgment, all is well; the

IMP knows that the next IMP now has responsibility for the packet

and the transmitting IMNP can discard 1its copy of the packet.
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If the transmitting INP does not receilve a positive acknowledgment
soon, it retransmits the packet, thus producing essentially error-
free transnmission. It keeps on doing that. Individual packets,
even within a single message, may go out over different

lines to the same destination. At every node the packets

o thousgh an INP, each IMF stores the packet in core memory,

and sends 1t out again along the next 1ine, each time

tenaciously holding the packet and retransmitting it until

it 1s acknowledged. As We have already sald, at the destination
I#P the packets are reassembled into a message and transferred
into the destination Host computer. The process of
acknowledgments and retransmission in thelr absence can result

in duplicate packets. These must be sorted out at the destinatiocn

1KP.

Notice that the Ready For Next lessage 1s itself
a message and 1is acknowledged as it passes between each

pair of IMPs,
Let me emphasize two points about packets:

First, packets are permitted to be of variable length
from one character (excluding the header) to about 1000 bits
(including the header). The IiP's modem interface transmission
hardware adds framing characters to each packet as it is transmitted

onto a phone line. At the front of the packet two
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characters (DLE & 3T%) are added indicatling the besinning

of the packet. At the end of the packet two characters (DLE & ETX)
are ndded indicating the end of the packet. The checksun

is appended after the end of packet characters. The 1liP's

nodem interface reception hardware has the capability of detecting
the start and the end of a packet from these characters thus
freeing the prosgran from the burden of deteéting packet

boundaries.

Second, there 1s no restriction on the content of a packet,
The system can handle transparent binary with no code
restrictions. This transparency 1s achieved by a method
known as DLE doubling (QUOTE QUCTEZ for fans of LISP). If
the data itself contains a DLE, the character which introduces
the packet start and end characters, that DLE is doubled by
the transmission hardware. At the receiver, the hardware
collapses double DLEs back into one. So there is complete
transparéncy on the IMP to IMP channels as well as the Host
to IMP channels., Thls 1s a very important point. All too
many networks require transmission to be limited to characters
from a particular character set. Besides preventing the
network's users from sending arbltrary messages, the designers
of the network are prevented from such things as loading

preograms over the network.

Notlice that much of our INMP to I¥P communication algorithm is
performed with hardware. Programs are particularly bad at
generating checksums, scaning for message boundries, and
so forth, especlally when it must be done on a character by

character basis. Therefore, we do this with hardware.
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You now have a fairly detalled understanding of the
design of the INMP subnetwork, Cur main concern has been
that bits get transmitted reliably across the network, and
to this end a number of other features have been built

into the IliPs and the network which are worth mentioning.



e cross natching
e qutomatic power failure recovery

e watchdog timer

[

e network control cenier

1

e network measurement center



(fizure -- other features of the IIP)

First there are our cross patchling facllitles.
Whenever something goes wrong in a2 complicated system, there
is a great deal of finger pointing, and the more people
involved, the more fingers there are to point. We felt
it was essentlial to be able to isoclate faults; and so
21l the interfaces on the IMNP, both to the Hosts and to the
lines, can be automatically cross patched, output back into
input, under program control. We are able tovexperiment’and
to decide whether a fault 1s in our IMP or the telephone
lines or the Host. If we tell the telephone company 1t is
their phone line, then it always 1s thelr phone lilne; we
aie never wrong about thet. This 1s a very important pcint.
People who build systems have to think through, from the
beginning, how they are to be tested under actual operation.
The employment of automatic program controlled cross patching

has turned out to be an extremely powerful tool.

The IMP has automatic power failure recovery. When
the power falls, which happens rather frequently in the United
States, the IMF turns itself off cleanly. When the power
returns, hopefully equally frequently, the IMP turns 1itself

back on and starts up at the correct place.
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The next point 1s a little more complicated. This
is a system called the watchdos timer. Every few hundred

milliseconds if 1t 1s operating correctly, the prozram

o

resets the watchdog timer. If the watchdog timer is
not reset for too lonz, it decides that program is not
operating properly and generates an interrupt to a particular
place in memory. The program at this place in menory
then tries to reload a new copy of the whole IliP prozran
from one of the neighboring IIPs., This scheme 1is not
foolproof, but it does repalr some program breaks. It also
has an interesting and powerful side benefit. The fact
that an IMP can be reloaded from its neighbors pmeans we

an change the programs in all of the IMPs from BB&N,

We can set up at 284N, make a change 1n the program in our
InP, and then cause the entlre system to reload, suitably
controlling that process from BB&K. This has turned out

to be a powerful tool for a distributed network of this

kind.
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At BBZN we also have a network control center which
can do thinzs like debus programs in remote IKPs., Tach
IINP in the field has something which has been labelled DDT,
o debugcins vrosram vwhich 1s part of the operational INMP
program, and which can be run remotely from the network
control center. We can examine core, changze core, and
look into the system as it is operating in each of the IkPs
in the field. +Jhen a Host has troubls debugging its IHP/Host
program, for instance, we can look at IiP core and help

the Host debuzy thelr prozram without leaving home. This

o]

saves a lot of airplane trips. The network control center

@

zlso recelves a message from every INP in the network
every few minutes that glves the operational status of the
IFP, the status of the Hests connected to the IMP, and
the status of the telephone lines connected to the IMP.
These messages also include a record of the amount of
traffic that is passing between the IMP and 1ts Hosts.
This information is tabulated monthly and is passed on

to ARPA to give them some indication of the utilization of

their network.
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Since the ARPA network 1s an experimental system,
a number of people are interested in how 1t woriks.
Cne of the Host organizations, Frofessor Kleinrock's
group at UCLA, was given the gpecific contract to measure
the performance of the network as 1t develops. TIhis
is done at the network measurement center at UCLA. Because
of the desire to wmeasure performance, the INP program
includes a lot of extra storage space and code to examine themselves
2s they operate. Tnls is not done all the time, but can
be turned con when required. Synchronized snapshots of
“Fs can be tasken every one-half Second, and
traffic surmmaries over ten second intervals can be taken.
The snazpshots and summaries are packaged up in special
messeges which are sent to Professor Kleinrock or at least
to UCLA. To aid in the méasunement_process) the IMPs can
also be made to generate artificiai traffic, There is
also a very powerful facillity which we call tracing availlable
in the IlMPFs. The notion here is that one can put a special
bit on in messages which will cauée every packet in that
message to be traced as they pass through INPs on thelr
way to theilr destination. Thus as each packet to be traced
passes through an INP, the IKFP sends a speclal message
to the network measurement center saying that the packet Jjust
went by. This provides a method of making a very fine grained
study of the operation of the system, but it also tends
to create an enormous number of messages,all of which are

dumped on Professor Kleilnrock,



The orgarizers of this conference specifically asked

ne to discuss the IMPs software, so I'll do that now.

Inplementaticn of the IsPs required the development
of @ sophisticated operaticnal computer prozram. TIhe

principal function of the operabtional program is the processing
of packets. This processing includes segmentatlon of

Host messages into packets for routlinz and fransmission,
building of headers , receiving, routing, and transmitting of
store and Torward packets, retransmitting unacknowledged

tstg, reassenbling packets into messages for transmission

3 g

into a Hosgst, and generatince Ready For KNext lessages, acknowledgme

and other control messages. The program also monitors

network status, gathers statistics, and performs on-~line

testing. Thig real-time program 1s an efficient, interrupt

driven, involute machine lanzuage program that coccuples somewhat

more than 6000 words of 16-bit memory. It was originally
esigned, constructed , and debugged over & pericd of about

one year by three programmers. Fkore recently, after about

two and one half years of operation in what is now 25 IlPs

thrzouzghout the network, the operational program has undergone

a significant revision. This revision was implemented and

debugzed by one programmer over a period of about six months.,
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(fisure -- map of core storage)

The operational IFP prosram 1s composed of a number
of functionally distinct pleces; each plece occuples no more
than cne or th pages of core -- a core page is 512 16-blt
words. These programs communlcate primarily through common
registers that reside in paze zero of the machine and are

directly addressable {rom all pagos of menory.

)

The ms main data structures are tables and

]

roge

&

gueues. Th

(¢

w

buffer storaze space 1s partitioned into about

50 fixed lensth buffers, each of which is used for storing

le packet. An unused buffer is chained ontoc a free buffer

a sin

[v2]
®

Q.

list and is removed from this list when it is needed to store

Vol

m

an incoming packet. A packet, once stored in a buffer,
is never moved. After a packet has been passed onto another
IMP or a Host, its buffer is returned to the free list.
The buffer space 1s partitioned 1n such a way that each
process (store-and-forward, Host traffic, etc.) is always
guaranteed some buffers. For the sake of program speed and
simplicity, no attempt is made to retrieve the space wasted
by partially filled buffers.

In handling store and forware traffic, all processing
is on a per packet basis, Further, although traffic to
and from Hosts is composed of mesSages, the IMP rapidly
converts to dealing with packets; the Host transmits (we presume)
a message as a single unit but the INP takes 1t one buffer at a
time. As each buffer is filled, the program selects another
buffer for input until the entlre message has been provided for.

These successive buffers will, in general, be scattered throughout
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the memory. An eguivalent inverse process occurs on output
to the Host at the destination IFP., No attempt 1is ever
made to collect the packets of a mesgaze Into a contiguous

portion of the memory.

Buffers currently in use are either dedicated to an
inconing or an outzoling packet, chalned on a gueue awalbting
processing by the program, or beina processed., Occasionally,

a buffer may be simultanecously found on two gueues.,
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(fimure -- simplified five circle dlagram)

The fiszure shows in schematic form the flve prosram
modules most directly conczrned with packet processing.
The Host to IMP routine handles 23Sages being transmitted
from one of the IiP's Hosts. The routine uses the leader
to construct a header that is pr xed to each packet of the
messagzge, It also segments the message into packets and

and pokes the task interrupt.
passes eacn of the packets to the task routine/l The routine

tren acquires a free buffer and sets up a new input. The

oy
W

routine 1s serlally reentrant and services all Hosts connected

to the INP.

The task routine uses header information to direct
packets to their proper destination. The task routine
is driven by the task interrupt, a program setfable interrupt,
which is set by each prozram which puts a packet on the task
gueue., Packets for a locel Host are passed to the IMP to
Host prozram. Packets for other destinations are placed

on a modem output queue as specified by the routing table.

The IKP to modem routline transmits successive packets
from the modem output gueues, and sends acknowledgments for

packets received by the modem to INP routine.

The modem to IMP routine receives packets from
the phone lines and passes them to the task routine.
The INP to Host routine sets up successive outputs

of the packets of a message found on the Host output queue.
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elso constructe Ready For lMext liessanes for messages passed

a Host and 2ives them to the task routine.
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figure -- timeout routine execution pattern)

The timc-oub roubine is started every 25.6 milliseconds
by a clock interrupt. The routine has thnree sections:
the fast time-out, the medium time~-out and the slow
time-out. The timeout routines do such thinzs as wake
up Host or modem roubtines wnhich have asked to be awakened,
garbage collection of tables, transmission and updating
of the routing tables, marking lines alive or dead,
and so forth.

The three routines execute in the pattern show in the
figure, and although they run off a common interrupt,
are constructed to allow faster routines to interrupt
slower rautines should a slower routine not complete execution
before the next time-out period.

As Just mentioned, one of the tasks of tThe timeout
routines 1s garbage collection. Every table, most gqueues,
and many states of the prozgram are timed out. Thus if an
entry should remain in a table abnormally long or if a
program (say IMNP to Host) should remain in a particular state
for abnormally long, this entry or state ié garbage collected
and the table or program 1s returned to its initial or nominal
state, In this way, abnormal conditions which do happen in
blg systems, especially when autonomous computer such as
a Host and the IKP are communicating, are not allowed to
hang the system up indefinitely.

The way we frequently scan a table from the timeout
routines is interesting. For instance, suppose we must

look at every entry in a 64 entry table every now and then,



We could jﬁst walt for the proper interval and then look

at every entry in the table on one pass through the timeout
routine. However, this would cause an enormous transient

in the averaze timinz of the I[P progrém as a whole., So
instead, we look at one entry each time through the timeout
routine, This takes a little more time total but

is much less disturbing to the prozram as a whole. A particular
example of the use of this technique 1s with the transmission

of routing information to the TIPS neighbors. In general,

an IMP can have five neighbors. Therefore, 1t sends routing

information to one of its neighbors at each of thoe medium
fa)

and the slow timeout perious.

The prozram has a small initialization sention and
a sizable background loop. The backgroud loop includes
handling the I:Ps teletype, a debugging programming which

resides in each IILP, the statlistics programs, the trace

programn, and several other functions.

The network control center and the network measurements center’
fregquently find it useful to communicate with one of these
background programs, So that these programs may send and
recelve messages from the network, they are treated as fake
Hosts. The Host to IMP and TMP to Host routines both think
they can handle eight Hests although there will never be

more than four real Hosts on an IFP., The other four Hosts

are these background programs which simulate the operation

of the Host/INP data channel hardware so that the Host/INP
routines are unaware they are communicating within anything

other than a real Host. This trick saved a large amount of code,.
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(figure -~ program control structure)

It is characteristic of the ILP program that many
of the main routines are entered both as subroutine
calls from other prograns and as interrupt calls from the
hardware. The resulting control structure is shown in the
fizure. The programs are arranged in a priority order;
control passes upward in the chailn whenever a hardware interrupt
occurs or the current program decides that the time has come
to run a higher priority program, and control passes downward
only when higher priority programs are finished. No progran
may execute i1tself or a lower priority program; however,
a progran may freely execute a higher priority program.
This rule 1s similar to the usual rules concerning priority

interrupt routines,

In one important case, however, control must pass
from a higher priority program to a lower priority program -—-
namely, from the several input routines to the task routine.
For this special case, we modified the computer hardware
| to include a low-priority hardware interrupt that can be set
by the program. When this interrupt has been honored (that
is, when all other interrupts have been serviced) the task
routine 1s executed. Thus, control is directed where needed

without violating the priority rules.

some routines must occaslipnally walt for long intervals
of time., Stoppling the whole system would be intolerable;
therefore, should the need arise, such a routine is dismissed,

and the timeout routine will later transfer control back to



of Tesponsibility among various programs achleve the following
timing goals:
1) No prorram stops or delays the system while waltling for
an event,
2) The program zracefully adjusts to the situation
wnere the machine becomes compute-bound.

The modem to IMP routine can delliver its current paciet

)

to the task routine bvefore the next packet arrives and
can always prepare for successive packet inputs on each

line., This timing is critical because a slight delay

Ly The program will almost always deliver packets waiting
to be sent as fast as they can be accepted by the phone
line.

5) NWecessary vericodic processes (in the timeout routine)
are alwajs permitted to run, and do not interfere with

input-ocutput processes.
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(Cizure -~ four algorithms)

The last section of my talk will describe in considerable
detail four of the algorithms used 1n cur subnetwork
deslan., Each of these four alzorithms is implemented with
software, The alzorithms are;
the IiP to IMP transmission control algorithm
the TilP's Host to Host transmission cortrol algorithm

the flow control and lockup prevention algorithnms
the routing algorithm.

RSV VI
S N N

The first three of these algoriths have recently been
changed after extensive use in the operational network,.
In each case I'll sketch what was done before and then
describe the current practice. The fQUPth algorithm
will probably change in the near future, In this case
I1t1] describe the current algorithm, its features aﬁd

failings, and the proposed replacement algorithm.
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(figure -- serisl aclks)

We now take a close 1look at the algorithm used
for INP to IKP transmissipn control. As we have already
noted, the modem interface hardware has the capabllity
of generatinz checksums for outgoing packets and checking the
checksums on inconing backets. This allows packets
which are incorrectly transmitted to be discarded without
acknowledzment. Packets correctly received are acknowledged.
A good IKP to INMP transmission control algorithm, besides
detecting errors, acknowledging good transmissions, and
providing retransmission in the event of errors, would be
improved if'it detected duplicates that are generated
by retransmission. Cur INMP to IFP transmission control

algorithm has all of the above properties.

A number of loglcal '"channels" are maintalned between
each pair of IliPs. Let's consider but one channel to begin
and let's further consider packet transmissions only one
direction on this channel. Of course, acknowledgments go
the other direction on the channel. At both the transmlt
and receive end of this channel a one bit sequence number
is kept. We call this bit an odd/even bit, represented
as "o/e" in the figure., Both the transmit and receive
odd/even bits are initialized to zero. Also, at the
transmit end a used/unused bit is kept for the chaﬁnel.

It is of course initialized to zero meaning unused.
When it is time to transmit a packet, a check 1s first
made for the channel being unused. If 1t was previously unused,

it 1s marked used and the packet l1s transmitted, The



state of the transmit odd/even bit is included with the
packet. When the packet arrives at the receiver, assuming
the packet is received correctly, the packet's odd/even
bit is checked against the receive odd/even bit. I they
match, the packet 1s accepted and the receive odd/even

bit i1s complemented. Ctherwise the packet would be irmnored.
In any case the receive odd/even bit is returned as an
acknbwledgment, At the fTransmitter, if the acknowledgnuent
bit does not match the transmit odd/even bit, the packet
has beén successfuliy sent and acknowledged and the packet
is discarded, the channel is marked unused, and the
transmit odd/even bit 1s complemented, Ctherwise the
acknowledzment 1g a duplicite and is lgnored, Suppose
now a second copy of the packet arrived at the recelver,

a packet which was sent before the first acknowledgment
had a2 chance to get hack to the transmitter., When this
packet arrives at the receiver, 1its bdd/even bit de=s

not match the receive odd/even bit and so that packet

is discarded as a duplicate. Nonetheless, an acknowledgment
is sent for the packet using the present state of the
receive odd/even bit. When the acknowledgment gets to
the transmitter, it does match the transmit odd/even bit,

so the acknowledgment 1s a duplicate and 1s ignored.

The only subtlety in this algorithm 1s that the
acknowledgment bit 1s the state of the receive odd/even
bit after it 1s perhaps complemented rather than before
it 1is perhaps complemented. Hence the need for the

not matcht rule when the acknowledgment arrives at the
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The above alszorithm will be familiar to the representatives
of the National Fhysical Laboratory.

Because of the potentially long distances between
IMPs, one channel is not enough to keep the inter-INP
lines fully loaded. Therefore, we have chosen to
supply eight loglcal channels between each palr,

It is not necessary to maintain orderinz of IHMP Lo

I1¥P trensmissions since packet ordering is performed

at the destination I¥P. vThis means that the transmit
channels can be filled in any convenient order, and

at the recsive side, packets can be forwarded through the

network as soon as they are correctly received regardless

of the channel over which they arrived,

To aveid reguiring separate packets for acknowledgments,
something we did until recently, acknowledze bits are
"pigzy-backed" in packets going the other way on the line.

In fact, all eight receive odd/even bits are transmitted
with every packet going the other way. In the absence of
any traffic going the other way on the line, a packet
carrying only the eight acknowledgments is sent. This
results in acknowledgments getting back to the transmitter
- very fast. Therefore, the transmitter knows very soon
whéther a packet requlres retransmission or not, and
(especially) in the absence of other traffic can
retransmit the packet immediately without walting for

any timeout period. This 1s also in contrast to our practice
up until recently. We used to walt over 100 milliseconds
for an acknowledgment before we decided the acknowledgment
would not be forthcoming and retransmitted the packet,

Our new system of packing eight acknowledgments into



every packel zolnz the other way and retransmitting without
walting for a timeout period, saves both nrozram and
line bandwidth, lessens packet delay, and eases our

buffering problems.

In view of the large number of channels, and
the delay that is encountered on long lines, some packets
may have to walt an inordinately long time for transmission.
We do nct want traffic which is essentially interactive
L be subjected to walting for perhaps several thousand-
bit packets to be transmitted, multiplying by ten or
more the effective delay seen by the source., We therefore,
have instituted the followingz transmission ordering schene:
first we send new priority packets, then any new non-priority
packets, and then if there are no new packets to send, we

retransmit previously unacknowledged packets.
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We move now to our Host to Host transmission control
alsorithm, Ve introduced the technique of breaking Host
messazes into packets to ninimize the delay seen for
long transmission over many hops. We also allow several
messages to simultanecusly be in translt between a gilven
pailr of Hosts. However, the several messages and the
paokgts within the messages may arrive at the destination
IiKP out of order, and in the event of a broken IIP or line,
there may be duplicates. The task of our Host to Hest transmission
control algorithm is to reorder packets and messages at
their destination, to cull dupnlicates, and after all the
packets of a message have arrived, pass the message on to
the destination Host and return a Ready For Next HMessage
to the source., Until recently sequential message numbers
were assligned to each message over each link -- by over a gilven
link, I mean all of the messages having a common number
in the 1link fleld of their leader. This message number
was used to detect and discard packets from messages other

than the current one based on the rule that on each link

between a palr of Hosts, only one message may be in transmission.
We recently changed the above strategy in two ways.

First, 1t should be possible to have more than one
message in transit between a palr of processes. In the past
a Host could use more than one link to achleve thils
effect by "spraylng'" the tranmissions from one process on many

links. However, 1t seemed that thils was not the correct way
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to use links. They should be used for (and the Host /Host
protocol uses them for) mulblplexing connections to the

various processes in a Host. The IMP did nob control the
number of 1links in use, except to sel an upper bound, but

this lack of control led to congestion problems which I'11

come to shortly. Therefore, we decided tﬁat the old function
of the message number would be expanded to include the function

of ordering Host to Host transmissions.

Specifically, we now allow up to four messages to
be in transmission from a gilven source IKP to a glven
destination IiP. All of the source and destlination Hosts
share this message spoce. There 1s a message number assigned
to each messagze at the soufce and the destination has
a window of four acceptable message numbers out of a
message-number space of 256. Nessages With out-of -range
message numbers are discarded, as well as duplicate messages
and duplicate packets., Ready For Next Messages are
still returned for each message successfully received.
The Hosts know nothing of these message numbers: they
are used internally to the IMP subnetwork to order messages

into the destination Host.

Second, Wwe also wished to allow for a priority path
between Hosts, which was able to bypass the regular message
orderinz scheme., That is, there should be a second path
between Hosts in which messages can flow independent of the
regular path, and when the next priority message 1s ready,
or the next regular message 1s ready, the appropriate message is

given to the destination Host. We have implemented this bv
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adding a two-bit priority-ordering number to the
message numpber. Thus the message number sorves the
functions of detecting duplicates for all messages and ordering

reeoular messages; the order number orders prlority messazes.

For Qxample, if we use the letters A, B, C, and D
to denote the order numbers for priority messages and
the absence of a letter to indicate a non-priority message,
we can describe a typlical situation as follows: The
source IMP sends out non-priority message 1, then
priority messages 2A and 3B, and the non-priority message
L, Suppose the deétination TKP receives these messages
in the order 33, 2A, 4, 1. It is accepting message numbers
1 throuzh 4, z2nd message number 1 and order number A are
the next in sequence to be passed on to the Host. Therefore,
it passes these messages to the Host in the order 24, 3B,
1, 4. ©Note that message number 1 could have been sent
to the destination Host first if it had arrived at the
destination first, but that the priority messages are allowed
to vleapfrog" ahead of message number 1 in the event it
is delayed in the network. Note also that the IMP holds
3B until 2A arrives as the Host must receive priority
message A before 1t recelves priority message B, Like-~

Wwise message 1 must be passed to the Host before message 4,

In addition tc the window of acceptable message numbers
that the source and destination IKPs maintadn, there
is a set of bits corresponding to outstanding messages.

The source IMP keeps track of whether a response has come in
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in the form of &« Heady FTor Next lessage typilcally for

ze sent  in order to detect duplicates. I'ne

<

&

each megs
destination 1P keeps track of whether the message 1is
complete (that 1s, whether all the packets have arrived)
in order ﬁo detect duplicate fransmissions.. The source
IFPralso times out the message number, and 1if a response
has not been received for a message within 30 seconds, the

source IlP sends out a control message with the timed-out

message number, questioning the possibility of an incomplete
transmission. The destination INP must always return

a Ready For Next HMessage for such a control message stating
whether it saw the original message or not, and the source
I¥P will send the message number question every 30 seconds
until 1t receives a response., This technigue allows the
source and destination INPs fto be synchronized in the event
of & lost message or Ready For Next Message., It should be
noted that this kind of failure 1s very infrequent, ard
happens only when an intermediate IINP falls and in doing

so destroys a message.
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and now on to flow control and lockup preventlion,

Until recently the IiFs placed no restrictlion on

x

n

€
ct

the nunber of message hat could simultaneously be

in transit betﬁeen a palr of Hosts other than that only

one message could be outstanding on a given 1link at any
time. We have long known that this is inade@uate protection
agalinst network congestion and even network lockup.

For instance, even with the four message window described
above, reassembly storage at the destlnation can be
completely ﬁsed up by partiaelly reassenbled messages

from several Hosts, and neighboring IEPs can fill with
store~and-forward packets for the destlnation IMP. Once
this kind of_conjastion has developed, a lockup which

we call reassenbly lockup can easily occur when the missing
packets for the messages belng reassembled are held two

or more hops away from the destination.

We have developed and recently installed a method
of controlling such congestion which 1s based on
allocation messages sent from the destination to the
source. When an IMP has a multi-packet message to send,
it first sends off a "request for allocation" of reassembly
space to the destination. Some time later it wilill recelve
an v"allocate'Y message which means the destination INP
has reserved space in which to reassemble the multi-packet
megsage and then the source INP can send the multi-packet
message, This procedure ensures that the destination

1s never swamped and that reassembly lockup will not occur.
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The request/allocate seguence does introduce a certailn
amount of overhead, however, for multi-packet messages,.

Since we wish to provide as much bandwidth as possibdble for
multi-packet messages, we provide a mechanism such that

there 1s no necessity for the "request for sllocation® in

the case of later messages 1in a steady stream of traffi-.

When the destination IFP has glven a multi-packet message

to its Host, 1t returns a Ready For Next M ssage tTo the

source and at the same time allocates reassembly storage

for the anticipated next message. The source IMP receives,

in effect, a new allocate with the Ready For Next Message

and if the source Host sends another message to the destination
within 125 milliseconds, the message can be transmitted

without wailting for an allocate. If the source iost

waits too long, the source IMP will return the allocation

with a 'give back" message, After this, the nzxt time the

Host tries to send, the IH¥P will transmit a "reqguest

for allocation', and wait for an "allocate" before proceeding.

For single packet messages, we are interested in ninimizing
the delay encountered through the network. The reqguest
mechanism used for multi-packet messages would slow down a
one packet message too much., Instead, we send the one
packet messages along with thelr "regquest for allocation,?”
and save a copy of the message in the source IMP, If the
destination IMP can take the message, 1t does so 1mediately
and returns a Ready For Next Message to the source., If
there 1s not enough storage at the destination, it sends

back an "zllocate" messamze when the storace harnmac



avellable. ‘When the source IMP recelves this allocate, it
retransmits the message (without the request indicatilon
this time). In this approach, Heaay ror Next lessages
are passed alnng to the source Host as before, but

requests and allocates are internal to the IMP suwnetwork,
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(figure -~ properties of a routing algorithm)

Finally, let's discuss the IiP's routing algorithm.
Pirst, I'11 list the properties we believe a good routing

algorithm should have.

A good routing algorithm should be adaptive to the
ups and downs of IKPs and lines. That is, traffic should be
routed around broken lines and IHPs as long as any path
exists to the desired destinatlion. Thils may even reqguire
that & packet be returned over a path it has already been
over., For instance, conslder a packet going the short
way around a circle frowm its source to its destination when
a line ahead breaks. The packet should turn around and
go back the other way around the circle., Incidentally,
if a routing algorithm 1s adaptive to the ups and downs
of lines and IK¥s, 1t becomes very easy to change lines

and add IMPs without any change to the routing algorithm.

A good routing algorithm should move interactive
traffic through the network with minimal delay, This
suzgests interactive traffic should be rcuted via the shortest

path.

A good routing algorithm avoids the creation of congestion
or congestion itself by routing traffic around the_congestion

or potential conszestion.

A good routing alzorithm probably should not "bang."
By '"banzing'" we mean the abrupt shifting of traffic routes.
We don't have theoretical evidence that banging is bad but

most of us feel that banging is bad., It must be better
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to changze thines smoothly.
(figure -- load splitting)

A good routing algorithm allows what we call load
splitting. Suppose Host A has 200 kilobits of traffic
per second for Host B. Note that there are four
50 kilobit paths between Host A and Host B. Load splitting

means that the desired 200 kiloblts can simultaneously

e gsent on all four lines.

(figure -- global maximal flow)
D

A good routing algorithm routes high bandwidth
tPaffic to achieve the maximal global flow. Suppose
it 1s desired to send 50 kilobits of traffic from node 4 to
node D and the same time 1t 1is desired to send 50 kiloblits from
node F to node E, If the traffic from F to E as well as the
traffic from A to D must pass over link FE, the global flow is
50 kilobits. If however, either the traffic from A to D or the
traffic from F to E were to go around the other way via 1link BC,
the global flow would be 100 kilobits which is the maximal
global flow under the desired traffic loading. Of course,
it is clearly best for the A to D traffic to go via link RC
since that also minimizes the global delay. However, we consider
this a second order affect since we are concerned here with
only the high bandwidth traffic. Interactive traffic has

probably been sent via the shortest path.
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(figure -- fairness)

A ~ood roubing 2lgorithm should be fair. Consider
the figure in which it 1s desired to send 50 kilonits
of traffic from A to E, from F to G, and from 3 to I,
Cleerly the maximal slobal flow is attalned under this
desired loading by stoppinz all traffic from A to =
gince every bit of traffic from A to E reduces the global
flow by the same amount. But this 1s unfair. Falrness
demands that A be able to get some traffic to E, even if
it decreases the global flow. We don't really have a
solid definition of nfailr.® It might be falirest to give
all nodes an egual share of the avallable bandwidth. It
might be falr to gilve bandwidth to each user in proportion
to the amount of traffic they want to send, but this lets
the big users drive the 1little users out. ¥y inclination

is to call 1t falr if no one is cut out entirely.
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(fisure -~ throee routing tables / current)

Now I will tell you aboubt our current routing algorithm,
The reuting alsgorithm directs esach packet to its destination
along a path for whnich the total estimated transit time
is smallest. This path 1s not determined in advance,. Instead,
each IFP individually decides onto which of its output
lines to transmit a packet addressed to another destination.
This selectlon is made by a fast and simple tabhle lookup
procedire. For each posgible destination, an entry in the
table designates the avpropriate next leg. This routing

table is updated every half second as follows:

RFach INMP maintains a table which gives an estlmate
of the delay it expects a packet to encounter in reaching
every possible destination over each of its output lines,
Thus the delay to destination 4 using line 2 is found in
this entry. Periodically, every half second, the INP
selects the minimum delay for each destination and puts it
in thils table, the minimum delay table., It also notes
the line giving the mininmum delay and puts the number of
the line in this table. This is the routing table and
to route a packet to a particular destinatlion, the correct
line to send the packet out on 1s merely looked up in this
vtable. Also every half second, the IMP passes 1its
minimum delay table to each of its immediate neighbors; that
is, it sends the nminimum delay table out each of 1ts phone
lines. Cf course, before the minimum delay table is transmitted
to the nelghboring IlNMPs, the INP sets the minimum delay

to itself to zero.
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Since all of the neighbors of an IiP are also
sendine out thelr minimum delay table every half second,
with thelr own entry set to zero, an IMP recelves a
mininpum delay table from each of its neighbors every

half second. These tables are read in over the rows

m

of the delay table as they arrive. The row to be written
over is the row corresponding to the phone line thst

the srriving minimur delay table came in over. After

all the neighbors estimateé have arrived, the IKF adds

to the neizhbors estimates the delay the INP itself adds.
This is done by adding the IIP delay table to each column
of the delay table. Fach entry in the IIP delay table

ig formed by adding the constant four to the number of
packets on the ocutput cgueue for the line corresponding

to the table entry. The formation of the constant 4

is interesting. Tt includes 1 for the packet currently
being outpuf and thus no longer on the output queue. It
includes 1 for the speed of light to get the packet

from one end of the line to the other -~ this is obviously

a very gross approximatinn, It includes 1 because

we felt like it. . " and it includes
1 because there is fi a buz in the program which has never
been fixed. The effect of these last 2 1s to bias the

routing towards the shortest path. Theoreticlans have told

us that thls blas prevents oscillations that would otherwise
plazue out routing algorithm. The fact 1s that in practice

it does not oscillate,



This routing algorithm scores guite well on the
properties we stated earlier that & good routling algorithm
should have. It is adaptive to the ups and downs of lines
and IiFg. Because of its stronz blas toward the shortest
path 1t tends to get interactive traffic quickly to its
destination. It load splits over up to two lines. It 1is
fair in the sense that it puts no limits on any source.

est of all, it 1s guite simple. In particular, it

uy]

does not require the IKP to know the toprolozy of the
network. The INP does not even need to know its neighbors!
idertities, Under existing loads in the ARFPA network

our current routing algerithm works very, very well.

However, we must look to the future when loads are greater,
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(figure -- diviclon of excess capacltby)

We are presantly thinking about changing the
roubina algorithm in the hope gettling better global
flow maximization, better load splitting, and better
avoldance of congestion. -Our thoughts follow these lines:
the present routing algorithm has three faults: 1)
packets are routed out one line or another over a gilven
half second period, not a combination of lines, This

leads to poor load splitting and some banging. 2) currently

V3

o attempt is made to guench flow in the face of congestion.
The routing algorithm merely tries to route all traffic
presented to it. 3) the current routing algorithm is

too strongly blased towards the shortest path. This scometimes
leads to congestion as packets can be routed directly into
congestlion if the congestion is on the shortest path and

this does not lead to maximal global flow since that sometimes

requires some packets to be routed far out of thelr way.

Fault 1 1s quite easy to cure. A table of possible lines
will be kept for each destination. 2ased on other
considerations, the IMP will be able to route packets
on one or all of the possible lines.

FPault 3 will be cured by no longer propazating
least delay about the network. Instead, we wlll propagate
avallable capaclty about the network. Suppose for instance,

a given Host can receive 100 kilobits per second. This
100 kilobits will be divicded evenly and one share passed
to each neighboring IkP. Each neighboring IMP will in turn

divide the avallable capacity 1t was passed and pass some
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to each of its neigzhbors. Tnis will continue across the network,

l'ach time an I1MP recelves a packet, before the IMFP
acknowledges the packet, it will check if it has 1n
its tables enough avallable capacity to accept the packet.
If not, the packet 1s not acknowledged and 1s discarded.

The fact that the IFP did not have enough capacilty

o

in its table for the packet is indicative that the INP

and line capacity ahead on this path to the destination

ig insufficient. If there is enough capacity, the packet

is accepted and routed along the path of maximum availlable
capacity and the avallable capaclity 1is updated to show that
some has been used. Cf course, there will generally be
traffic for several destination at a given INP and therefore
the avallable capacity passed on for a given destination
must reflect that used for other destinations. This

is Just another way of saying that the sum of the capacity
any node passes on can't be greater than the sum of its
phone lines capacity and its buffering capacity. Although
in the absence of traffic, excess capaclty 1s passed out
evenly to each nelghboring INP, once one nelghbor begins

to use capacity, the remaihing capaéity is again passed out
evenly. This allows most of the capacity to be shifted to
where it is needed. A little blt of capacity 1is always

held for each other neighbor so that they can galin a foothold
when they begin to need capacity.. The shiftineg of excess
capacity 1s severly smoothed, Thus traffic must push long

and hard before 1t can capture a great deal of capacity.

In other words, we are trying to optimize for the steady state
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case, 5til1ll, we do let momentary transients through,
However, they are noted and subseguent transients are
prevented for a while. Notice that in curing fauvlt 3
we have also cured fault 2. This new algorithm does guench

flow.

Cne more point, we plan to use the above algorithn
for non-interactive traffic., Interactive traffic will
continue to be sent via the shortest path and the capacity

it uses along this path noted.
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You have now heard a summary of the design and operation
of the INF subnetwork. You k ve heard a description
of the INP software system. And you have bee led through
the intricacies of the INMP's algorithms for transmission
control, flow control and lockup preventicn, and tvo
routing algorithms. Surely that 1s enough for now.
I will be glad to try to answer questions now or after the

.
sesglion.

Thank you,



