15405 - Which way home? Finding the origin of our Solar System's first interstellar

visitor

Cycle: 25, Proposal Category: GO/DD
(Availability Mode: SUPPORTED)

INVESTIGATORS

Name	Institution	E-Mail
Dr. Karen J. Meech (PI) (Contact)	University of Hawaii	meech@ifa.hawaii.edu
Dr. Marc W. Buie (CoI) (Contact)	Southwest Research Institute	buie@boulder.swri.edu
Marco Micheli (CoI) (CoI)	ESA SSA-NEO Coordination Centre	marco.micheli@esa.int
Dr. Jacqueline Keane	University of Hawaii	jvkeane@hawaii.edu
Dr. Jan Kleyna (CoI)	University of Hawaii	kleyna@ifa.hawaii.edu
Olivier Raoul Hainaut (CoI) (ESA Member)	European Southern Observatory - Germany	ohainaut@eso.org
Dr. Kenneth Chambers (CoI)	University of Hawaii	chambers@ifa.hawaii.edu
Dr. Harald Ebeling (CoI)	University of Hawaii	ebeling@ifa.hawaii.edu

VISITS

Visit	Targets used in Visit	Configurations used in Visit	Orbits Used	Last Orbit Planner Run	OP Current with Visit?
01	(1) A-2017-U1	WFC3/UVIS	1	18-Dec-2017 16:02:41.0	yes
02	(1) A-2017-U1	WFC3/UVIS	1	$18-D e c-201716: 02: 42.0$	yes
03	(1) A-2017-U1	WFC3/UVIS	1	$18-D e c-201716: 02: 43.0$	yes
04	(2) A-2017-U1-UPDATED	WFC3/UVIS	1	$18-D e c-201716: 02: 44.0$	yes
05	(3) OUMUAMUA	WFC3/UVIS	1	$18-D e c-201716: 02: 44.0$	yes

5 Total Orbits Used

Abstract

We request HST/WFC3/UVIS observations of A/2017 U1, a recently discovered fast moving and fast fading object that appears to originate from outside the Solar System. Rapid follow-up observations from the ground established the object's orbit as hyperbolic and thus ruled out that $\mathrm{A} / 2017$ U1 is a comet or asteroid. The proposed observations are critical to (a) determine the object's rotation period in order to allow observations to be performed at maximal brightness, and (b) obtain precise astrometry along an extended arc length in order to identify the region from which this object originated.

A/2017 U1 is the first known interloper from outside the Solar System, and the observations proposed here play a pivotal role in determining its origin.

OBSERVING DESCRIPTION

The proposed observation consists of two components that serve tightly related purposes: 1) Extend the astrometric arc in order to permit a refined orbit estimation that may allow us to uncover where the target originated. 2) Obtain critical light curve observations as the object is fading to provide accurate predictions of the rotational phase for our ongoing follow-up observations.

To achieve the first goal, we split our observation into three visits, distributed evenly over a 40-day period in order to maximize the observed arc of the interloper's orbit. The beginning of this period, and hence the time of the first visit, is set by the requirement to align HST's astrometric observations with those performed with groundbased facilities, which results in a date of November 22, 2017 (or within a day thereof) for the first visit. The end of the 40-day period, and hence the time of the third visit, is defined by the date at which our target is predicted to have faded to $\mathrm{V}=27.5$ which we consider the limiting magnitude for a credible detection with HST in a single orbit. We expect this to occur on January 01, 2018, but stress that adjustments in our photometric model may alter this prediction by a few days. The second visit should be scheduled near the midpoint between the first and the third visit in order to provide the best possible constraints on the target's highly eccentric orbit. Again, some flexibility is required to allow adjustment as the result of improvements in our model predictions.

To achieve the second goal, we allocate three orbits to the first visit, and one orbit each to the subsequent second and third visit. The longer, first visit aims to sample the target's light curve at high precision and over a sufficiently long time to tightly constrain both amplitude and period, both of which are crucial parameters of the photometric model that underlies the predictions driving the timing of visits two and three.

All observations will be performed with WFC3/UVIS and the F350LP filter in order to maximize system throughput. Since ours is a moving target, no dithering is required. We do, however, split each orbit into 5 subexposures using CR-SPLIT in order to allow efficient removal of cosmic rays and limit the track length of GAIA reference stars in the field that form the basis of our astrometric solution. Since our target is located at high Galactic latitude, the surface density of reference stars is low; we therefore request additional flexibility to allow scheduling of all visits (within the aforementioned windows) such that the number of GAIA stars is maximized.

Proposal 15405 - Epoch 1 part 2 (02) - Which way home? Finding the origin of our Solar System's first interstellar visitor

Proposal 15405 - Epoch 1 part 3 (03) - Which way home? Finding the origin of our Solar System's first interstellar visitor

Proposal 15405 - Epoch 2 (04) - Which way home? Finding the origin of our Solar System's first interstellar visitor

