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Zusammenfassung

In dieser Arbeit werden neue algorithmische Verfahren zur Behandlung spezieller Zahlen- und
Funktionenfolgen vorgestellt. Die Folgen, die wir betrachten, werden durch Systeme von Dif-
ferenzengleichungen (Rekurrenzen) beschrieben. Diese Systeme können gekoppelt, nichtlinear
und/oder von höherer Ordnung sein. Die Klasse der so definierbaren Folgen (zulässige Fol-
gen) enthält viele Folgen, die in verschiedenen mathematischen Anwendungen von Interesse
sind. Während ein Teil dieser Folgen mit bereits bekannten Algorithmen behandelt werden kann,
standen für viele weitere bisher keine geeigneten automatischen Verfahren zur Verfügung.

Im Mittelpunkt unseres Interesses stehen Algorithmen, mit denen bekannte Identitäten zwischen
zulässigen Folgen automatisch bewiesen und neue Identitäten automatisch gefunden werden kön-
nen. Zum Finden neuer Identitäten zählen wir dabei das Lösen von Differenzengleichungen in
geschlossener Form, das Finden geschlossener Darstellungen von symbolischen Summen sowie
das Finden von algebraischen Abhängigkeiten zwischen gegebenen Folgen. Außerdem geben wir
ein Verfahren an, mit dem manche Ungleichungen für zulässige Folgen automatisch bewiesen
werden können.

Zur algorithmischen Verarbeitung werden zulässige Folgen als Elemente von speziell konstru-
ierten Differenzenringen dargestellt. In diesen Differenzenringen werden dann Berechnungen
durchgeführt, deren Ergebnisse sich als Aussagen über die ursprünglichen zulässigen Folgen in-
terpretieren lassen. Bekannte Techniken für kommutative multivariate Polynomringe, insbeson-
dere die Theorie der Gröbnerbasen, werden dabei eingesetzt.

Teil der vorliegenden Arbeit ist eine Implementierung der vorgestellten Algorithmen in Form
eines Software-Pakets für das Computeralgebra-System Mathematica. Mit Hilfe unserer Soft-
ware ist es gelungen, viele Gleichungen und Ungleichungen aus der Literatur erstmals automa-
tisch zu beweisen. Außerdem haben wir mit derselben Software einige Identitäten gefunden, die
wahrscheinlich bisher unbekannt waren.

Stichwörter

Differenzengleichungen, Rekurrenzen, Identitäten, Symbolische Summation, Differenzenringe,
Gröbnerbasen.
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Abstract

In this thesis, new algorithmic methods for the treatment of special sequences are presented.
The sequences that we consider are described by systems of difference equations (recurrences).
These systems may be coupled, non-linear, and/or higher order. The class of sequences defined
in this way (admissible sequences) contains a lot of sequences which are of interest in various
mathematical applications. While some of these sequences can be handled also with known
Algorithms, for many others no adequate methods were available up to now.

In the center of our interest, there are algorithms for automatically proving known identities of
admissible sequences, and for automatically discovering new ones. By “finding new identities”,
we mean in particular solving of difference equations in closed form, finding closed forms for
symbolic sums, and finding algebraic dependencies of given sequences. In addition, we present
a procedure by which some inequalities of admissible sequences can be proven automatically.

For their algorithmic treatment, admissible sequences are represented as elements of certain spe-
cial difference rings. In these difference rings, computations are then carried out, whose results
can be interpreted as statements about the original admissible sequences. Known techniques for
commutative multivariate polynomial rings, especially the theory of Gröbner bases, are applied
to this end.

Part of the present thesis is an implementation of the presented algorithms in form of a software
package for the computer algebra system Mathematica. With the aid of our software, we suc-
ceeded in proving a lot of identities and inequalities from the literature automatically for the first
time. Additionally, with the same software, we have found some identities which were probably
unknown up to now.

Keywords

Difference equations, recurrences, identities, symbolic summation, difference rings, Gröbner
bases.
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1 Introduction

The whole is more than the sum of its parts.
——— Aristotle

The guiding principle in symbolic summation may be summarized as follows: if a quantity is
given in terms of an expression involving summation quantifiers ∑, we are interested in finding
a representation of the same quantity without—or at least with fewer—summation signs. Such a
representation is then referred to as a closed form, its systematic computation is called symbolic
summation. Despite the fact that summation, like integration, depends on experience, intuition,
and a “sharp eye” when it is done by hand, it turned out in the last decades that it can well be
done by the computer to a great extent. Symbolic summation has meanwhile reached a state
where problems of considerable difficulty can be solved automatically. It is now becoming a tool
of increasing importance in various branches of mathematics, especially in combinatorics.

Algorithms for symbolic summation operate on difference equations. Difference equations are the
discrete analogue of differential equations, with the shift f (n+1) playing the role of the deriva-
tion f ′(x). Computing a closed form for the sum ∑n

k=1 f (k) amounts to computing a solution F(n)
of the inhomogeneous first order linear difference equation F(n + 1)−F(n) = f (n + 1), called
the telescoping equation. A whole bunch of algorithms is known for doing summation, and, more
generally, for solving difference equations. These algorithms differ from each other in the class
of summands that they can handle, and in the kind of closed forms that they offer as results.

Classical symbolic summation focuses on sums whose summand f (k) is a so-called hypergeo-
metric term. A hypergeometric term is a solution of a homogeneous first order linear difference
equation whose coefficients are polynomials in n. Examples include exponentials, the factorial,
binomial coefficients, and products of these. The algorithms of Gosper (1978), Zeilberger (1991),
and Petkovšek (1992) provide together a complete algorithmic framework by which it is possible
to decide whether a sum F(n) = ∑n

k=1 f (n,k) with f (n,k) being a hypergeometric term with re-
spect to both n and k admits a closed form as a linear combination of hypergeometric terms, and
to compute such a closed form if one exists. Petkovšek et al. (1997) give a comprehensive ac-
count on these results. Implementations are now available for all major computer algebra systems
(e.g. Paule and Schorn, 1995; Abramov et al., 2004).

Not all sums encountered in practice have a hypergeometric term as summand, and there are sev-
eral approaches to do summation on greater function classes. One approach, due to Zeilberger
(1990), is to consider the class of (possibly multivariate) functions that can be defined via so-
called holonomic systems of differential-difference equations. In this approach, the functions
under consideration are represented by operators living in a certain non-commutative operator al-
gebra that annihilate the given function. Algorithms based on Gröbner basis computation in this
operator algebra are known for proving (Chyzak and Salvy, 1998) and finding (Chyzak, 1998,
2000) identities for holonomic functions. A univariate holonomic sequence satisfies a homoge-
neous linear difference equation with polynomial coefficients. In this special situation, holonomic
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sequences can be manipulated by classical methods using generating functions. Implementations
of these algorithms are available (Salvy and Zimmermann, 1994; Mallinger, 1996).

Another generalization of the classical summation algorithms employs the notion of a difference
field. In analogy to Risch’s algorithm for symbolic integration (Risch, 1969, 1970; Bronstein,
1997), Karr (1981, 1985) has devised an algorithm that finds closed forms of expressions given
in terms of nested sums and products. The sequences covered by Karr’s algorithm are called
ΠΣ-sequences. Schneider (2001) has generalized Karr’s algorithm in various directions. He has
also got the only known implementation.

The case of higher order linear difference equations was considered, e.g., by Hendriks and Singer
(1999). They introduce the notion of a liouvillean sequence in analogy to liouvillean functions
known from the continuous case, and study the problem of solving linear difference equations in
terms of these sequences. The mathematical foundation of this work is difference Galois theory
(van der Put and Singer, 1997).

For the study of nonlinear difference equations from an algebraic viewpoint, Cohn (1965) de-
veloped the theory of difference algebra, which can be seen as an analogue of the theory of
differential algebra (Ritt, 1950; Kaplansky, 1976). The method of characteristic sets provides
computational tools for the treatment of nonlinear differential- and difference equation systems,
which are based on differential and difference algebra, respectively. Characteristic set algorithms
for the differential case depend heavily on the chain rule for differentiation. Conversely, due to
the lack of a suitable chain rule for the difference operator, the development of characteristic set
algorithms for the difference case has not been as successful.

∗ ∗ ∗
Much more could be said about algorithms for difference equations, the sketch above is far from
complete. But in the present thesis, the previous work on symbolic computation for difference
equations plays hardly any role. Rather than extending and/or improving known algorithms,
our main interest is in providing algorithms for sequences that have up to now been out of the
scope of symbolic methods. Of course, it is pointless to think about algorithms applicable to all
sequences. Any algorithm can only deal with objects which can be described in finite terms, and
while there are uncountably many sequences already over {0,1}, only countably many objects
can be described in finite terms. Therefore, every algorithm is applicable only to a certain class
of sequences. We will define a very rich class of admissible sequences (Chapter 3), and develop
algorithms for answering questions about sequences in this class.

The more restrictive a class of sequences is, the more powerful algorithms can be devised for
it. Conversely, if a class of sequences is large, it can be difficult to find algorithms already for
answering “simple” questions about the elements of that class. Our class of admissible sequences
is quite large. It includes the class of ΠΣ sequences of Karr, which are defined by “nested”
difference equations, as well as the univariate holonomic sequences, which are defined by higher
order difference equations. In addition, also solutions of non-linear difference equations can be
treated.

The algorithms described in the subsequent chapters are capable of solving problems involving
admissible sequences that cannot be solved by any other algorithm presently known. The princi-
pal questions that we consider are the following.
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Deciding zero equivalence. We present an algorithm which for a given admissible sequence f (n)
decides whether it is identically zero (Chapter 4). This algorithm can immediately be ap-
plied to proving identities for admissible sequences. It is also used as subalgorithm for a
finder of algebraic dependencies (see below).

Proving inequalities. A procedure is presented by means of which inequalities for given admissi-
ble sequences can be proven automatically (Chapter 5). Though there is no sort of guarantee
that the procedure will be successful on a particular identity at hand, we were able to verify
a lot of inequalities appearing in the literature with our method. Our procedure is the only
systematic symbolic treatment of special function inequalities that we know of.

Finding algebraic dependencies (Chapters 6 and 7). Identities for admissible sequences, which
are of a special form, are algebraic dependencies. We present two methods for finding
algebraic dependencies between some given admissible sequences. Using these methods,
identities for admissible sequences can not only be proven, but even found algorithmically.
In Chapter 7, we restrict the attention to a small subclass of admissible sequences, the class
of C-finite sequences. We are able to give an algorithm that computes for a given choice of
sequences from this class a description of all algebraic dependencies between them.

Summation of admissible sequences. We treat the problem of finding closed form representations
of sums over admissible sequences (Chapter 8). The summation problem is the most im-
portant special case of finding algebraic dependencies in practice. Therefore it makes sense
to investigate specialized algorithms for doing summation of admissible sequences. Both,
indefinite and definite summation are considered.

The algorithms we present require only a moderate amount of mathematical background. Given
some admissible sequences f1(n), . . . , fm(n) over a field

�
as part of the input, our algorithms

construct a difference ring R containing some elements t1, . . . , tm which “correspond” to the se-
quences fi(n). Ideally, R will be isomorphic to a subring S of

���
containing f1(n), . . . , fm(n),

and the correspondence means that ti and fi(n) are mapped to each other via the isomorphism.
In general, S will only be a homomorphic image of R, with f i(n) being the image of ti. From
a computational viewpoint, the ring R will be a polynomial ring, or a quotient ring of the form
�

[X ]/a for some ideal a, and established algorithmic tools such as Gröbner basis techniques will
be applied for doing computations in that ring. The results of these computations in R will then be
interpreted as statements about the ring S, i.e., about the admissible sequences f1(n), . . . , fm(n).
Zimmermann (2005) is using a similar algebraic framework that served as a guide line for the
construction we are using. One of the main advantages of our definition of admissibility is that
we can always construct a suitable ring R where the questions listed above can be answered by
means of Gröbner basis computations. In particular, we can avoid the use of characteristic set
computations.

Though the class of admissible sequences includes several smaller classes that were defined for
other algorithms, such “special purpose” algorithms are usually superior whenever they apply.
Not only are these algorithms more efficient than ours, but also they are usually able to make
sharper statements about the sequences to which they are applicable. For instance, Schneider’s
summation package Sigma (Schneider, 2001) is able not only to simplify a given sum, but it can
also find out that a given sum cannot be simplified any further. Such negative results are out of
the scope of our summation algorithms (Chapter 8).
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Despite of this algorithmic shortcoming, we believe that the algorithms presented in this thesis
are useful in daily work with special functions and combinatorial sequences. In order to support
this claim, we have included more than one hundred examples, mostly taken from the literature.
Some of these examples were chosen just to stress the wide applicability of our methods, while
other—sometimes quite trivial—examples were selected for keeping more detailed illustrations
as simple as possible.

All examples have been computed using a new software package named SumCracker, which we
have implemented in the Mathematica system (Chapter 9). With this implementation, we want to
underline that our algorithms are not only of theoretical interest, but that the proposed methods
are actually feasible on current computer architectures. Parts of the implementation are rather
prototypical and do perhaps still admit considerable improvement with respect to efficiency. Even
so, we believe that the package is useful for practical work with special sequences that happen to
be admissible.

Some Remarks on Notation

The use of mathematical notation is not always as precise as it seems to be. For example, the no-
tation ∑n

k=0 ak can have at least three completely different meanings. Sometimes, the expression
refers to the value that is obtained by adding a0,a1, . . . ,an. Sometimes, however, the same nota-
tion refers to the sequence that maps every n ∈ � to the value a0 +a1 + · · ·+an. And sometimes,
∑n

k=0 ak is just understood as a “symbolic” sum, i.e., as element of some term algebra. We will
follow general practice and usually assume that it is clear from the context what the particular
meaning of an expression is. If space permits, we write a0 +a1 + · · ·+an instead of ∑n

k=0 ak when
n should be read as a particular, “known” integer rather than a symbolic variable, likewise for
products.

Following not so general practice we allow ourselves to write f (n) instead of f for a sequence
f : � → X , though the notation f (n) is also used for the value of f at the point n ∈ � . The reason
for introducing this additional ambiguity is that it is much more convenient—for both author
and reader—to speak about, say, “the sequence (−1)n ” instead of “the sequence f defined via
f (n) := (−1)n (n ∈ � )”. The danger of confusion is comparatively small.

For further clarification about notational issues, see page 133f.
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2 Preliminaries

This chapter contains a collection of well-known definitions and facts, which are needed later
on. Its main purpose is to fix the notation and provide labels for certain general theorems. The
advanced reader may securely skip this chapter and proceed directly to Chapter 3.

2.1 Polynomials, Ideals, and Gröbner Bases

It is sufficient for most of this text if the reader is familiar with the most basic facts about com-
mutative algebra as they are presented, for instance, in the introductory book of Cox et al. (1992).
Only occasionally, we will need material going beyond this text.

Throughout this text, we assume that
�

is a field of characteristic zero. If
�

appears in the
description of an algorithm, it is also assumed that

�
is computable, by which we mean that

each element of
�

has a finite representation (not necessarily unique), the field operations can
be carried out algorithmically, and it is decidable whether a given representation of an element
of
�

represents the zero element. Typically,
�

will be a rational function field over some finite
algebraic extension of � in examples. All rings in this thesis are commutative and have unit
element 1.

Definition 2.1 Let X = (x1, . . . ,xn) be an n-tuple of indeterminates.

(1) A term (or power product) in X is an expression of the form X e := xe1
1 xe2

2 · · ·xen
n for some

exponent vector e = (e1, . . . ,en) ∈ � n
0.

The number degX e := e1 + · · ·+ en ∈ � 0 is called the total degree of the term X e.

The set of all terms in X is denoted by [X ].

(2) A polynomial in X over
�

is a linear combination of terms with coefficients in
�

, i.e., p is
a polynomial if

p = a1X e1 + · · ·+arX
er

for some a1, . . . ,ar ∈
�

and e1, . . . ,er ∈ � n
0.

The number deg p := maxr
i=1 degX ei is called the total degree of the polynomial p.

The set of all polynomials in X over
�

is denoted by
�

[X ].
�

is the coefficient field (or
ground field) of

�
[X ].

The set [X ] of all terms forms a monoid under multiplication. Its unit element is 1 := x0
1 · · ·x0

n.
The ring

�
[X ] is an integral domain, and its fraction field Q(

�
[X ]) is denoted by

�
(X). The

elements of
�

(X) are called rational functions over
�

in X .

Definition 2.2 Let R be a ring. A set a⊆ R is called an ideal in R if a1 +a2 ∈ a for all a1,a2 ∈ a

and pa ∈ a for all a ∈ a, p ∈ R. We write a E R to denote that a is an ideal in R.

For p1, . . . , pr ∈ R, we denote by 〈p1, . . . , pr〉 the smallest ideal containing p1, . . . , pr. If a =
〈p1, . . . , pr〉, we say that a is generated by p1, . . . , pr and that p1, . . . , pr is a basis of a.
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If X = (x1, . . . ,xn) and Y = (y1, . . . ,ym) are such that {x1, . . . ,xn} ⊆ {y1, . . . ,ym}, then there is a
canonical embedding

�
[X ] ↪→ � [Y ]. To facilitate language, we will regard

�
[X ] as a subring

of
�

[Y ],
�

[X ]⊆ � [Y ], in such cases. For nontrivial S ⊆ � [X ], observe that the ideal generated
by S in

�
[X ] is different from the ideal generated in

�
[Y ], the notation 〈S〉 is hence ambigu-

ous. We hope that the careful reader will always be able to detect from the context which ideal
generation is meant, and prefer to abstain from introducing more fancy notation.

If a E
�

[X ] is an ideal, then we denote by V (a)⊆ � n the set of all points (x1, . . . ,xn) ∈
� n such

that p(x1, . . . ,xn) = 0 for all p ∈ a. This set is called the variety of a. Conversely, a set A⊆ � n is
called an algebraic set (or a variety) if A = V (a) for some ideal a E

�
[X ]. For every set A⊆ � n,

we have the vanishing ideal

I(A) := { p ∈ � [X ] : ∀ (x1, . . . ,xn) ∈ A : p(x1, . . . ,xn) = 0}.

The algebraic set V (I(A)) is called the Zariski closure of A.

Definition 2.3 Let a,b E
�

[X ].

(1) a+b := {a+b : a ∈ a,b ∈ b} is called the sum of a and b and a ·b := 〈a ·b : a ∈ a,b ∈ b〉
is called the product of a and b.

(2) a is called a radical ideal if pm ∈ a implies p ∈ a for all p ∈ � [X ], m ∈ � .

(3) Rad(a) := { p ∈ � [X ] : ∃ m ∈ � : pm ∈ a} is called the radical ideal of a.

(4) a is called prime ideal if, for all p,q ∈ � [X ], pq ∈ a implies p ∈ a or q ∈ a.

(5) a is called primary ideal if, for all p,q ∈ � [X ], pq ∈ a and p 6∈ a implies q ∈ Rada.

Theorem 2.4 Let a,b E
�

[X ].

(1) a+b is an ideal of
�

[X ]. In particular, 〈a1, . . . ,am〉+ 〈b1, . . . ,b`〉= 〈a1, . . . ,am,b1, . . . ,b`〉.
For the product, we have

〈a1, . . . ,am〉 · 〈b1, . . . ,b`〉= 〈aib j : i = 1, . . . ,m, j = 1, . . . , `〉

(2) a∩b is an ideal of
�

[X ], and a ·b⊆ a∩b.

(3) a is prime if and only if
�

[X ]/a is an integral domain.

(4) a is primary if and only if Rada is prime.

(5) There exist primary ideals p1, . . . ,ps E
�

[X ] such that a = p1∩p2∩ ·· ·∩ps.

A representation as in (5) is called a primary decomposition of a. The prime ideals Radp1, . . . ,
Radps are called the associated prime ideals of the decomposition. If the primary decomposition
is minimal in the sense that pi 6⊇ � j 6=i p j and Radpi 6= Radp j (i 6= j), then the associated prime
ideals are uniquely determined. These are called the associated prime ideals of a.

Given a E
�

[X ], there exists a longest descending chain of prime ideals a ) p1 ) p2 ) · · · .
Its length is called the dimension of a and denoted by dima. If a is prime, then dima is the
transcendence degree of Q(

�
[X ]/a) over

�
(Eisenbud, 1995). Observe that this field is well

defined, by part (3) of the Theorem. If a is any ideal, then dima = max i dimpi where pi are the
associated prime ideals of a.
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Hilbert’s basis theorem asserts that every ideal in
�

[X ] has a finite basis. A Gröbner basis
(Buchberger, 1965) of an ideal a E

�
[X ] is a basis of a with special properties that make it

possible to answer a lot of questions about a algorithmically.

Definition 2.5

(1) A strict linear order ≺ on X is admissible (or term order) if

1≺ t for all t ∈ [X ]\{1}, and u≺ v =⇒ ut ≺ vt for all t,u,v ∈ [X ].

(2) Fix a term order ≺ and let p ∈ � [X ] be of the form

p = a1X e1 +a2X e2 + · · ·+arX
er

with X e1 ≺ X e2 ≺ ·· · ≺ X er and ai ∈
� \{0}. Then LT(p) := X er , LC(p) := ar, LM(p) :=

arX er are called the leading term, leading coefficient, and leading monomial, respectively.

If LC(p) = 1 then p is called monic.

(3) For a set S ⊆ � [X ], let LT(S) := {LT(p) : p ∈ S}. A finite set G ⊆ � [X ] \ {0} is called a
Gröbner basis w.r.t. ≺ if

LT(〈G〉) = 〈LT(G)〉.
If we just say that G is a Gröbner basis and ≺ is not clear from the context, then we mean
that G is a Gröbner basis w.r.t. some term ordering ≺.

(4) A polynomial p ∈ � [X ] is called reduced (or irreducible) with respect to a set G⊆ � [X ] if
no term of p is a multiple of the leading term LT(g) of some g ∈ G. Otherwise it is called
reducible. (The notions “reducible” and “irreducible” are in particular applied in the special
case where p is a term.)

Theorem 2.6 Let ≺ be a term order on [X ], and a E
�

[X ].

(1) There exists a Gröbner basis G with a = 〈G〉. Given any basis p1, . . . , pr of a, there is an
algorithm that computes a Gröbner basis G of a from p1, . . . , pr.

(2) There is exactly one Gröbner basis G of a whose elements are monic and each g ∈ G is
reduced w.r.t. G\{g}. This basis is called the Gröbner basis of a.

(3) If G is a Gröbner basis of a, then the set of all p ∈ � [X ] which are reduced w.r.t. G forms
a complete set of representatives of

�
[X ]/a. Given p ∈ � [X ] the representative of p + a

which is reduced w.r.t. G is called the normal form (or reductum) of p w.r.t. G, and is denoted
by p̄.

(4) If G is a Gröbner basis of a, then the classes of [X ] \LT(〈G〉) is a
�

-vector space basis of
�

[X ]/a.

(5) The normal form of p ∈ � [X ] w.r.t. a Gröbner basis G is 0 if and only if p ∈ 〈G〉.
(6) If a contains an element of

� \{0}, then the Gröbner basis of a is {1}.

Proofs of the above statements can be found in every textbook on Gröbner bases. We list some
standard applications of Gröbner bases, and refer again to the literature for proofs and further
details.
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Theorem 2.7 Let a = 〈p1, . . . , pm〉 ∈
�

[X ] =
�

[x1, . . . ,xn] be given.

(1) For a given p ∈ � [X ], the normal form p̄ of p w.r.t. a Gröbner basis of a can be computed.
In particular, it can be decided whether p ∈ a (Ideal membership).

(2) (Radical membership) For a given p ∈ � [X ], it can be decided whether p ∈ Rada.

By Hilbert’s Nullstellensatz, this is equivalent to: given p1, . . . , pr and p ∈ � [X ] it is decid-
able whether

∀ x1, . . . ,xn ∈ ¯� :
(

p1(x1, . . . ,xn) = · · ·= pr(x1, . . . ,xn) = 0 =⇒ p(x1, . . . ,xn) = 0
)
.

Here ¯� denotes the algebraic closure of
�

.

We have p ∈ Rada if and only if a+ 〈yp−1〉E � [X ,y] is the trivial ideal 〈1〉.
(3) (Elimination) An ideal basis of the elimination ideals

ai := a∩ � [x1, . . . ,xi] (i = 1, . . . ,n)

can be computed.

If R is a ring, then Rd has a canonical R-module structure. Its generators are denoted by ε1, . . . ,εd ,
i.e., ε1 = (1,0, . . . ,0), etc. For p1, . . . , pr ∈ Rd , we write [p1, . . . , pr] for the smallest submodule
of Rd containing p1, . . . , pr. If M = [p1, . . . , pr], we say that M is generated by p1, . . . , pr and that
p1, . . . , pr is a basis of M.

The notion of Gröbner basis can be generalized from polynomial ideals to finitely generated
submodules of

�
[X ]d . The book of Kreuzer and Robbiano (2000) gives a careful description of

the theory of Gröbner basis, which includes this case in full generality.

A term in
�

[X ]d is an expression of the form xe1
1 xe2

2 · · ·xen
n εi for e1, . . . ,en ∈ � 0 and i ∈ {1, . . . ,d}.

With a suitable adaption of the notion of admissible ordering, parts (2)–(4) of Def. 2.5 and The-
orem 2.6.(1)–(5) and Theorem 2.7.(1) and (3) apply analogously to submodules M ⊆ � [X ]d in
place of ideals a E

�
[X ]. We refer to Kreuzer and Robbiano’s book for details.

Let a = 〈p1, . . . , pr〉E
�

[X ] and p ∈ � [X ]. Then p ∈ a if and only if

p = q1 p1 +q2 p2 + · · ·+qr pr

for some q1, . . . ,qr ∈
�

[X ]. These polynomials are called cofactors of p w.r.t. p1, . . . , pr. The
cofactors need not be uniquely determined. If q′1, . . . ,q

′
r ∈
�

[X ] form a different representation
of p, then

(q1−q′1)p1 +(q2−q′2)p2 + · · ·+(qr−q′r)pr = 0.

This motivates the definition of a syzygy.

Definition 2.8 Let R be a ring and p1, . . . , pr ∈ R. A tuple (q1, . . . ,qr) ∈ Rr is called a syzygy for
p1, . . . , pr iff

q1 p1 +q2 p2 + · · ·+qr pr = 0.

We write
Syz(p1, . . . , pr) := {(q1, . . . ,qr) ∈ Rr : q1 p1 + · · ·+qr pr = 0} ⊆ Rr

for the set of all syzygies for p1, . . . , pr.
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It is easy to see that the set of syzygies forms a submodule of Rr. In the case R =
�

[X ], it is a
standard application of Gröbner bases to compute a basis of the syzygy module (Becker et al.,
1993, Section 6.1). This algorithm can easily be extended to the case R =

�
[X ]/a. As this is

usually not included in textbooks, we carry out the details.

Theorem 2.9 (Syzygy Computation) Let a = 〈p1, . . . , pm〉 E
�

[X ] and q1, . . . ,qr ∈
�

[X ]/a.
For q ∈ � [X ]/a, we use the notation q̄ ∈ � [X ] to denote a representative of the equivalence
class q. Then

(s1, . . . ,sr) ∈ Syz(q1, . . . ,qr)⊆ (
�

[X ]/a)r

⇐⇒ ∃ c1, . . . ,cm ∈
�

[X ] : (s̄1, . . . , s̄r,c1, . . . ,cm) ∈ Syz(q̄1, . . . , q̄r, p1, . . . , pm)⊆ � [X ]r+m.

Hence a basis of Syz(q1, . . . ,qr) can be obtained from a basis of Syz(q̄1, . . . , q̄r, p1, . . . , pm) by
discarding the last m coordinates.

Proof “⇒” If (s1, . . . ,sr) ∈ Syz(q1, . . . ,qr) then

s1q1 + · · ·+ srqr = 0

=⇒ s̄1q̄1 + · · ·+ s̄rq̄r ∈ a

=⇒ s̄1q̄1 + · · ·+ s̄rq̄r = (−c1)p1 + · · ·+(−cm)pm

for some c1, . . . ,cm ∈
�

[X ], and hence

(s̄1, . . . , s̄r,c1, . . . ,cm) ∈ Syz(q̄1, . . . , q̄r, p1, . . . , pm).

“⇐” If (s̄1, . . . , s̄r,c1, . . . ,cm) ∈ Syz(q̄1, . . . , q̄r, p1, . . . , pm), then

s̄1q̄1 + · · ·+ s̄rq̄r = (−c1)p1 + · · ·+(−cm)pm

=⇒ s̄1q̄1 + · · ·+ s̄rq̄r ∈ a

=⇒ s1q1 + · · ·+ srqr = 0

=⇒ (s1, . . . ,sr) ∈ Syz(q1, . . . ,qr).

Let M be a submodule of
�

[X ]d . For an ideal a E
�

[X ], define the submodule A := aε1 + · · ·+aεd

of
�

[X ]d . Using the isomorphisms

(
�

[X ]/a)d ∼= � [X ]d/A and (
�

[X ]d/A)
/
(M +A/A)∼= � [X ]d/(M +A)

and Gröbner basis for submodules of
�

[X ]d , we can obtain unique normal forms of (
�

[X ]/a)d

modulo a given submodules of it.

2.2 Sequences, Difference Equations, and Recurrences

A sequence in
�

is a function f : � → � . A multivariate sequence (m-variate sequence) in
�

is a function f : � m→ � . We allow ourselves to use the symbolism f (n) for both the value of
f at the point n and for the whole sequence f itself. The context may clarify whether the whole
sequence or a particular value of it is meant. In examples, sequences may have starting points
different from 1.
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The set of all sequences over
�

is denoted by
� �

. Together with pointwise addition and multi-
plication,

� �
forms a ring.

A difference equation is an equation of the form

F( f (n), f (n+1), . . . , f (n+ r),n) = 0 (n≥ 1), (2.1)

for some function F :
� r+1→ � . Difference equations form a discrete analogue of differential

equations (replace n by a continuous variable x and f (n + i) by the ith derivative f (i)(x)). For
many classical results about differential equations there are analogous results for difference equa-
tions (Milne-Thomson, 1933). The number r in (2.1) is called the order of the difference equation,
and a sequence f (n) that makes (2.1) valid is called a solution of the difference equation.

A special type of difference equations are recurrences. A recurrence for a sequence f (n) is an
equation of the form

f (n+ r) = R( f (n), f (n+1), . . . , f (n+ r−1),n) (n≥ 1)

for some function R :
� r+1→ � . The number r ∈ � is called the order of the recurrence.

Recurrences may be used for defining of sequences. For, if f (n) satisfies a recurrence of order r,
then f (n) is uniquely determined up to the choice of r initial values f (0), f (1), . . . , f (r− 1). In
order to define a sequence, it is not necessary that the function R on the right hand side of a
recurrence be defined for every point x ∈ � r+1. For example,

R :
� 3→ � , R(x,y,z) :=

x+ y
z+1

is not defined for z =−1, nevertheless

f (n+2) = R( f (n), f (n+1),n) (n≥ 1), f (1) = α, f (2) = β

well defines a sequence f (n), because the singularity z =−1 is never encountered. We generalize
the notion of a recurrence accordingly: An equation

f (n+ r) = R( f (n), f (n+1), . . . , f (n+ r−1),n) (n≥ 1)

is called a recurrence if R : D→ � for some D ⊆ � r+1. A sequence f (n) in
�

is a solution of
this recurrence if

( f (n), f (n+1), . . . , f (n+ r−1),n) ∈D for all n ∈ � .

We define some special types of recurrences that are of particular importance.

Definition 2.10

(1) A linear recurrence is a recurrence of the form

f (n+ r) = a0(n) f (n)+a1(n) f (n+1)+ · · ·+ar−1(n) f (n+ r−1)+a(n) (n≥ 1). (2.2)

The recurrence is called homogeneous if a(n) = 0 and inhomogeneous otherwise. A recur-
rence is called nonlinear if it is not linear.
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(2) A homogeneous linear recurrence (2.2) is called P-finite (or holonomic) if a1(n), . . . ,ar−1(n)
are rational functions in n. A P-finite recurrence of order 1 is called hypergeometric.

(3) A homogeneous linear recurrence (2.2) is called C-finite if a1(n), . . . ,ar−1(n) are constant,
i.e., independent of n.

(4) A sequence is called P-finite (holonomic, hypergeometric, C-finite, . . . ) if it satisfies a
P-finite (holonomic, hypergeometric, C-finite, . . . ) recurrence.

Example 2.11

(1) The following well-known sequences are all C-finite.

Fn+2 = Fn+1 +Fn, F0 = 0,F1 = 1 (Fibonacci sequence)

Ln+2 = Ln+1 +Ln, L0 = 2,L1 = 1 (Lucas sequence)

Pn+2 = 2Pn+1 +Pn, P0 = 0,P1 = 1 (Pell sequence)

Qn+2 = 2Qn+1 +Qn, Q0 = 2,Q1 = 2 (Pell-Lucas sequence)

(2) Most classical families of orthogonal polynomials satisfy P-finite recurrences. For instance,

Pn+2(x) =
2n+3
n+2

xPn+1(x)−
n+1
n+2

Pn(x) (n≥ 0), P0(x) = 1,P1(x) = x

defines the Legendre polynomials (Abramowitz and Stegun, 1972). This recurrence is P-
finite, but not C-finite.

More generally, for α,β >−1, the sequence of Jacobi polynomials is defined via

P(α,β)
n+2 (x) = AP(α,β)

n+1 (x)+BP(α,β)
n (x) (n≥ 0),

P(α,β)
0 (x) = 1, P(α,β)

1 (x) = 1
2(2+α+β)x+ 1

2(α−β),

where

A =
(2n+3+α+β)((α2−β2)+(2n+α+β)(2n+4+α+β)x)

2(n+2)(n+2+α+β)(2n+2+α+β)

B =
(n+1+α)(n+α+β)(2n+4+α+β)

(n+2)(n+2+α+β)(2n+2+α+β)

This is again a P-finite recurrence (using, e.g.,
�

= � (x,α,β) as ground field).

The Jacobi polynomials reduce to the Legendre polynomials for (α,β) = (0,0).

Other parameterized families of orthogonal polynomials are the Gegenbauer polynomi-
als Cm

n (x), defined via

Cm
n+2(x) = 2x

m+n+1
n+2

Cm
n+1(x)−

2m+n
n+2

Cm
n (x) (n≥ 0), Cm

0 (x) = 1,Cm
1 (x) = 2mx,

and the Laguerre polynomials Lα
n (x), defined via

Lα
n+2(x) =

2n+3+α− x
n+2

Lα
n+1(x)−

n+α+1
n+2

Lα
n (x) (n≥ 0), Lα

0 (x) = 1,Lα
1 (x) = 1+α−x.
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(3) Let a(n) and b(n) be two sequences in
� \{0} and consider the sequence

c(n) :=
n

K
k=0

(b(k)/a(k)) := a(0)+
b(1)

a(1)+
b(2)

a(2)+
b(3)

· · ·+
b(n)

a(n)

of partial continued fractions. The continuants p(n) and q(n) are defined via the linear
recurrences

p(n+2) = a(n+2)p(n+1)+b(n+2)p(n) (n≥−1) p(−1) = 1, p(0) = a(0),

q(n+2) = a(n+2)q(n+1)+b(n+2)q(n) (n≥−1) q(−1) = 0, q(0) = 1,

and a fundamental theorem in the theory of continued fractions states that c(n) = p(n)/q(n)
for all n ∈ � (Perron, 1929).

For instance, we have the classical result

e = 1+
∞

K
n=0

(1/a(n))

with a(n) = 1,1,2,1,1,4,1,1,6,1,1,8, . . . . Using the gfun package (Salvy and Zimmer-
mann, 1994) or the package of Mallinger (1996), it is easy to find a P-finite recurrence
for a(n):

a(n+3) =
(n+2)(4n2 +28n+21)

(n+1)(4n2 +20n−3)
a(n)− 9(2n+3)

(n+1)(4n2 +20n−3)
a(n+1)

− 9(2n+1)

(n+1)(4n2 +20n−3)
a(n+2) (n≥ 0).

However, a(n) is not a rational function and so the recurrences defining the continuants
associated to this continued fraction are not P-finite.

(4) The doubly exponential sequence f (n) = 22n
satisfies the simple nonlinear recurrence

f (n+1) = f (n)2 (n≥ 0), f (0) = 2.

(5) Golomb (1963) considers sequences f (n) satisfying the equation

f (n+1) = r +
n

∏
k=1

f (k) (n≥ 0),

with r ∈ � fixed. It is easily verified that these sequences satisfy the nonlinear recurrence

f (n+1) = ( f (n)−1)( f (n)− (r−1))+1 (n≥ 1).

Aho and Sloane (1973) give solutions of these and similar nonlinear recurrences in terms of
doubly exponential sequences.
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(6) The class of Somos sequences (Somos, 1989; Gale, 1991) provides another source of non-
linear recurrences. A sequence Cn is called Somos-r (r ∈ � fixed) if it satisfies a recurrence
of the form

Cn+r =
1

Cn

(
a1Cn+r−1Cn+1 +a2Cn+r−2Cn+2 + · · ·arCn+r−br/2cCn+br/2c

)
(n≥ 0)

where a1, . . . ,ar are fixed. These sequences arise in the manipulation of trigonometric func-
tions.

It is of interest to know whether a given Somos-r-sequences is also Somos-r ′ for some
given r′ 6= r (van der Poorten, 2004).

(7) The sequence of Bernoulli numbers Bn may be defined by

Bn+1 =−
n

∑
k=0

(
n+1

k

)

Bk (n≥ 0), B0 = 1.

This equation is not understood as a recurrence at all in our considerations.

A set S of equations of the form

S =
{

F1
(

f1(n), . . . , f1(n+ r1,1), f2(n), . . . , f2(n+ r1,2), . . . . . . fm(n), . . . , fm(n+ r1,m)
)

= 0,

F2
(

f1(n), . . . , f1(n+ r2,1), f2(n), . . . , f2(n+ r2,2), . . . . . . fm(n), . . . , fm(n+ r2,m)
)

= 0,

...

F̀
(

f1(n), . . . , f1(n+ r`,1), f2(n), . . . , f2(n+ r`,2), . . . . . . fm(n), . . . , fm(n+ r`,m)
)

= 0
}

for functions F1, . . . ,Fm :
� m(r+1) → � is called a system of difference equations. The num-

ber r := max`
i=1 maxm

j=1 ri, j is called the order of the system S, and a tuple f1(n), . . . , fm(n) of
sequences in

�
is said to be a solution if it makes every equation in S valid. A system of recur-

rences is a system of difference equations each of which is a recurrence.

2.3 Difference Rings, Difference Homomorphisms, and Difference Ideals

The theory of difference algebra (Cohn, 1965) aims at providing an algebraic formalization of
difference equations and sequences. It can be seen as a “discrete analog” of the more widely
known field of differential algebra (Ritt, 1950; Kaplansky, 1976), which provides an algebraic
viewpoint to differential equations. We collect the basic definitions and results of difference
algebra.

Definition 2.12 Let R be a ring and s : R→ R be a homomorphism. The pair (R,s) is called a
difference ring. R is called the underlying ring and s is called the shift of the difference ring (R,s).
A difference ring whose underlying ring is a field is called a difference field.

We will simply write R instead of (R,s) when s is clear from the context or arbitrary.

The definition of s is extended to subsets M ⊆ R via s(M) := {s(m) : m ∈M }.
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Example 2.13

(1) Any ring R together with the identity s : R→ R, r 7→ r (r ∈ R) is a difference ring.

(2) The polynomial ring
�

[t] becomes a difference ring by specifying s(x) := x (x ∈ � ) and
s(t) := t + 1. The rational function field

�
(t), with s defined analogously, is a difference

field.

(3) The ring
� �

of all sequences has a natural difference ring structure. If E :
� � → � � is

defined via

( f (1), f (2), f (3), . . . )
E7−→ ( f (2), f (3), f (4), . . . ) ( f (n) ∈ � � )

then (
� �

,E) is a difference ring.

Unless otherwise stated,
� �

is always assumed to be equipped with this shift.

(4) Let m ∈ � be fixed and consider the ring

R :=
�

[t1,0, t1,1, t1,2, . . . . . .

t2,0, t2,1, t2,2, . . . . . .

...

tm,0, tm,1, tm,2, . . . . . . ]

where the ti, j are indeterminates, i.e., they form an algebraically independent set over
�

.
R may be understood as a ring of polynomials with infinitely many variables.

Let s : R→ R be defined via s(x) = x (x ∈ � ) and

s(ti, j) := ti, j+1 (i = 1, . . . ,m, j ≥ 0).

The difference ring (R,s) is denoted by
� {t1, . . . , tm}.

�
is called its ground field. The

t1, . . . , tm are called the difference variables, and
� {t1, . . . , tm} is called the free difference

ring in m (difference) variables. Its quotient field is denoted by
� 〈t1, . . . , tm〉 and called the

free difference field in m (difference) variables.

The elements of
� {t1, . . . , tm} are called difference polynomials. Usually, we refer to ti, j

using the notation s jti (writing ti instead of s0ti for ti,0).

Definition 2.14 Let R = (R,s) be a difference ring.

(1) An element x ∈ R is called a constant, if s(x) = x. The set of all constants in R is denoted
by const R.

(2) An ideal a E R is called a difference ideal of R if

∀ x ∈ R : x ∈ a ⇐⇒ s(x) ∈ a.

For a set S ⊆ R, we write 〈S〉 for the smallest ideal of R that contains S, and 〈〈S〉〉 for the
smallest difference ideal of R containing S.

Of course we write 〈p1, . . . , pr〉 and 〈〈p1, . . . , pr〉〉, respectively, instead of 〈{p1, . . . , pr}〉 and
〈〈{p1, . . . , pr}〉〉.
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(3) Let (R′,s′) be another difference ring. A ring homomorphism ϕ : R→ R′ is called a differ-
ence homomorphism if

∀ x ∈ R : ϕ(s(x)) = s′(ϕ(x)).

(4) R is isomorphic to a difference ring R′, written R ∼= R′, if there exists a bijective difference
homomorphism ϕ : R→ R′.

Cohn (1965) distinguishes between difference ideals and reflexive difference ideals. In his def-
inition, a is a difference ideal if p ∈ a implies s(p) ∈ a, and a reflexive difference ideal if, in
addition, s(p) ∈ a implies p ∈ a. In our considerations, all difference ideals will be reflexive, and
hence we can securely drop this attribute. The definition above takes this into account.

Theorem 2.15 Let (R1,s1) and (R2,s2) be difference rings and ϕ : R1 → R2 be a difference
homomorphism.

(1) const R1 is a subring of R1.

(2) ϕ(const R1)⊆ const R2.

(3) ker ϕ E R1 is a difference ideal.

(4) If a E R1 is a difference ideal, then

s : R1/a→ R1/a, s(p+a) := s1(p)+a

turns R1/a into a difference ring. The canonical projection π : R1 → R1/a is a surjective
difference homomorphism.

(5) (Homomorphism Theorem) For every difference ideal a E R1 with a⊆ ker ϕ, there exists a
unique difference homomorphism ϕ̄ : R1/a→ R2 that makes the diagram

R1

π !! !!DDDDDDDD
ϕ // R2

R1/a

ϕ̄

==zzzzzzzz

commute. We have imϕ = im ϕ̄, ker ϕ̄ = π(kerϕ), and kerϕ = π−1(ker ϕ̄). The homomor-
phism ϕ̄ is injective iff a = kerϕ.

Proof (1), (3), and (4) are in Cohn’s book, Chapter 2, Sections 8 and 15. The other statements
are immediate:

(2) If c ∈ const R1, then c = s1(c), so ϕ(c) = ϕ(s1(c)) = s2(ϕ(c)), and hence ϕ(c) ∈ const R2.

(5) By the homomorphism theorem for rings, we only need to show that the ring homomor-
phism

ϕ̄ : R1/a→ R2, ϕ̄(p+a) := ϕ(p)

is a difference homomorphism. The calculation

ϕ̄(s(p+a)) = ϕ̄(s1(p)+a) = ϕ(s1(p)) = s2(p)

completes the proof.
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3 Admissible Sequences

3.1 Definition

We consider in this thesis sequences that are defined by systems of recurrences which are of a
certain shape. Such systems, and the sequences they are defining, are called admissible.

Roughly speaking, a sequence f (n) is admissible if it satisfies a recurrence that expresses f (n+r)
as a rational function in f (n), . . . , f (n+r−1). This rational function may, however, involve other
admissible sequences. The precise definition is as follows.

Definition 3.1

(1) A system S = {rec1, . . . ,recm} of difference equations for sequences f1(n), . . . , fm(n) is ad-
missible if each reci is of the form

fi(n+ ri) = rati
(

f1(n), f1(n+1), . . . , f1(n+ ri−1), f1(n+ ri),

f2(n), f2(n+1), . . . , f2(n+ ri−1), f2(n+ ri),

...
...

fi−1(n), fi−1(n+1), . . . , fi−1(n+ ri−1), fi−1(n+ ri),

fi(n), fi(n+1), . . . , fi(n+ ri−1),

...
...

fm(n), fm(n+1), . . . , fm(n+ ri−1)
)

(n≥ 1)

where ri ≥ 0 is fixed and rati is some fixed multivariate rational function over
�

.

The number m is called the depth of the system, and r := maxi ri is called the order of the
system.

(2) A sequence f (n) in
�

is called admissible if there exists an admissible system of recurrences
S = {rec1, . . . ,recm} and solutions f1(n), . . . , fm(n) of S with f (n) = fi(n) for some i.

The admissible systems provide a data structure for representing sequences. In the sequel, we
will usually assume that a tuple of sequences f1(n), . . . , fm(n) in

�
is given by an admissible

system plus the initial values fi(n) ∈ � for n = 1, . . . ,ri, i = 1, . . . ,m. The algorithms presented
in this thesis assume as input a definition of sequences f1(n), . . . , fm(n) in this sense, and compute
from this representation various information about the involved sequences.

The way of defining a sequences by means of an admissible defining recurrence system is far
from unique. For example, the zero sequence f (n) = 0 has nontrivial representations such as
f (n+2) = f (n+1)9− f (n), f (1) = f (2) = 0.

Theorem 3.2 Let f (n) ∈ � � be given. Then the following statements are equivalent.
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(1) f (n) is admissible.

(2) There exists a system of recurrences S = {rec1, . . . ,recm} where each reci is of the form

fi(n+ ri) = rati
(

f1(n), f1(n+1), . . . . . . . . . . . . , f1(n+ ri,1),

f2(n), f2(n+1), . . . . . . . . . . . . , f2(n+ ri,2),

...
...

fi−1(n), fi−1(n+1), . . . . . . . . . . . . , fi−1(n+ ri,i−1),

fi(n), fi(n+1), . . . , fi(n+ ri−1),

...
...

fm(n), fm(n+1), . . . , fm(n+ ri−1)
)

(n≥ 1)

for some fixed ri,ri,1, . . . ,ri,i−1 ∈ � , and there are solutions f1(n), . . . , fm(n) of S such that
f (n) = fi(n) for some i.

(3) There exists a system of recurrences S = {rec1, . . . ,recm} where each reci is of the form

fi(n+ ri) = rati
(

f1(n), f1(n+1), . . . , f1(n+ ri−1), f1(n+ ri),

f2(n), f2(n+1), . . . , f2(n+ ri−1), f2(n+ ri),

...
...

fi−1(n), fi−1(n+1), . . . , fi−1(n+ ri−1), fi−1(n+ ri),

fi(n), fi(n+1), . . . , fi(n+ ri−1),

...
...

fm(n), fm(n+1), . . . , fm(n+ ri−1)
)

(n≥ 1)

where each rati (i = 1, . . . ,m) is either a polynomial or a rational function whose numerator
belongs to

�
, and solutions f1(n), . . . , fm(n) of S such that f (n) = fi(n) for some i.

(4) There exists a system of recurrences S = {rec1, . . . ,recm} where each reci is of the form

fi(n+1) = rati( f1(n), . . . , fm(n)) (n≥ 1)

and solutions f1(n), . . . , fm(n) of S such that f (n) = fi(n) for some i.

The depth m of the respective systems need not be the same in all cases.

Proof

(2)⇒ (1) Consider the indices i∈ {1, . . . ,m} for which maxi−1
j=1 ri, j > ri. If no such index exists,

then there is nothing to prove. Otherwise, take the smallest such i.

Let r := maxi−1
j=1 r j . If r ≥ ri, then shift the recurrence reci by ri − r, i.e., replace every

occurrence of f j(n+ `) by f j(n+ `+ ri− r) (for all j, `). The result, rec′i, is a recurrence of
order r. Next, apply the recurrences rec1, . . . ,reci−1 in order to remove all occurrences of
f j(n + `) with ` > r. Note that this is possible by definition of r. The resulting recurrence
is of the desired form. Replace reci by rec′i in S, and repeat the procedure until there are no
further indices i with maxi−1

j=1 ri, j > ri left.
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(1)⇒ (3) Let S = {rec1, . . . ,recm} be an admissible system for f (n) and write reci in the form
fi(n+ ri) = pi(n)/qi(n) where pi(n) and qi(n) depend polynomially on f j(n+ `).

Introduce new function symbols g1, . . . ,gm. Then the system

{g1(n+ r1) = 1/q1(n), f1(n+ r1) = p1(n)g1(n+ r1),

g2(n+ r2) = 1/q2(n), f2(n+ r2) = p2(n)g2(n+ r2),

...

gm(n+ rm) = 1/qm(n), fm(n+ rm) = pm(n)gm(n+ rm)}

has the desired property.

(1)⇒ (4) The method usually applied for linear differential or difference equations carries over
to the present case. Let S be an admissible system having a tuple of solutions one of which
is f (n). In S, replace each occurrence of fi(n+ j) (i = 1, . . . ,m, j = 0, . . . ,ri−1) by fi, j(n)
and fi(n + ri) (i = 1, . . . ,m) by fi,ri−1(n + 1). Add the recurrences fi, j(n + 1) = fi, j+1(n)
(i = 1, . . . ,m, j = 0, . . . ,ri− 1) to S. Now S is transformed into a system S′ of recurrences
all of which have order 1. Finally, reduce each recurrence reci in S′ with respect to all
recurrences in S′ \ {reci} in order to remove occurrences of fi, j(n + 1) on some right hand
side. Then the resulting system has the desired properties.

The remaining implications are trivial.

The proof of the Theorem is constructive, and so we may assume in the description of algorithms
that an admissible system be in one of the shapes listed in the Theorem. Of particular importance
are admissible systems of the form of part (3) of the Theorem, so we assign a special name to
them.

Definition 3.3 An admissible system S = {rec1, . . . ,recm} for f1(n), . . . , fm(n) is called normal
if each reci is of the form

fi(n+ ri) = rati
(

f1(n), f1(n+1), . . . , f1(n+ ri−1), f1(n+ ri),

f2(n), f2(n+1), . . . , f2(n+ ri−1), f2(n+ ri),

...
...

fi−1(n), fi−1(n+1), . . . , fi−1(n+ ri−1), fi−1(n+ ri),

fi(n), fi(n+1), . . . , fi(n+ ri−1),

...
...

fm(n), fm(n+1), . . . , fm(n+ ri−1)
)

(n≥ 1)

where each rati (i = 1, . . . ,m) is either a polynomial or a rational function whose numerator be-
longs to

�
.
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3.2 Examples and Closure Properties

The class of admissible sequences is extensive. As illustrated in the present section, it includes a
large number of sequences arising in applications.

Example 3.4

(1) Constant sequences and the sequence f (n) := n are admissible. The latter satisfies the
equation f (n+1) = f (n)+1.

(2) Every P-finite sequence is admissible.

(3) Each of the sequences in Example 2.11 satisfying a nonlinear recurrence is admissible.

(4) The sequence f (n) := 2Fn is admissible, a suitable admissible system is

{ f (n+2) = f (n) f (n+1)}.

(5) The sequence f (n) := F2n is admissible: Using Binet’s identity

Fn =
1√
5

((1+
√

5
2

)n
−

(1−
√

5
2

)n)

(n≥ 0)

we can set up the admissible system

{g(n+1) = g(n)2, h(n+1) = h(n)2, f (n) = (g(n)−h(n))/
√

5}.

The sequences g(n) =
( 1+

√
5

2

)2n

, h(n) =
( 1−

√
5

2

)2n

, and f (n) = F2n form a solution of this
system, and hence f (n) = F2n is admissible.

(6) The sequence f (n) := FFn is also admissible. Using the addition theorems for the Fibonacci
sequence,

Fi+ j = Fi+1Fj +FiFj+1−FiFj (i, j ≥ 0),

Fi+ j+1 = FiFj +Fi+1Fj+1 (i, j ≥ 0),

we obtain

FFn+2 = FFn+1+Fn = FFn+1+1FFn +FFn+1FFn+1−FFn+1FFn ,

FFn+2+1 = FFn+1FFn +FFn+1+1FFn+1.

Hence,

{
f0(n+2) = f1(n+1) f0(n)+ f0(n+1) f1(n)− f0(n+1) f0(n),

f1(n+2) = f0(n+1) f0(n)+ f1(n+1) f1(n)
}

is an admissible system for f0(n) = FFn and f1(n) = FFn+1.

Similar constructions are possible for sequences f (g(n)) where f (n) and g(n) are C-finite
and the coefficients in the recurrence of g as well as its initial values are integers.

(7) The sequences (−1)blognc and 2n! are not admissible (cf. Section 4.3).
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The class of admissible sequences enjoys the following closure properties.

Theorem 3.5 Let f (n) and g(n) be admissible.

(1) f (n)+g(n), f (n)g(n), and — if g(n) 6= 0 for all n — f (n)/g(n) are admissible.

(2) S(n) := ∑n
k=1 f (k) and P(n) := ∏n

k=1 f (k) are admissible.

(3) If f (n) 6= 0 and g(n) 6= 0 for all n≥ 1, then K(n) := Kn
k=1 g(k)/ f (k) is admissible.

Proof Let S f and Sg be admissible systems for f and g, respectively, and assume without loss of
generality that S f and Sg have no function symbols in common.

Then S f ∪ Sg ∪{F(n) = f (n) + g(n)} is an admissible system for f (n) + g(n), and admissible
systems for f (n)g(n) and f (n)/g(n) are obtained analogously.

For the indefinite sum and product, we have the admissible systems

S f ∪{S(n+1) = S(n)+ f (n+1)} and S f ∪{P(n+1) = P(n) f (n+1)},

respectively.

For the continued fraction,

S f ∪Sg∪
{

p(n+2) = f (n+2)p(n+1)+g(n+2)p(n),

q(n+2) = f (n+2)q(n+1)+g(n+2)q(n), K(n) = p(n)/q(n)
}

is an admissible system (cf. page 12).

It is worth noting that Theorem 3.5 is constructive: If f1(n), . . . , fm(n) are admissible sequences
for which a defining system is given, and if F(n) is defined from f1(n), . . . , fm(n) by an expression
involving field operations as well as indefinite sums, products and continued fractions, arbitrarily
mixed and nested, then a defining system for F(n) can be easily computed. The computation
involves hardly more than simple rewriting. The software package described in Chapter 9 has
routines for carrying out this rewriting procedure automatically.

Example 3.6

(1) The sequence

f (n) :=
n

∑
k=1

(

∑k
i=1

i!−1
i2+1(−1)iPj(x)2

)

((F2
k −F3k)2 +1)

F2
k +Kk

i=1(Pi(x2)/Pi+1(x))

is obviously admissible.

(2) Any sequence f (n) which is ultimately zero, i.e., f (n) = 0 for n≥ n0 is admissible. To see
this, consider the auxiliary sequence

z(n) :=
n

∏
k=0

(k−n0).

We have z(n) 6= 0 for n = 1,2, . . . ,n0 − 1 and z(n) = 0 for n ≥ n0. Let p(n) ∈ � [n] be
such that p(n) = f (n)/z(n) for n = 1,2, . . . ,n0− 1. Such a polynomial is easily found by
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interpolation. Then f (n) = p(n)z(n), and by reference to the closure properties, p(n),z(n),
and hence also f (n) are admissible.

More generally, we have shown that if f (n) is admissible then every representative of the
germ of f (n) at infinity is admissible, too.

By a different argument, it can be shown that also the class of P-finite sequences has this
property (Stanley, 1999).

(3) The sequence f (n) defined by

f (n) =
n

∑
k=0

( k

∑
i=0

(
n
i

))3

(Calkin, 1994) is admissible, because it satisfies the recurrence

f (n+2) =
1

n+1

(
(7n+12) f (n+1)+4(2n+1) f (n)+(9n−10)23n+1),

according to the Sigma package (Schneider, 2001). Note that the admissibility of f (n)
does not follow from Theorem 3.5, because f (n) does not satisfy the telescoping equation
f (n + 1) = f (n)+ summand(n + 1). A sum satisfying this equation is called an indefinite
sum. All other sums are called definite.

Roughly speaking, a sum is indefinite if the variables appearing in the bounds of the sum do
not occur in the summand.

Theorem 3.7 Let f (n) be admissible and a ∈ � . Then

(1) The sequence f (n+a) is admissible.

(2) The sequence f (bn/ac) is admissible.

(3) The sequence f (an) is admissible.

Consequently, f (bpn+qc+a) is admissible for all nonnegative p,q ∈ � , a ∈ � 0.

Proof Let S = {rec1, . . . ,recm} be an admissible system of recurrences in f1(n), . . . , fm(n), and
let r1,r2, . . . ,rm be the respective orders of rec1, . . . ,recm.

Suppose a tuple of solutions g1(n), . . . ,gm(n) of S is given.

(1) The sequences g1(n+a), . . . ,gm(n+a) also form a set of solution for S. These solutions are
obtained by stipulating the initial conditions f i( j) = gi(a+ j) (i = 1, . . . ,m, j = 1, . . . ,ri).

(2) For all n,a,r ∈ � we have bn/ac+ r = b(n + ar)/ac. It follows that a recurrence system
for the solution set g1(bn/ac), . . . ,gm(bn/ac) is obtained from S by replacing each occur-
rence of fi(n + j) by fi(n + a j). Note that the resulting system is of the form required in
Definition 3.1.

(3) By Theorem 3.2.(4), we may assume without loss of generality that each rec i ∈ S is of the
form

fi(n+1) = rati( f1(n), . . . , fi−1(n)) (n≥ 1).
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If this holds for n, then it continues to hold for an+ j in place of n:

fi(an+1) = rati( f1(an), . . . , fi−1(an)),

fi(an+2) = rati( f1(an+1), . . . , fi−1(an+1)),

...

fi(an+a) = rati( f1(an+(a−1)), . . . , fi−1(an+(a−1))).

Writing gi, j(n) for fi(an+ j), we find that

{g1,0(n+1) = rat1(g1,a−1(n)),

g1,1(n) = rat1(g1,0(n)), . . . , g1,a−1(n) = rat1(g1,a−2(n)),

g2,0(n+1) = rat2(g1,a−1(n),g2,a−1(n)),

g2,1(n) = rat2(g1,0(n),g2,0(n)), . . . , g2,a−1(n) = ratm(g1,a−2(n),g2,a−2(n)),

...

gm,0(n+1) = ratm(g1,a−1(n), . . . ,gm,a−1(n)),

gm,1(n) = ratm(g1,0(n), . . . ,gm,0(n)), . . . , gm,a−1(n) = ratm(g1,a−2(n), . . . ,gm,a−2(n))}

is an admissible system with the desired property.

Example 3.8 Let f (n) and g(n) be admissible and let h(n) be defined by

h(2n) := f (n), h(2n−1) := g(n) (n≥ 1).

The sequence h(n) defined in this way is called the interlacing of f (n) and g(n). Its first values
are f (1),g(1), f (2),g(2), f (3),g(3), . . . .

The identity

h(n) = 1
2(1− (−1)n) f (bn/2c+1)+ 1

2(1+(−1)n)g(bn/2c)

asserts that h(n) is admissible, too.

More generally, if f1(n), . . . , fm(n) are admissible then so is their interlacing sequence h(n),
which starts

f1(1), f2(1), . . . , fm(1), f1(2), f2(2), . . . . . . .

The construction is the same as in the case of holonomic sequences (Mallinger, 1996).

3.3 Evaluation of Admissible Sequences

Admissible systems may be used to evaluate admissible sequences in a dynamic programming
style, as follows. (See page 135 for a description of the pseudo code constructions that we are
using.)
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Algorithm 3.9 (Evaluation of Admissible Sequences)
Input: Admissible sequences f1(n), . . . , fm(n) over

�
, defined by an admissible system S =

{rec1, . . . ,recm} as in Def. 3.1 and initial values; a number n0 ∈ �
Output: The values ( f1(n0), . . . , fm(n0)) ∈

� m

Assumption: reci has the form fi(n + ri) = rati where rati is a rational function depending on
f j(n+ `) (` = 0, . . . ,r j−1, j = 1, . . . ,m)

1 T := [[ fi( j) : j = 1, . . . ,ri−1 ] : i = 1, . . . ,m ]
2 for ` = 1 to n0 do
3 T := [append([Ti, j+1 : j = 1, . . . ,ri−2 ], rati(T )) : i = 1, . . . ,m ]
4 return [Ti,1 : i = 1, . . . ,m ]

Theorem 3.10 Algorithm 3.9 is correct and consumes O(n0mmaxi ri) field operations and a con-
stant amount of memory.

Example 3.11 Consider the sequence s(n) defined via

s(n) =
n

∑
i7=1

( 1

i2
7

i7

∑
i6=1

( 1

i2
6

i6

∑
i5=1

( 1

i2
5

i5

∑
i4=1

( 1

i2
4

i4

∑
i3=1

( 1

i2
3

i3

∑
i2=1

( 1

i2
2

i2

∑
i1=1

1

i2
1

))))))

The software of Chapter 9 obtains the exact value of

s(75) ≈ 1.973568805

by using Algorithm 3.9 in about 0.65 seconds on our machine (1.5 GHz), while Mathematica’s
default evaluation requires about 4 hours and 45 minutes.

It is of course possible to evaluate s(n) for much larger values of n in a reasonable time. The
value

s(1000) ≈ 1.997880822

suggests the conjecture that limn→∞ s(n)
?
= 2. Conjectures like this have to be made with care

(Pemantle and Schneider, 2004), and in fact, the conjecture is wrong.

It is, however, not entirely wrong. If we let si(n) denote the sequence defined just like s(n), but
with i summation signs (so s(n) = s7(n)), and put si := limn→∞ si(n), then it can be shown using
generating functions and asymptotic analysis (Odlyzko, 1995), that lim i→∞ si = 2.

3.4 The Associated Difference Ideal

Let f1(n), . . . , fm(n) be admissible sequences in
�

, defined by some admissible system S and
initial values. The algorithms presented in the subsequent chapters will work on difference rings
containing elements t1, . . . , tm that “represent” the sequences f1(n), . . . , fm(n) in a certain sense.

Consider the difference homomorphism

ϕ : (
� {t1, . . . , tm},s)→ (

� �
,E), ti 7→ fi(n).
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According to Theorem 2.15.(5), we have

� {t1, . . . , tm}/ker ϕ∼= imϕ⊆ � � .

As the sequences fi(n) are assumed to be admissible, the kernel kerϕ cannot be empty. For each
recurrence

fi(n+ ri) =
pi ( f1(n), . . . , fm(n+ ri−1))

qi ( f1(n), . . . , fm(n+ ri−1))

it must at least contain the difference polynomial

qi(t1, . . . ,s
ri−1tm)srit j− pi(t1, . . . ,s

ri−1tm).

The difference ideal generated by these polynomials is called the associated difference ideal of S.

Definition 3.12 Let S be an admissible system for f1(n), . . . , fm(n). For each recurrence

fi(n+ ri) =
pi ( f1(n), . . . , fm(n+ ri−1))

qi ( f1(n), . . . , fm(n+ ri−1))
(i = 1, . . . ,m)

in S, define

Pi := qi(t1, . . . ,s
ri−1tm)srit j− pi(t1, . . . ,s

ri−1tm) ∈ � {t1, . . . , tm} (i = 1, . . . ,m).

Then the difference ideal
〈〈P1, . . . ,Pm〉〉E

� {t1, . . . , tm}

is called the associated difference ideal of S.

If a is the associated difference ideal of S, then, in the notation above, a ⊆ kerϕ. Equality does
not hold in general. For example, define f (n) := (−1)n via the recurrence f (n+1) =− f (n) and
the initial value f (1) =−1. If ϕ :

� {t} → � � maps t to (−1)n and a E
� {t} is the associated

difference ideal, then
a = 〈〈st + t〉〉( 〈〈t2−1,st + t〉〉= kerϕ.

Nonzero difference polynomials in kerϕ \ a, if they exist, are nontrivial algebraic dependen-
cies.They will be further discussed in Chapter 6.

If the qi in definition above are all constants, then

� {t1, . . . , tm}/〈〈P1, . . . ,Pm〉〉 ∼=
�

[t1, . . . ,s
r1−1t1, t2, . . . ,s

r2−1t2, . . . . . . tm, . . . ,srm−1tm],

i.e., the underlying ring of
� {t1, . . . , tm}/〈〈P1, . . . ,Pm〉〉 is an ordinary polynomial ring, and the

difference ideal only defines the action of s on this ring. Taking quotient fields, we obtain

Q(
� {t1, . . . , tm}/〈〈P1, . . . ,Pm〉〉)∼=

�
(t1, . . . ,s

r1−1t1, t2, . . . ,s
r2−1t2, . . . . . . tm, . . . ,srm−1tm).

This latter isomorphism continues to hold for arbitrary denominators q i if the system S is normal,
as we will see below.
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Definition 3.13 Let S be an admissible system for f1(n), . . . , fm(n), and let the difference polyno-
mials P1, . . . ,Pm ∈

� {t1, . . . , tm} be defined as in Def. 3.12, r1, . . . ,rm ∈ � their respective orders.
Then for each r ∈ � the ideal

〈P1,sP1, . . . ,s
r−r1P1,P2,sP2, . . . ,s

r−r2P2, . . . . . . ,Pm,sPm, . . . ,sr−rmPm〉
E
�

[t1,st1, . . . ,s
rt1, t2,st2, . . . ,s

rt2, . . . . . . , tm,stm, . . . ,srtm] =:
� {t1, . . . , tm}r

is called the associated polynomial ideal of order r of S.

We want to show that the associated polynomial ideals of some normal admissible system are
precisely the elimination ideals of the associated difference ideals with respect to

� {t1, . . . , tm}r .
For this we need the following lemma. Roughly speaking, it says that extending a ring R by an
element q ∈ R does not change R, and extending R by 1/q does not change the quotient field.

Lemma 3.14 Let p E
�

[X ] :=
�

[x1, . . . ,xn] be a prime ideal.

(1) For all q ∈ � [X ], the ideal p′ := 〈p∪{p}〉E � [X ,y] with p = y−q is prime and
�

[X ]/p ∼=
�

[X ,y]/p′.

(2) For all q ∈ � [X ] \ p, the ideal p′ := 〈p∪ {p}〉 E
�

[X ,y] with p = qy− 1 is prime and
Q(
�

[X ]/p) ∼= Q(
�

[X ,y]/p′).

Proof Write R :=
�

[X ]/p and R′ :=
�

[X ,y]/p′. By p′ = 〈p〉+ 〈p〉, we have R′ ∼= R[y]/〈p〉.
(1) Consider the homomorphism φ : R[y]→R with φ(y) = q. We obviously have ker φ = 〈y−q〉,

and hence R′ ∼= R[y]/〈p〉 ∼= R, as claimed.

(2) As p is prime, R is an integral domain and we may consider Q(R). By q 6∈ p, there must be
an element 1/q ∈Q(R). Consider the homomorphism φ : R[y]→Q(R) with φ(y) = 1/q. By
〈qy− 1〉 ⊆ kerφ we get an induced homomorphism φ̄ : R′→ Q(R). The proof is complete
if we can show that φ̄ is an embedding, for then R ↪→ R′ ↪→ Q(R) implies that Q(R) ↪→
Q(R′) ↪→ Q(R) and hence Q(R′)∼= Q(R).

Indeed, φ̄ is injective: we have to show kerφ ⊆ 〈qy− 1〉. Let a = ∑n
k=0 akyk ∈ ker φ, and

assume that a 6∈ 〈qy− 1〉. We may assume without loss of generality that q - an in R. We
have

0 = φ(a) =
n

∑
k=0

akφ(y)k =
n

∑
k=0

ak

qk =
1
qn

n

∑
k=0

akqn−k.

As 1/qn 6= 0, it follows that

0 =
n

∑
k=0

akqn−k = an +q
n−1

∑
k=0

akq(n−1)−k

︸ ︷︷ ︸

∈R

,

and hence q | an in contradiction to the assumption on a.

Theorem 3.15 Let S be a normal admissible system for f1(n), . . . , fm(n).

(1) The associated polynomial ideals a E
� {t1, . . . , tm}r of any order r ∈ � are prime.

(2) The associated difference ideal a E
� {t1, . . . , tm} is prime.
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Proof

(1) Let P1, . . . ,Pm ∈
� {t1, . . . , tm} be as in Def. 3.12 and r1, . . . ,rm be their respective orders.

Define the ideals

ai, j E
�

[t1, . . . , tm, . . . . . . ,s j−1t1, . . . ,s
j−1tm,s jt1, . . . ,s

jti]

recursively via

ai, j :=

{
〈ai−1, j〉 if j < ri

〈ai−1, j ∪{s j−riPi}〉 otherwise

where we identify a0, j with am, j−1 for simplicity of notation. As base case, define a0,0 :=
{0} E

�
.

Clearly a0,0 is prime, and by Lemma 3.14 the primeness of each ai, j carries over to ai+1, j ,
because by the normality of S the difference polynomials s jPi are precisely of the form
required in Lemma 3.14.

The proof is completed by noting that a = am,r .

(2) Let a1,a2,a3, . . . be the associated polynomial ideals of order 1,2,3, . . . , and denote by 〈a i〉
the ideal generated by ai in

� {t1, . . . , tm}. Then we have the chain 〈a1〉 ⊆ 〈a2〉 ⊆ 〈a3〉 ⊆ · · ·
and the identity

a = { p ∈ � {t1, . . . , tm} : ∃ i : p ∈ 〈ai〉}. (3.1)

Proof of (3.1). The inclusion “⊇” is evident. For the inclusion “⊆”, take an element a ∈ a.
If P1, . . . ,Pm are the generators of a from Def. 3.12, then a can be written in the form

a =
m

∑
i=1

∞

∑
j=0

ai, j s jPi

for some ai, j ∈
� {t1, . . . , tm} almost all of which are zero. If r denotes the maximum index j

such that ai, j 6= 0 for some i, then a ∈ 〈ar〉. This proves (3.1).

In order to see that a is prime, let p,q ∈ � {t1, . . . , tm} be such that pq ∈ a. Then, by (3.1),
pq ∈ 〈ai〉 for some i. The ideals ai, and hence also the 〈ai〉, are prime by part (1) of the
Theorem. It follows that p ∈ 〈ai〉 or q ∈ 〈ai〉, which implies p ∈ a or q ∈ a by using (3.1).

Theorem 3.15 justifies that
� {t1, . . . , tm}/a is an integral domain when a is the associated differ-

ence ideal of some normal admissible system S. Hence the quotient field Q(
� {t1, . . . , tm}/a) is

well defined in that case.

Another consequence of Theorem 3.15 is that the associated polynomial ideals are precisely the
elimination ideals of the associated difference ideals w.r.t. the polynomial rings

� {t1, . . . , tm}r.

Theorem 3.16 Let S be a normal admissible system for f1(n), . . . , fm(n), let a E
� {t1, . . . , tm}

be the associated difference ideal and denote by ar E
� {t1, . . . , tm}r the associated polynomial

ideal of order r. Then

(1) ar+1∩
� {t1, . . . , tm}r = ar for every r ≥ 1

(2) ar̃ ∩
� {t1, . . . , tm}r = ar for every r̃ ≥ r ≥ 1

(3) a∩ � {t1, . . . , tm}r = ar for every r ≥ 1
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Proof Let P1, . . . ,Pm ∈
� {t1, . . . , tm} be as in Def. 3.12, and let r1, . . . ,rm be their respective

orders.

(1) “⊇” obvious. “⊆” Recall that, for every integral domain R and every p ∈ R[x] \ R, we
have 〈p〉 ∩R = {0}. This implies that for every prime ideal p E

�
[X ] and every p0, p1 ∈

�
[X ] with p1 6∈ p, we have 〈p∪{p1y− p0}〉∩

�
[X ] = p, where the ideal on the left is in

�
[X ,y].

Define the ideals

ar,i E
�

[t1, . . . , tm, . . . . . . ,srt1, . . . ,s
rtm,sr+1t1, . . . ,s

r+1ti] (i = 0, . . . ,m)

recursively via ar,0 := ar and

ar,i :=

{
〈ar,i−1〉 if r +1 < ri

〈ar,i−1∪{sr+1−riPi}〉 otherwise

By Theorem 3.15, ar = ar,0 is prime, and by applying Lemma 3.14 and the remark above
repeatedly, we obtain that ar,i is prime and

ar,i+1∩
�

[t1, . . . , tm, . . . . . . ,srt1, . . . ,s
rtm,sr+1t1, . . . ,s

r+1ti] = ar,i (i = 0, . . . ,m−1).

The proof is completed by noting that ar+1 = ar,m.

(2) By repeated application of part (1), we find

ar̃∩
� {t1, . . . , tm}r̃−1 = ar̃−1

=⇒ ar̃∩
� {t1, . . . , tm}r̃−2 = ar̃−1∩

� {t1, . . . , tm}r̃−2 = ar̃−2

=⇒ ar̃∩
� {t1, . . . , tm}r̃−3 = ar̃−1∩

� {t1, . . . , tm}r̃−3 = ar̃−2∩
� {t1, . . . , tm}r̃−3 = ar̃−3

=⇒ ·· ·
=⇒ ar̃∩

� {t1, . . . , tm}r = ar.

(3) “⊇” Obvious. “⊆” Every a ∈ a∩ � {t1, . . . , tm}r can be written in the form

a =
m

∑
i=1

∞

∑
j=0

ai, js
jPi

for some ai, j ∈
� {t1, . . . , tm}, almost all zero. There exists an r ∈ � such that ai, js jPi ∈

� {t1, . . . , tm}r̃, and hence a ∈ ar̃ ∩
� {t1, . . . , tm}r. By part (2), it follows that a ∈ ar.
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In this chapter we describe an algorithm which decides whether a sequence, which is given by
an admissible system plus initial values, equals the zero sequence. By the closure of the class of
admissible sequences under field operations, this algorithm immediately gives rise to an algorithm
for proving combinatorial identities f (n) = g(n) with admissible sequences on both sides of the
identity. Further applications of this algorithm will be encountered in subsequent chapters.

The algorithm proceeds by setting up a proof by complete induction on n. A similar algorithm
was proposed by Shackell (1993, 2004) for the differential case. That algorithm shows by a
complete induction that all Taylor coefficients of a given function f (x) are zero. If the attention
is restricted to analytic functions, this is a sufficient condition for f (x) to be zero entirely.

4.1 Deciding Zero Equivalence Algorithmically

Suppose we are given an admissible sequence f (n) by an admissible system S of difference
equations and initial values. In order to decide whether f (n) = 0 for all n, we proceed in two
steps. The first step consists of computing a number N ≥ 0 with the property that f (n) = 0
for all n ∈ � if and only if f (n) = 0 for n ≤ N. Once such a number N is known, deciding
whether f (n) = 0 for all n ∈ � reduced to evaluating f (n) for n = 1,2, . . . ,N and deciding zero
equivalence of these constants.

Algorithm 4.1 settles the first step. For N = 1,2, . . . , it determines whether the implication

∀ n≥ 0 : f (n) = f (n+1) = · · ·= f (n+N) = 0 =⇒ f (n+N +1) = 0

follows from the recurrences in the admissible system S. It will be shown below (Theorem 4.5)
that this will be the case if N is large enough.

Algorithm 4.1 (Induction Step)
Input: An admissible system S for sequences f1(n), . . . , fm(n), an index i ∈ {1, . . . ,m}.
Output: A number N ∈ � such that fi(n) = · · · = fi(n + N) = 0 implies fi(n + N + 1) = 0 for
all n ∈ �

1 Replace S by an equivalent normal admissible system (cf. Theorem 3.2.(3))
2 Let a E

� {t1, . . . , tm} be the associated difference ideal of S
3 Set N to the order of S
4 while sN+1ti 6∈ Rad

(
〈ti,sti, . . . ,sNti〉+a∩ � {t1, . . . , tm}N+1

)
do

5 N := N +1
6 return N

Observe that all the steps in Algorithm 4.1 are computable. Step 1 can be carried out as shown
in the proof of Theorem 3.2. Step 2 is nothing more than a rewriting of the recurrences in S
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in terms of difference polynomials. Step 4 contains several substeps. First, we have to com-
pute the elimination ideal a∩ � {t1, . . . , tm}N+1. According to Theorem 3.16, this ideal is just
the associated polynomial ideal of order N, and the generators of a give rise to generators of
a∩ � {t1, . . . , tm}N+1. As

� {t1, . . . , tm}N+1 is now just a polynomial ring, deciding radical mem-
bership is a standard application of Gröbner bases (Theorem 2.7.(2)).

The zero equivalence algorithm may now be stated as follows.

Algorithm 4.2 (Zero Equivalence)
Input: An admissible system S for sequences f1(n), . . . , fm(n), initial values, a distinguished
index i ∈ {1, . . . ,m}.
Output: True if fi(n) = 0 for all n≥ 1, False otherwise.

1 Apply Algorithm 4.1 to S and i, obtaining the number N
2 for n = 1 to N +1 do
3 Compute the value fi(n) by Algorithm 3.9
4 if fi(n) 6= 0 then
5 return False
6 return True

Correctness and termination of Algorithm 4.1 immediately imply correctness and termination
of Algorithm 4.2. If Algorithm 4.2 returns False, then it has actually found a number n with
fi(n) 6= 0, so fi(n) is not the zero sequence. On the other hand, if it returns True, then there is a
proof by complete induction to n that fi(n) = 0 for all natural n: the termination of the loop in
lines 2–5 asserts that fi(1) = fi(2) = · · · = fi(N +1) = 0. This serves as induction base, and the
definition of N supplies the induction step.

We have divided zero equivalence test into two algorithms because we will need Algorithm 4.1
later, in Chapter 6, as a subroutine. For the sole purpose of testing zero equivalence, it is more
convenient to apply a “merged” version of the two algorithms where f i(N) is evaluated in the
while loop of Algorithm 4.1. If it is nonzero, we can stop—we do not need to know the precise
value of N anymore.

We will next prove correctness and termination of Algorithm 4.1.

Lemma 4.3 Let f1(n), . . . , fm(n) be admissible sequences, defined by some admissible system S
of order r. For some N ≥ r, let a E

� {t1, . . . , tm}N+1 denote the (N +1)st associated polynomial
ideal of S. Let n ∈ � . Then

a+ 〈t1− f1(n), . . . ,sNt1− f1(n+N), . . . . . . ,

tm− fm(n), . . . ,sNtm− fm(n+N)〉∩ � [sN+1t1, . . . ,s
N+1tm]

= 〈sN+1t1− f1(n+N +1), . . . ,sN+1tm− fm(n+N +1)〉.

Proof By N ≥ r, the ideal a contains a polynomial p which is free of sN+1t2, . . . ,sN+1tm and
depends only linearly on sN+1t1. As sit j− f j(n+ i) ∈ a, the polynomial p′ which is obtained from
p by replacing sit j by f j(n+ i) belongs to a as well. But this polynomial is, up to multiplication
by a constant, equal to sN+1t1− f1(n+N +1).
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The same argument, applied consecutively, shows that also sN+1t2− f2(n+N +1), . . . ,sN+1tm−
fm(n + N + 1) ∈ a. This establishes the inclusion “⊇ .” As the ideal on the right is maximal, we
can only have “)” if it is equal to 〈1〉, but this is impossible because the sequences f i(n) are
assumed to be solutions of S.

Theorem 4.4 Algorithm 4.1 is correct. That is, the number N delivered by the algorithm has the
property claimed in the specification.

Proof Suppose the algorithm returns the number N. Let a∩ � {t1, . . . , tm}N+1 = 〈p1, . . . , p`〉,
and define a′ := 〈p1, . . . , p`, ti,sti, . . . ,sNti〉.
Suppose that n ∈ � is such that fi(n) = · · ·= fi(n+N) = 0. Then, using Lemma 4.3,

a′∩ � [sN+1t1, . . . ,s
N+1tm]

⊆ 〈p1, . . . , p`〉+ 〈sit j− f j(n+ i) : i = 0, . . . ,N; j = 1, . . . ,m〉∩ � [sN+1t1, . . . ,s
N+1tm]

= 〈sN+1t1− f1(n+N +1), . . . ,sN+1ti− fi(n+N +1), . . . ,sN+1tm− fm(n+N +1)〉.

By the termination condition, we have sN+1ti ∈ Rada′, and so the ideal in the last line must
contain (sN+1ti)e for some e≥ 0. This forces fi(n+N +1) = 0.

Theorem 4.5 Algorithm 4.1 terminates. That is, for every input it will produce an output after a
finite number of steps.

Proof For a polynomial ideal b E
�

[X ], whose set of associated prime ideals contains nd ideals
of dimension d (d = 0,1,2, . . . ), define the vector

v(b) := (. . . ,n3,n2,n1,n0).

For two ideals b E
�

[X ], b′ E
�

[X ′], we say v(b) ≺ v(b′) if v(b) is lexicographically smaller
than v(b′), i.e., if

v(b) = (. . . ,n3,n2,n1,n0), v(b′) = (. . . ,n′3,n
′
2,n
′
1,n
′
0)

then v(b)≺ v(b′) iff nd < n′d for the maximal d with nd 6= n′d . Observe that almost all entries n j

and n′j and v(b′) are zero, so that such a d exists unless the vectors are identical.

Consider the sequence of ideals aN := 〈ti,sti, . . . ,sNti〉+ a∩ � {t1, . . . , tm}N+1 for N = r,r + 1,
r + 2, . . . , where r is the order of S. Assume that sN+1ti 6∈ RadaN (otherwise there is nothing to
prove). If p1, . . . ,ps are the associated prime ideals of aN , then

sN+1ti 6∈ RadaN =
s�

j=1

p j

implies that sN+1ti 6∈ p j for at least one j. For these indices j, we have dim(p j + 〈sN+1ti〉) <
dim(p j) (Shafarevich, 1972, Thm. I.6.1), so the inequality dim(p j + 〈sN+1ti〉) ≤ dim(p j), which
holds for all j, is sharp for at least one j. It follows that

v(aN + 〈sN+1ti〉)≺ v(aN).
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As S is normal, m-fold application of Lemma 3.14 asserts furthermore that v(aN+1) = v(a +
〈sN+1ti〉), so v(aN+1)≺ v(aN). By Dickson’s Lemma, an infinite sequence

v(aN)� v(aN+1)� v(aN+2)� ·· ·

cannot exist, and hence sN+1ti 6∈ RadaN cannot be true for all N.

Corollary 4.6 Algorithm 4.2 is correct and terminates.

4.2 Examples

Example 4.7 Let us illustrate the zero equivalence algorithm in full detail at the simple example
sequence f (n), defined by

f (n) =
Fn

Fn+1
+

n

∑
k=1

(−1)k

FkFk+1
(n≥ 0),

where Fn denotes the n-th Fibonacci number (cf. p. 11). Using the closure properties of Sec-
tion 3.2, we can easily form an admissible system for f (n).

S = { f1(n+2) = f1(n+1)+ f1(n),

f2(n+1) =− f2(n),

f3(n+1) = 1/ f1(n) f1(n+1),

f4(n+1) = f4(n)+ f2(n+1) f3(n+1),

f5(n) = f1(n)2 f3(n)+ f4(n)}.

We have f (n) = f5(n). The system S is already normal. Translating S to difference polynomials
gives the associated difference ideal

a = 〈〈s2t1− st1− t1,st2 + t2,st3t1st1−1,st4− t4− st2st3, t5− t2
1 t3 + t4〉〉E

� {t1, . . . , t5}.

First, we compute the number N of Algorithm 4.1. We have

s2t5 6∈ a+ 〈t5,st5〉∩
� {t1, . . . , t5}2 ,

s3t5 6∈ a+ 〈t5,st5,s2t5〉∩
� {t1, . . . , t5}3 ,

s4t5 ∈ a+ 〈t5,st5,s2t5,s
3t5〉∩

� {t1, . . . , t5}4 .

Hence, N = 3. We conclude that

∀ n ∈ � : f (n) = f (n+1) = f (n+2) = f (n+3) = 0 =⇒ f (n+4) = 0.

By evaluation we find that f (1) = f (2) = f (3) = f (4) = 0, and this gives f (n) = 0 for all n ∈ � .
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Example 4.8

(1) The number of iterations of the while loop in Algorithm 4.1 can be arbitrarily large. Choose
a fixed number M ∈ � and consider the admissible sequence

f (n) := (n−1)(n−2) · · · (n−M).

Then f (n) = 0 for n = 1,2, . . . ,M, but not for all n ∈ � . Hence the number N computed by
Algorithm 4.1 must be at least as large as M.

(2) The requirement that the admissible system S be made normal in Step 1 of Algorithm 4.1 is
essential. Consider the simple hypergeometric identity

n

∑
k=0

1
4k

(
2k
k

)

=
2(n+1)

4n+1

(
2n+2
n+1

)

.

The admissible system S, defined by

S =
{

f1(n+1) = f1(n)+1, f2(n+1) = 2
2 f1(n)+1
f1(n)+1

f2(n), f3(n+1) = 4 f3(n),

f4(n+1) = f4(n)+
f2(n+1)

f3(n+1)
, f5(n) =− f4(n)+

( f1(n)+1)(2 f1(n)+1) f2(n)

( f1(n)+1) f3(n)
−1

}

gives rise to the associated difference ideal

a = 〈〈− st1 + t1 +1,−st2(t1 +1)+2t2(2t1 +1),−st3 +4t3,

− st4st3 + t4st3 + st2,−t5(t1 +1)t3− t4(t1 +1)t3 +(t1 +1)t2(2t1 +1)− (t1 +1)t3〉〉.
If a2,a3,a4, . . . are the associated polynomial ideals of order 2,3,4, . . . , then

st5 6∈ a2 + 〈t5〉
s2t5 6∈ a3 + 〈t5,st5〉
s3t5 6∈ a4 + 〈t5,st5,s2t5〉, . . .

The algorithm would not terminate.

The reason for this phenomenon is that an ideal a + 〈py− q〉 E � [X ,y] (with a E
�

[X ],
p,q ∈ � [X ]\a) may have more primary components than a itself. In fact, every component
of 〈p,q〉 gives rise to an additional component, and thus the component counting argument
in the termination proof is violated.

The requirement that the admissible system be normal contains the requirement that p or q
be constant, hence 〈p,q〉 = 〈1〉 and new components do not appear.

(3) Applying Algorithm 4.2 to the sequence f (n) defined by

f (n+1) =
1

n−5
f (n) (n≥ 1), f (1) = 0

yields True, disregarding that f (n) is not well defined for n≥ 6.

Problems with rational function coefficients having poles in the range of interest are com-
mon phenomena in symbolic summation (Abramov and Petkovšek, 2005). We assume
throughout that the admissible system, by which the involved sequences are defined, is cho-
sen such that no denominators vanish for any n ∈ � . (Compare our remarks on recurrences
in Section 2.2.)
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Example 4.9 The zero equivalence algorithm may be used for proving combinatorial identities,
such as the following ones. To our knowledge, none of them was proven algorithmically before.

(1)
n

∑
k=0

1
F2k

= 3− F2n−1

F2n
(Graham et al., 1994, Exercise 6.61)

(2)
n

∏
k=1

(L2·3k −1) = 1
2 F3n+1 (Filipponi, 1996)

(3) The q-generalization

d(n)e(n+1)−d(n+1)e(n) = (−1)nq(n
2) (n≥ 0)

of Cassini’s identity appearing in Andrews et al. (2000), where

d(n+2) = d(n+1)+qnd(n) (n≥ 0), d(0) = 1,d(1) = 0

e(n+2) = e(n+1)+qne(n) (n≥ 0), e(0) = 0,e(1) = 1

(4) For

h(n) :=
(n+1)((−1)n(π+2)+π−2)Γ(n/2)

4
√

πΓ((n+1)/2)

we have
n

∑
k=0

1
k!

=
n

K
k=1

(

h(k)−
k

∏
i=1

(− 7
4 i2 +9i− 45

4 )
)

(n≥ 1)

(Kauers, 2003).

(5) Consider the exponential integral En(x) and the incomplete Gamma function Γ(n,x) defined
via

En(x) := � ∞

1
t−n exp(−xt)dt Γ(n,x) := � ∞

x
tn−1 exp(−t)dt.

According to Abramowitz and Stegun (1972), these function satisfy the recurrences

En+1(x) =
1
n
(exp(−x)− xEn(x)), Γ(n,x) = (n−1)Γ(n−1,x)+ xn−1 exp(−x),

thus they are admissible as sequences in n. The identity

En(x) = xn−1Γ(1−n,x)

can be proven by the algorithm.

(6) Consider the Somos sequence Cn defined by

Cn+2 =
1

Cn−2
(Cn−1Cn+1 +C2

n) (n≥ 2), C−2 = C−1 = C0 = C1 = 1.

The identities

Cn+3Cn−2 =−Cn−1Cn+2 +5CnCn+1

Cn+3Cn−3 = Cn−1Cn+1 +5C2
n

Cn+4Cn−4 = 25Cn+1Cn−1−4C2
n

by van der Poorten (2004) can be verified by the algorithm.
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4.3 Two Non-Admissibility Criteria

The fact that Algorithm 4.1 terminates for all admissible sequences shades some light on the
extent of this class. We have already seen in Section 3.2 that the class of admissible sequences is
quite large. In the present section, we state two simple sufficient criteria for a sequence not to be
admissible.

As in the proof of the termination theorem (Theorem 4.5), it can be shown that the sequence

dima1,dima2,dima3, . . .

where ai are associated polynomial ideals of some normal admissible system S is ultimately
constant, where dimai is of course understood with respect to

� {t1, . . . , tm}i. Now, consider the
elimination ideals a′r := ar∩

�
[ti,sti, . . . ,srti]. The dimension of ar is bounded by, say, d, whereas

the dimension of
�

[ti, . . . ,srti] is r +1. As soon as r > d, the ideal a′r cannot be empty because,
geometrically speaking, the projection of a variety into a higher dimensional affine space cannot
be surjective (Shafarevich, 1972). Thus we have proven the following proposition.

Proposition 4.10 If f (n) is admissible, then there exists a number r ∈ � and a polynomial
p ∈ � [x0, . . . ,xr]\{0} such that

p( f (n), f (n+1) . . . , f (n+ r)) = 0 (n≥ 0).

Given an admissible system for f (n), such a polynomial can be computed.

This proposition admits a criterion for proving that certain sequences are not admissible.

Example 4.11 The sequence f (n) = 2n! is not admissible. Assume otherwise. Then, by the
proposition, there would exist a polynomial p ∈ � [x0, . . . ,xr] such that

p( f (n), f (n+1), . . . , f (n+ r)) = 0 (n≥ 0).

For e0, . . . ,es ∈ � with es 6= 0, we have

(2(n+s)!)es · · · (2(n+1)!)e1(2n!)e0 = 2(esns+lower terms)n! n→∞−−−−→
{

0 if es < 0
∞ if es > 0.

Hence, if we divide p by its leading term w.r.t. the lexicographic order xr > xr−1 > · · · > x0,
substitute the f (n+ i) and let n go to infinity, we arrive at the contradiction LC(p) = 0.

The termination of Algorithm 4.1 also implies that a sequence f (n), which is not ultimately
constant, can only be admissible if it does not possess arbitrarily long “runs” of constant values.
This means: A sequence f (n) with the property that for every length M there exists a number
N > M and a number n0 ∈ � such that

f (n0) = f (n0 +1) = f (n0 +2) = · · ·= f (n0 +N) 6= f (n0 +N +1)

is not admissible. For every admissible sequence f (n) and every value v ∈ � , Algorithm 4.1
applied to f (n)− v delivers an upper bound for the length of a run

f (n0) = f (n0 +1) = f (n0 +2) = · · ·= f (n0 +N−1) = v.
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Any longer run would imply that f (n) = v for all n≥ n0.

As an example, we find that (−1)blognc is not admissible, because this sequence consists of runs
of −1 and 1 that become longer and longer as n grows.

4.4 Remarks on Complexity

We have no results about the time and space complexity of Algorithm 4.1, and just make some
general remarks in this section. A complexity analysis would have to focus on two questions:
First, how much time is consumed by the radical membership test in line 4, and secondly, how
many iterations of the while loop might be necessary.

It is generally hard to make statements about the time complexity of algorithms in commutative
algebra. It was mentioned that the radical membership test can be done by a standard application
of Gröbner basis techniques, but the computation of Gröbner bases is known to be expensive:
doubly exponential runtime and exponential space requirements have to be assumed in general
for the worst case. The special problem of radical membership can, however, be decided with
polynomial space Mayr (1997).

As for the number of iterations, it is not likely that a reasonable bound depending on, say, the
depth m, the order r and/or the maximum total degree d of the admissible system S could be
established. In fact, any such bound κ(m,r,d) would presumably give rise to a much faster
algorithm, provided that κ itself can be computed in reasonable time: just return N := κ(m,r,d).
The while loop with its expensive radical membership test could be discarded altogether.

Despite the poor worst case complexity, it turns out that Algorithm 4.1 performs quite well in
practice. It is well known that Gröbner basis computations perform far better than suggested by
the worst case complexity analysis on problems arising in practice. A similar remark applies to
the number of iterations of the while loop. Though it is easy to construct input which requires
any prescribed number of iterations (Example 4.8.(1)), already two or three iterations suffice for
most examples from practice. If special purpose software is used most identities to which the
algorithm is applicable, in particular those listed in Example 4.9, can be done in less than a few
seconds on contemporary hardware. The use of Faugère’s system Gb (Faugère, 1999, 2002a,b)
has turned out to be very efficient.

It is possible to improve the efficiency of the algorithm in the case where algebraic dependen-
cies are known in addition to the defining recurrences. The most typical example is t 2− 1 if t
represents (−1)n. In Chapters 6f we will discuss methods for computing algebraic dependencies
among given admissible sequences. Once and for all computed, such relations may be freely
added to the associated difference ideal a in Algorithm 4.1. Correctness is obviously not hurt if
the relations indeed hold. Also the termination is not affected, because if the algorithm terminates
for an ideal a then it certainly also terminates for every overideal a′ ⊇ a in place of a.

Adding relations might seem counterproductive, because the radical membership tests might slow
down if additional nonlinear generators are present. However, the number N of iterations actually
needed might be considerably smaller.

Example 4.12 In order to prove the Fibonacci identity

F5
n (1−Fn+1)+F4

n (2+2Fn+1−4F2
n+1)−·· ·



4.5 Proof Certificates 37

· · ·−F3
n (5−9Fn+1 +4F3

n+1)−F2
n (6−8F2

n+1 +3F3
n+1−F4

n+1)

−FnFn+1(6−10Fn+1 +4F2
n+1 +2F3

n+1−2F4
n+1)+F2

n+1(6−5Fn+1−3F2
n+1 +2F3

n+1)

= (−1)n(F3
n (Fn+1−1)+F2

n (3F2
n+1−Fn+1−2)+Fn(2F3

n+1−7Fn+1−5)

+(2F3
n+1−3F2

n+1−5Fn+1 +6)
)

directly, Algorithm 4.2 requires four iterations. The identity was obtained by disturbing Cassini’s
identity with a multiplicative factor. (As we will see in Chapter 7, all Fibonacci identities are
obtained in this way.) If Cassini’s identity is taken for granted and the corresponding difference
polynomial is added to the ideal in line 4 of Algorithm 4.1, then no iteration is needed at all. For
proving Cassini’s identity, one single iteration is necessary.

A speed up by homomorphic images is not so easy to achieve. The essence of a radical member-
ship test is to decide whether a = 〈1〉 for a certain ideal a. For a given ideal a = 〈a1, . . . ,am〉 E

� [x1, . . . ,xn], let ā = 〈ā1, . . . , ām〉E � p[x1, . . . ,xn] be the ideal generated by the images āi of the
ai under the canonical homomorphism � → � p (p prime). It is easy to find examples where
a = 〈1〉, but ā 6= 〈1〉, and conversely, where a 6= 〈1〉 but ā = 〈1〉. Hence, from the result of
a radical membership in a homomorphic image, we cannot draw conclusions about the radical
membership in the original field.

With high probability, however, we have a = 〈1〉 and ā = 〈1〉 or a 6= 〈1〉 and ā 6= 〈1〉 (Arnold,
2003). This suggests to first run the radical membership test modulo a prime p. If it returns False,
iterate. Only if it returns True, check the result by recomputing the test in � .

4.5 Proof Certificates

Results obtained by computer algebra software might be incorrect. Even though the underlying
algorithms are provably correct, implementations consisting of several thousand lines of code
are likely to contain bugs. Wester (1999) studies the behavior of computer algebra systems and
comes to the conclusion that it is indispensable to check the result of a nontrivial computation for
plausibility.

The output of a decision procedure is just “yes” or “no,” and there is little possibility to check
such a result for plausibility. In view of the possibility of bugs we might ask what is the practical
value of a proving procedure. For hypergeometric identities, Wilf and Zeilberger (1990) devised
the concept of proof certificates. Instead of just saying “yes” or “no,” the proving algorithm
supplies a formal proof of the claim which can be verified independently of the algorithm by
simple arithmetic.

Our zero equivalence test (Algorithm 4.2) can be adapted in such a way that it returns a proof
along with its output. For the case where f (n) 6= 0, this is easy. The algorithm has found a
witness n0 which may serve as certificate. In the case f (n) = 0 we have to justify the induction
step property for the number N returned by Algorithm 4.1, and for this it is evidently sufficient to
justify the radical membership test in the final iteration.

In order to justify p ∈ Rada for a given p ∈ � [X ] and a = 〈p1, . . . , pm〉 E
�

[X ], recall that
p ∈ Rada iff pn ∈ a for some n, by definition of the radical. In this case, there exist cofactors
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q1, . . . ,qm such that
pn = q1 p1 + · · ·+qm pm.

The exponent n as well as the cofactors qi can be computed, and from this data a proof of the zero
equivalence by induction can be constructed, as shown in the following simple example.

Example 4.13 Consider Cassini’s identity

F2
n +FnFn+1−F2

n+1 +(−1)n = 0 (n≥ 0).

We have

s2t3 ∈ Rad(〈t3,st3〉+ 〈〈s2t1− st1− t1, t
2
2 −1,st3− t2

1 − t1st1 + st2
1 − t2〉〉∩

� {t1, t2, t3}2),

and so the identity is proved by checking two initial conditions. The radical membership is
asserted by the polynomial identity

(s2t3)
1 = (−t1− s2t1) · (s2t1− st1− t1)

+1 · (st2 + t2)

+(−1) · (st3)
+1 · (st3− t2

1 − t1st1 + st2
1 − t2)

+1 · (s2t3− st2
1 − st1s2t1 + s2t2

1 − st2),

which is easily verified.

The computation of the cofactors is rather costly. For nontrivial examples, it will most often be
the case that Algorithm 4.1 terminates after a reasonable time, but the extra effort required for
computing the proof certificate is beyond the scope of state-of-the-art computing environments.

4.6 Zero Equivalence of Non-Admissible Sequences

In this section, we present a generalization of the zero equivalence test which can be applied
to certain problems involving sequences that are not admissible (Kauers, 2004). We have met
examples of such sequences in Section 4.3.

Let g1(n), . . . ,g`(n) be arbitrary (not necessarily admissible) sequences in
�

, define

ϕ :
� {t1, . . . , t`} →

� �

by ϕ(x) = x (x ∈ � ) and ϕ(ti) = gi(n) (i = 1, . . . , `). We assume that g1(n), . . . ,g`(n) are such that

membership p
?∈ kerϕ E

� {t1, . . . , tm} can be decided for any given p ∈ � {t1, . . . , tm}.
For the sake of theoretic soundness, we assume further that g1(n), . . . ,g`(n) are chosen such
that for every p ∈ � {t1, . . . , tm} \ kerϕ, the sequence ϕ(p) has finitely many roots only, and an
algorithm is known for computing an upper bound for the largest root. This is a severe restriction,
but we may well ignore it in practice and prompt the user to supply the required information
instead of insisting in answering such questions algorithmically.
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Definition 4.14 Let g1(n), . . . ,g`(n) be arbitrary sequences in
�

. A system S = {rec1, . . . ,recm}
of difference equations for sequences f1(n), . . . , fm(n) is admissible w.r.t. g1(n), . . . ,g`(n) if each
reci is of the form

fi(n+ ri) = rati
(
g1(n), g1(n+1), . . . , g1(n+ ri−1), g1(n+ ri), g1(n+ ri +1), . . . ,

...
...

g`(n), g`(n+1), . . . , g1(n+ ri−1), g`(n+ ri), g`(n+ ri +1), . . . ,

f1(n), f1(n+1), . . . , f1(n+ ri−1), f1(n+ ri),

...
...

fi−1(n), fi−1(n+1), . . . , fi−1(n+ ri−1), fi−1(n+ ri),

fi(n), fi(n+1), . . . , fi(n+ ri−1),

...
...

fm(n), fm(n+1), . . . , fm(n+ ri−1)
)

(n≥ 1)

where ri ≥ 0 is fixed and rati is some fixed rational function with coefficients in
�

.

A sequence f (n) in
�

is called admissible w.r.t. g1(n), . . . ,g`(n) if there exists an admissible
system of recurrences S = {rec1, . . . ,recm} w.r.t. g1(n), . . . ,g`(n) and solutions f1(n), . . . , fm(n)
of S with f (n) = fi(n) for some i.

Note that the gi(n) may appear with arbitrary order in the recurrences.

The original definition of admissible systems and sequences is contained in this definition as the
special case ` = 0. We leave it to the reader to verify that Theorems 3.2 and 3.5 can be generalized
to the present situation.

Let S be an admissible system for f1(n), . . . , fm(n) w.r.t. g1(n), . . . ,g`(n). The associated differ-
ence ideal a E

� {t1, . . . , tm+`} of S is defined by a := 〈P1, . . . ,Pm〉, where P1, . . . ,Pm are as in
Definition 3.12 (with sit j replaced by sit j+` for all i and j). In order to generalize the definition
of the associated polynomial ideal, we introduce the rings

� {t1, . . . , tm+`}`r :=
� [

t1,st1, . . . , srt1,s
r+1t1, . . . . . . ,

...
...

t`,st`, . . . , srt`,s
r+1t`, . . . . . . ,

t`+1,st`+1, . . . , srt`+1,

...
...

tm+`,stm+`, . . . ,s
rtm+`

]
.

The associated polynomial ideal a of order r is defined as

〈P1,sP1, . . . ,s
r−r1P1,P2,sP2, . . . ,s

r−r2P2, . . . . . . ,Pm,sPm, . . . ,sr−rmPm〉E
� {t1, . . . , tm+`}`r

where the Pi are as above and ri is the order of Pi (cf. Definition 3.13). Theorems 3.15 and 3.16
carry over to the present situation.
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We can now give the following zero equivalence testing algorithm for sequences which are ad-
missible w.r.t. some given sequences g1(n), . . . ,g`(n). The basic idea is the same as for Algo-
rithms 4.1 and 4.2, only the technicalities are a bit more involved.

Algorithm 4.15 (Zero Equivalence of Admissible Sequences w.r.t. g1(n), . . . ,g`(n)g1(n), . . . ,g`(n)g1(n), . . . ,g`(n)g1(n), . . . ,g`(n))
Input: An admissible system S for f1(n), . . . , fm(n) w.r.t. g1(n), . . . ,g`(n); initial values; an in-
dex i ∈ {1, . . . ,m}
Output: True, False, or Failed
Assumption: For every p ∈ � {t1, . . . , tm}, it can be decided whether p ∈ kerϕ and an upper
bound for the maximum root M ∈ � of ϕ(p) can be computed, where ϕ :

� {t1, . . . , tm}→
� �

is
defined via ti 7→ gi(n). It is further assumed that the gi(n) are computable.

1 if i≤ ` then
2 if ti ∈ kerϕ then return True else return False
3 Bring S into the form of Theorem 3.2.(3)
4 Let a E

� {t1, . . . , tm+`} be the associated difference ideal of S
5 Set N to the order of S
6 if not fi(1) = fi(2) = · · ·= fi(N−1) = 0 then
7 return False
8 repeat
9 if fi(N) 6= 0 then
10 return False
11 Let X be a new indeterminate.
12 a0 := (〈ti,sti, . . . ,sN−1ti,XsNti−1〉+a∩ � {t1, . . . , tm+`}`N)∩ � {t1, . . . , t`}`N
13 N := N +1
14 while a0 = {0}
15 if a0 ⊆ ker ϕ then
16 return Failed
17 Let p ∈ a0 \kerϕ
18 Let M be an upper bound for the roots of ϕ(p)
19 if fi(N) = fi(N +1) = · · ·= fi(M) = fi(M +1) = 0 then
20 return True
21 else
22 return False

The steps in this algorithm are computable. The elimination ideals a∩ � {t1, . . . , tm+`}`N are
precisely the associated polynomial ideals by the generalized Theorem 3.16. The elimination
of X in line 12 can be done by Gröbner bases. It does not matter that the polynomial rings
� {t1, . . . , tm+`}`N have infinitely many indeterminates if ` > 0, because the ideal at hand is finitely
generated and only the indeterminates appearing in the finite basis have to be taken into account.
The result of the elimination is a finite basis for a0. Whether we have a0 ⊆ ker ϕ can be decided
by checking whether b ∈ ker ϕ for all b in the basis of a0. It is assumed that this can be done. If
line 17 is reached, then b 6∈ kerϕ for at least one basis element b of a0. This b is a suitable choice
for p. Line 18 is computable by assumption, and the remaining lines only require evaluation
of fi(n) at particular points n ∈ � and zero equivalence decision in

�
.
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Theorem 4.16 Algorithm 4.15 is correct. That is, if it returns True then f i(n) = 0 for all n ≥ 1,
and if it returns False then fi(n) 6= 0 for at least one n ∈ � . No statement is made about the case
when the return value is Failed.

Proof The algorithm returns False only if it encounters a counterexample, so it remains to prove
correctness for the case where the algorithm returns True. Suppose now that this is the case.

For every n,N ∈ � , we have

a+ 〈t`+1− f1(n), . . . ,sNt`+1− f1(n+N), . . . . . . , t`+m− fm(n), . . . ,sNt`+m− fm(n+N)〉
∩ � {t1, . . . , t`}

⊆ {p ∈ � {t1, . . . , t`} : ϕ(p)(n) = 0} (4.1)

Let N0 ∈ � be the value of N at the termination of the loop in lines 8–14. We show that for all
n > M (where M is as in line 19),

fi(n) = · · ·= fi(n+N0−1) =⇒ fi(n+N0) = 0. (4.2)

Assume, for the contrary, that there exists an n > M such that

fi(n) = fi(n+1) = · · ·= fi(n+N0−1) = 0 and fi(n+N0) 6= 0.

By (4.1) and line 12,
a0 ⊆ {p ∈ � {t1, . . . , t`} : ϕ(p)(n) = 0}.

Hence, for the p ∈ a0 of line 17, we have p(n) = 0 in contradiction to the choice of M (line 18),
and the proof of (4.2) is complete.

Using this implication and induction step, and line 19 as induction base, it follows by complete
induction on n that fi(n) = 0 for all n > M. In addition, by the tests in lines 6, 9 and 19, we have
fi(n) = 0 for n = 1, . . . ,M, and thus fi(n) = 0 for all n≥ 1, as claimed.

Theorem 4.17 Algorithm 4.15 terminates.

Proof The only critical part is the loop in lines 8–14. Let ¯� :=
� 〈t1, . . . , t`〉= Q(

� {t1, . . . , t`})
and ā be the image of a under the canonical embedding

�
↪→ ¯� . ā may be seen as the associated

difference ideal of some admissible system S̄ for sequences f1(n), . . . , fm(n) in ¯� . Consider the
application of Algorithm 4.1 to S̄ and i.

According to Theorem 4.5, there exists a finite number N ∈ � such that

sN+1ti ∈ Rad(〈ti, . . . ,sNti〉+ ā∩ ¯� {t`+1, . . . , t`+m}N+1).

By Theorem 2.7.(2), this is equivalent to

〈t1, . . . ,sNti,XsN+1ti−1〉+ ā∩ ¯� {t`+1, . . . , t`+m}N+1 = 〈1〉,

which in turn is equivalent to
(
〈t1, . . . ,sNti,XsN+1ti−1〉+a∩ � {t1, . . . , t`}{t`+1, . . . , t`+m}N+1

)
∩ � {t1, . . . , t`} 6= {0}.

Algorithm 4.15 is useful for proving identities involving expressions which do not give rise to
admissible sequences.
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Example 4.18

(1) The identity
n

∑
k=0

1√
k +1+

√
k

=
√

n+1 (n≥ 0)

can be shown by Algorithm 4.15. Take g1(n) = n, g2(n) =
√

n. Then, by a result of Gerhold
(2004),

kerϕ = 〈〈st1− t1−1, t2
2 − t1〉〉

and membership for this ideal can be easily checked. We apply the algorithm to the admis-
sible system

S =
{

f1(n+1) =
1

g2(n+1)+g2(n)
, f2(n+1) = f2(n)+ f1(n+1),

f3(n+1) = f2(n)−g2(n+1)
}

for f3(n). The loop in lines 8–14 terminates with a0 = 〈s2t2st2 + s2t2t2− st2
2 − st2t2− 1〉

when N = 3. By a procedure to be introduced in the following chapter, it can be quickly
asserted that

√
n+2

√
n+1+

√
n+2

√
n− (n+1)−

√
n+1

√
n−1 < 0

for all n ≥ 0, in particular the left hand does not evaluate to zero for any natural n. Hence
we may choose M = 0 in line 18. Then no further checks are necessary in line 19 and the
algorithm returns True.

(2) An unlucky choice of the defining admissible system might lead to a failure of the algorithm.
Consider again the identity

n

∑
k=0

1√
k +1+

√
k

=
√

n+1 (n≥ 0),

now using the admissible system

S =
{

f1(n) = 1/(g2(n+1)+g2(n)), f2(n+1) = f2(n)+ f1(n+1),

f3(n) = f2(n)−g2(n+1)
}

with g1(n) and g2(n) as above. Then the loop in lines 8–14 terminates with a0 = 〈st1−st2
2 〉 ⊆

ker ϕ.

(3) We have seen in Example 4.11 that the shifts of g1(n) := 2n! do not satisfy an algebraic
relation. That is, for

ϕ : � {t} → � � , t 7→ 2n!

we have ker ϕ = {0}. With this knowledge, we may prove the identity

n

∑
k=1

1
2k!

k

∏
i=1

2i!

1+2i! = 1−
n+1

∏
k=1

2k!

1+2k! (n≥ 0)
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by means of Algorithm 4.15. Using the admissible system

{
f1(n+1) =

g1(n+1)

1+g1(n+1)
f1(n), f2(n+1) = f2(n)+

f1(n+1)

g1(n+1)
,

f3(n+1) = f2(n)− (1− f1(n+1))
}

the loop in lines 8–14 terminates with a0 = 〈1〉 when N = 1. If we choose p = 1 in line 17,
then we may choose M = 0 in line 18.

In the case of kerϕ = {0} in the last example above, where there are no polynomial relations
available for the sequence 2n!, one might ask why the algorithm is able to prove something about
it. In fact, the appearance of 2n! is immaterial in this identity, we have

n

∑
k=1

1
xk

k

∏
i=1

xi

a+ xi
=

1
a

(

1−
n+1

∏
k=1

xk

a+ xk

)

(n≥ 0,a ∈ � \{0})

for every sequence x1,x2, . . . ∈
� \ {−a} (van der Poorten, 1979). Let us consider such general

identities in some more detail.

Consider the field
� ′ :=

�
(x1,x2,x3, . . . ) and define

ϕ :
� {t} → � (x1,x2,x3, . . . )

�

by ϕ(t) := (x1,x2,x3, . . . ). Such a sequence is called free over
�

. By construction we have
ker ϕ = {0}. We can thus apply Algorithm 4.15 to identities involving sequences which are ad-
missible with respect to a sequence x1,x2,x3, . . . of indeterminates. Observe that as a consequence
of kerϕ = {0}, the algorithm will never end up in a failure. If the xi are understood as formal
variables rather than as placeholders of some particular sequences, we may well choose M = 0
in line 18. We restrict here our attention to the question of proving conjectured identities involv-
ing free sequences. For finding such identities, we were able to give a generalization of Karr’s
algorithm (Karr, 1981, 1985) that allows free sequences to appear in the summand expression in
a collaboration with C. Schneider (Kauers and Schneider, 2004). We will not comment on this in
the present text.

One source of identities involving free sequences is the theory of symmetric functions (Stanley,
1999). A function f (x1, . . . ,xn) is called symmetric if

∀ π ∈ Sn : f (x1, . . . ,xn) = f (xπ1, . . . ,xπn).

If, in addition, f (x1, . . . ,xn) ∈
�

[x1, . . . ,xn], we call it a symmetric polynomial. There are special
purpose algorithms available for the treatment of symmetric polynomials.

Example 4.19 Consider the identity

( n

∑
k=1

xi

)2
=

n

∑
k=1

x2
k +2

n

∑
k=1

xk

k−1

∑
i=1

xi, (4.3)

which holds for all n≥ 0 and all x1,x2, . . . ,xn ∈
�

. Using the standard definitions

p1(n) =
n

∑
k=1

xk, p2(n) =
n

∑
k=1

x2
k , e2(n) =

n

∑
k=1

xk

k−1

∑
i=1

xi
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the identity (4.3) may be rewritten as p1(n)2 = p2(n) + 2e2(n). Stembridge (1995) describes
a Maple package for doing computations with symmetric function identities of this form. The
above identity can be quickly proven with his package.

Identity (4.3) can also be proven by an application of Algorithm 4.15. A suitable admissible
system defining the quantities p1(n), p2(n), and e2(n) is given by

{ p1(n+1) = p1(n)+ xn+1, p2(n+1) = p2(n)+ x2
n+1, e2(n+1) = e2(n)+ p1(n)}.

There are several identities in the literature which are out of the scope of algorithms for symmetric
functions, but to which our algorithm applies as well.

Example 4.20

(1)
n

∑
k=1

∏k−1
i=1 (xi +α)

∏k
i=1 xi

=
1
α

( n

∏
k=1

xk +α
xk
−1

)

(Gosper, 1978)

(2) The theorem on summation by parts (Graham et al., 1994),

n−1

∑
k=1

xk∆yk = xnyn− x1y1−
n−1

∑
k=1

yk+1∆xk,

where ∆ f (n) := f (n+1)− f (n) denotes the forward difference operator.

(3) The Christoffel-Darboux identity (Chihara, 1978, Theorems 4.5 and 4.6): Let λ(n) and c(n)
be arbitrary sequences (λ(n) 6= 0 for all n) and define sequence pn(x) of polynomials via

pn(x) = (x− c(n))pn−1(x)−λ(n)pn−2(x) (n≥ 0), p−1(x) = 0, p0(x) = 1.

Then
n

∑
k=0

pk(x)pk(u)

∏k+1
i=1 λ(i)

=
pn+1(x)pn(u)− pn(x)pn+1(u)

(x−u)∏n+1
k=1 λ(k)

,

n

∑
k=0

pk(x)2

∏k+1
i=1 λ(i)

=
pn(x)p′n+1(x)− pn+1(x)p′n(x)

∏n+1
k=1 λ(k)

(4) (Andrews et al., 1999, Exercise 5.12) Consider the general continued fraction

n

K
k=1

(b(k)/a(k)) =
p(n)

q(n)

with p(n) and q(n) being the corresponding continuant polynomials (cf. p. 12). Then

n

K
k=1

(b(k)/a(k)) = a(0)+
n

∑
k=1

(−1)k+1 ∏k
i=1 b(i)

q(k)q(k +1)
(n≥ 1).

(5) (Bowman and Laughlin, 2002; Chrystal, 1922) For arbitrary sequences a(n) and fixed x∈ � ,

n

K
k=0

(a(k−1)x/(a(k)− x)) =
1

∑n
k=0(−x)k/∏k

i=0 a(i)
− x (n≥ 0)



5 Inequalities involving Admissible Sequences1

5.1 Motivation

So far in this thesis, we have been dealing with identities f (n) = g(n) only. In fact, most of the
available algorithms for special functions are restricted to the treatment of identities. Despite their
importance in all branches of mathematics, inequalities have received only very little attention
so far. Textbooks on inequalities (Hardy et al., 1952; Mitrinović, 1964, 1970) contain a lot of
entries, from which even simple ones could not be verified by symbolic computation so far.

Some individual inequalities can be proven using algorithms for proving identities. For instance,
Lagrange’s identity

n

∑
k=1

x2
k

n

∑
k=1

y2
k−

( n

∑
k=1

xkyk

)2
=

n

∑
k=1

k

∑
i=1

(xkyi− xiyk)
2 (n≥ 1),

which can be proven with the algorithm of Section 4.6 or by symmetric function algorithms,
immediately implies the Cauchy-Schwarz inequality,

( n

∑
k=1

xkyk

)2
≤

n

∑
k=1

x2
k

n

∑
k=1

y2
k (n≥ 1).

Similarly, a hypergeometric identity due to Askey and Gasper (1976), which can also be proven
algorithmically (Ekhad, 1993), implies the inequality

n

∑
k=0

P(α,0)
k (x) > 0 (α >−1,−1 < x≤ 1,n≥ 0),

where P(α,0)
k (x) denotes the Jacobi polynomials (cf. p. 11). This inequality was used in the first

proof of the Bieberbach conjecture (de Branges, 1985).

Paule (2005) proves the inequality

∞

∑
k=n

1

k2
(n+k

k

) <
2

n
(2n

n

) (n≥ 1)

(Schur and Knopp, 1918) by an application of the extended Gosper algorithm (Petkovšek et al.,
1997).

All these proofs still have to be considered “hand-made”, even though symbolic computation
gives some assistance. As opposed to this, the procedure we are proposing in this chapter is able
to prove many inequalities entirely automatically—or with little human support only. Though

1The results in this chapter originate from a collaboration with S. Gerhold (Gerhold and Kauers, 2005).
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the procedure does not terminate in general, it is surprisingly successful on a lot of examples.
Section 5.5 contains an extensive list of inequalities that were proven by our method.

Unless otherwise stated, we assume throughout this chapter that
�

= � ∩ ¯� is the field of real
algebraic numbers, or a subfield thereof.

5.2 Polynomial Inequalities and CAD

In this section, we introduce some notation about inequalities, and recall some fundamental facts
about their algorithmic treatment.

A polynomial inequality over
�

[x1, . . . ,xn] is a formula of the form

p(x1, . . . ,xn)♦ q(x1, . . . ,xn)

where p,q ∈ � [x1, . . . ,xn] and ♦ ∈ {=, 6=,<,>,≤,≥}. Without loss of generality, we may as-
sume that q is the zero polynomial. A Tarski formula (or formula for short) over

�
[x1, . . . ,xn] is

a boolean combination of polynomial inequalities. A finite set of formulas over
�

[x1, . . . ,xn] is
called a system of formulas.

Given a specific system of formulas S = {A1(x1, . . . ,xn), . . . ,As(x1, . . . ,xn)}, we may wonder
about the consistency of this system. The system S is called consistent if

∃ x1, . . . ,xn ∈ � : A1(x1, . . . ,xn)∧ . . .∧As(x1, . . . ,xn),

and inconsistent otherwise. It is called universally valid if

∀ x1, . . . ,xn ∈ � : A1(x1, . . . ,xn)∧ . . .∧As(x1, . . . ,xn).

Tarski (1951) has shown that the more general question about the truth of a given formula

Q1x1 Q2x2 . . . Qnxn : A1(x1, . . . ,xn)∧ . . .∧As(x1, . . . ,xn) (5.1)

in the theory of the real numbers is decidable for any given system S of formulas over
�

[x1, . . . ,xn]
and any choice of quantifiers Q1, . . . ,Qn ∈ {∀,∃}. In particular, it is decidable whether a given
system is inconsistent, or universally valid.

Tarski’s algorithm is impractical. The method of cylindrical algebraic decomposition (CAD)
introduced by Collins (1975) gives a more efficient algorithm for deciding formulas like (5.1).
For a thorough introduction into the field, we refer the interested reader to the book of Caviness
and Johnson (1998). For our purpose, it is not necessary to understand in detail how CAD works.
It is sufficient to know that it is capable of deciding consistency of a set of Tarski formulas.
However, for the sake of completeness, let us briefly sketch the underlying principles.

Given a finite set P = {p1, . . . , pm} ⊆
�

[x1, . . . ,xn], we associate to every point x = (x1, . . . ,xn) ∈
� n the sign pattern (sgn(p1(x1, . . . ,xn)), . . . ,sgn(pm(x1, . . . ,xn))) ∈ {−,0,+}m. A cell is a con-
nected subset C⊆ � n with invariant sign pattern, which is maximal in the sense that for all x 6∈C,
C∪{x} is not connected or not sign pattern invariant. No matter how P is chosen, there will be
finitely many different cells only, and all these cells together form a disjoint cover of � n, called
an algebraic decomposition of � n. Figure 5.1.a) shows the algebraic decomposition defined by
P = {x2 + y2−4,x+ y} ⊆ � [x,y].
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a)

y

x1

1
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(0,−) �
(−,−)
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(0,0) →

(−,0) �

� (0,+)
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(+,0) �
b)

y
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1

Figure 5.1 a) algebraic decomposition of {x2 + y2−4,x+ y}
b) extension of the decomposition in a) to a cylindrical algebraic decomposition:
{x2 + y2−4, x+ y, x−2, x−

√
2, x+

√
2, x+2}

Now consider the formula (5.1) and assume that the atoms of Ai(x1, . . . ,xn) (i = 1, . . . ,s) are of
the form p j(x1, . . . ,xn)♦ 0 for polynomials p1, . . . , pm ∈

�
[x1, . . . ,xn]. Truth of (5.1) could be de-

cided by inspection if for each cell C in the algebraic decomposition induced by P = {p1, . . . , pm}
a sample point x = (x1, . . . ,xn) ∈C were known. The idea of CAD is to supplement the polyno-
mial list P with additional polynomials in such a way that such sample points can be easily
obtained.

For n > 1, the projection maps πn are defined via

πn : � n→ � n−1, πn(x1, . . . ,xn) := (x1, . . . ,xn−1).

An algebraic decomposition of � n is called cylindrical if its image under πn is again a cylindrical
algebraic decomposition. Equivalently, a decomposition is called cylindrical if for any two cells
C1,C2 of this decomposition, the cells πn(C1) and πn(C2) are either identical or disjoint.

Any set P = {p1, . . . , ps} ∈
�

[x1, . . . ,xn] can be supplemented with polynomials q1, . . . ,qt such
that the decomposition induced by P∪{q1, . . . ,qt} is cylindrical. The computation of suitable
polynomials qi is the first phase of the CAD algorithm, called the projection phase. Figure 5.1.b)
shows a cylindrical algebraic decomposition for {x2 + y2− 4,x + y}. In this example, the cylin-
drical decomposition consists of 47 cells, while the decomposition in a) has only got 11 cells.

The second phase of the CAD algorithm consists of the computation of sample points, one for
each cell of the decomposition. This is done bottom-up, starting with the projection of the cylin-
drical decomposition to the one-dimensional real line. In this situation, we have univariate poly-
nomials only. Suppose that ξ1,ξ2, . . . ,ξr are the real roots of these polynomials, labeled such that
ξi < ξi+1 for 0 < i < r. Then suitable sample points for the projected decomposition are

ξ1−1, ξ1,
1
2(ξ2 +ξ1), ξ2, . . . . . . , ξr−1,

1
2(ξr +ξr−1),ξr, ξr+1 +1.

In order to get sample points for the projection to the two-dimensional case, consider these sample
points, one after the other. For each sample point x, consider the the projection of the decom-
position to the two-dimensional space, and substitute x for x1. Then the resulting polynomials
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are univariate in x2, and sample points can be found as before. In the same way, sample points
for the d-dimensional projection can be obtained from sample points for the (d−1)-dimensional
projection for d = 2, . . . ,n.

For further algorithmic details, we refer to the literature.

Several implementations of the CAD algorithm are available. Besides special purpose software
like QEPCAD (Collins and Hong, 1991; Brown, 2003a), there is a builtin implementation of
CAD in Mathematica due to Strzeboński (2000).

5.3 The Proving Procedure

We are interested in proving inequalities involving sequences that can be defined via difference
equations. Our main interest are admissible sequences, but the method also applies to objects that
do not constitute admissible sequences. We will describe the method in full generality, and only
afterwards discuss the most relevant special cases.

Definition 5.2 Let f1, . . . , fm be function symbols. An atomic formula for f1, . . . , fm (in n) is a
formula of the form

p( f1(n), . . . , f1(n+ r1−1), . . . . . . , fm(n), . . . , fm(n+ rm−1))♦ 0

with a multivariate polynomial p over
�

, a relation ♦ ∈ {=, 6=,<,>,≤,≥}, and r1, . . . ,rm ∈ � 0

fixed.

A formula for f1, . . . , fm is defined by structural induction: every atomic formula is a formula,
and if A(n) and B(n) are formulas then so are ¬A(n), A(n)∧B(n), A(n)∨B(n), A(n)⇒ B(n),
A(n)⇔ B(n).

Let A(n) be a formula for f1, . . . , fm. The associated Tarski formula of A(n) is defined as the
Tarski formula obtained form A(n) by replacing each occurrence f i(n + j) by the variable s jti.
The maximum number r such that A(n) contains a subexpression f i(n + r) is called the order
of A(n).

Let f1(n), . . . , fm(n) be sequences over � and A(n) be a formula for f1, . . . , fm. By A(N) (N ∈ �
fixed) we denote the truth value of the formula obtained by A(n) upon replacing each occurrence
of fi(n+ j) by the value of the sequence fi(n) at n = N + j. We say that A(n) is valid if A(N) is
true for all N ≥ 1.

The goal of the proving procedure is to find out whether a given formula A(n) is valid. To this
end, a number N ∈ � is computed which has the property that

(∀ n ∈ � : A(n)) ⇐⇒ A(1)∧A(2)∧ . . .∧A(N). (5.2)

That is, the universal quantifier binding n is eliminated. The underlying correctness argument of
the procedure is a complete induction on n, similar as in Section 4.1. Certainly, a number N that
satisfies the induction step formula

∀ n ∈ � : A(n)∧A(n+1)∧ . . .∧A(n+N−1)⇒ A(n+N) (5.3)
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would perfectly qualify for establishing validity of (5.2). Consider the associated Tarski formula
of (5.3), being of the form

∀ t1,st1, . . . ,s
rt1, . . . . . . , tm,stm, . . . ,srtm ∈ � : B(t1,st1, . . . ,s

rt1, . . . . . . , tm,stm, . . . ,srtm) (5.4)

for some Tarski formula B. Whether or not this formula is true in the theory of real numbers—that
is, regarding the sit j as polynomial ring variables only—can be determined by CAD (Section 5.2).
If (5.4) holds, then in particular (5.3) holds, and we are done. On the other hand, if (5.4) does not
hold, then we are not entitled to draw any conclusion about the validity of (5.3). In this case, we
proceed to check the next larger value of N. We continue to iterate until eventually (5.4) becomes
true.

This reasoning is, of course, in full analogy to the zero equivalence algorithm presented in the
previous chapter. The main technical difference is that CAD is used instead of Gröbner basis
computations for establishing the induction step.

The details of the procedure are below. We extend the shift function s defined for difference
polynomials p∈ � {t1, . . . , tm} naturally to Tarski formulas: s(A♦B) := s(A)♦s(B) for any logical
junctor ♦ and s(p♦0) := s(p)♦0 for every ♦ ∈ {=, 6=,<,>,≤,≥}.

Procedure 5.3 (Proving Formulas)
Input: Computable sequences f1(n), . . . , fm(n) in

�
, a set R of formulas for f1, . . . , fm which are

valid, a formula A(n) for f1, . . . , fm.
Output: True, if A(n) is valid, False otherwise
Assumption: Truth of A(N) can be decided for every particular N ∈ �

1 Let r be the maximum of the orders of A(n) and the formulas in R
2 R′ := /0
3 forall B(n) ∈ R do
4 Let r0 be the order of B(n) and B′ be the associated Tarski formula of B(n)
5 R′ := R′∪{siB′ : i = 0, . . . ,r− r0 }
6 Let r0 be the order of A(n) and A′ be the associated Tarski formula of A(n)
7 if A(1)∧A(2)∧ . . .∧A(r− r0) is False then
8 return False
9 N := r− r0

10 while R′∪{A′, . . . ,sN−1A′,¬sNA′} is satisfiable do
11 N := N +1
12 if A(N) is False then
13 return False
14 R′ := R′∪ sR′

15 return True

With respect to complexity, CAD is even more sensitive than Gröbner bases computations. There-
fore, an actual implementation of Procedure 5.3 should carefully preprocess the formula system
on which CAD is invoked. For instance, if R contains formulas of the form f i(n+ri) = poly (e.g.,
recurrences), these should be used to eliminate all variables s jti ( j ≥ ri) using this relation.

Theorem 5.4 Procedure 5.3 is correct.
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Proof The procedure is evidently correct whenever it returns False, because this only happens
when a counterexample N, where the formula does not hold, is actually found. Assume now that
the procedure returns True.

We will show that then A(n) is true for all n ≥ 1. First, we have that A(1)∧A(2)∧ . . .∧A(N) is
true by lines 7 and 12 (otherwise the procedure would have stopped before and returned False).
In addition, we have

∀ n ∈ � : A(n)∧A(n+1)∧ ·· ·∧A(n+N−1) =⇒ A(n+N).

For, suppose this implication does not hold. Then there would be a number n ∈ � with A(n),
A(n+1), . . . , A(n+N−1), ¬A(n+N) all being true. In addition, substituting the values f i(n+ j)
for s jti in R′ will give true, because R only contains formulas which are valid by assumption.
Hence, all formulas in R′∪{A′, . . . ,sN−1A′,¬sNA′} become true upon this substitution. This is in
contradiction to line 10.

Example 5.5 Let us execute the procedure in detail on the simple inequality

n

∑
k=1

k > 1
2 n2 (n≥ 1).

(See Section 5.5 for more interesting examples.) Take

R = { f1(n+1) = f1(n)+1, f2(n+1) = f2(n)+ f1(n+1)}.

The admissible formula to be shown is A(n) := ( f2(n) > 1
2 f1(n)2).

Lines 1–5 only adjust the orders of R and A, and turn the recurrences into formulas. We obtain
R′ = {st1 = t1 +1,st2 = t2 + st1} and A′ = (t2 > 1

2 t2
1 ).

In line 7, we check that A(1) = (1 > 1
2) holds. (Note that r = 1 and r0 = 0).

For N = 1, we next apply CAD to determine whether the system

{st1 = t1 +1,st2 = t2 + st1, t2 > 1
2 t2

1 ,st2 ≤ 1
2 st2

1 }

is satisfiable over the reals. As it turns out that it is not, the while loop terminates and the
procedure returns True according to line 15.

We have deliberately not imposed restrictions on the set R of known facts about f1(n), . . . , fm(n).
Of course, no reasonable output can be expected if, for instance, R = /0. In fact, the procedure
does not terminate if R = /0 and A(n) is not tautologic.

Most commonly, the set R will contain an admissible system (Def. 3.1) for f1(n), . . . , fm(n) as a
subset. However, quite in contrast to Algorithm 4.2, there is no guarantee for termination even in
this case. Let us illustrate the situation with the simple exponential inequality 3n > 2n (n ≥ 1).
We take R = { f1(n+1) = 3 f1(n), f2(n+1) = 2 f2(n)} and A(n) = ( f1(n) > f2(n)).

Applying the procedure gives in the N-th iteration of the while loop a system of inequalities that is
equivalent to 3Nt1 > 2Nt2∧3N+1t1 ≤ 2N+1t2. For every value of N, the corresponding cylindrical
algebraic decomposition looks like the special case N = 1 which is depicted in Figure 5.6. The
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t2

t11

1

Figure 5.6 Cylindrical Algebraic Decomposition for 3Nt1 > 2Nt2∧3N+1t1 ≤ 2N+1t2, for N = 1.

formula is valid for every point (t1, t2) in the shaded cell, so it is in particular not inconsistent.
As N grows, the shaded sector of exceptional points becomes more and more narrow, yet it is
nonempty for every N, and therefore the procedure does not terminate.

In order to make the proof of 3n > 2n go through, we have to supply additional information. For
example, putting additionally 2n > 0 or 3n > 0 into the knowledge base R makes the procedure
terminate already after the first iteration. This is typical. The proof of almost every nontrivial
inequality requires some—usually trivial—facts as additional knowledge besides the recurrences
defining the involved sequences. Remarkably enough, formulas specified as additional knowl-
edge can almost always be proven independently by the same procedure.

In cases where Procedure 5.3 does not terminate, there is no way to prove the desired inequality
by induction, in the following sense. For every N > 0, there exist sequences f1(n), . . . , fm(n) for
which all formulas in R are valid, but A(n) is true only for 1 ≤ n < N and false for n = N. This
rules out the possibility to do an induction proof solely based on the knowledge supplied in R. In
the example 3n > 2n, using

R = { f1(n+1) = 3 f1(n), f2(n+1) = 2 f2(n)},

the solutions
f1(n) =−2N ·3n, f2(n) =−(3N + ε) ·2n

for sufficiently small ε > 0 are such that f1(n) > f2(n) holds for n = 1, . . . ,N, but no longer for
n = N + 1 and larger N. An induction proof using only the recurrences is therefore not possible
in this case.

To conclude the discussion about termination, let us remark that a decision procedure capable
of proving inequalities of the type we are considering is a quite unreasonable thing to hope for.
For, suppose such an algorithm exited. Then, for any given admissible sequence f (n), we could
apply this algorithm to the inequality f (n)2 > 0. The algorithm would return False if and only
if there exists an n ∈ � with f (n) = 0. Deciding existence of such n is, however, a reputedly
difficult problem. Already for the class of C-finite sequences, which constitutes only a very small
subset of all admissible sequences, it is a well-known open problem whether this question is
algorithmically decidable (Everest et al., 2003, Section 2.3).
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5.4 Variations on the Scheme

Typically, Procedure 5.3 will be applied to inequalities about admissible sequences over
�

. In
this section, we consider some classes of inequalities that do not directly match this pattern, but
to which the procedure applies as well.

1 Inequalities involving Parameters

We have restricted the ground field
�

to a subfield of � in the present chapter, but inequalities
involving parameters need not be excluded from consideration. Instead of treating a parameter, x,
by extending the ground field

�
by a new transcendental element for x, as usual, we may encode

parameters as constant functions. The knowledge base R may be extended by an equation of the
form f (n+1) = f (n), the initial value of f (n) being f (1) = x. The parameter is then hidden from
the termination condition of the main loop in Procedure 5.3.

Example 5.7 Bernoulli’s inequality

(x+1)n ≥ 1+nx (n≥ 0, x≥−1)

can be proven by applying the procedure to

R = { f1(n+1) = f1(n), f2(n+1) = f2(n)+1, f3(n+1) = ( f1(n)+1) f3(n),

f1(n) ≥−1, f2(n) ≥ 0},
A(n) = f3(n)≥ 1+ f2(n) f1(n).

One initial value has to be checked: A(1) = (x+1)≥ (x+1) is true.

It is only little known but easy to verify that Bernoulli’s inequality already holds for x≥−2. Our
procedure confirms this fact, using two more iterations.

If the parameters only occur polynomially in the admissible system and/or in the initial values, as
in the example above, then the initial values can be checked by another application of CAD. Oth-
erwise, if there are more delicate relations amongst the parameters (e.g., if the parameters x and y
are related via y = sin(x)), checking initial values might become difficult for a machine. In this
case, the procedure may just be used for providing the induction step, and leave the verification
of the initial values to the user.

2 Inequalities involving Free Sequences

By using function symbols for which no recurrence is present in the set R, inequalities involving
free sequences can be treated. This is in analogy to Section 4.6. The standard example is the
Cauchy-Schwarz inequality

( n

∑
k=1

xkyk

)2
≤

n

∑
k=1

x2
k

n

∑
k=1

y2
k (n≥ 1).

This inequality can be proven by Procedure 5.3 if R contains, besides the recurrences defining the
sums, knowledge about the nonnegativity of the sums on the right hand side.

An inequality depending on a free sequence f (n) may hold only when f (n) is monotonic, or
positive, or bounded, etc. Such restrictions can easily be formalized by formulas f (n+1) > f (n),
or f (n) > 0, or −M < f (n) < M that can be put into R.
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Example 5.8 The procedure succeeds in proving the inequality

n

∑
k=1

(−1)k−1a(k)2 ≥
( n

∑
k=1

(−1)k−1a(k)
)2

(n≥ 1)

which holds for any positive and decreasing sequence a(n). (Mitrinović, 1970, Thm. 6, p. 112).

3 Inequalities involving Algebraic Sequences

Though algebraic sequences are originally defined via algebraic equations, it is not easy to handle
them with Gröbner basis. Consider, for example, the sequence of square roots, f (n) =

√
n.

Clearly, a defining equation for this sequence is f (n)2 = n. But this difference equation has got
a continuum of solutions: each sequence s(n)

√
n where s(n) is an arbitrary sequence in {−1,1}

solves this equation. As CAD permits the use of inequalities, it is possible to specify which
solution of the equation f (n)2 = n we mean, for instance by imposing the additional constraint
f (n) ≥ 0.

It is therefore possible to prove inequalities involving algebraic sequences, such as the square
root function. One example of such an inequality is

( n

∑
k=1

√
k
)2
≤

( n

∑
k=1

3
√

k
)3

(n≥ 0),

which was to our knowledge first proven by Procedure 5.3.

4 Inequalities requiring Preprocessing by other Algorithms

Inequalities which are not amenable to Procedure 5.3 can sometimes be rewritten such as to make
the proving procedure applicable. As an example, consider the inequality

∞

∑
k=n

1

k2
(n+k

k

) <
2

n
(2n

n

) (n≥ 1)

of Knopp and Schur mentioned in Section 5.1. We have

∞

∑
k=1

1

k2
(n+k

k

) = ψ′(n+1) =
π2

6
−H(2)

n (n≥ 1),

where H(2)
n = ∑n

k=1 1/k2 is the nth second order Harmonic number, and ψ′ denotes the digamma
function (Andrews et al., 1999).

Using Zeilberger’s algorithm, we obtain

n−1

∑
k=1

1

k2
(k+n

k

) =
n−1

∑
k=1

3k2 +3k +1

2k2(k +1)(2k +1)
(2k−1

k−1

) − 1
(k +1)2 (n≥ 1).

By this identity, the original inequality can be simplified to

π2

6
−1−

n−1

∑
k=1

3k2 +3k +1

k2(k +1)(2k +1)
(2k

k

) <
2

n
(2n

n

) (n≥ 1).
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To this latter inequality, Procedure 5.3 is applicable.

A minor technical problem might be the occurrence of π, which is not a real algebraic number, as
required by CAD. However, we can easily circumvent this problem by regarding π as a continuous
parameter subject to the restriction 3 < π < 4. In this setup the proof is successful.

5.5 Examples

We have seen that Procedure 5.3 does not terminate in general. Nevertheless, it is successful
on a large number of inequalities appearing in the literature. Many of them can now be done
without any human support, and where human support is necessary, it is only of trivial nature. As
evidence for the practical relevance of the method, we give a list of inequalities which we could
verify by our procedure. We are not aware of any algorithmic method which could prove any of
the inequalities listed in this section.

The textbooks of Mitrinović (1964, 1970) contain a vast collection of inequalities, many of which
are in the scope of our method. Table 5.10 on the following double page contains a collection
of some inequalities from the 1964 book that we were able to verify by means of Procedure 5.3.
Some further example are in order.

Example 5.9

(1) Turan’s inequality

Pn(x)
2−Pn−1(x)Pn+1(x)≥ 0 (−1 < x < 1,n > 1)

for the Legendre polynomials Pn(x) (cf. p. 11) (Andrews et al., 1999).

(2) A family pn(x) of monic orthogonal polynomials defined via

pn+2(x) = (x− cn)pn+1(x)+λn pn(x) p−1(x) = 0, p0(x) = 1

for some sequences cn and λn is said to be positive definite if the cn are real and the λn are
positive. Such polynomials satisfy the inequality

p′n+1(x)pn(x)− pn+1(x)p′n(x) > 0 (x ∈ � ,n≥ 0)

(Chihara, 1978; Andrews et al., 1999).

(3) Let a(n) be an arbitrary sequence in � , and p(n),q(n) be the continuants of the continued
fraction Kn

k=0(1/a(k)). Then

q(n) < 2(n+1)/2 (n≥ 1)

(Khinchin, 1964).

(4) Levin’s inequality (Mitrinović, 1970, 3.2.13)

1≤ nxn+1 +1
xn(n+1)

≤ 1
2 n(1− x)2x−n +1 (0 < x≤ 1,n > 0)
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(5) The inequality
nFn+6

2n+1 +
Fn+8

2n −F8 < 0 (n≥ 1)

proposed by Janous (2002)

(6) The inequality
n

∑
k=1

L2
k

Fk
≥ (Ln+2−3)2

Fn+2−1
(n≥ 2)

proposed by Diaz and Egozcue (2002b), using as additional knowledge that Fn ≥ 1 (n≥ 2).

(7) If a≥ 1,a+b≥ 1 and xn > 0 (n≥ 1), then

n

∑
k=1

xa
k

( k

∑
i=1

xi

)b
≤

( n

∑
k=1

xk

)a+b
(n≥ 1)

(Beesack, 1969). This inequality can be done for any specific a,b ∈ � , using positivity of
the involved sums as knowledge in addition to the defining recurrences.

(8) If f (n) is defined via

f (n+1) = 1+
n

f (n)
(n≥ 1), f (1) = 1,

then √

n− 3
4 ≤ f (n)− 1

2 ≤
√

n+ 1
4 (n≥ 1)

(Nanjundiah, 1993)

(9) The inequality
Fn(x)

2 ≤ (x2 +1)2(x2 +2)n−3 (n≥ 3)

for the Fibonacci polynomials Fn(x) defined via

Fn+2(x) = xFn+1(x)+Fn(x) (n≥ 0), F1(x) = 1,F2(x) = x.

(Mitrinović, 1970, 3.3.38)

There are, of course, also inequalities on which the procedure fails. The inequality of Vietoris
(Andrews et al., 1999), for instance, says that for every sequence a(n) with

a(2n) ≤ 2n−1
2n

a(2n−1),

we have
n

∑
k=1

a(k)sin(kx) > 0 (0 < x < π,n≥ 1).

The Fejér-Jackson inequality

n

∑
k=1

1
k

sin(kx) > 0 (0 < x < π,n≥ 1)



Inequality Domain of validity Source

• 1
2
√

n
< 4−n

(
2n
n

)

<
1√

3n+1
n≥ 2 3.27

•
n

∏
k=1

4k−1
4k +1

<

√

3
4n+3

n≥ 1 3.28

• 1
2
√

n
<

n

∏
k=1

2k−1
2k

<
1√

2n+1
n > 1 3.29

•
n

∏
k=0

3k +4
3k +2

> 1+ 2
3 Hn+1 n≥ 1 3.31

( using Hn ≥ 0 )

• (n+a)!+n! > (n+a−1)!+(n+1)! n≥ 1,a≥ 1 3.57

( using n! > 0,(n+a)! > 0 )

•
n

∑
k=1

1√
k

> 2(
√

n+1−1) n≥ 1 4.1

• H2n > 1
2 +Hn n > 1 4.3

• H3n+1 > 1+Hn n≥ 1 4.4

•
n

∑
k=1

a2k ≤ n(a2n+1 +1) n≥ 1,a≥ 1 4.8

( using a2n ≥ 0,∑n
k=1 a2k ≥ 0 )

•
n

∑
k=1

1√
k

>
√

n n≥ 2 4.14

( using ∑n
k=1

1√
k
≥ 0 )

•
√

n

∑
k=1

k2 ≥ 3

√
n

∑
k=1

k3 n≥ 0 4.15

•
n

∏
k=1

(ak +1) > 1+
n

∑
k=1

ak ak > 0,n ≥ 1 4.16

( using ∑n
k=1 ak ≥ 0 )

•
n

∏
k=1

(1−ak) > 1−
n

∑
k=1

ak 0 < ak < 1,∑n
k=1 ak < 1,n ≥ 1 4.17

( using ∑n
k=1 ak > 0 )

•
n

∏
k=1

(ak +1) <
1

1−∑n
k=1 ak

0 < ak < 1,∑n
k=1 ak < 1,n ≥ 1 4.18

( using ∑n
k=1 ak > 0 )

•
n

∏
k=1

(1−ak) <
1

1+∑n
k=1 ak

0 < ak < 1,n≥ 1 4.19

( using 1 > ∏n
k=1(1−ak) > 0 )



Inequality Domain of validity Source

•
n−1

∏
k=1

(ak +1) <
1−a

an−2a+1
0 < a < 1

2 ,n≥ 1 4.22

( using a≥ an > 0 )

• (n+1)
n

∏
k=1

(ak +1)≥ 2n
( n

∑
k=1

ak +1
)

ak > 0,n ≥ 1 4.23

( using 2−n ∏n
k=1(ak +1) > 1,∑n

k=1 ak > 1 )

• 1
2
− 1

n+1
<

n

∑
k=2

1
k2 < 1− 1

n
n≥ 2 4.29

• 1
a+1

− 1
a+n+1

<
n

∑
k=1

1
(a+ k)2 <

1
a
− 1

a+n
a > 0,n≥ 1 4.30

• (2n)!
2n

∑
k=2

(−1)k

k!
≥ (2n−1)!!2 n > 1 4.41

( using (2n)! > 1,(2n−1)!! > 1 )

• (2n+1)xn ≤
2n

∑
k=0

xk n≥ 0,x≥ 0 7.35

( using ∑2n
k=0 xk = x2n+1−1

x−1 ,xn ≥ 0 )

• 1− x2n ≥ 2nxn(1− x) n≥ 0,0≤ x≤ 1 7.36

• (n−1)
( n

∑
k=1

ak

)2
≥ 2n

n

∑
k=1

ak

k−1

∑
i=1

ai n≥ 1 7.44

•
( n

∑
k=1

1
ak

) n

∑
k=1

ak ≥ n2 ak > 0,n > 0 8.3

( using ∑n
k=1 ak ≥ 0 )

•
( n

∑
k=1

akbk

)2
≤

( n

∑
k=1

ka2
k

) n

∑
k=1

1
k

b2
k n≥ 1 8.4

( using ∑n
k=1 ka2

k ≥ 0,∑n
k=1

1
k b2

k ≥ 0 )

•
( n

∑
k=1

1
k

ak

)2
≤

( n

∑
k=1

k3a2
k

) n

∑
k=1

1
k5 n≥ 1 8.8

( using ∑n
k=1 k3a2

k ≥ 0,∑n
k=1

1
k5 ≥ 0 )

•
( n

∑
k=1

ak

)2
≤ n

n

∑
k=1

a2
k n≥ 0 8.25

•

√
√
√
√

n+

√

(n−1)+

√

· · ·+
√

2+
√

1 <
√

n+1 n≥ 1 11.1

Table 5.10 Inequalities from the book of Mitrinović (1964), which have been verified by
Procedure 5.3. The inequalities appear in the books under the label given in the
source column. Besides the stated knowledge, only defining recurrences were used.
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is a famous special case. Both inequalities fit well into the specification of Procedure 5.3. Also
to the inequality

n

∑
k=0

P(α,0)
k (x) > 0 (α >−1,−1 < x < 1,n≥ 0)

mentioned in Section 5.1 the procedure is in principle applicable.

These are outstanding inequalities, fairly hard to prove even by hand (Andrews et al., 1999,
give proofs), and some of these inequalities remained open problems for quite some time. We
were not able to verify any of these inequalities by using our procedure. Though theoretically
applicable, already in the first iteration the CAD computations become too complex, and we ran
out of memory (1GB) before a result was obtained.

It would be interesting to know whether the procedure terminates on any of these examples, or—if
it does not—which additional knowledge could be supplied to obtain termination.
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6.1 The Annihilating Ideal

Let f1(n), . . . , fm(n) be sequences in
�

. An algebraic dependency (or algebraic relation) of these
sequences is defined as a polynomial p such that

p( f1(n), . . . , f1(n+ r1), . . . . . . , fm(n), . . . , fm(n+ rm)) = 0 (n ∈ � ).

(Other authors may prefer a different definition of the term “algebraic dependency”.) As an
example, x2−1 is an algebraic relation of the sequence f (n) = (−1)n.

Consider the difference homomorphism

ϕ : (
� {t1, . . . , tm},s)→ (

� �
,E)

mapping ti to fi(n) (i = 1, . . . ,m) and elements of
�

to the corresponding constant sequences. Evi-
dently, the set of algebraic dependencies of f1(n), . . . , fm(n) is precisely the difference ideal kerϕ.

Example 6.1 Let a := ker ϕ for ϕ :
� {t} → � � defined by t 7→ f (n). The following statements

can be easily verified by hand.

(1) If f (n) = 2n, then a = 〈〈st−2t〉〉.
(2) If f (n) = (−1)n, then a = 〈〈t2−1,st + t〉〉.
(3) If f (n) = (−1)blognc, then a = 〈〈t2−1〉〉 (cf. Section 4.3).

(4) If f (n) = 2n!, then a = {0} (cf. Example 4.11).

For any given sequences f1(n), . . . , fm(n) over
�

, we call the ideal of their algebraic dependencies
the annihilating ideal (or annihilator) of these sequences, and write

ann( f1(n), . . . , fm(n)) := ker ϕ E
� {t1, . . . , tm},

where ϕ :
� {t1, . . . , tm} →

� �
maps ti to fi(n) and elements of

�
to the corresponding constant

sequences. This notion of an annihilating ideal is to be carefully distinguished from ideals of
annihilating operators, as they are used for instance in the work of Zeilberger (1990).

For the rest of this chapter, let f1(n), . . . , fm(n) be solutions of a normal admissible system S. Our
goal is to develop methods for determining generators of the annihilator of f1(n), . . . , fm(n).

Definition 6.2 If r is the maximum order of the recurrences in S, then

alg( f1(n), . . . , fm(n)) := ann( f1(n), . . . , fm(n))∩ � {t1, . . . , tm}r−1

is called the algebraic part of f1(n), . . . , fm(n).
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We have deliberately defined the algebraic part alg( f1(n), . . . , fm(n)) as a function of the actual
sequences fi(n). Observe that this is in contrast to the definition of the associated difference ideal
(Def. 3.12), which only depends on an admissible system. For instance, the recurrence f (n+1) =
− f (n) has the solution f (n) = α(−1)n for arbitrary α∈ � , and we have alg(α(−1)n) = 〈t2−α2〉.
The algebraic part depends on the initial value α, even though the recurrence does not.

Asking for computing a set of generators for the difference ideal of all algebraic dependencies
only makes sense if that ideal is finitely generated. Fortunately, finite generation can be asserted.

Theorem 6.3 The difference ideal ann( f1(n), . . . , fm(n)) E
� {t1, . . . , tm} is finitely generated.

In fact, we have
ann( f1(n), . . . , fm(n)) = 〈〈alg( f1(n), . . . , fm(n))〉〉+a,

where a is the associated difference ideal of S.

Proof “⊇” Obvious. “⊆” Let p ∈ ann( f1(n), . . . , fm(n)) be of order r̃. For r̃ < r there is
nothing to prove, so let r̃ ≥ r. Let ` ∈ {1, . . . ,m} be the maximum index such that s r̃t` effectively
occurs in p, say

p = p0 + p1sr̃t` + · · ·+ pd−1(s
r̃t`)

d−1 + pd(s
r̃t`)

d

for some d. The inclusion follows if we can construct an equivalent polynomial which is free
of sr̃t`, by repeating the argument.

As S is normal, a contains a difference polynomial either of the form s r̃t`− q or of the form
qsr̃t`−1, with q depending only on variables sit j with i < r̃ or j < `. In the first case, we have

p≡ p0 + p1q+ · · ·+ pd−1qd−1 + pdqd mod a,

and we are done. For the second case, observe that by qs r̃t`− 1 ∈ a ⊆ ann( f1(n), . . . , fm(n)) we
have

p ∈ ann( f1(n), . . . , fm(n)) ⇐⇒ qd p ∈ ann( f1(n), . . . , fm(n)),

so it suffices to find a representation of the desired form for qd p. Such a representation is given
by

qd p≡ p0qd + p1qd−1 + · · ·+ pd−1q+ pd mod a.

The proof of the ideal identity is now complete. As alg( f1(n), . . . , fm(n)) is an ideal of the polyno-
mial ring

� {t1, . . . , tm}r−1 with finitely many variables, it is finitely generated by Hilbert’s basis
theorem. Furthermore, a is finitely generated by definition. It follows that the annihilating ideal
is finitely generated.

According to the theorem above, in order to find generators for an annihilator, it is sufficient to
compute a basis of its algebraic part. As the algebraic part is finitely generated, it is meaningful
to ask for a basis. If a finite basis is known, it can be used for computations. For instance, it is
often necessary to know a basis for certain elimination ideals. Like in the proof of the theorem
above, we can show that for every p ∈ ann( f1(n), . . . , fm(n))∩ � {t1, . . . , tm}` (` at least the order
of S) there exist qi, j ∈

� {t1, . . . , tm}` such that

p = ∑
i, j

qi, js
j pi
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where pi belong to the algebraic part, or to the basis of the associated difference ideal, and all s j pi

belong to
� {t1, . . . , tm}`. The s j pi therefore form a polynomial ideal basis of the elimination ideal

ann( f1(n), . . . , fm(n))∩ � {t1, . . . , tm}`. The following corollary is an immediate consequence,
which is often needed in practice.

Corollary 6.4 Let Λ⊆ � ×{1, . . . ,m} be finite. Then a basis of the polynomial ideal

ann( f1(n), . . . , fm(n))∩ � [sit j : (i, j) ∈ Λ]

can be computed from a difference ideal basis of the annihilating ideal that consists of a basis of
the algebraic part and a basis of the associated difference ideal.

Proof First compose a basis of ann( f1(n), . . . , fm(n))∩ � {t1, . . . , tm}` where ` is the maximal
number i such that (i, j) ∈Λ for some j, as described before. The task is completed by a Gröbner
basis computation.

Although Theorem 6.3 asserts that the annihilating ideals that we consider are always finitely
generated, there is little hope that a complete algorithmic way for computing generators of the
algebraic part can be found. We have the following reduction.

Theorem 6.5 Let f1(n), . . . , fm(n) be admissible sequences. Suppose there exists an algo-
rithm for computing a finite basis of alg( f1(n), . . . , fm(n)) from an admissible system S for
f1(n), . . . , fm(n). Then it is decidable whether there exists a point n ∈ � with f (n) = 0, for
any given admissible sequence f (n).

Proof Consider the indefinite product F(n) := ∏n
i=1 f (i). The sequence F(n) is admissible by

Theorem 3.5.(2), and we have the equivalence

N ∈ � is a root of f (n) ⇐⇒ (n−1)(n−2) · · · (n−N +1)F(n) is the zero sequence.

Let S be an admissible system in g1(n), . . . ,g`(n) with solutions g1(n) = n, g2(n) = F(n). By
assumption we can compute a basis for a := alg(g1(n), . . . ,g`(n))

Compute a Gröbner basis G for a with respect to a lexicographic ordering where t2 is the heaviest
variable, t1 is the lightest, and all other variables are arranged arbitrarily in between. Then f (n)
has a root if and only if G contains a polynomial of the form

(t1−1)(t1−2) · · · (t1−N +1)t2,

which can be determined by inspection.

Theorem 6.5 says that finding a root of an admissible sequence is computationally at least as
difficult as finding a generating set for the annihilator of a tuple of admissible sequences. Finding
a root of an admissible sequence is, however, a very difficult problem. Already for the special
case of C-finite sequences, i.e., determining whether a C-finite sequence f (n) possesses a root, it
is still not known whether this question is decidable (Everest et al., 2003, Section 2.3).

Instead of an algorithm for actually computing the annihilating ideal, we present algorithms that
“approximate” that ideal in a sense that will be made precise.
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6.2 Geometric Interpretation

As
� {t1, . . . , tm}r−1 is only a polynomial ring in r×m variables, we may well say that the al-

gebraic part alg( f1(n), . . . , fm(n)) of an annihilator is nothing else than an ordinary polynomial
ideal. And just like every other polynomial ideal, it defines an algebraic variety V ⊆ � rm. In the
present section, we will study the relationship of this variety with the sequences f1(n), . . . , fm(n).
First we consider a concrete example.

Example 6.6 What are the algebraic dependencies of the Fibonacci sequence? The annihilator
ann(Fn) E � {t} is generated by sst− st− t and possibly some difference polynomials depending
on t and st only. These polynomials form the ideal alg(Fn) E � [t,st]. Consider the Fibonacci
identity

F4
n +2F3

n Fn+1−F2
n F2

n+1−2FnF3
n+1 +F4

n+1−1 = 0 (n≥ 0),

which is routinely verifiable by, e.g., Algorithm 4.2.

The corresponding difference polynomial, p = t4 +2t3st− t2st2−2tst3 + st4−1, must belong to
alg(Fn), because it is obviously not contained in 〈〈sst− st− t〉〉. In fact, we claim that alg(Fn) =
〈p〉, i.e.,

ann(Fn) = 〈〈p,sst− st− t〉〉.
This statement is contained in Exercise 6.81 of Graham et al. (1994). Its relevance was brought to
our attention in a seminal seminar talk by Zimmermann (2002). Here we give a geometric proof
which is independent of Zimmermann’s.

Consider the variety V (p) of a := 〈p〉 E � [t,st], depicted in Figure 6.7. The variety consists of
two irreducible components, each component corresponding to one irreducible factor of

p = (t2 + tst− st2−1)(t2 + tst− st2 +1).

It follows from Cassini’s identity

F2
n +FnFn+1−F2

n+1 = (−1)n (n ∈ � )

that for all points (t,st) ∈ � 2 of the form (F2n,F2n+1), the first factor of p vanishes, and for (t,st)
of the form (F2n+1,F2n+2), the second factor does. In sloppy words, every branch of the variety

st

1

t1

• (F1 ,F2)

•
(F2,F3)

• (F3,F4)

•(F4 ,F5)

•
(F4,F5)

Figure 6.7 The algebraic dependencies of the Fibonacci sequence
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V (a) carries half of the points (Fn,Fn+1). Conversely, every point (Fn,Fn+1) must belong to the
variety V of alg(Fn).

Now suppose that 〈p〉 6= alg(Fn), i.e., 〈p〉 ( alg(Fn). If V denotes the variety of alg(Fn), this
implies the proper inclusion V ( V (p). (Observe that p is square free.) Now, a theorem in alge-
braic geometry (Shafarevich, 1972, Thm. I.6.1) implies that V cannot have two one-dimensional
components—every proper subvariety of V (p) must have replaced at least one component by a
collection of zero-dimensional varieties. But every zero-dimensional variety consists of finitely
many points only (Eisenbud, 1995, Cor. 9.1), in contradiction to our observation that every irre-
ducible component of V (p) carries infinitely many points (Fn,Fn+1).

The reasoning in the previous example can be generalized to the following theorem.

Theorem 6.8 alg( f1(n), . . . , fm(n)) =
∞�

n=1

〈sit j− f j(n+ i) : i = 0, . . . ,r−1, j = 1, . . . ,m〉

Proof “⊆” Let p ∈ alg( f1(n), . . . , fm(n)) and let N ∈ � be arbitrary. By definition of the alge-
braic part alg( f1(n), . . . , fm(n)), we have

p( f1(n), . . . , f1(n+ r−1), . . . . . . , fm(n), . . . , fm(n+ r−1)) = 0 (n ∈ � ),

so this relation holds in particular for n = N. Hence p reduces to zero modulo

〈sit j− f j(N + i) : i = 0, . . . ,r−1, j = 1, . . . ,m〉,

and hence p belongs to that ideal. As N was arbitrary, the inclusion follows.

“⊇” Let N ∈ � be fixed. For all

p ∈ 〈sit j− f j(N + i) : i = 0, . . . ,r−1, j = 1, . . . ,m〉,

we have
p( f1(N), . . . , f1(N + r−1), . . . . . . , fm(N), . . . , fm(N + r−1)) = 0

Now if p belongs to the infinite intersection, then

p( f1(n), . . . , f1(n+ r−1), . . . . . . , fm(n), . . . , fm(n+ r−1)) = 0 (n ∈ � ),

and hence, by definition, p belongs to alg( f1(n), . . . , fm(n)).

Corollary 6.9 The variety of alg( f1(n), . . . , fm(n)) is precisely the Zariski closure of the set

{( f1(n), . . . , f1(n+ r−1), . . . . . . , fm(n), . . . , fm(n+ r−1)) : n ∈ � } ⊆ � rm

of all function values of these sequences.

Corollary 6.10 The algebraic part alg( f1(n), . . . , fm(n)) is a zero-dimensional ideal if and only
if all the sequences fi(n) are periodic.
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Proof Let us denote the point

( f1(n), . . . , f1(n+ r−1), . . . . . . , fm(n), . . . , fm(n+ r−1))

in the affine space
� rm by xn.

“⇐” Suppose first that all the fi(n) are periodic, say fi(n) = fi(n + pi) for all n ∈ � . Then for
p := lcm(p1, . . . , pm) we have fi(n) = fi(n+ p) (n ∈ � , i = 1, . . . ,m). Hence the set {xn : n ∈ � }
is finite, and so it is Zariski closed. By Cor. 6.9, this set is the variety of alg( f1(n), . . . , fm(n)),
and hence this ideal is zero-dimensional.

“⇒” Now suppose that alg( f1(n), . . . , fm(n)) is zero-dimensional. Then, by Cor. 6.9, the set
{xn : n ∈ � } is finite, say of cardinality p ∈ � .

As the fi(n) are solutions of the admissible system S, we have that xn = xñ implies xn+1 = xñ+1

for all n, ñ ∈ � . This implies that all the fi(n) are periodic, with a period at most p.

6.3 Approximation from Above

Theorem 6.8 gives rise to a method for approximating the algebraic part of an annihilator. As
before, fix a tuple f1(n), . . . , fm(n) of solutions of some normal admissible system S of order r.

Consider the sequence of ideals defined by

an :=
n�

`=1

〈sit j− f j(`+ i) : i = 0, . . . ,r−1, j = 1, . . . ,m〉E � {t1, . . . , tm}r−1

= an−1∩〈sit j− f j(n+ i) : i = 0, . . . ,r−1, j = 1, . . . ,m〉

Bases for these ideals are easy to compute. No more is necessary than evaluating the f i(`) for
` = 1, . . . ,n + r− 1 and computing the intersection of the corresponding maximal ideals. In
this particular situation, the intersection can be computed efficiently. There are two cases to
distinguish. Either the point

( f1(n), . . . , f1(n+ r−1), . . . . . . , fm(n), . . . , fm(n+ r−1)) ∈ � rm (6.1)

is identical to
( f1(`), . . . , f1(`+ r−1), . . . . . . , fm(`), . . . , fm(`+ r−1))

for some ` < n. Then, by Cor. 6.10, we have an = alg( f1(n), . . . , fm(n)) and we are done. Or, the
point in (6.1) has not been encountered before. In this case, the ideals an−1 and 〈sit j− f j(n+ i) :
i, j 〉 are comaximal, and their intersection an is equal to their product (Bourbaki, 1970, I.8.6,
Prop. 7). This is advantageous because computing the product of two ideals is less expensive
than computing an intersection.

The ideals an are related to alg( f1(n), . . . , fm(n)) via

a1 ⊇ a2 ⊇ a3 ⊇ ·· · ⊇ alg( f1(n), . . . , fm(n)).

It is easy to see that the sequences an actually converges to the algebraic part, in the following
sense.
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Theorem 6.11 Let the ideals an be defined as above. If a E
� {t1, . . . , tm}r−1 is such that

alg( f1(n), . . . , fm(n)) ⊆ a⊆ an

for all n ∈ � , then a = alg( f1(n), . . . , fm(n)).

Proof If p ∈ an for all n ∈ � , then, by definition of an, p ∈ � n
i=1 ai for all n ∈ � . Hence

p ∈ � ∞
i=1 ai, and the claim follows by Theorem 6.8.

The ideal sequence an can be used to determine candidates for algebraic relations. Unless the
fi(n) are all periodic, we will have alg( f1(n), . . . , fm(n)) ( an for all N. Every an is generated by
alg( f1(n), . . . , fm(n)) and some additional “parasite” polynomials p1, . . . , p` ∈

� {t1, . . . , tm}r−1.
As n grows, so does the degree of the parasite polynomials, and therefore, elements of an with
small total degree may be regarded as candidates for polynomials that indeed belong to the alge-
braic part.

Example 6.12 Consider again the Fibonacci sequence. Define

an :=
n�

i=1

〈t−Fi,st−Fi+1〉E
�

[t,st] (n ∈ � ).

Consider the Gröbner bases of a1,a2, . . . with respect to degree reverse lexicographic ordering
with t � st.

a1 = 〈t−1,st−1〉
a2 = 〈st2−3st +2, t−1〉
a3 = 〈t2−3t +2, t st−3t− st +3,st2−3st−2t +4〉

...

a13 = 〈2573916t3st−1655101t2st2 + (. . . 12 more terms. . . ),

1286958t4 +368143t2st2 + (. . . 12 more terms. . . ),

428986st5 +876600896999484155t2 st2 + (. . . 12 more terms. . . ),

2198835588991693436t st4−135758480269708162st5 + (. . . 13 more terms. . . ),

428986t2st3 +334873894872353653t2 st2 + (. . . 12 more terms. . . )〉
a14 = 〈t4 +2t3st− t2st2−2t st3 + st4−1,

87st5−45128478224686650t3 st + (. . . 13 more terms. . . ),

148644086475454t st4−91853803918593st5 + (. . . 14 more terms. . . ),

87t2st3−17236804823885190t3 st + (. . . 13 more terms. . . ),

87t3st2−10652702566841358t3 st + (. . . 13 more terms. . . )〉

The polynomial t4 +2t3st− t2st2−2t st3 + st4−1, which generates alg(Fn) according to Exam-
ple 6.6, appears first explicitly in the Gröbner basis of a14. The other polynomials are parasite. It
seems to be typical that parasite polynomials have more ugly coefficients than the actual genera-
tors of the algebraic part.
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The fact that the generator of alg(Fn) appeared in the approximation ideals an in the example
above was not a coincidence. We will show next that generators of the algebraic part will always
appear in the Gröbner basis of an with respect to an appropriate term order when n is sufficiently
large. Let

� {t1, . . . , tm}r−1 be equipped with a term order ≺, which is such that for every term τ,
there are only finitely many terms τ̃ with τ̃≺ τ. For example, degree orderings have this property,
but the lexicographic ordering does not.

Theorem 6.13 Let f1(n), . . . , fm(n) be solutions of a normal admissible system S of order r. For
n ∈ � , define

an :=
n�

`=1

〈sit j− f j(`+ i) : i = 0, . . . ,r−1, j = 1, . . . ,m〉.

Then for all sufficiently large n ∈ � , the Gröbner basis G of a := alg( f1(n), . . . , fm(n)) with
respect to ≺ appears as a subset of the Gröbner basis Gn of an with respect to ≺.

Proof For a = {0} there is nothing to prove. If dima = 0, then a = an for sufficiently large n,
so there is nothing to prove in this case either.

Now exclude these cases from consideration. The chain a1 ⊇ a2 ⊇ a3 ⊇ ·· · ⊇ a implies the chain

LT(a1)⊇ LT(a2)⊇ LT(a3)⊇ ·· · ⊇ LT(a),

which in turn implies � ∞
i=1 LT(ai)⊇ LT(a) = LT( � ∞

i=1 ai).

Also the other inclusion holds. Let τ ∈ � ∞
i=1 LT(ai). Then for all n ∈ � there exists pn ∈ an with

LT(pn) = τ. We may assume that the pn are chosen such that pn+1 6= pn only if pn 6∈ an+1. By
discarding some of the ideals an, we may assume without loss of generality that pn 6∈ an+1 for
all n ∈ � . By rn denote the reductum of pn modulo an+1. Then we have LT(rn) 6∈ LT(an+1) but
LT(rn) ∈ LT(an), because an+1 ⊆ an implies rn ∈ an. With T := { τ̃ : τ̃≺ τ} we get the chain

LT(an)∩T ) LT(an+1)∩T ) LT(an+2)∩T ) · · · ,

which cannot be infinite because T is finite by assumption on the term order. It follows that the
set { pn : n ∈ � } is finite, and hence there must be a p with p = pn for infinitely many n ∈ � .
By the inclusions an ⊇ an+1 (n ∈ � ) we obtain that p ∈ an for all n ∈ � , and therefore p ∈ a and
τ = LT(p) ∈ LT(a). We have thus established

∞�

n=1

LT(an) = LT(
∞�

n=1

an). (6.2)

Now consider the Gröbner basis G of a. Let τ := max LT(G) and T := { τ̃ : τ̃ 4 τ}. As a con-
sequence of (6.2), we have LT(Gn)∩T = LT(G) for sufficiently large n. For these n, we have
G⊆ Gn: Assume for the contrary the existence of some p ∈ G\Gn. Then, by LT(G)⊆ LT(Gn),
there is some p̃ ∈ Gn, p 6= p̃ with LT(p) = LT( p̃). Then

q := LC(p) p̃−LC( p̃)p ∈ an \a

and some divisor of LT(q) ≺ LT(p) 4 τ would belong to Gn, in contradiction to LT(Gn)∩T =
LT(G).
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Summarizing, we are able to find algebraic dependencies by computing a Gröbner basis of the
product of sufficiently many maximal ideals corresponding to evaluations of the sequences at
hand. The procedure delivers ideals which containing all algebraic dependencies, plus some
additional parasite polynomials. By the zero equivalence algorithm (Algorithm 4.2), parasite
polynomials can automatically be distinguished from actual algebraic relations.

6.4 Approximation from Below

We now turn to a different way of finding algebraic dependencies, which can be formulated as an
approximation of the algebraic part “from below”. Again, let f1(n), . . . , fm(n) be solutions of a
normal admissible system S. Suppose that a finite set P = {p1, . . . , p`} ⊆

� {t1, . . . , tm} is given,
and assume we are interested only in algebraic relations p of f1(n), . . . , fm(n) which are

�
-linear

combinations of the pi. These relations form a finite dimensional vector space over
�

. A basis
of this space can be computed by an undetermined ansatz, as described next.

Algorithm 6.14 (Computing Algebraic Dependencies of Prescribed Shape)
Input: Admissible sequences f1(n), . . . , fm(n), defined by a normal admissible system S of or-
der r and initial values, a set P = {p1, . . . , p`} ⊆

� {t1, . . . , tm}
Output: A basis of the

�
-vector space of all algebraic dependencies of f1(n), . . . , fm(n) of the

form c1 p1 + · · ·+ c`p` with ci ∈
�

1 S := S∪{ fm+1(n+1) = fm+1(n), . . . , fm+`(n+1) = fm(n)}
2 ansatz := tm+1 p1 + tm+2 p2 + · · ·+ tm+`p`

3 Apply Algorithm 4.1 to ansatz, obtaining a number N.
4 Use Algorithm 3.9 to evaluate each pi for n = 1,2, . . . ,N, obtaining values vn,i ∈

�

5 Compute a basis B⊆ � ` of the solution space of the linear system





v1,1 · · · v1,`
...

. . .
...

vN,1 · · · vN,`











tm+1
...

tm+`




 = 0

6 return {b1 p1 + · · ·+b`p` : b = (b1, . . . ,b`) ∈ B}

Theorem 6.15 Algorithm 6.14 is correct.

Proof Let ϕ :
� {t1, . . . , tm} →

� �
be the difference homomorphism mapping ti to fi(n) and

elements of
�

to the corresponding constant sequences. Let p = ∑`
i=1 ci pi for some c1, . . . ,c` ∈

�
.

Suppose that p ∈ ann( f1(n), . . . , fm(n)). Then ϕ(p) is the zero sequence. In particular, this
sequence is zero for n = 1,2, . . . ,N, and hence the coefficient vector (c1, . . . ,c`) must belong to
the solution space of the linear system.

On the other hand, suppose that p is a linear combination of the polynomials computed by the
algorithm. Then the sequence ϕ(p) vanishes for n = 1,2, . . . ,N. By the specification of Algo-
rithm 4.1, it follows that ϕ(p) vanishes for all n ∈ � , and hence p ∈ ann( f1(n), . . . , fm(n)).

It is pretty inconvenient from a complexity viewpoint to implement Algorithm 6.14 as described
above. The additional difference variables needed to represent the coefficients in the ansatz blow
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up the difference ring and make the Gröbner basis computations infeasible. Typically, N will
be roughly of the same size as `, and this is much larger than the N required for a particular
field elements in place of the ansatz indeterminates. A much more efficient variant proceeds as
follows. Instead of executing line 3, simply set N = `, then execute lines 4f and form the set

{
`

∑
i=1

biτi : b = (b1, . . . ,b`) ∈ B}.

Apply the zero equivalence tester (Algorithm 4.2) to all elements of this set. If the algorithm
yields True for all elements, return this set as result. Otherwise, increment N and go to line 4.
Correctness of this variant follows from Theorem 6.15, and for termination it is only necessary
that there exists a number N such that all solutions of the linear system correspond to the zero
sequence. Existence is guaranteed, in Algorithm 6.14 such an N is actually computed.

The linear systems in Algorithm 6.14 can become quite large. Typically, these systems are dense,
so that heuristics exploiting sparsity cannot be used for speeding up the solving of the system.
A drastic speed-up can be achieved by mapping the system homomorphically to a finite field � p

and solve it there. Classically, one would recover the solution of the original system from sev-
eral homomorphic images via Chinese remaindering and/or Newton interpolation, but this might
be tedious if

�
is complicated. An alternative approach is to interpret the basis vectors in the

homomorphic image of the solution space only as a structure set determining the polynomials
which are actually in relation with each other. A structure set is a small set of terms which are
conjectured to be dependent. For every structure set, an individual system can be set up over

�
,

which can be solved to determine the actual coefficients of the relation. This technique is widely
used in symbolic summation.

Structure set considerations can reduce the size of the linear systems considerably, but if
�

=
� (x1, . . . ,xs), solving these systems can still be the runtime bottleneck of the entire computation,
even though such systems can be solved in polynomial time using Bareiss elimination (Geddes
et al., 1992, Section 9.3). For the case

�
= � (x), Storjohann and Villard (2005) give an efficient

algorithm that outperforms Bareiss’ elimination both in practice and in theory. The case s > 1
remains challenging.

In order to approximate an algebraic part by subideals, we employ the algorithm just described.
The whole polynomial ring

� {t1, . . . , tm}r−1 can be viewed as a vector space over
�

of infinite
dimension. The terms τ = ∏r−1

i=0 ∏m
j=1(s

it j)
ei, j form a basis of this space. The algebraic part

alg( f1(n), . . . , fm(n)) can be approximated from below by applying Algorithm 6.14 to larger and
larger sets of terms. For d ∈ � , let Pd denote the set of all terms τ with degτ ≤ d. If bd E
� {t1, . . . , tm}r−1 denotes the ideal generated by the polynomials which Algorithm 6.14 returns
for f1(n), . . . , fm(n) and Pd then

b1 ⊆ b2 ⊆ b3 ⊆ ·· · ⊆ alg( f1(n), . . . , fm(n))

provides an approximation of the algebraic part from below. Using Hilbert’s basis theorem, it can
be shown that the algebraic part is eventually identical to bd for sufficiently large d. This is what
makes these ideals more interesting than the superideals ai discussed in the previous section.
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Theorem 6.16 Let f1(n), . . . , fm(n) be solutions of a normal admissible system S of order r. Let
Pd be the set of all terms τ = ∏r−1

i=0 ∏m
j=1(s

it j)
ei, j with degτ≤ d and bd E

� {t1, . . . , tm}r−1 be the
ideal generated by the polynomials, which Algorithm 6.14 computes for Pd and f1(n), . . . , fm(n).
Then

b1 ⊆ b2 ⊆ b3 ⊆ ·· · ⊆ alg( f1(n), . . . , fm(n)),

and bd = alg( f1(n), . . . , fm(n)) for sufficiently large d.

Proof The inclusions bd ⊆ bd+1 (d ≥ 1) directly follow from the corresponding inclusions of
the vector spaces of Algorithm 6.14, which are evident. Furthermore, bd ⊆ alg( f1(n), . . . , fm(n))
(d ≥ 1) directly follows from the correctness of Algorithm 6.14.

The algebraic part alg( f1(n), . . . , fm(n)) is finitely generated as ideal of
� {t1, . . . , tm}r−1, let B =

{b1, . . . ,b`} be a basis. For d0 = max`
i=1 degbi, we have bi ∈ bd0 for all i, and hence

alg( f1(n), . . . , fm(n))⊆ bd0 .

It follows that bd = alg( f1(n), . . . , fm(n)) for d ≥ d0.

According to the theorem above, we can compute the algebraic part—and hence the annihilating
ideal—of some admissible sequences f1(n), . . . , fm(n) by approximating it sufficiently accurate
from below. In order to devise a complete algorithm for computing generators of the algebraic
part, it is now sufficient to know a general criterion by which it could be decided whether an
approximation at hand is already complete. We do not know of any such criterion, and in view of
Theorem 6.5 it does not seem likely that such a criterion could be found.

The set of terms of a prescribed total degree d grows exponentially in d. Therefore, the linear
systems of Algorithm 6.14 become quite big already for moderate size of d. It is advisable to
spend some extra efforts in order to keep the ansatz polynomials as small as possible. One way of
doing so is by leaving out redundant terms. If bases of the ideals b1,b2, . . . are computed in order,
then in the computation of bd only relations are of interest which do not already belong to bd−1.
The following algorithm computes a basis for bd incrementally, keeping the ansatz polynomial
of Algorithm 6.14 small.

Algorithm 6.17 (Approximation of the Algebraic Part from Below)
Input: Admissible sequences f1(n), . . . , fm(n), defined by a normal admissible system S of or-
der r and initial values, a number D ∈ �
Output: A basis for the ideal bD E

� {t1, . . . , tm} generated by all algebraic dependencies of
f1(n), . . . , fm(n) of total degree at most D
Assumption:

� {t1, . . . , tm}r−1 is equipped with a total degree term ordering

1 G = /0
2 for d = 1 to D do
3 Let T be the set of all terms τ in

� {t1, . . . , tm}r−1 with degτ≤ d
4 Delete from T all terms which are divisible by some term in LT(G)
5 Apply Algorithm 6.14 to f1(n), . . . , fm(n) and T , obtaining B⊆ � {t1, . . . , tm}r−1

6 G := GröbnerBasis(G∪B)
7 return G
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Theorem 6.18 Algorithm 6.17 is correct.

Proof Let G ⊆ � {t1, . . . , tm}r−1 be as computed by the algorithm. It is clear that 〈G〉 ⊆ bd by
the correctness of Algorithm 6.14. Without line 4, also the inclusion 〈G〉 ⊇ bd would be clear.
We have to prove that line 4 does not violate this inclusion.

Assume for the contrary that it does. Then there exists an algebraic dependency p ∈ bd \ bd−1

with LT(p) ∈ 〈LT(G)〉 = LT(bd−1). We may assume that p is minimal in the sense that there is
no p̃ ∈ bd \bd−1 with LT( p̃) ∈ 〈LT(G)〉 and LT( p̃) ≺ LT(p). By LT(p) ∈ 〈LT(G)〉, there exists
q ∈ bd−1 with LT(p) = LT(q). By bd−1 ⊆ bd , we also have q ∈ bd , and also

q̃ := LC(q)p−LC(p)q ∈ bd .

But LT(q̃) ≺ LT(p), and by minimality assumption on p, it follows that q̃ ∈ bd−1, which in turn
implies that

p =
1

LC(q)
(LC(p)q+ q̃) ∈ bd−1,

in contradiction to the choice of p.

If some algebraic dependencies are already known, then G should be initialized to a Gröbner
basis of those in line 1.

An additional refinement of the ansatz polynomial is possible by taking into account knowledge
about close superideals of the algebraic part, as they appeared in Section 6.3. Suppose that
a⊇ alg( f1(n), . . . , fm(n)), and basis elements q1, . . . ,q` of a are known. Every p in the algebraic
part also belongs to b, and hence there are p1, . . . , p` ∈

� {t1, . . . , tm}r−1 such that

p = p1q1 + p2q2 + · · ·+ p`q`.

Instead of making an ansatz for p directly, one might prefer to make an ansatz for the cofactors p i.
In this case, in order not to unnecessarily increase the number of terms in the ansatz polynomial,
one has to take into account the syzygies of the generators q1, . . . ,q`. This leads to the following
refinement of Algorithm 6.17.

Algorithm 6.19 (Approximation of the Algebraic Part from Below)
Input: Admissible sequences f1(n), . . . , fm(n), defined by a normal admissible system S of or-
der r and initial values, a number D∈ � , and difference polynomials q1, . . . ,q` ∈

� {t1, . . . , tm}r−1

such that 〈q1, . . . ,q`〉 ⊇ alg( f1(n), . . . , fm(n))
Output: A basis for the ideal bD E

� {t1, . . . , tm} generated by all algebraic dependencies of
f1(n), . . . , fm(n) of total degree at most D
Assumption:

� {t1, . . . , tm}r−1 and (
� {t1, . . . , tm}r−1)

` are equipped with a total degree term or-
dering, the qi form a Gröbner basis in

� {t1, . . . , tm}r−1, εi is the i-th unit vector in the module
(
� {t1, . . . , tm}r−1)

`

1 G = /0
2 M = GröbnerBasis(Syz(q1, . . . ,q`))
3 for d = 1 to D do
4 for i = 1 to ` do
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5 Let Ti be the set of all terms τ in
� {t1, . . . , tm}r−1 with degτ≤ d

6 Delete from Ti all terms τ such that τεi is not irreducible w.r.t. M
7 T := { piτ : τ ∈ Ti, i = 1, . . . , `}
8 Apply Algorithm 6.14 to f1(n), . . . , fm(n) and T , obtaining B⊆ � {t1, . . . , tm}r−1

9 G := G∪B
10 return G

Theorem 6.20 Algorithm 6.19 is correct.

Proof We have to show that no dependencies are lost by lines 5f.

Line 5. Let p ∈ 〈q1, . . . ,q`〉E
� {t1, . . . , tm}r−1 be such that deg p = d. Then there exist cofactors

p1, . . . , p` with p = p1q1 + · · ·+ p`q`. As the qi form by assumption a Gröbner basis with respect
to a degree order, p reduces to zero modulo q1, . . . ,q`, and therefore the pi can be chosen such
that deg pi ≤ deg p−degqi ≤ d.

Line 6. Assume that τεi is reducible w.r.t. M. Then there exist cofactors c j ∈
� {t1, . . . , tm}r−1 with

LT(c j)≺ LT(τ) ( j = 1, . . . , `) such that τqi = c1q1 + · · ·+ c`q`. If a dependency p = p1q1 + · · ·+
p`q` ∈ bd with deg p = d is such that pi involves τ, then we have the alternative representation

p = (p1 + c1)q1 + · · ·+(p` + c`)q`

in which the i-th cofactors is free of τ. Starting with the greatest reducible term appearing in the
cofactors, one can thus inductively eliminate them all using the corresponding syzygies. Even-
tually, this will give a representation of p with cofactors only involving irreducible terms, and
hence reducible terms need not be taken into account in the ansatz polynomial.

Suitable polynomials q1, . . . ,q` needed by Algorithm 6.19 are generators of the ideals an dis-
cussed in the previous section. It turns out that taking for the qi generators of the n-th approxi-
mation from above, the set T of line 7 has approximately n elements less than the corresponding
set in Algorithm 6.17. This decrease does, however, in most cases not lead to an acceleration
that equalizes the additional time needed to compute the syzygy module. In other words, Algo-
rithm 6.17 performs better than Algorithm 6.19 in most cases, and it should therefore be preferred.
The software described in Chapter 9 contains implementations of both algorithms.

6.5 Examples and Applications

We have discussed in this chapter ways to obtain algebraic dependencies between some given
admissible sequences. Knowledge of an ideal of algebraic dependencies is useful for answering
various questions about the relationships of admissible sequences at hand. In Chapter 8 below we
will use knowledge about algebraic dependencies for computing closed forms of sums involving
admissible sequences. Summation is no doubt the main application, but there are also other
problems which can be solved with the aid of algebraic dependencies. Some examples are given
in this sections, more examples can be found in the following chapters.

Given an admissible sequence f (n), it might be of interest to know whether there exists a rational
function r such that

f (n) = r(g1(n), . . . ,gm(n)) (n≥ 1) (6.3)
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for some other given admissible sequences g1(n), . . . ,gm(n). In this case, we say that f (n) is
represented in terms of the gi(n). The question as to whether a representation of f (n) in terms
of the gi(n) exists, and if so, to compute it, is called the representation problem. Indefinite
summation is the most commonly considered special case of this problem (“express the sum in
terms of the summand”).

By multiplying (6.3) with its denominator, we obtain an algebraic dependency of f (n) and
g1(n), . . . ,gm(n). Conversely, every algebraic dependency of this form provides a solution to
the problem. Algorithm 6.17 can be turned into a semidecision procedure for the representation
problem: Compute bases for the ideals b1,b2, . . . . For each basis bd , eliminate all variables corre-
sponding to f (n+1), f (n+2), . . . . For the resulting basis, compute a Gröbner basis with respect
to a lexicographic ordering that weights the variable corresponding to f (n) heaviest. A solution
to the representation problem where numerator and denominator of the rational function have
total degree at most d and d− 1, respectively, exists if and only if a corresponding polynomial
appears in the resulting Gröbner basis. This procedure terminates and returns a solution of the
representation problem if and only if a solution exists. Otherwise, it does not terminate.

Example 6.21 Rabinowitz (2003) has proposed the following problem. Let u(n) be defined via
the nonlinear recurrence

u(n+1) =
3u(n)+1
5u(n)+3

(n≥ 1), u(1) = 1.

Express u(n) in terms of Fibonacci and/or Lucas numbers.

The ideal computed by Algorithm 6.17 for total degree 3 contains difference polynomials which
immediately give rise to the representations

u(n) =
−2L2

n +2LnLn+1−L2
n+1

4L2
n−6LnLn+1 +L2

n+1

=
−2F2

n +2FnFn+1−F2
n+1

4F2
n −6FnFn+1 +F2

n+1

(n≥ 1).

More generally than in the representation problem, we might be interested in an algebraic de-
pendency of a special shape, for instance, a linear recurrence with coefficients from a prescribed
domain.

Example 6.22 Consider the sum

s(n) :=
n

∑
k=1

2k +1
k +1

P(1,−1)
k (x)

where P(1,−1)
n (x) denotes the nth Jacobi polynomial (p. 11). We have the obvious recurrence

s(n+1) = s(n)+
2(n+1)+1
(n+1)+1

P(1,−1)
n+1 (x),

but does there also exist a linear recurrence for s(n) whose coefficients only involve n?



6.5 Examples and Applications 73

From the closure of P-finite sequences under indefinite summation, it follows that such a recur-
rence must exist, and we can compute one with Algorithm 6.17. The software package described
in Chapter 9 delivers the inhomogeneous second order recurrence

(n+3)(2n+3)s(n+2)− ((2n+3)(2n+5)x−1)s(n+1)+(n+1)(2n+5)s(n)

=(x+1)(2n+3)(2n+5)

The packages gfun (Salvy and Zimmermann, 1994) and Mallinger’s package (Mallinger, 1996)
both give a homogeneous recurrence of order 3 as result.

Example 6.23 Recall the notion of a Somos sequence (Example 2.11.(6), p. 13). We consider
the Somos-4 sequence Cn, defined by

Cn+2 =
1

Cn−2
(Cn−1Cn+1 +C2

n) (n≥ 2), C−2 = C−1 = C0 = C1 = 1.

In Example 4.9.(6) (p. 34) we have verified some algebraic relations of Cn by van der Poorten
(2004).

The ideal generated by all quadratic dependencies between Cn−4,Cn−3, . . . ,Cn+3,Cn+4 can be
computed by means of Algorithm 6.17. The resulting basis is long, and we do not reproduce it
here.

Having the basis at hand, it is an easy matter to find out which higher order Somos-like difference
equations are satisfied by the sequence Cn. Besides the recurrence from the definition, we obtain

Cn+3Cn−2 = 5Cn+1Cn−Cn+2Cn−1

Cn+3Cn−3 = 5C2
n +Cn+1Cn−1

Cn+4Cn−3 = 5CnCn+1 +4Cn+1Cn

Cn+4Cn−4 =−4C2
n +25Cn+1Cn−1.

This list is exhaustive in the sense that every other Somos-like relation of order at most 8 is a
� -linear combination of those. (Note that the third relation does not appear in van der Poorten’s
list.)
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In the previous chapter, we have been concerned with algebraic dependencies of admissible se-
quences. We have described methods to enumerate a basis for the ideal of algebraic dependencies,
and we have argued that it is presumably very difficult to find an algorithm which actually com-
putes a complete basis for all dependencies in a finite number of steps. What makes this problem
so difficult is that the class of admissible sequences is very large.

In the present chapter, we restrict our attention to a small subclass of the class of admissible
sequences, namely the class of C-finite sequences, and we show that in this case, it is actually
possible to algorithmically compute a basis for all algebraic dependencies.

7.1 C-Finite Sequences

According to Def. 2.10.(3), a sequence f (n) in
�

is called C-finite if it satisfies a homogeneous
linear recurrence with constant coefficients,

f (n+ r) = a0 f (n)+a1 f (n+1)+ · · ·+ar−1 f (n+ r−1) (n≥ 1).

C-finite sequences have been studied deeply (Everest et al., 2003). One crucial and elementary
fact about C-finite recurrences is that they always admit a closed form solution. Let φ1, . . . ,φs ∈ ¯�

be the roots of the characteristic polynomial

c(x) := xr−a0−a1x−·· ·−ar−1xr−1

of f (n), and let ei be the multiplicity of φi (i = 1, . . . ,s). Then we have

f (n) = p1(n)φn
1 + · · ·+ ps(n)φn

s (n≥ 1) (7.1)

for certain polynomials pi ∈
�

[n] of degree at most ei.

This closed form representation can obviously be computed easily from a given recurrence and
initial values. We will describe in the following sections how the algebraic dependencies between
some sequences f1(n), . . . , fm(n) can be computed by using these closed forms. It is not necessary
that the fi(n) are independently defined by a C-finite recurrence. The only important requirement
is that they admit a closed form representation of the form (7.1), and that they are defined by a
system of recurrences from which such a representation can be computed. This is, for instance,
possible for C-finite systems of recurrences, which we define as follows.

Definition 7.1 A system S = {rec1, . . . ,recm} of difference equations for f1(n), . . . , fm(n) is

2The results in this chapter originate from a collaboration with B. Zimmermann (Kauers and Zimmermann, 2005a).
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called C-finite, if every reci has the form

fi(n+ ri) = a0,1 f1(n)+a1,1 f1(n+1)+ · · ·+ar1−1,1 f1(n+ ri−1)

+a0,2 f2(n)+a1,2 f2(n+1)+ · · ·+ar2−1,2 f2(n+ ri−1)

+ · · ·
+a0,m fm(n)+a1,m fm(n+1)+ · · ·+arm−1,m fm(n+ ri−1) (n≥ 1)

for certain fixed orders ri ∈ � 0 (i = 1, . . . ,m) and constants ai, j ∈
�

, not all a0,i being zero.

As a special case, any system S = {rec1, . . . ,recm} in which reci is a C-finite recurrence for fi(n)
is such a system. The general case is referred to as a coupled system in the literature. For P-
finite coupled systems there are “uncoupling” algorithms known which transform the system into
an equivalent one consisting of independent P-finite recurrences only (Zürcher, 1994; Gerhold,
2002). These algorithms could also be applied to reduce C-finite systems to systems of indepen-
dent C-finite recurrences, which then can be solved using the characteristic polynomial. A more
direct way is given by the following algorithm.

Algorithm 7.2 (Solving C-finite Systems of Difference Equations)
Input: A C-finite system S = {rec1, . . . ,recm} for f1(n), . . . , fm(n), and initial values
Output: For each fi(n) a representation as linear combination of exponential terms with poly-
nomial coefficients
Assumption: reci has the order ri ≥ 0

1 Write xn = ( f1(n), . . . , f1(n+ r1−1), . . . . . . , fm(n), . . . , fm(n+ rm−1)) for short.
2 Let M ∈ � (r1+···+rm)×(r1+···+rm) be such that xn+1 = Mxn

3 Compute a Jordan decomposition M = SJS−1 for M
4 Let Jn be the matrix obtained by J upon replacing each of its Jordan blocks











φ 1 0 · · · 0

0 φ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 φ












∈ ¯� d×d by the block












φn nφn−1
(n

2

)
φn−2 · · ·

( n
d−1

)
xn−d+1

0 φn nφn−1 . . .
...

...
. . . . . . . . .

(n
2

)
φn−2

...
. . . . . . nφn−1

0 · · · · · · 0 φn












5 Compute the vector c = SJnS−1x1 ∈
� r1+···+rm

6 return { fi(n) = cr1+···+ri−1+1 : i = 1, . . . ,m}

The coefficients of M in line 2 can be read of directly from the recurrences in S. The components
of the vector x1 needed in line 5 are the initial values of the f i(n). The symbol n is always
understood symbolic. Note that in step 4, the value of d is known at runtime, so that the binomials
appearing in J̃ are just polynomials in n of degree up to d−1.

Theorem 7.3 Algorithm 7.2 is correct.
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Proof The only thing to show is that Mn = SJnS−1 is true for all n ∈ � . By

Mn = (SJS−1)n = (SJS−1)(SJS−1) · · · (SJS−1) = SJnS−1 (n ∈ � )

it remains to show Jn = Jn. By the block structure of J, it suffices to show that the nth power of
the matrix on the left in step 4 is equal to the matrix on the right. Denote the left matrix by B. For
n = 1, the identity is evident. Suppose it is holds for some n ∈ � , then for n+1 we have

Bn+1 =












φn nφn−1
(n

2

)
φn−2 · · ·

( n
d−1

)
xn−d+1

0 φn nφn−1 . . .
...

...
. . . . . . . . .

(n
2

)
φn−2

...
. . . . . . nφn−1

0 · · · · · · 0 φn























φ 1 0 · · · 0

0 φ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 φ












= ((bi, j))
d
i, j=1

where

bi, j =







( n
j−i−1

)
φn− j+1 +

( n
j−i

)
φn− jφ =

(n+1
j−1

)
φ(n+1)− j+1 if i < j

φn+1 if i = j
0 if i > j

,

as desired.

7.2 Algebraic Dependencies of Exponentials

A sequence of the form f (n) = φn for some φ ∈ � fixed is called an exponential. In this section,
we study difference ideals of the form

ann(n,φn
1, . . . ,φ

n
m) E

� {t0, t1, . . . , tm}

for φ1, . . . ,φm ∈
�

fixed. (Observe that for the convenience of indexing, we label the difference
variables starting from 0 in the present context.)

As discussed before, any solution of a C-finite recurrence is a linear combination of terms of the
form ndφn. It is a classical result in the theory of difference equations that these terms indeed form
a fundamental set of solutions to the recurrence. We need here the following linear independence
statement.

Theorem 7.4 Let d1, . . . ,dm ∈ � 0, φ1, . . . ,φm ∈
� \ {0}, and consider the sequences fi(n) :=

ndi φn
i (i = 1, . . . ,m). The set

{ f1(n), f2(n), . . . , fm(n)}
is linearly independent over

�
, provided that (di,φi) 6= (d j,φ j) for i 6= j.

For a proof, we refer to the literature (e.g. Milne-Thomson, 1933, Section 13.0). The theorem
may be restated as linear independence of pairwise different exponentials over

�
[n].

Corollary 7.5 Let φ1, . . . ,φm ∈
� \{0} be pairwise different, and let p1, . . . , pm ∈

�
[n] be such

that
p1(n)φn

1 + p2(n)φn
2 + · · ·+ pm(n)φn

m = 0 (n≥ 1).

Then p1(n) = p2(n) = · · ·= pm(n) = 0 (n≥ 1).
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Proof Any nontrivial relation would be in contradiction to Theorem 7.4.

Recall the shortcut notation Φe := φe1
1 · · ·φem

m for Φ =(φ1, . . . ,φm)∈ � m and e =(e1, . . . ,em)∈ � m.

Every algebraic dependency

a1(n)Φe1 +a2(n)Φe2 + · · ·+as(n)Φes = 0 (n≥ 1)

of exponentials Φ := (φn
1, . . . ,φ

n
m) can be read as a linear dependency

a1(n)ψn
1 +a2(n)ψn

2 + · · ·+as(n)ψn
s = 0 (n≥ 1)

of the exponentials ψn
1, . . . ,ψn

s with ψi := (φe1,i

1 · · ·φ
em,i
m ). By the previous corollary, such a linear

independence can only be nontrivial if some of the ψn
i coincide, i.e., if Φei = Φe j for some i 6= j.

This motivates the following definition.

Definition 7.6

(1) Let φ1, . . . ,φm ∈
� \{0}. The exponent lattice of φ1, . . . ,φm is defined as

L(φ1, . . . ,φm) := {(e1, . . . ,em) ∈ � m : φe1
1 φe2

2 · · ·φem
m = 1} ⊆ � m.

(2) For e = (e1, . . . ,em) ∈ � m, define

e+ := (max(0,e1), . . . ,max(0,em)), e− := (max(0,−e1), . . . ,max(0,−em)).

The lattice ideal of a lattice L⊆ � m is defined as

I(L) := 〈T e+−T e− : e ∈ L〉E � [t1, . . . , tm],

where T = (t1, . . . , tm).

Continuing in the notation of above, we have Φei = Φe j if and only if ei−e j ∈ L(φ1, . . . ,φm). As a
consequence, the algebraic dependencies of a set of exponentials φn

1, . . . ,φn
m is precisely described

by the lattice ideal of the exponent lattice L(φ1, . . . ,φm), as we will show next.

Theorem 7.7 Let φ1, . . . ,φm ∈
� \{0}. Then

ann(n,φn
1, . . . ,φ

n
m) = 〈〈I(L(φ1, . . . ,φm))〉〉+ 〈〈st0− t0−1,st1−φ1t1, . . . ,stm−φmtm〉〉.

Proof “⊇” Clear by definition of L(φ1, . . . ,φm).

“⊆” Let p∈ ann( f1(n), . . . , fm(n)). We show that p reduces to zero modulo the ideal on the right
hand side. By adding suitable elements of that ideal, p can be brought to a form

p̄ = a1(t0)T
e1 + · · ·+as(t0)T

es

with T = (t1, . . . , tm) and certain ai ∈
�

[t0], where ei− e j 6∈ L(φ1, . . . ,φm). Hence, writing Φ :=
(φ1, . . . ,φm), the exponentials ψi := Φei (i = 1, . . . ,m) are pairwise different. As p̄ belongs to the
ideal on the left, we have

a1(n)ψn
1 +a2(n)ψn

2 + · · ·+as(n)ψn
s = 0 (n≥ 0).

By Corollary 7.5, we obtain a1(n) = · · · = as(n) = 0, hence p̄ = 0, and hence p belongs to the
ideal on the right hand side.
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7.3 Ge’s Algorithm

In the previous section, we have seen that the algebraic dependencies of sequences φn
1, . . . ,φ

n
s can

be described by means of the integer lattice

L := L(φ1, . . . ,φs) := {(e1, . . . ,es) ∈ � s : φe1
1 · · ·φes

s = 1} ⊆ � s.

Most commonly, the bases φ1, . . . ,φs belong to an algebraic extension field � (α) of � . For this
case, Ge (1993) has given an efficient algorithm for computing a basis of L from given numbers
φ1, . . . ,φs ∈ � (α).

Unfortunately, Ge’s algorithm has apparently never been published in other form than his Ph.D.
thesis. Articles referring to Ge’s work (e.g. Derksen et al., 2005; Cai et al., 2000) give some
hints about what the algorithm does, but details remain open. For the sake of completeness, we
describe below an algorithm for computing a basis of L, based on integer relation algorithms and
Diophantine approximation. The algorithm is likely to be very similar or even identical to Ge’s
approach, and we do not claim any sort of originality about the results presented in this section.
Readers who wish to take Ge’s algorithm for granted may skip this section and directly advance
to Section 7.4.

1 Lattices

Definition 7.8 Let b1, . . . ,bm ∈ � d be given. The set

[b1, . . . ,bm] := � b1 + · · ·+ � bm := {e1b1 + · · ·+ embm : e1, . . . ,em ∈ � } ⊆ � d

is called the lattice generated by b1, . . . ,bm. The set {b1, . . . ,bm} is called a basis of that lattice.

By || · || and || · ||∞, we denote the Euclid norm and the maximum norm, respectively, of vectors
in � d , i.e.,

||x|| :=
√

x2
1 + · · ·+ x2

d, ||x||∞ :=
d

max
i=1
|xi| (x = (x1, . . . ,xd) ∈ � d).

We are interested in bases of lattices whose elements are short w.r.t. the Euclid norm. Lenstra
et al. (1982) proposed an efficient algorithm, now known as the LLL algorithm, which transforms
a given basis of a lattice into such a basis. The vectors of the basis computed by LLL are not
necessarily as short as can be, but they are off only by a constant factor. In particular, we have
the following estimate.

Theorem 7.9 Let L⊆ � d be a lattice and let {b1, . . . ,bm} be a basis computed by LLL from any
given basis for L. Furthermore, let c1, . . . ,c` ∈ L be linearly independent. Then

||b j|| ≤ 2(n−1)/2 `
max
i=1
||ci|| ( j = 1, . . . , `).

Cohen (1993) has a detailed description of LLL and its applications. Also a proof of the theorem
above can be found there.
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2 Continued Fractions

Recall the definitions from page 12. We consider in the present context continued fractions of the
form

n

K
i=0

(1/a(i)) = a(0)+
1

a(1)+
1

· · ·+
1

a(n)

with a(0) ∈ � and a(n) ∈ � for n ≥ 1. For every n, the continued fraction is a rational number
p(n)/q(n), and it can be shown that p(n) and q(n) are precisely the continuants of this continued
fraction (Perron, 1929).

Continued fractions of this form provide a unique representation of real numbers.

Theorem 7.10 Let x ∈ � .

(1) If x ∈ � , then there exists n ∈ � , a(0) ∈ � , and a(1), . . . ,a(n) ∈ � , a(n) 6= 1, all uniquely
determined, such that

x =
n

K
i=0

(1/a(i)).

(2) If x 6∈ � , then there exists a uniquely determined sequence a(n) with a(0) ∈ � and a(n) ∈ �
(n≥ 1) such that

x =
∞

K
n=0

(1/a(i)) := lim
n→∞

n

K
i=0

(1/a(i)).

A proof can be found in Perron’s book or any other introduction to the theory of continued
fractions. The (possibly finite) sequence a(n) in the theorem above is called the continued fraction
expansion of x.

If x ∈ � and the sequence a(n) is the continued fraction expansion of x, then the truncated con-
tinued fraction

N

K
i=0

(1/a(i)) =
p(N)

q(N)

is called the Nth approximant (or convergent) to x. The name is justified by the following esti-
mation, for a proof of which we again refer to Perron (1929).

Theorem 7.11 (Diophantine Approximation) Let x ∈ � and a(n) be its continued fraction
expansion. Let p(n)/q(n) be the nth approximant to x. Then

∣
∣
∣
∣
x− p(n)

q(n)

∣
∣
∣
∣
≤ 1

q(n)q(n+1)

for all n≥ 1 for which a(n+1) is defined.
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3 Integer Relations

Given some real numbers x1, . . . ,xn ∈ � \{0}, an integer relation of these numbers is an integer
vector (e1, . . . ,en) ∈ � m such that

e1x1 + e2x2 + · · ·+ enxn = 0.

One way to find integer relations is based on continued fraction expansions and LLL (Borwein
and Lisoněk, 2000).

Suppose that ξ1, . . . ,ξn ∈ � are rational approximations to x1, . . . ,xn ∈ � \{0}, with errors εi :=
xi−ξi (i = 1, . . . ,n). Choose a large number c ∈ � , and consider the lattice

L := [












1
0
......
0

cξ1












,












0
1
0
...
0

cξ2












, . . . . . . ,












0
......
0
1

cξn












]⊆ � n+1. (7.2)

Apply LLL to the basis above. The resulting basis will consist of vectors b of the form

b = (b1, . . . ,bn,c(b1ξ1 +b2ξ2 + · · ·+bnξn))

with bi ∈ � (i = 1, . . . ,n). If (b1, . . . ,bn) is an integer relation for x1, . . . ,xn, then it is likely to pop
up in the basis computed by LLL, because then

b1ξ1 +b2ξ2 + · · ·+bnξn = b1(x1− ε1)+b2(x2− ε2)+ · · ·+bn(xn− εn)

= b1x1 +b2x2 + · · ·+bnxn
︸ ︷︷ ︸

=0

−(b1ε1 +b2ε2 + · · ·+bnεn)

is small. Whether or not an integer relation actually pops up in the LLL basis is governed by
the the quality of the approximation and by the choice of c. Relations with large coefficients
b1, . . . ,bn are only found if the vectors corresponding to the relation are actually shorter that the
vectors in (7.2).

Now suppose that the lattice of integer relations for x1, . . . ,xn is generated by a basis {c1, . . . ,c`}
with ||ci||∞ ≤M (i = 1, . . . , `), where M ≥ 0 is known. Then, for all e = (e1, . . . ,en) ∈ {c1, . . . ,c`}
we have

||(e1, . . . ,en,ce1ξ1 + · · ·+ cenξn)||= ||(e1, . . . ,en,−c(e1ε1 + · · ·+ enεn))||
≤ ||e||+ |−c(e1ε1 + · · ·+ enεn)|

≤
√

n||e||∞ + c|
n

∑
i=1

eiεi| ≤
√

nM + cn
( n
max
i=1
|ei|

)( n
max
i=1
|εi|

)

≤
(√

n+ cn
n

max
i=1
|εi|

)
M.
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By Theorem 7.9, it follows

||bi|| ≤ 2n/2M(
√

n + εmaxcn) (i = 1, . . . , `)

where {b1, . . . ,bn} is the basis obtained by applying LLL to the lattice L of (7.2) and εmax :=
maxn

i=1 |εi|. We want to choose the value c in such a way that the b j are shorter than the vectors
we start with. This is certainly the case whenever

2n/2M(
√

n+ εmaxcn) < c
n

min
i=1
|ξi|,

for the expression on the left is an upper bound for ||b j|| and the expression on the right is a lower
bound for the length of the vectors used in (7.2) to define L. We have

2n/2M(
√

n + εmaxcn) < c
n

min
i=1
|ξi| ⇐⇒ c >

M
√

n

2−n/2 minn
i=1 |ξi|−nMεmax

,

if the approximation is close enough to ensure minn
i=1 |ξi|> 2−n/2nMεmax.

Denote by LM,c,εmax ⊆ � n the lattice generated by all the vectors b = (b1, . . . ,bn) ∈ � n which
are obtained from vectors (b1, . . . ,bn,bn+1) ∈ � n appearing in an LLL-basis of L and satisfying
|bi|< M (i = 1, . . . ,n) and

|bn+1|< |b1ε1 +b2ε2 + · · ·+bnεn|
by discarding the last coordinate bn+1. Furthermore let IM ⊆ � n be the lattice generated by all
integer relations e1, . . . ,en for x1, . . . ,xn with |ei|< M (i = 1, . . . ,n).

Theorem 7.12 We have IM ⊆ LM,c,εmax whenever εmax < 2n/2 minn
i=1 |ξi|/nM and

c >
M
√

n

2−n/2 minn
i=1 |ξi|−nMεmax

.

Moreover, equality is obtained for sufficiently small εmax.

Proof The inclusion “⊆” follows from the discussion preceding the theorem. Now suppose we
have “(”, i.e., there exists a vector b = (b1, . . . ,bn) ∈ LM,c,εmax \ IM . Without loss of generality,
we may assume that b belongs to an LLL-basis of LM,c,εmax . Then, by definition of LM,c,εmax , we
have |bi|< M (i = 1, . . . ,n).

As b1, . . . ,bn is not an integer relation for x1, . . . ,xn, we have

δ := |b1x1 +b2x2 + · · ·+bnxn|> 0.

If εmax < δ/(1+nM) then

δ = |b1x1 + · · ·+bnxn|= |b1(ξ1 + ε1)+ · · ·+bn(ξn + εn)|
≤ |b1ξ1 + · · ·+bnξn|+ |b1ε1 + · · ·+bnεn|
≤ |b1ξ1 + · · ·+bnξn|+nMεmax

=⇒ |b1ξ1 + · · ·+bnξn| ≥ δ−nMεmax > εmax.

It follows that b cannot belong to an LLL-basis of LM,c,εmax if εmax < δ/(1+nM).

The claim follows by observing that there are only finitely many integer vectors whose coordi-
nates are bounded by M in absolute value.
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Under suitable assumptions about x1, . . . ,xn, Theorem 7.12 gives rise to the following algorithm
for computing a basis of IM . The case where some of the xi are zero has to be treated separately.

Algorithm 7.13 (Computation of Integer Relations)
Input: Real numbers x1, . . . ,xn ∈ � whose continued fraction expansion can be effectively com-
puted, a number M > 0.
Output: A basis for the smallest integer lattice containing all integer relations e1, . . . ,en for
x1, . . . ,xn with |ei|< M (i = 1, . . . ,n).
Assumption: For specific e1, . . . ,en ∈ � it can be decided whether e1x1 + · · ·+ enxn = 0.

1 if xi = 0 for some i then
2 Apply the algorithm to x1, . . . ,xi−1,xi+1, . . . ,xn, obtaining a basis B0

3 Obtain B from B0 by inserting 0 after the (i−1)th entry in every b ∈ B0

4 return B∪{(0, . . . ,0,1,0, . . . ,0)} // ith unit vector
5 B := {(1,0, . . . ,0), . . . . . . ,(0, . . . ,0,1)}
6 εmax := 1
7 while e1x1 + · · ·+ enxn 6= 0 for at least one (e1, . . . ,en) ∈ B do
8 repeat
9 εmax := εmax/2
10 Let ξi := pi(n)/qi(n) be convergent to ξi with εi := 1/qi(n)qi(n+1) < εmax

11 while εmax ≥ 2n/2
n

min
i=1
|ξi|/n

12 Choose a number c ∈ � with c > M
√

n/(2−n/2
n

min
i=1
|ξi|−nMεmax)

13 B := {(1,0, . . . ,0,cξ1), . . . . . . ,(0, . . . ,0,1,cξn)}
14 B := LLL(B)
15 Discard from B all (e1, . . . ,en,en+1) with |en+1| ≥ c|e1ε1 + · · ·+ enεn|
16 Discard the last coordinate from every vector in B
17 Discard from B all vectors e with ||e||∞ ≥M
18 return B

Theorem 7.14 Algorithm 7.13 is correct and terminates.

Proof Follows from Theorems 7.11 and 7.12.

4 The Exponent Lattice

Let � (α) be a simple algebraic extension of � , and suppose that φ1, . . . ,φn ∈ � (α) are given.
Consider the exponent lattice

L := {(e1, . . . ,en) ∈ � n : φe1
1 φe2

2 · · ·φen
n = 1}.

The following theorem due to Masser (1988) says that L has a basis consisting of “short” vectors
only, with a precise meaning of “short”.

Theorem 7.15 Let d be the degree of the extension � (α)/ � , and let

h :=
n

max
i=1

h(φi),
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where h(φi) denotes the height of φi, defined as the degree of its minimal polynomial plus the
sum of the binary lengths of its coefficients.

Then there is a basis B = {b1, . . . ,bm} of L with

||bi||∞ ≤ d2
[

4nmax

(

hd
( log(d +2)

log log(d +2)

)3
, 1

)]n−1

(i = 1, . . . ,m) .

The computation of a basis for L can be reduced to an integer relation problem which can be
solved as described before. We have

φe1
1 · · ·φen

n = 1 ⇐⇒ e1 logφ1 + e2 logφ2 + · · ·+ en logφn = 2πien+1.

⇐⇒ e1x1 + · · ·+ enxn = 0

and e1y1 + · · ·+ enyn = 2πen+1,

with xi := Re(logφi), yi := Im(log φi) (i = 1, . . . ,s) and a number en+1 which is bounded by the
degree of the field extension � (α)/ � . It is assumed that always the standard branch of the
logarithm is taken.

Brent (1976) presents efficient algorithms for computing arbitrary precision approximation to the
real numbers xi and yi, which can easily be turned into continued fraction expansions. Thus we
can compute candidates for integer relations for x1, . . . ,xn and y1, . . . ,yn like in Algorithm 7.13.
We might not be able to decide whether an integer relation candidate for x1, . . . ,xn or y1, . . . ,yn

actually holds, but that is also not necessary to do. Instead, we check membership of the exponent
lattice directly. The detailed algorithm is as follows.

Algorithm 7.16 (Computation of the Exponent Lattice)
Input: Algebraic numbers φ1, . . . ,φn ∈ � (α)
Output: A basis for the exponent lattice L = {(e1, . . . ,en) ∈ � n : φe1

1 · · ·φen
n = 1}

1 B := {(1,0, . . . ,0), . . . . . . ,(0, . . . ,0,1)}
2 Let xi := Re(logφi), yi = Im(logφi) (i = 1, . . . ,n)
3 Let M be the bound of Theorem 7.15
4 εmax := 1
5 while φe1

1 · · ·φen
n 6= 1 for at least one (e1, . . . ,en) ∈ B do

6 Apply lines 8–17 of Algorithm 7.13 to x1, . . . ,xn, obtaining a basis X
7 Apply lines 8–17 of Algorithm 7.13 to y1, . . . ,yn,2π, obtaining a basis Y
8 Discard the coordinates corresponding to 2π in the basis of Y
9 Let B be a basis for [X ]∩ [Y ]
10 return B

Theorem 7.17 Algorithm 7.16 is correct and terminates.

Proof Clear by the preceding discussion.

While Ge’s algorithm is proven to run in polynomial time, we have no estimate about the runtime
required for the algorithm just described. However, an actual implementation in Mathematica
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suggests that the algorithm is very efficient. Indeed, in our implementation the runtime is usually
negligible compared to the time needed for computing the primitive element α from minimal
polynomials for the φi.

7.4 Dependencies of C-Finite Sequences

Using Ge’s algorithm and Theorem 7.7, generators of the annihilating ideal

ann(n,φn
1, . . . ,φ

n
s ) E

� {t0, t1, . . . , tm}

can effectively be computed. As the solutions f i(n) of a C-finite system can be written as a linear
combination of exponentials φn

j , it is possible to compute a basis for the annihilator of the f i(n)
from the annihilator of the exponentials. The algorithm is as follows.

Algorithm 7.18 (Annihilating ideal of C-finite sequences)
Input: A C-finite system S of order r for f1(n), . . . , fm(n) over

�
= ¯� , and initial values of

the fi(n).
Output: A difference ideal basis of ann( f1(n), . . . , fm(n)) E

� {t1, . . . , tm}

1 Apply Algorithm 7.2 to find φ1, . . . ,φs ∈
�

and ai, j ∈
�

[n] with

fi(n) = ai,1(n)φn
1 + · · ·+ai,s(n)φn

s (n≥ 1)

2 Compute a basis B of L = L(φ1, . . . ,φs), e.g., by Algorithm 7.16
3 Let I(L) E

�
[x1, . . . ,xs] be the lattice ideal of L

4 Define b E
�

[x0, . . . ,xs, t1, . . . ,s
r−1t1, . . . . . . , tm, . . . ,sr−1tm] via

b := 〈s`ti− (ai,1(x0)φ`
1x1 + · · ·+ai,s(x0)φ`

sxs) : i = 1, . . . ,m, ` = 0, . . . ,r−1〉

5 c = 〈c1, . . . ,c`〉 := b+ I(L)∩ � [t1, . . . ,s
r−1t1, . . . . . . , tm, . . . ,sr−1tm]

6 Let a = 〈〈a1, . . . ,am〉〉E
� {t1, . . . , tm} be the associated difference ideal of S

7 return {a1, . . . ,am,c1, . . . ,c`}

Theorem 7.19 Algorithm 7.18 is correct.

Proof We have to show ann( f1(n), . . . , fm(n)) = a+ 〈〈c〉〉.
“⊇” Clearly a⊆ ann( f1(n), . . . , fm(n)) and, using Theorem 7.7, c⊆ ann( f1(n), . . . , fm(n)).

“⊆” Now let p ∈ ann( f1(n), . . . , fm(n)). By a ⊆ ann( f1(n), . . . , fm(n)), we may assume without
loss of generality that the order of p is less than r, so it remains to show p∈ c. Using the generators
of b, p can be transformed to some p̄ ∈ � [x0, . . . ,xs] which is equivalent to p modulo c. Using
c⊆ ann( f1(n), . . . , fm(n)) and Theorem 7.7, it follows that p̄∈ I(L), hence p̄∈ c, and hence p∈ c,
as claimed.

Observe the difference to the algorithms of Chapter 6: The ideal computed by the algorithm
above is precisely the annihilator, and not only an approximation to it. Using this algorithm, it is
therefore also possible to obtain conclusive negative answers to, for instance, the representation
problem.
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Example 7.20 (Graham et al., 1994, Exercise 7.26) The second order Fibonacci numbers are
defined via the recurrence

f (n+2) = f (n+1)+ f (n)+Fn+2 (n≥ 0), f (0) = 0, f (1) = 1.

Express f (n) in terms of the ordinary Fibonacci numbers Fn and Fn+1.

Using Algorithm 7.18, we find

ann( f (n),Fn) = 〈〈t4
2 +2t3

2 st2− t2
2 st2

2 −2t2st3
2 + st4

2 −1,sst1− st1− t1− sst2,sst2− st2− t2〉〉.

It follows that there does not exist an algebraic function A with f (n) = A(Fn,Fn+1) (n≥ 1).

Allowing also the term n to appear in the representation, we obtain

ann( f (n),Fn,n) = 〈〈5t1− (2st3t2 + t3st2), t
4
2 +2t3

2 st2− t2
2st2

2 −2t2st3
2 + st4

2 −1,

sst1− st1− t1− sst2,sst2− st2− t2,st3− t3−1〉〉,

the first generator of which implies the representation

f (n) = 1
5(2(n+1)Fn +nFn+1) (n≥ 0),

which is in accordance with the solution of Graham et al. (1994).

7.5 An Extension to the Multivariate Case

There are several ways to define multivariate C-finite sequences. Algorithms for proving identi-
ties involving a general sort of multivariate C-finite sequences are given by Bousquet-Mélou and
Petkovšek (2000). In the present section, we will define a more restrictive class of multivariate
C-finite sequences, and provide an extension of Algorithm 7.18 to this case.

The notion of an algebraic dependency of a set of multivariate sequences is defined in analogy to
the univariate case. To give a precise definition, we first need to extend the notions of difference
algebra to the multivariate case. A multivariate (d-variate) difference ring is a commutative
ring R equipped with d distinguished endomorphisms s1, . . . ,sd : R→ R. For instance, the ring of
d-variate sequences f : � d → � equipped with E1, . . . ,Ed , where Ei is defined via

Ei f (n1, . . . ,nd) := f (n1, . . . ,ni−1,ni +1,ni+1, . . . ,nd),

is a d-variate difference ring. Considering T = { t (e1,...,ed )
i : e1, . . . ,ed ≥ 0, i = 1, . . . ,m} as a col-

lection of indeterminates, the polynomial ring
�

[T ] with infinitely many variables may be turned
into a d-variate difference ring by declaring

si(t
(e1,...,ed )
j ) := t(e1,...,ei−1,ei+1,ei+1,...,ed )

j .

This difference ring is called the free multivariate difference ring in m (difference) variables and
denoted by

� {t1, . . . , tm}, as in the univariate case. The definitions of difference homomorphism,
difference ideal, etc., extend literally to the present situation. Given some multivariate sequences
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f1, . . . , fm : � d → � , the ideal of their algebraic dependencies is defined as the kernel of the
difference homomorphism

ϕ :
� {t1, . . . , tm}→

� � d
, ti 7→ fi(n1, . . . ,nd)

mapping elements of the ground field
�

to the corresponding constant sequences,

ann( f1(n), . . . , fm(n)) := ker ϕ.

(Here and below, we use n := (n1, . . . ,nd) as shortcut notation.) Note that all definitions agree
with the univariate definitions for d = 1.

We consider sequences f : � d → � which are defined by composition of an integer linear func-
tion with a univariate C-finite sequence, i.e., f (n1, . . . ,nd) = f ′(e1n1 +e2n2 + · · ·+ednd) for some
fixed univariate C-finite sequence f ′(n) and some fixed e1, . . . ,ed ∈ � . A typical example is the
(m + n)th Fibonacci number Fm+n. C-finite sequences can be written as linear combination of
exponentials, and by the exponential law φn+m = φnφm, such a multivariate C-finite sequence can
be disentangled into an equivalent expression involving univariate sequences only.

The key observation is that sequences f (n) and g(m), depending on “different” variables, are
algebraically independent. More precisely, we have the following theorem.

Theorem 7.21 Let f1,1, . . . , fi, j , . . . , fd,m : � → � be univariate sequences, and let

a0
i := ann( fi,1(n), . . . , fi,m(n)) E

� {ti,1, . . . , ti,m} (i = 1, . . . ,d)

be their univariate annihilating ideals and

ai := 〈〈a0
i 〉〉+ 〈〈s jti,`− ti,` : j 6= i, ` = 1, . . . ,m〉〉E � {t1,1, . . . , td,m} (i = 1, . . . ,d).

Then we have

ann
(

f1,1(n1), . . . , f1,m(n1), f2,1(n2), . . . , f2,m(n2), . . . . . . , fd,1(nd), . . . , fd,m(nd)
)

= 〈〈a1〉〉+ 〈〈a2〉〉+ · · ·+ 〈〈ad〉〉E
� {t1,1, . . . , td,m}

for the multivariate annihilator of all the f i, j(n).

Proof Induction to d. For d = 1 there is nothing to prove. Assume the claim holds for d−1.

Let the difference homomorphism ϕ :
� {t1,1, . . . , td−1,m} →

� � d
be defined as usual. We have

to show that kerϕ = 〈〈a1〉〉+ · · ·+ 〈〈ad〉〉.
“⊇” clear by the definition of the ai.

“⊆” Let p ∈ ker ϕ be fully reduced w.r.t. the ideal on the right. We have to show p = 0. For
n1, . . . ,nd−1 ∈ � , let

p′ := p′(n1, . . . ,nd−1) ∈
� {td,1, . . . , td,m}

be the polynomial obtained from p by substituting f i, j(ni + `) ∈ � for s`
i t j in p. Then each p′ is

also reduced w.r.t. the ideal on the right, and by the independence of nd and n1, . . . ,nd−1 we have

p′ ∈ kerϕ∩ � {td,1, . . . , td,m}= kerϕ| � {td,1,...,td,m} = ad ,

hence p′ = 0. As n1, . . . ,nd−1 were arbitrary, it follows

p ∈ kerϕ| � {t1,1,...,td−1,m} = 〈〈a1〉〉+ · · ·+ 〈〈ad−1〉〉,
hence p = 0.
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Using the theorem above, we can compute the ideal of algebraic dependencies of multivariate
C-finite sequences similar as in Algorithm 7.18 from the annihilating ideal of the involved expo-
nentials by elimination. The algorithm is as follows.

Algorithm 7.22 (Annihilating ideal of multivariate C-finite sequences)
Input: A C-finite system S of order r for f1(n), . . . , fm(n) over

�
= ¯� , and initial values of

the fi(n), integer vectors ei = (ei,1, . . . ,ei,d) ∈ � d (i = 1, . . . ,m).
Output: A difference ideal basis of the multivariate difference ideal ann(g1(n), . . . ,gm(n)) E
� {t1, . . . , tm}, where gi(n) := fi(ei,1n1 + · · ·+ ei,dnd) (i = 1, . . . ,m)

1 Apply Algorithm 7.2 to find φ1, . . . ,φs ∈
� \{0} and ai, j ∈

�
[n] with

fi(n) = ai,1(n)φn
1 + · · ·+ai,s(n)φn

s (n≥ 1)

2 Compute a basis for a := ann(φn1
1 , . . . ,φn1

s , . . . . . . ,φnd
1 , . . . ,φnd

s ) E
� {x1,1, . . . ,xd,s}

3 Define b E
� {x1,0, . . . ,xd,s, t1, . . . , tm} via

b := 〈〈 ti−
s

∑
j=1

ai, j(ei,1x1,0 + ei,2x2,0 + · · ·+ ei,dxd,0)x
ei,1
1, j x

ei,2
2, j · · ·x

ei,d

d, j : i = 1, . . . ,m〉〉

4 return a basis of (a+b)∩ � {t1, . . . , tm}

We leave it to the reader to verify correctness. The argument is the same as for Algorithm 7.18.
However, for the sake of readability, the listing above is not as explicit as the listing of Algo-
rithm 7.18, so we should argue that all steps are actually computable. There is nothing special
about line 1. As for line 2, a basis for the ideal can be computed from the respective univariate
annihilators by means of Theorem 7.21 above. The univariate annihilators can be obtained using
Ge’s algorithm, as discussed earlier. In line 3, a technical difficulty arises in the case of a negative
exponent ei,`. This is easily circumvented by modifying step 1 such as to replace φ1, . . . ,φs by
φ1, . . . ,φs,φ−1

1 , . . . ,φ−1
s , so that in line 3, there are difference variables for both φei,`n`

j and φ−ei,`n`

j
available. Finally, we have to compute the elimination ideal in line 4. This can be done like in
Chapter 6 by some distinction into algebraic part and recurrences: determine bounds for the order
of each fi(ei,1n1 + · · ·+ ei,dnd) with respect to each direction, and cut of the higher order indeter-
minates of

� {t1, . . . , tm} accordingly. The result is a ring with finitely many indeterminates, and
the elimination ideal can be computed via Gröbner bases.

7.6 Examples and Applications

1 Proving Identities

Proving identities involving C-finite sequences, and finding closed forms in terms of exponentials
has been done for some while in symbolic computation (Nemes and Petkovšek, 1995). Also the
algorithms of Chapter 4 can of course be employed for proving particular identities at hand. If
the ideal of algebraic dependencies is explicitly known, then proving becomes even easier than
that: an identity holds if and only if it belongs to the ideal of algebraic dependencies, and ideal
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membership can be easily decided. A lot of puzzles appearing in contemporary mathematical
journals have therefore become routine.

Example 7.23

(1) 10F10n−5 +12F10n−10 +F10n−15 = 25F5
2n +25F3

2n +5F2n (Brown, 2003b)

(2) F2
n +F2

n+1 +4F2
n+2 = F2

n+3 +L2
n+1 (Bruckman, 2002a)

(3) L2
n +L2

n+1 +4L2
n+2 = L2

n+3 +(5Fn+1)
2 (Bruckman, 2002a)

(4) (Fn+4 +Ln+3)
5 +(Fn +Ln+1)

5 +(2Fn+1 +Ln+2)
5

= (2Fn+3 +Ln+2)
5 +F5

n+2 +5F5
n+2 +1920FnFn+1Fn+2Fn+3Fn+4 (Bruckman, 2002b)

Textbooks on Fibonacci numbers (Hoggatt, 1979, e.g.) contain vast collections of identities like
this, including also multivariate examples like Catalan’s identity

F2
n −Fn+mFn−m = (−1)n−mF2

m.

All these identities are easy to verify automatically, by Algorithm 4.2, by computing the annihi-
lating ideal and checking ideal membership, or by any of the classic methods.

2 Finding and Manipulating Identities

More interesting might be that identities can also be found in an automated way, provided that it
is specified where to search. For instance, Algorithm 7.18 delivers

ann(Fn,(−1)n) = 〈〈sst1− st1− t1,st2 + t2, t
2
2 −1,st2

1 − t1st1− t2
1 − t2〉〉,

the last generator of which can be recognized as Cassini’s identity.

In order to find, for instance, an identity that relates Fn, F2n, and F3n to each other, it is sufficient to
inspect the ideal basis of ann(Fn,F2n,F3n) computed by Algorithm 7.18. It contains a difference
polynomial corresponding to the nice identity 4FnF3n = 5F4

n +3F2
2n.

Example 7.24 Consider the sequence of twin primes 3, 5, 7, 11, 17, 19, 29, . . . Problem 10844 in
the American Math. Monthly asks which numbers are both a twin prime and a Fibonacci number.

In his solution, Watt (2002) proves that these are precisely the number 3, 5, and 13. The main
part of the proof consists of showing that Fn±2 is composite for all odd n≥ 3.

Our algorithm can assist in the search for a factorization. We only have to specify which terms
we expect to appear in the factorization. For example, we have

ann(F2n−1−2,(−1)n,Fn) = 〈〈t1 +2+2t2 +4t3st3−3st2
3 , t1 +2−2t2−4t2

3 + st2
4 , . . . 〉〉.

It follows that

F2n−1−2 =

{
Fn+1(4Fn+1−3Fn) if n is odd
(4Fn−Fn+1)(4Fn +Fn+1) if n is even

.

Similarly, the factorization

F2n−1 +2 =

{
(2Fn +Fn+1)(2Fn−Fn+1) if n is odd
Fn+1(3Fn+1−4Fn) if n is even

can be found for F2n−1 + 2. (It does of course not matter that our factorizations differ from
Watt’s.)
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The ideal of algebraic dependencies can also be used to design problems.

Example 7.25 The polynomial

pn := (x−Fn)(x+Fn)(x−Ln)(x+Ln)(x−F2n)

obviously has the roots ±Fn,±Ln, and F2n. The elimination ideal

(ann(Fn,Ln,F2n)+ 〈(x− t1)(x+ t1)(x− t2)(x+ t2)(x− t3)〉)∩ � {t1, t3}[x]

contains the polynomial x5 + t3x4 +2(t3−2st2
1)x3 +2t3(t3−2st2

1 )x2 + t2
3 x+ t3

3 , and therefore

pn = x5 +F2nx4 +2(F2n−2F2
n+1)x

3 +2F2n(F2n−2F2
n+1)x

2 +F2
2nx+F3

2n

for all n. In this representation the roots of pn are no longer obvious. Diaz and Egozcue (2002a)
have given pn in this way and asked for its roots.

We are by no means restricted to the Fibonacci numbers. Some other combinatorial sequences
also obey C-finite recurrences, and Algorithm 7.18 may be used to study their algebraic depen-
dencies.

Example 7.26

(1) The sequence f (n) defined via

f (n) = f (n−1)+2 f (n−2)− f (n−3) (n≥ 3), f (0) = 1, f (1) = 3, f (2) = 7

describes the number of strings of length n over the alphabet {a,b,c} containing neither
aa nor bc as a substring (Stanley, 1997, Example 4.7.4). With our algorithm, we find that
f (n), f (n+1), f (n+2) are algebraically dependent with the alternating sign (−1)n via

29(−1)n = f (n)3−4 f (n)2 f (n+1)+3 f (n) f (n+1)2 + f (n+1)3

− f (n)2 f (n+2)+5 f (n) f (n+1) f (n+2)− f (n+1)2 f (n+2)

−2 f (n) f (n+2)2−2 f (n+1) f (n+2)2 + f (n+2)3 (n≥ 0).

(2) The sequence f (n) defined via

f (n) = 5 f (n−1)−7 f (n−2)+4 f (n−3) (n≥ 3), f (0) = 5
16 , f (1) = 3

4 , f (2) = 2

describes the number of HC-polyominoes for n≥ 2 (Stanley, 1997, Example 4.7.18). With
our algorithm, we find that f (n), f (n+1), f (n+2) are algebraically dependent with 2n via

22n = 256 f (n)3−896 f (n)2 f (n+1)+1104 f (n) f (n+1)2−496 f (n+1)3

+320 f (n)2 f (n+2)−752 f (n) f (n+1) f (n+2)+512 f (n+1)2 f (n+2)

+112 f (n) f (n+2)2−160 f (n+1) f (n+2)2 +16 f (n+2)3 (n≥ 0).
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Both relations were probably unknown before, and seem very difficult to justify by means of a
combinatorial argument. Also the facts that the sequences f (n) are algebraically independent
with each other, with the Pell numbers, and, e.g., with the exponential 3n are easily proved by
Algorithm 7.18.

It is well known that the value f (n) of a sequence satisfying a C-finite recurrence can be computed
with a number of field operations which is only logarithmic in n. (As opposed to Algorithm 3.9,
which requires a linear number of operations.) For example, the Fibonacci numbers satisfy the
identities

F2n = (2Fn−1 +Fn)Fn and F2n+1 = F2
n−1 +F2

n (n≥ 1),

from which it is easy to derive an algorithm that computes Fn in a repeated squaring fashion.
Dijkstra (1978), while making fun of automated software optimization, asked how one could
possibly transform automatically the naive evaluation based on the recurrence Fn+2 = Fn+1 + Fn

into the fast algorithm. Our algorithm can supply the underlying identities.

Example 7.27 For the Tribonacci numbers Tn, defined via

Tn+3 = Tn+2 +Tn+1 +Tn (n≥ 0), T0 = 0,T1 = T2 = 1,

the identities

T2n = 2TnTn+2 +T 2
n+1−T 2

n −2Tn+1Tn+2−T 2
n+1

T2n+1 = T 2
n −T 2

n+1 +2Tn+1Tn+2

are quickly delivered by Algorithm 7.18. More generally, we obtain the addition theorem

Tn+m = 2Tm+1Tn−Tm+2Tn +2TmTn+1 +Tm+1Tn+1−Tm+2Tn+1−TmTn+2−Tm+1Tn+2 +Tm+2Tn+2

by Algorithm 7.22.

3 Divisibility Properties and Modular Identities

Another application of algebraic dependencies concerns congruence relations. For example, Gra-
ham et al. (1994) give the modular identity

F3n+1 ≡ F3
n+1 mod F2

n (n≥ 0),

which we can treat as well. For, compute a := ann(F3n+1,Fn)∩
�

[t1, t2,st2] and observe that

a+ 〈t2〉= 〈t1− st2
2 ,2t2 + st2− st5

2 ,1−2st4
2 + st8

2〉.

The first of the generators establishes the congruence above, and we even get the two additional
identities

F5
n+1 ≡ 2Fn +Fn+1 mod F2

n and F8
n+1 ≡ 2F4

n+1−1 mod F2
n

for free.

As an other example, the divisibility property

Qn | Q4
n+2m− (Q2

2m−4)2 (n,m≥ 0)
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for the Pell-Lucas numbers follows directly from the algebraic relation

Q4
2m+n− (Q2

2m−4)2 +Qn(Q
3
n−2Q2

nQ2mQ2m+n +2QnQ2
2m+n +QnQ2

2mQ2
2m+n−2Q2mQ3

2m+n) = 0

which was discovered using Algorithm 7.22. Curiously enough, the same divisibility property
holds for the Lucas numbers Ln (though they satisfy a different recurrence than Qn), but does not
hold for the Pell numbers Pn (though they satisfy the same recurrence as Qn).

We conclude this chapter by two more problems which have be posed in the literature and can be
attacked by our algorithms.

Example 7.28

(1) (Furdui, 2002) Prove that gcd(Ln,Fn+1) = 1 for all n≥ 1.

We have

ann(Ln,Fn)∩ k[t1,st2] = 〈t4
1 −10t3

1 st2 +35t2
1 st2−50t1st3

2 +25st4
2 −1

︸ ︷︷ ︸

=:g

〉.

Using Gröbner basis (cf. Chapter 2), we can compute the Bézout factors (cofactors) of t1,st2,
and g, obtaining the polynomial identity

1 = t3
1 · t1 +(−10t3

1 +35t2
1 st2−50t1st2

2 +25st3
2 )st2 +(−1)g.

Hence there are integer sequences p(n),q(n) such that

1 = p(n)Ln +q(n)Fn+1 +0 (n≥ 1),

and the claim follows.

(2) (Friendman, 1995) Let a(n) be defined via

a(n+2) = 5a(n+1)−a(n) (n≥ 0), a(0) = a(1) = 1.

Prove that a(n)a(n+1) | a(n+1)2 +a(n)2 +3 for all n ∈ � .

The claim is obvious by ann(a(n)) = 〈〈st2
1 + t2

1 +3−5t1st1,sst−5st + t〉〉.

We have to remark that not all divisibility properties are consequences of algebraic dependencies,
and therefore it is possible that proving attempts like above fail. For instance, the congruence

P3n−1 ≡ Fn+2 mod 13

(Seiffert, 1994a) is apparently not motivated by an algebraic dependency between the sequences
P3n and Fn.
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The summation problem is an important special case of the representation problem. Given a se-
quence f (n), we seek an expression for ∑n

k=1 f (k) without the outermost summation quantifier.
We consider in this chapter the summation problem in the case where the summand sequence f (n)
is admissible. By Theorem 3.5.(2), then also ∑n

k=1 f (k) is admissible. We want to know whether
the sum can be written as a polynomial in the sequences f1(n), . . . , fm(n) appearing in the admis-
sible system which defines the summand sequence f (n). Roughly speaking, we want to express
the sum in terms of its subexpressions.

Of course, if we know a basis of ann( f1(n), . . . , fm(n),∑n
k=1 f (k)), then the summation problem

can be answered easily. Just eliminate stm+1,s2tm+1, . . . from the algebraic part (cf. Chapter 6).
A closed form exists if and only if the elimination ideal contains a difference polynomial of the
form p+ tm+1q for some p,q ∈ � {t1, . . . , tm}, q 6= 0.

The only problem is that in general we do not know a basis of the annihilating ideal. We only
know how to compute bases of ideals that are, in a sense, close to the annihilating ideal. If
an approximation is fine enough, it will contain the desired closed form(s) for the sum, and
by computing finer and finer approximations, one can obtain a semidecision procedure for the
summation problem (more generally, for the representation problem) that terminates if and only
if a closed form exists (Section 6.5).

In this chapter, we introduce an alternative method for computing closed forms of indefinite
sums over admissible sequences, which takes advantage of the special form of the summation
problem in comparison to the general representation problem. We will also consider the problem
of definite summation.

8.1 Solving Linear Difference Equations

Before we turn to the summation problem, let us consider the more general problem of solving
linear difference equations in a difference ring.

Throughout this section, let a E
� {t1, . . . , tm} be a difference ideal which contains for each i a

difference polynomial pi of the form pi = s jti− q or pi = qs jti− 1 for some q being of lower
order than j. Note that the annihilating ideal of a tuple of admissible sequences as well as the
approximations to it discussed in Chapter 6 are difference ideals of this form. If r denotes the
maximum order j with the above property, then we may write a = 〈〈a0〉〉+〈〈p1, . . . , pm〉〉 for some
polynomial ideal a0 E

� {t1, . . . , tm}r. We assume that a is given by a basis of a0 and p1, . . . , pm.

We consider linear difference equations in the difference ring R :=
� {t1, . . . , tm}/a. That is, given

f ,a0, . . . ,au ∈ R, we want to find elements x ∈ R that fulfill the equation

a0x+a1s(x)+ · · ·+ausu(x) = f . (8.1)

In the homogeneous case, i.e., if f = 0, the set of solutions forms a vector space over the ground
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field
�

. This solution space need not be finite dimensional, though. Every solution of the gen-
eral equation ( f 6= 0 allowed) can be written as the sum of some fixed particular solution and
an element of the vector space of solutions to the homogeneous equation. By modifying equa-
tion (8.1) slightly, also this solution set can be turned into a vector space over

�
. Introducing a

new parameter ξ, the solutions (x,ξ) ∈ R× � of the equation

a0x+a1s(x)+ · · ·+ausu(x) = ξ f (8.2)

form a vector space over
�

. Solutions with ξ = 1 are precisely the solutions of (8.1).

We have

(x,ξ) is a solution of (8.2) ⇐⇒ (x,s(x), . . . ,su(x),ξ) ∈ Syz(a0,a1, . . . ,au,− f ),

by the definition of a syzygy. This gives rise to the following algorithm for computing solutions
of (8.2)—and hence, solutions of (8.1). For convenience of notation, we identify an equivalence
class p ∈ � {t1, . . . , tm}/a with the unique normal form p̄ of any element of this class modulo the
Gröbner basis of 〈〈a0〉〉 (with respect to some arbitrary but fixed term order).

Algorithm 8.1 (Solving linear difference equations)
Input: a0 E

� {t1, . . . , tm}r and p1, . . . , pm like above; f ,a0, . . . ,au ∈R :=
� {t1, . . . , tm}/a, where

a = 〈〈a0〉〉+ 〈〈p1, . . . , pm〉〉; a number D ∈ � 0

Output: Linearly independent pairs (x1,ξ1),(x2,ξ2),(x3,ξ3), . . . ∈ R× � with a0xn +a1s(xn)+
· · ·+ausu(xn) = ξn f (n ∈ � ).

1 S = Gröbnerbasis(Syz(a0, . . . ,au,− f )) // cf. Theorem 2.9
2 B = /0
3 for d = 0 to D do
4 Let T be the set of terms τ in

� {t1, . . . , tm}r with degτ≤ d
5 T := T \LT〈a0〉
6 T = {τ1, . . . ,τ`} := T \LT B
7 Let x := α1τ1 + · · ·+α`τ` where the αi are indeterminates
8 Let (q0, . . . ,qu+1) be the normal form of (x,sx, . . . ,sux,ξ) w.r.t. S (ξ an indeterminate)
9 Solve the linear system for the αi and ξ

obtained by comparing the coefficients of the qi to 0

10 Obtain (x1,ξ1), . . . ,(xs,ξs) from (x,ξ)
by spezializing the αi and ξ to the solutions of this system

11 B := B∪{(x1,ξ1), . . . (xs,ξs)}
12 return B

By LT B in line 6, we mean the set of all leading terms of the xi, where B = {(xi,ξi) : i ∈ I }.
Theorem 8.2 The output B = {(xi,ξi) : i ∈ I } of Algorithm 8.1 generates the

�
-vector space of

all solutions (xi,ξi) of (8.2) with degxi ≤ D.

Proof “⇒” It suffices to show that every (xi,ξi) is a solution. Indeed, every (xi,ξi) which is re-
turned by the algorithm is by construction such that (xi,sxi, . . . ,suxi,ξi) reduces to zero modulo S.
Hence, (xi,sxi, . . . ,suxi,ξi) ∈ Syz(a0, . . . ,au,− f ), and hence

a0xi +a1sxi + · · ·+ausuxi = ξi f ,
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as required.

“⇐” We have to argue that no solutions are lost in lines 5 and 6. For line 5, this is evident.
For line 6, assume that in the dth iteration, the algorithm overlooks a solution p of degree d
involving a monomial ατ with τ ∈ LT B and α ∈ � . Note that degτ < d. Then some solution x
with LT(x) = τ was discovered earlier, and LC(x)p−αx is another solution of degree d, which
is free of τ. Repeating the argument if necessary leads to a solution x′ of degree d which is not
overlooked. The original solution x is a

�
-linear combination of x′ and solutions discovered

earlier, so it need not be output.

Example 8.3 Consider the P-finite difference equation

(2n3 +13n2 +25n+14) f (n)+(5n3 +38n2 +93n+74) f (n+1)

+(6n2 +38n+58) f (n+2)− (5n3 +43n2 +120n+108) f (n+3)

− (6n2 +42n+72) f (n+4)+(n3 +12n2 +47n+60) f (n+5) = 0.

We are interested in solutions of this equation which can be expressed in terms of the Fibonacci
numbers Fn and the Harmonic numbers Hn.

A suitable difference ring is � {t1, t2, t3, t4}/a with

a = 〈〈st1− t1−1, t2t1−1,st3− t3− st2,sst4− st4− t4〉〉.

Let a0, . . . ,a5 denote the difference polynomials corresponding to the respective coefficients in
the difference equation (replace n by t1). Then

S = Syz(a0, . . . ,a5) = [











5
−3
2
−1
1
0











,











−3
2
−1
1
0
1











,











−57−20t1
21+8t1

0
7
0
0











,











−17
13

8+4t1
11
0
0











,











−5
17+4t1

0
11+4t1

0
0











]

(We can discard the inhomogeneous part 0 and leave out the components corresponding to the
value ξ of equation (8.2) in the current description.)

Next, we make an ansatz for the solution, x = α0 +α1t3 +α2t4 +α3st4. A normal form computa-
tion gives











x
sx
s2x
s3x
s4x
s5x











=











α1 +α2t3 +α3t4 +α4st4
α1 +α2(t3 + st2)+α3st4 +α4(t4 + st4)

α1 +α2(t3 + st2 + s2t2)+α3(t4 + st4)+α4(t4 +2st4)
α1 +α2(t3 + st2 + s2t2 + s3t2)+α3(t4 +2st4)+α4(2t4 +3st4)

α1 +α2(t3 + st2 + s2t2 + s3t2 + s4t2)+α3(2t4 +3st4)+α4(3t4 +5st4)
α1 +α2(t3 + st2 + s2t2 + s3t2 + s4t2 + s5t2)+α3(3t4 +5st4)+α4(5t4 +8st4)
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→S











0
0

(−2α1−α2)−2α2t3
(−24α1 +α2)−24α2t3
(−48α1 +7α2)−48α2t3

(−84α1 +5α2)−84α2t3 +α2st2











(recall that all polynomials are understood modulo a). Comparing coefficients to zero leads to
a linear system for α1,α2,α3,α4 whose solution space is generated by (0,0,1,0) and (0,0,0,1).
Hence, x1 := t4 and x2 := st4 are our first solutions.

We increase the degree and apply the same procedure. For the ansatz polynomial

x = α0 +α1t3 +α2t2
3 +α3t3t4 +α4t3st4 +α5t2

4 +α6t4st4 +α7st2
4 ,

we obtain a linear system of size 31×8. The solutions of this system correspond to the solutions
t3t4 and t3st4 of the difference equation.

It follows that the difference equation above has the solution

f (n) = c1Fn + c2Fn+1 + c3FnHn + c4Fn+1Hn

for c1, . . . ,c4 ∈
�

.

We have set a to the difference ideal generated by the recurrences in the example above, ig-
noring the nontrivial algebraic relations obeyed by the Fibonacci numbers. Nevertheless, we
received a solution. In general, the solution set of a linear difference equation in a difference ring
� {t1, . . . , tm}/a can have quite a different structure than a solution set in

� �
.

Example 8.4

(1) According to Example 4.7, f (n) =−Fn/Fn+1 is a solution of the inhomogeneous difference
equation

f (n+1)− f (n) =− (−1)n

Fn+1Fn+2
.

Consider the difference equation

s(x)− x =−t1st2s2t3

in the difference ring R =
� {t1, t2, t3}/〈〈st1 + t1,sst2− st2− t2, t3t2−1〉〉. By Algorithm 8.1,

we find that there is no solution to this equation of total degree up to five (and probably
neither of higher degree).

In order to receive the solution that we expect, we have to take into account the algebraic
dependencies. Using Algorithm 7.18, we find

ann((−1)n,Fn) = 〈〈t2
1 −1, t1 + t2

2 + t2st2− st2
2 ,st1 + t1,sst2− st2− t2〉〉.

Indeed, in
� {t1, t2, t3}/〈〈t2

1 −1, t1 + t2
2 + t2st2− st2

2 ,st1 + t1,sst2− st2− t2, t3t2−1〉〉, the dif-
ference equation has the solution −t2st3, and this solution is found by Algorithm 8.1.
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(2) The solution space of the C-finite recurrence

f (n+2) = f (n+1)+ f (n)

over � is, of course, two-dimensional. A basis of the solution space is {Fn,Fn+1}. Another
basis is {Ln,Ln+1}.
Consider the difference equation

x+ s(x)− s2(x) = 0 (8.3)

in the difference ring R =
� {t1, t2}/〈〈s2t1− st1− t1,s2t2− st2− t2〉〉, where we interpret t1

as a representatation of Fn and t2 as a representation of Ln.

With Algorithm 8.1, we find the solutions t1,st1, t2,st2 of degree 1. Unlike the sequences
Fn,Fn+1,Ln,Ln+1 that we have in mind, there is no linear dependence between their differ-
ence algebraic representations, i.e., t1,st1, t2,st2 are linearli independent over

�
as elements

of R, even though the corresponding sequences are not.

Again, the situation changes if we use the complete annihilating ideal in the definition of R.
Again, Algorithm 7.18 can be applied. Solving equation (8.3) in the ring R =

� {t1, t2}/a
with

a := ann(Fn,Ln) = 〈〈25− t4
2 −2t3

2 st2 + t2
2 st2

2 +2t2st3
2 − st4

2 ,5t1 + t2−2st2,5st1−2t2− st2,

s2t1− st1− t1,s
2t2− st2− t2〉〉

gives only the two solutions t1,st1 (or a different basis with two elements, depending on the
choice of the term order).

(3) Even if we solve (8.3) in the ring
� {t}/〈〈sst − st − t〉〉, we get an unusual solution set.

Besides t and st, there is an infinite series of additional solutions, some of which are

t(st2− st t− t2)2,st(st2− st t− t2)2, t(st2− st t− t2)4,st(st2− st t− t2)4, . . .

The special thing about the polynomial (st2−st t−t2)2 is that it denotes a nontrivial constant
in the difference ring k{t}/〈〈sst− st− t〉〉:

s
(
(st2− st t− t2)2) = (sst2− sst st− st2)2 = ((st + t)2− (st + t)st− st2)2

= (−st2 + st t + t2)2 = (st2− st t− t2).

Constants and algebraic relations are closely related, as we will see in more detail in the
following section.

8.2 Constants and Algebraic Dependencies

Let f1(n), . . . , fm(n) be admissible sequences, and define

ϕ :
� {t1, . . . , tm}→

� �
, ti 7→ fi(n)
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as usual. For every subideal a⊆ ker ϕ, there is an induced difference homomorphism

ϕ̄ :
� {t1, . . . , tm}/a→

� �

by Theorem 2.15.

For any ring R =
� {t1, . . . , tm}/a defined in this way, we obviously have

〈〈x− ϕ̄(x) : x ∈ const R〉〉 ⊆ ker ϕ̄.

We can therefore apply Algorithm 8.1 for finding algebraic dependencies, as follows. Let a be
the associated difference ideal of the admissible system by which the f1(n), . . . , fm(n) are defined.
Find a solution of

f (n+1)− f (n) = 0

as shown in the previous section. If a solution x ∈ k{t1, . . . , tm}/a is found, replace a by the ideal
a+ 〈〈x−ϕ(x)〉〉, and proceed.

There is a temptation to believe that this procedure will eventually yield sufficiently many rela-
tions to generate the whole annihilating ideal ker ϕ. Though this is often the case, it fails to hold
in degenerate cases.

Example 8.5

(1) Let ϕ :
� {t1, t2} →

� �
be such that ϕ(t1) = Fn and ϕ(t2) = (−1)n.

Taking a = 〈〈sst1− st1− t1,st2 + t2〉〉, we have

const
� {t1, t2}/a ∼=

�
[(st2

1 − st1t1− t1)t2,(st
2
1 − st1t1− t1)

2, t2
2 ]

and

〈〈x−ϕ(x) : x ∈ const
� {t1, t2}/a〉〉 = 〈〈(st2

1 − st1t1− t1)t2−1,(st2
1 − st1t1− t1)

2−1, t2
2 −1〉〉

= 〈〈t2
2 −1,(st2

1 − st1t1− t1)− t2〉〉= kerϕ

(Note that
� {t1, t2}/a∼=

�
[t1,st1, t2]).

In this example, all algebraic dependencies originate from the constants in the difference
ring

� {t1, t2}/a.

(2) Let f (n) be defined via

f (n+1) = 2 f (n) (n≥ 1), f (1) = 0.

Let ϕ :
� {t} → � � be such that ϕ(t) = f (n). It is easy to see that const

� {t}/a =
�

: Let
x ∈ const

� {t}/a, say x = α0 + α1t + · · ·+ αdtd . Then sx = α0 + 2α1t + · · ·+ 2dαdtd . By
sx = x, it follows that α1 = α2 = · · ·= αd = 0, hence x = α0 ∈

�
.

It follows that
〈〈x−ϕ(x) : x ∈ const

� {t}/a〉〉 = {0}.
On the other hand, we have f (n) = 0 for all n ∈ � , hence t ∈ kerϕ, hence kerϕ 6= {0}.
This discrepancy is due to the “unlucky” choice of the initial value f (1) = 0. For any other
initial value, we have ker ϕ = {0}, as expected from the constants.
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8.3 Indefinite Summation

We now turn to the summation problem. First we consider indefinite sums, i.e., sums of the form
∑n

k=1 f (k) where f (k) is independent of the summation bound n. Finding a closed form for the
sum amounts to finding a solution of the first order inhomogeneous linear difference equation

F(n+1)−F(n) = f (n+1)

which is also known as the telescoping equation. The solution of the telescoping equation is
uniquely determined only up to an additive constant. If F(n) is any solution, then the value of the
sum is given by F(n)−F(1).

There are known algorithms for solving the telescoping equation in various demains. Some
classical algorithms are mentioned in the introduction (cf. p. 1). Most of these algorithms at some
point transform the problem into the problem of finding a solution x of a difference equation

a0x+a1s(x) = f

in some difference ring of the form
�

[t], where
�

may be a nontrivial difference field. A major
incredience is a degree bound for the solution x, i.e., a number d such that all solutions x of
the equation have degree at most d. If such a degree bound can be effectively computed from
the inhomogeneous part f , then the solution can be found by plugging an undetermined ansatz
x = α0 +α1t + · · ·+αdtd into the equation and comparing coefficients.

If f1(n), . . . , fm(n) are admissible sequences, and f (n) is a polynomial in the f i(n), then we can
search for closed forms of the sum ∑n

k=1 f (k) in terms of the fi(n) by applying Algorithm 8.1
to the telescoping equation in the difference ring

� {t1, . . . , tm}/a, for some known difference
ideal a ⊆ ann( f1(n), . . . , fm(n)) containing at least the associated difference ideal of the admis-
sible system by which the fi(n) are defined. Bounding the total degree of the solutions of the
telescoping equation causes difficulties in this setting. As we have seen in Example 8.4.(3), there
might be an infinite set of solutions with unbounded total degree, due to nontrivial constants in
the ring

� {t1, . . . , tm}/a. We would need to be able to compute a bound d with the property that,
if the telescoping equation has any solution at all, then it already has a solution of total degree at
most d.

Unfortunately, we have not been able to come up with such a degree bound. From a theoretic
viewpoint, summation via Algorithm 8.1 is therefore not superior to successive approximation of
the annihilating ideal by means of the algorithms described in Chapter 6. In both cases, we have
a semidecision procedure that terminates with a closed form for the given sum, if there is one,
and that does not terminate, if no closed form exists.

The two approaches differ with respect to their performance. Experiments that we have car-
ried out with the software described in Chapter 9 suggest that indefinite summation using Al-
gorithm 8.1 is usually faster using the methods of Chapter 6. This is especially true when the
involved sequences contain parameters. A few examples with timings measured on our machine
(2GHz, 1GB) are given next.
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Example 8.6 Consider the following indefinite sums involving orthogonal polynomials

n

∑
k=0

Lα
k (x) =

1
x
((n+α+ x)Lα

n (x)− (n+1)Lα
n+1(x)) (8.4)

n

∑
k=1

(1+2k)Pk(x)
2 =

(n+1)2

1− x2

(

Pn(x)
2−2xPn(x)Pn+1(x)+Pn+1(x)

2
)

−1 (8.5)

n

∑
k=0

(k +2mk +2m)Cm
k (x)Pk(x) =

n+1
1− x2

(

(n+2m)Cm
n (x)

(
Pn(x)− xPn+1(x)

)

− (n+1)Cm
n+1(x)

(
xPn(x)−Pn+1(x)

))

(8.6)

n

∑
k=1

k
k

∑
i=1

Pi(x) =
1

8(x−1)

(

1−3x+(2n2 +n−1)Pn(x)− (2n2−n−3)Pn+1(x)

+(1−3x+4n(x−1)(n+1))
n

∑
k=1

Pk(x)
)

(8.7)

n

∑
k=1

k

∑
i=1

iPi(x) =
1

2(x−1)2

(

(n+1)(n(x−1)+ x)Pn(x)− (n(x−1)+1)Pn+1(x)

+(x−1)(3x−1+2n(x−1))
n

∑
k=1

kPk(x)
)

(8.8)

Here Pn(x), Lα
n (x) and Cm

n (x) denote the Legendre, Laguerre, and Gegenbauer polynomials, re-
spectively (cf. p. 11). All of the closed forms above can be discovered both by Algorithm 8.1 (A)
and successive approximation of the annihilating ideal (B). Below are the timings for these two
methods.

eq. (8.4) (8.5) (8.6) (8.7) (8.8)
A 0.42s 3.55s 105.0s 2.18s 2.47s
B 5.81s 15.01s 435.9s 13.94s 8.01s

The runtime bottleneck are in both cases the linear systems that have to be solved. The same
solver—a little-optimized implementation of Bareiss elimination—was used for both A and B.
While the systems in B are large and dense, we face sparse systems in A, so that further improve-
ments might be possible.

8.4 Definite Summation

Indefinite sums F(n) = ∑n
k=1 f (k) satisfy the telescoping equation F(n + 1) = F(n)+ f (n + 1).

This equation was used in the previous section for finding closed form representations of indef-
inite sums, and also earlier as defining relation of the sum in admissible systems. In contrast to
indefinite sums, in a definite sum the summand sequence may depend not only on the summa-
tion index k but also on the summation bound n, i.e., F(n) = ∑n

k=1 f (n,k). Such sums do not
satisfy the telescoping equation in general, and there is no obvious alternative that may serve as
a defining relation for a given definite sum F(n).
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The main task in definite summation is precisely to fill this gap: given a bivariate summand se-
quence f (n,k), find a defining difference equation for the definite sum F(n) = ∑n

k=1 f (n,k). Once
such a relation is available, it can be used as a definition for F(n) in the input of other algorithms,
which, for example, compute a closed form representation of F(n). The method of creative
telescoping, propagated by Zeilberger (1991), turns an algorithm for indefinite summation into
a method for finding a linear difference equation that a given definite sum fulfills. Zeilberger’s
original algorithm extended Gosper’s algorithm (Gosper, 1978) for indefinite hypergeometric
summation to an algorithm for definite hypergeometric summation. Later, creative telescoping
was also applied by Chyzak (2000) for holonomic functions and by Schneider (2001, 2005) for
extending Karr’s indefinite summation algorithm (Karr, 1981, 1985) to definite sums.

The method of creative telescoping works as follows. In a first step, find an inhomogeneous linear
difference equation of the form

g(n,k +1)−g(n,k) = c0(n) f (n,k)+ c1(n) f (n+1,k)+ · · ·+ cr(n) f (n+ r,k), (8.9)

where the ci(n) are independent of k. (Both the ci(n) and g(n,k) have to be found, the f (n+ i,k)
are given.) This is done by applying an indefinite summation algorithm to the right hand side, for
indeterminates in place of the coefficients ci and some fixed r ∈ � 0. The method only applies if
the summation algorithm can be extended in such a way that it also computes values c i for which
the sum of the right hand side over k actually has a closed form g(n,k). If no such coefficients
exist, the method is applied again with a greater value of r.

In a second step, the desired difference equation for the sum F(n) is obtained by summing (8.9)
for k from 1 to n+ r :

n+r

∑
k=1

(g(n,k +1)−g(n,k)) = a0(n)
n+r

∑
k=1

f (n,k)+a1(n)
n+r

∑
k=1

f (n+1,k)+ · · ·+ar(n)
n+r

∑
k=1

f (n+ r,k)

gives the linear difference equation

g(n,n+ r +1)−g(n,1) = a0(n)(F(n)+ f (n,n+1)+ · · ·+ f (n,n+ r))

+a1(n)(F(n+1)+ f (n+1,n+2)+ · · ·+ f (n+1,n+ r))

+ · · ·
+ar−1(n)(F(n+ r−1)+ f (n+ r−1,n+ r))

+ar(n)F(n+ r)

for the sum F(n).

Algorithm 8.1 can be extended in such a way that creative telescoping becomes possible for
arbitrary admissible sequences. We consider bivariate sequences f (n,k) which are admissible
both as sequence in n (regarding k as a fixed parameter) and in k (regarding n as a fixed parameter).
In addition, f (n,k) must be such that the diagonal sequences f (n,n + i) (i ≥ 0) are admissible,
and defining admissible systems are available. For example, if f (n) is an admissible sequence,
then f (an+bk) with a,b ∈ � 0 fixed is a typical candidate for a summand sequence.

In order to find a recurrence of the type (8.9), the following straightforward extension of Al-
gorithm 8.1 can be applied. The difference to the original procedure is only that, informally
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speaking, the inhomogeneous part is broken into several pieces which are homogenized inde-
pendently. That is, we seek solutions (x,ξ(1), . . . ,ξ(v)) ∈ R× � v of difference equations of the
form

a0x+a1s(x)+ · · ·+ausu(x) = ξ1 f1 +ξ2 f2 + · · ·+ξr fv, (8.10)

where R is as in Section 8.1 and a0, . . . ,au, f1, . . . , fv ∈ R are given.

Algorithm 8.7 (Solving linear difference equations)
Input: a0, p1, . . . , pm as in Procedure 8.1; f1, . . . , fv,a0, . . . ,au ∈ R :=

� {t1, . . . , tm}/a, where
a = 〈〈a0〉〉+ 〈〈p1, . . . , pm〉〉; a number D ∈ � 0

Output: Linearly independent pairs (xn,ξ
(1)
n , . . . ,ξ(v)

n ) ∈ R× � v (n = 1,2,3, . . . ) with a0xn +

a1s(xn)+ · · ·+ausu(xn) = ξ(1)
n f1 + · · ·+ξ(v)

n fv (n = 1,2,3, . . . )

1 S = Gröbnerbasis(Syz(a0, . . . ,au,− f1, . . . ,− fv))
2 B = /0
3 for d = 1 to D do
4 Let T be the set of terms τ in

� {t1, . . . , tm}r with degτ≤ d
5 T := T \LT〈a0〉
6 T = {τ1, . . . ,τ`} := T \LT B
7 Let x := α1τ1 + · · ·+α`τ` where the αi are indeterminates
8 Let (q0, . . . ,qu+v) be the normal form of (x,sx, . . . ,sux,ξ(1), . . . ,ξ(v)) w.r.t. S

where ξ = (ξ(1), . . . ,ξ(v)) is a vector of indeterminates
9 Solve the linear system for the αi and ξ(i)

obtained by comparing the coefficients of the qi to 0

10 Obtain (x1,ξ1), . . . ,(xs,ξs) from (x,ξ)
by spezializing the αi and ξ(i) to the solutions of this system

11 B := B∪{(x1,ξ1), . . . ,(xs,ξs)}
12 return B

Theorem 8.8 The output B = {(xi,ξi) : i ∈ I } ⊆ � {t1, . . . , tm}r/a0×
� v of Algorithm 8.7 gen-

erates the
�

-vector space of all solutions (xi,ξi) of (8.10) with degxi ≤ D.

Proof Identical to the proof of Theorem 8.2.

Example 8.9 Consider the definite hypergeometric sum

F(n) =
n

∑
k=0

(
n
k

)

.

(See Section 8.5 below for some more sophisticated examples.) We apply creative telescoping
and Algorithm 8.7 for finding a difference equation satisfied by F(n). First, we have to find
g(n,k) and c0(n), . . . ,c1(n) such that

g(n,k +1)−g(n) = c0(n)

(
n
k

)

+ c1(n)

(
n+1

k

)

= c0(n)

(
n
k

)

+ c1(n)
n+1

n+1− k

(
n
k

)

.
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A suitable difference ring is R := � (n){t1, t2, t3}/a with

a = 〈〈st1− t1−1,st2− (n− t1)t3t2, t3t1−1, t4(n+1− t1)− t1〉〉.

Here t1, t2, t3, and t4 represent k,
(n

k

)
, 1/k and 1/(n+1− k), respectively, and n is considered as a

constant.

Applying Algorithm 8.7 to the difference equation

s(x)− x = ξ(1)t2 +ξ(2)t2t4,

we obtain quickly two linearly independent solutions (1,0,0) and (t1t2t4,2,−1) for (x,ξ(1),ξ(2)).
From the latter solution, it follows that

(k +1)

1− (k +1)+n

(
n

k +1

)

− k
1− k +n

(
n
k

)

= 2

(
n
k

)

−
(

n+1
k

)

,

and, by summation k = 0, . . . ,n+1,

n+2
1− (n+2)+n

(
n

n+2

)

− 0
n+1

(
n
0

)

︸ ︷︷ ︸

=0

= 2(F(n)+

(
n

n+1

)

)−F(n+1).

This implies the recurrence F(n + 1) = 2F(n) for F(n), in accordance with the output of Zeil-
berger’s algorithm for this example.

Example 8.10 A simple non-hypergeometric example is the sum

F(n) :=
n

∑
k=0

(
n
k

)

Fk,

where Fk is the kth Fibonacci number. Here, the summand sequence

f (n,k) :=

(
n
k

)

Fk

does not admit a first order recurrence—at least not one with with coefficients of small degree.
For order two, we find

∆k
k ((2k−3−n)Fk− (k +n+2)Fk+1)

(k−n−1)(k−n−2)

(
n
k

)

=− f (n,k)+3 f (n+1,k)− f (n+2,k)

using Algorithm 8.7 (∆k denotes the forward difference operator ∆k f (n,k)= f (n,k+1)− f (n,k)).
This implies the recurrence

F(n+2) = 3F(n+1)−F(n)

for the original sum. Solutions to this recurrence can be found with Algorithm 8.1. For instance,
in terms of Fn, we find the general solution

F(n) = c1(2Fn+1−Fn)Fn + c2(F
2
n +F2

n+1)



104 8 Summation of Admissible Sequences

with indetermined constants c1,c2. By comparing the values of the general solution and the
original sum for some small values of n, we obtain a linear system by which the values of c1,c2

can be determined. It turns out that c1 = 1,c2 = 0 is the right choice, i.e.,

n

∑
k=0

(
n
k

)

Fk = (2Fn+1−Fn)Fn (n≥ 0).

8.5 Examples

Several problems appearing in the literature can be tackled with the algorithms described in this
chapter. A small selection is given below. Some of these sums can be done by other algorithms
as well, while others are done algorithmically for the first time.

Example 8.11 Indefinite sums.

(1) Diaz (2001) asks for the values of the infinite sums

∞

∑
k=0

1+Lk+1

LkLk+2
and

∞

∑
k=0

Lk−1Lk+2

L2
kL2

k+1

.

Using our indefinite summation algorithm, we find

n

∑
k=0

1+Lk+1

LkLk+2
= 2− 1+Ln +Ln+1

Ln+1(Ln +Ln+1)
n→∞−−−−→ 2,

n

∑
k=0

Lk−1Lk+2

L2
kL2

k+1

=
1
4
− 1

L2
n+1

n→∞−−−−→
1
4
.

(2) The identities

n

∑
k=0

1
F2k

= 4− F2n+1

F2n
and

n

∑
k=0

1
F3·2k

=
9
4
− F3·2n+1

F3·2n
(n≥ 1)

(Graham et al., 1994, Exercise 6.61) can be found as well.

(3) For the sequence of complex functions Qn(x) defined by

Qn(x) :=
1
2

� 1

−1

Pn(t)
x− t

dt (n≥ 0),

we have the indefinite sum identity

n

∑
k=0

(2k +1)Qk(x)Qk(y) =
Q0(y)−Q0(x)

x− y
+(n+1)

Qn+1(x)Qn(y)−Qn(x)Qn+1(y)
x− y

(Andrews et al., 1999, Exercise 5.29.(e)), which our algorithm can discover using the recur-
rence

Qn+2(x) =
1

n+2

(
(2n+3)Qn+1(x)− (n+1)Qn(x)

)

as definition for Qn(x).
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(4) Consider the summation problem
n

∑
k=1

k2Hn+k

posed in (Graham et al., 1994, Exercise 6.69). Though this sum looks like a definite sum, it
can be done via indefinite summation. For, we can first compute the more general identity

n

∑
k=1

k2Ha+k =
−4(a+1)n3− (12a3 +24a2 +11a−1)n+(6a2 +9a+3)n2−36

36(a+1)

− 1
6(6+a+3a2 +2a3)Ha +Ha+1

+ 1
6(a+3a2 +2a3 +n+3n2 +2n3)Ha+n,

and then specialize a = n. This gives the solution

n

∑
k=1

k2Hn+k = 1
36 n(n+1)

(
6(2n+1)(2H2n−Hn)−10n+1

)
.

Example 8.12 Definite sums.

(1) (Seiffert, 1994b)

n

∑
k=0

Fa(k+1)Pa(n−k+1) =
FaPa(n+2)−PaFa(n+2)

Fa−2Fa+1 +4Pa−4Pa+1
(n≥ 0).

Here, we treat a as an element of the constant field.

(2) Table entries as in (Hoggatt, 1979; Vajda, 1989) can be (re)discovered automatically. The
following Fibonacci sum identities were obtained by applying the summation algorithm to
artificial left hand sides.

n

∑
k=0

(
n
k

)

Fk = (2Fn+1−Fn)Fn,

n

∑
k=0

Fn2+k = Fn2+n+3−Fn2+n+1−Fn2+1,

n

∑
k=0

FkFn−k = 1
5

(
n(2Fn+1−Fn)−Fn

)
,

n

∑
k=0

FkFn+k = 1
2 Fn

(
F2

n −1+3F2
n+1−FnFn+1

)
,

n

∑
k=0

Fn+kxk =−xn+1((1− x)F2
n +F2

n+1)− xFn+1 +(2xn+2Fn+1 + x−1)Fn

x2 + x−1
,

n

∑
k=0

(−1)kFn+2k = (−1)nFn+1
(
(−1)n +3FnFn+1−F2

n+1

)
,

n

∑
k=0

(−1)kF2
k F2

n−k = 1
6

(
1+(−1)n)(F2

n+1−3FnFn+1−1
)
, etc.
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(3) For the definite sum S(n) := ∑n
k=0

(n+k
k

)
Pk(x), we obtained the recurrence

S(n+2) =
2n+3

2(n+2)
S(n)+

n+1
2(n+2)(x−1)

S(n+1)

−
(

2n+1
n

)
(3n+5)Pn+1(x)+2

(
(7−8x)n−12x+10

)
Pn+2(x)

2(n+2)(x−1)
.

There does, however, not seem to be a closed form of S(n) in terms of n,n!,(2n)!, and Pn(x).

Closed form representations of many definite sums involve expressions that do not appear as
subexpressions of the summand sequence. Also these can be found with our algorithms, if it is
known which additional sequences appear on the right hand side. This, however, is often hard
to guess. Blind experiments are of course possible, but they are barely sucessful on complicated
sums. Even though, we can use creative telescoping for proving conjectured identitites for definite
sums, as long as a recurrence for the sum can be found and the right hand side is admissible. The
recurrence obtained by creative telescoping is used as defining relation for the definite sum, and
the zero equivalence tester (Algorithm 4.2) is applied to the difference of left hand side and right
hand side.

Example 8.13 In order to prove the (artificial) identity

n

∑
k=0

(
n
k

)

F2
k =

Fn+1(2Fn +Fn+1)+1

5F2
n+1−2(−1)n−3

n

∑
k=0

(
n
k

)

F2k (n≥ 1) (8.11)

we first compute recurrences for the sums

F(n) :=
n

∑
k=0

(
n
k

)

F2
k and G(n) :=

n

∑
k=0

(
n
k

)

F2k.

The algorithm delivers

F(n+2) = 5F(n+1)−5F(n), F(1) = 1,F(2) = 3,

G(n+2) = 5G(n+1)−5G(n), G(1) = 1,G(2) = 5.

With these recurrences at hand, proving (8.11) is trivial.

(Remark: An application of Algorithm 7.18 shows that neither F(n) nor G(n) can be expressed
in terms of Fibonacci numbers only. This algorithm was also used to discover (8.11).)
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For the purpose of being able to experiment with the algorithms presented in this thesis, we
have undertaken an implementation in form of a Mathematica package. The package is named
SumCracker and was developed for Mathematica 5.0. It is available upon request from the author.

The algorithm of Chapter 7, including our variant of Ge’s algorithm, has been implemented in a
separate package that will be described elsewhere (Kauers and Zimmermann, 2005b). All other
algorithms are implemented in the SumCracker package, though not every algorithm is available
through the user interface.

In this final chapter, we describe the usage of the package. Though being designed as a proto type
for experimenting, we believe that the package might also be useful in practice.

The description below refers to the current version of the package. The input/output format of
the various commands may, however, be subject to change in future versions.

9.1 Overview

In this section, we will show the usage of our package at some concrete examples. The examples
given below were chosen such that virtually no computation time is needed to obtain the output.
Detailed descriptions of the expressions, commands, and options will be given in subsequent
sections.

One of the main features of the package is that it knows how to automatically transform a lot of
expressions into defining admissible systems. Additional sequences can be explicitly defined by
the user, and user defined sequences can be mixed with builtin sequences.

As an example, the ApproximateAnnihilator command computes an approximation of the anni-
hilating difference ideal from below, as described in Chapter 6. In order to compute the algebraic
dependencies of, say, the Fibonacci numbers with (−1)n, we say

In[1]:= ApproximateAnnihilator[{(−1)n,Fibonacci[n],Fibonacci[n+1]}, t]

Out[1]= {t1 + t2
2 + t2t3− t2

3 , t2
1 −1}

This output means that 〈t1 + t2
2 + t2t3− t2

3 , t2
1 −1〉 ⊆ kerϕ where ϕ :

�
[t1, t2, t3]→

� �
is defined

via t1 7→ (−1)n, t2 7→ Fn, t3 7→ Fn+1. If the identifier t is omitted, the original expressions are used
in the output:

In[2]:= ApproximateAnnihilator[{(−1)n,Fibonacci[n],Fibonacci[n+1]}]

Out[2]= {(−1)n +F2
n +FnFn+1−F2

n+1,(−1)2n−1}

This form is often convenient for further processing, but note that information might get lost, due
to Mathematica automatic simplification.
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In[3]:= ApproximateAnnihilator[{n,n}, t]

Out[3]= {t1− t2}

In[4]:= ApproximateAnnihilator[{n,n}]

Out[4]= {0}

The most frequent use of the annihilating ideal concerns answering the representation problem:
express something in terms of something else. The Crack command provides an implementation
which is fine tuned for this purpose. This command takes an expression and “breaks” it into
smaller ones. As a trivial example, a closed form for the Popov sum can be obtained as follows.

In[5]:= Crack[SUM[k2,{k,0,n}]]

Out[5]= 1
6(2n3 +3n2 +n)

Observe that we use the symbol SUM for denoting sums, in order to avoid conflicts with Math-
ematica’s summation command Sum. If no representation is found, the original expression is
returned.

In[6]:= Crack[Fibonacci[n]]

Out[6]= Fn

Whether or not a different representation can be found depends on the sequences that are allowed
to appear in the resulting closed form. By default, Crack allows all subexpressions of the given
expression to appear on the right hand side. For instance, n is considered as a subexpression of
∑n

k=0 k2, because it appears in the summand (though it is called k there). As Fn does not have
subexpressions in this sense, Crack does not find a simpler representation. Subexpression for the
right hand side can be specified via the option Into, whose default value is set to Automatic. For
instance, in order to express the Fibonacci numbers in terms of Lucas numbers, we say

In[7]:= Crack[Fibonacci[n], Into→{Lucas[n]}]

Out[7]= 1
5(2Ln+1−Ln)

We have defined the Fibonacci sequence with the initial values F0 = 0,F1 = 1. Some authors
prefer the definition F0 = 1,F1 = 1. The representation of these Fibonacci numbers in terms of
Lucas numbers can be obtained by explicitly defining a new sequence by means of the Where
option. Even symbolic initial values are possible.

In[8]:= Crack[ f [n], Into→{Lucas[n]},Where→{ f [n+2] f [n+1]+ f [n], f [0] 1, f [1] 1}]

Out[8]= 1
5(2Ln +Ln+1)
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In[9]:= Crack[ f [n], Into→{Lucas[n]},Where→{ f [n+2] f [n+1]+ f [n]}]

Out[9]= 1
5(3 f (0)Ln− f (1)Ln− f (0)Ln+1 +2 f (1)Ln+1)

In[10]:= Crack[Lucas[n], Into→ { f [n]},Where→{ f [n+2] f [n+1]+ f [n]}]

Out[10]=
2 f (0) f (n)+ f (1) f (n)+ f (0) f (n+1)−2 f (1) f (n+1)

f (0)2 + f (0) f (1)− f (1)2

The Crack command can be used for solving nonlinear difference equations, as in Example 6.21
on page 72.

In[11]:= Crack[u[n], Into→{Fibonacci[n]},Where→{u[n+1]
3u[n]+1
5u[n]+3

,u[1] 1}]

Out[11]=
−2F2

n +2FnFn+1−F2
n+1

4F2
n −6FnFn+1 +F2

n+1

In[12]:= Crack[u[n], Into→{Lucas[n]},Where→ {u[n+1]
3u[n]+1
5u[n]+3

,u[1] 1}]

Out[12]=
−2L2

n +2LnLn+1−L2
n+1

4L2
n−6LnLn+1 +L2

n+1

Builtin expressions and user definitions can be mixed. For instance

In[13]:= Crack[ f [n],Where→ { f [n + 2] f [n] + f [n + 1] + Fibonacci[n + 2], f [0] 0, f [1] 1},
Into→{n,Fibonacci[n]}]

Out[13]= 1
5(2Fn +2nFn +nFn+1)

solves Exercise 7.26 of Graham et al. (1994) automatically.

Another special purpose command for searching for elements of the annihilating ideal, which
are of a particular shape, is LinearRecurrence. This command searches for a (possibly inhomo-
geneous) linear recurrence whose solution is the sequence provided as input. For instance, the
recurrence

In[14]:= LinearRecurrence[nFibonacci[n]2]

Out[14]= SUM(n)−4SUM(n+1)+10SUM(n+3)−4SUM(n+5)+SUM(n+6) 0

has the solution SUM[n] = nF2
n . The symbol SUM is used by default as function symbol of the

resulting recurrence. This can be changed to a different symbol using the option Head. The
expressions that may appear in the coefficients are chosen automatically. For overriding the
automatic selection, use the In option.
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In[15]:= LinearRecurrence[nFibonacci[n]2, In→{n}]

Out[15]= (n3 +6n2 +11n+6)SUM(n)− (2n3 +10n2 +12n)SUM(n+1)

− (2n3 +8n2 +6n)SUM(n+2)+(n3 +3n2 +2n)SUM(n+3) 0

In[16]:= LinearRecurrence[nFibonacci[n]2, In→{Fibonacci[n]}]

Out[16]= F2
n F2

n+1 +F2
n+1 SUM(n)−F2

n SUM(n+1) 0

In[17]:= LinearRecurrence[nFibonacci[n]2, In→{n,Fibonacci[n]}]

Out[17]= nF2
n −SUM(n) 0

If no linear recurrence exists, the procedure does not terminate.

In[18]:= LinearRecurrence[22n
]

Out[18]= $Aborted

While waiting for an output, one is often in doubt whether the procedure is really not terminating
or it is just stuck solving a big linear system, or anything. It the latter case, it is desirable to get
a clue as to whether it pays off to continue waiting for a result. In such situations, the option
Infolevel is informative. By this option, the verbosity of a computation can be governed. Default
value is 0 (= no information), higher integer values lead to more refined output.

In[19]:= LinearRecurrence[22n
, Infolevel→ 1]

Creating difference ring and homomorphism...
Translating expressions to difference polynomials...
Choosing a degree bound...
Considering order 0...
Considering order 1...
Considering order 2...
Considering order 3...
Considering order 4...
Considering order 5...
Considering order 6...
Considering order 7...
Considering order 8...
Considering order 9...
Considering order 10...
Considering order 11...
Considering order 12...
Considering order 13...
Considering order 14...
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Out[19]= $Aborted

In[20]:= LinearRecurrence[22n
, Infolevel→ Infinity]

Creating difference ring and homomorphism...
Extracting dependent variable...

Taking n.
Normalizing exponentials...
Cracking expression into difference system...

Determining bounded variables...
Traversing expression tree...

Function symbol encountered. Searching for definition...
Built-in definition found.

Creating expression transformators...
Expression successfully traversed.

Creating difference ring...

(. . . 10 pages of further output omitted. . . )

Considering order 14...
Computing initial bases...

Extracting relations from the difference ring...
Adding definitions of coefficient expressions...
Adding defining relations for multiplicative inverses...

Entering completion loop...
Searching for relation of degree up to 1...

Creating ansatz polynomial...
inhomogeneous part...
homogeneous part...

Constructing a structure set...
Setting up linear system (12 x 13) ...
Solving linear system...

Structure set predicts existence of 0 nontrivial relations.

Out[20]= $Aborted

The Infolevel option can also be helpful for locating the origin of incomprehensible warnings
that Mathematica prints out during some computation. All SumCracker commands support this
option.

The command LinearRecurrence also contains the implementation of creative telescoping (Sec-
tion 8.4). Creative telescoping is always executed when the expression is a definite sum, i.e., a
sum which lexically contains the upper bound in the summand subexpression.

In[21]:= LinearRecurrence[SUM[Binomial[n,k],{k,0,n}]]

Out[21]= 2SUM(n)−SUM(n+1) 0
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In[22]:= LinearRecurrence[SUM[Fibonacci[k]Lucas[n− k],{k,0,n}]]

Out[22]= SUM(n)+SUM(n+1)−SUM(n+2) Fn+1−2Fn+2

While LinearRecurrence transforms an expression into a defining difference equation, the com-
mand SolveLinearRecurrence does the opposite: given a linear difference equation, this command
computes linearly independent solutions of this equation.

In[23]:= rec = (SUM[n]+SUM[n+1]−SUM[n+2] Fibonacci[n+1]−2Fibonacci[n+2]);
In[24]:= SolveLinearRecurrence[rec,SUM[n]]

Out[24]= $Failed

In[25]:= SolveLinearRecurrence[rec,SUM[n], In→{n,Fibonacci[n]}]

Out[25]= nFn +C1Fn +C2Fn+1

This is a general solution of the difference equation. The SolveLinearRecurrence command is
based on an implementation of Algorithm 8.1 (page 94). Recall that this algorithm might over-
look solutions if algebraic dependencies of the sequences at hand are not made explicit in the
underlying difference ring. For efficiency reasons, the SolveLinearRecurrence does not invoke a
completion algorithm for determining algebraic dependencies, but it offers an option Using, by
which algebraic dependencies can be specified. In the example above, we were lucky enough
to get a solution even though the algebraic dependency between Fn and Fn+1 was not taken into
account. An attempt to express the solution in terms of Lucas numbers, however, will fail if the
relation between Fibonacci numbers and Lucas numbers is not supplied.

In[26]:= SolveLinearRecurrence[rec,SUM[n], In→{n,Lucas[n]}]

Out[26]= $Failed

In[27]:= rels = ApproximateAnnihilator[{Fibonacci[n],Fibonacci[n+1],Lucas[n],Lucas[n+1]}]

Out[27]= {5Fn+1−2Ln−Ln+1,5Fn +Ln−2Ln,−25+L4
n +L3

nLn+1−L2
nL2

n+1−2LnL3
n+1 +L4

n+1}

In[28]:= rels = Thread[rels 0]; (∗ convert expressions to equations ∗)
In[29]:= SolveLinearRecurrence[rec,SUM[n], In→{n,Lucas[n]},Using→ rels]

Out[29]= 1
5(2nLn+1−nLn)+C1Ln+1 +C2Ln

The commands discussed so far are used for finding new identities. They might also be applied
for proving conjectured identities, but often they are too expensive for this task. There is a special
purpose command called ZeroSequenceQ which provides an implementation of Algorithm 4.2.
This command can be used to prove identities for admissible sequences.

In[30]:= ZeroSequenceQ[d[n]e[n+1]−d[n+1]e[n]− (−1)nq(n
2),
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Where→{d[n+2] d[n+1]+qnd[n],d[0] 1,d[1] 0,

e[n+2] e[n+1]+qne[n],e[0] 0,e[1] 1}]

Out[30]= True

In[31]:= ZeroSequenceQ[d[n]e[n+1]−d[n+1]e[n]+ (−1)nq(n
2),

Where→{d[n+2] d[n+1]+qnd[n],d[0] 1,d[1] 0,

e[n+2] e[n+1]+qne[n],e[0] 0,e[1] 1}]

Out[31]= False

In[32]:= ZeroSequenceQ[−5c[n]c[n+1]+ c[n−1]c[n+2]+ c[n−2]c[n+3],

Where→{c[n+2] (c[n]2 + c[n−1]c[n+1])/c[n−2],

c[−2] 1,c[−1] 1,c[0] 1,c[1] 1}]

Out[32]= True

This command always terminates, even if the expression does not represent the zero sequence.
The ZeroSequenceQ command also supports free sequences (Section 4.6). The function symbols
that represent free sequences have to be declared by means of the Free option.

In[33]:= ZeroSequenceQ[

SUM[
PRODUCT[x[i]+a,{i,1,k−1}]

PRODUCT[x[i],{i,1,k}] ,{k,1,n}]− 1
a
(PRODUCT[

x[k]+a
x[k]

,{k,1,n}]−1)]

SumCracker::general: Undefined function x encountered.

Out[33]= $Failed

In[34]:= ZeroSequenceQ[

SUM[
PRODUCT[x[i]+a,{i,1,k−1}]

PRODUCT[x[i],{i,1,k}] ,{k,1,n}]− 1
a
(PRODUCT[

x[k]+a
x[k]

,{k,1,n}]−1),

Free→{x}]

Out[34]= True

There is also a multivariate version of ZeroSequenceQ, which is sometimes useful. Here, the
Variable option takes a list of variables. Zero equivalence is decided recursively in this case. For
instance, in the call

In[35]:= ZeroSequenceQ[

Fibonacci[n+m]− 1
2(Fibonacci[m]Lucas[n]+Lucas[m]Fibonacci[n]),

Variable→{n,m}]

Out[35]= True
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the zero equivalence is shown by a two-fold induction. First, induction on n is applied. For check-
ing the induction base n = 1,2, identities in m only are obtained, which are then independently
proven by induction.

The procedure of Chapter 5 for proving inequalities for admissible sequences is implemented in
the command ProveInequality. Additional knowledge, which is often needed in this case, can be
specified with the Using option. Also restrictions about parameters can be issued in this way.

In[36]:= ProveInequality[(x+1)n ≥ 1+nx,Using→{x≥−1}]
SumCracker::general: Unable to detect dependent variable. There are several equally reasonable possibilities.

Out[36]= $Failed

In[37]:= ProveInequality[(x+1)n ≥ 1+nx,Using→{x≥−1},Variable→ n]

Out[37]= True

In[38]:= ProveInequality[SUM[x[k]y[k],{k,1,n}]2 ≤ SUM[x[k]2,{k,1,n}]SUM[y[k]2,{k,1,n}],
Using→{SUM[x[k]2,{k,1,n}] ≥ 0,SUM[y[k]2,{k,1,n}] ≥ 0},
Free→{x,y}]

Out[38]= True

9.2 Summary of Expressions

We now turn to a more systematic description of the behavior of the various parts of our pack-
age. The commands of SumCracker, which are described in the following section, operate on
expressions that can be recognized as representations of admissible sequences. In the present
section, we describe which expressions these are. We call an expression recognizable in n if the
SumCracker accepts it as definition of an admissible sequence. In order to facilitate the usage as
much as possible, many admissible sequences with practical relevance are builtin, and the Sum-
Cracker is able to execute the closure properties described in Section 3.2. Additional sequences
can be declared by explicitly stating a defining admissible system.

Expressions of the following form are recognizable in n.

(1) f [n] where f is declared either in the Where option or in the Free option (cf. Section 9.4)

(2) The expressions n, an (a free of n), n!, as well as the expressions in Table 9.1 are recogniz-
able. Every expression which is free of n is recognizable.

(3) Binomial[an+b,cn+d] for a,c ∈ � and b,d free of n is recognizable.

(4) If 〈expr〉1 and 〈expr〉2 are recognizable in n, then so are

〈expr〉1 + 〈expr〉2, 〈expr〉1−〈expr〉2, 〈expr〉1〈expr〉2, 〈expr〉1/〈expr〉2.

In the last case, SumCracker assumes that 〈expr〉2 corresponds to a sequence which vanishes
nowhere on the domain of definition.

For a ∈ � , 〈expr〉a1 is recognizable.
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Expression Meaning

Fibonacci[n], Fibonacci[n,x] Fibonacci numbers Fn and polynomials Fn(x)
Lucas[n], Lucas[n,x] Lucas numbers Ln and polynomials Ln(x)
Pell[n], Pell[n,x] Pell numbers Pn and polynomials Pn(x)
PellLucas[n], PellLucas[n,x] Pell-Lucas numbers Qn and polynomials Qn(x)
FallingFactorial[x,n], RaisingFactorial[x,n] Falling factorial xn and raising factorial xn

ChebyshevT[n,x], ChebyshevU[n,x] Chebyshev polynomials
HarmonicNumber[n], HarmonicNumber[n,r] Harmonic number Hn and Harmonic number of

order r, H(r)
n

JacobiP[n,a,b,x] Jacobi polynomials P(a,b)
n (x)

HermiteH[n,x] Hermite polynomials
GegenbauerC[n,m,x] Gegenbauer polynomials Cm

n (x)
LaguerreL[n,a,x] Laguerre polynomials La

n(x)
LegendreP[n,x] Legendre polynomials Pn(x)

Table 9.1 List of SumCracker’s builtin special functions. The dependent variable is n, d and r
are positive integers, and a, b, m, x have to be free of n.

(5) If 〈expr〉 is a recognizable expression in k and free of n, representing the admissible se-
quence f (k), and if a ∈ � , then the expressions

SUM[〈expr〉,{k,a,n}], PRODUCT[〈expr〉,{k,a,n}] and CFRAC[〈expr〉,{k,a,n}]

are recognizable. They represent the sequences ∑n
k=a f (k), ∏n

k=a f (k), and Kn
k=a(1/ f (k)),

respectively.

If 〈expr〉2 is another recognizable expression then also

CFRAC[〈expr〉2,〈expr〉,{k,a,n}]

is recognizable and it represents Kn
k=a(g(k)/ f (k)), where g(k) denotes the sequence repre-

sented by 〈expr〉2.

(6) If 〈expr〉 is a recognizable expression in n and 〈expr〉′ is obtained from 〈expr〉 by replacing
each occurrence of n by Floor[an + b] for some fixed a,b ∈ � , a > 0, then 〈expr〉 ′ is rec-
ognizable in n. Floor constructions cannot be nested, i.e., the present rule only applies if
〈expr〉 is free of Floor.

If 〈expr〉′ is obtained form 〈expr〉 by replacing each occurrence of n by an+b where a ∈ �
and b is free of n, then 〈expr〉′ is recognizable in n. If 〈expr〉 is one of the expressions in
Table 9.1, then a may also be negative.

(7) f [〈expr〉] is recognizable in n if f is specified by a C-finite recurrence (either via the Where
option, or builtin), and 〈expr〉 belongs to the closure of constants, n, exponentials an (a free
of n) and g[an + b] (g specified by a C-finite recurrence, a,b ∈ � ) under addition, mul-
tiplication, indefinite summation, and exponentiation with natural number exponent. For
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instance,

Fibonacci
[
(2n2 +5)9 SUM[Lucas[2k−5],{k,1,3n}]

]

is recognizable in n due to this rule.

When carrying out a computation for some admissible sequences f1(n), . . . , fm(n), the ground
field

�
is implicitly assumed as being the smallest field containing all expressions possibly ob-

tained by substituting a natural number for the dependent variable n in the given expressions.

9.3 Summary of Commands

In this section, we describe the commands that the SumCracker package provides. Several options
are shared by all the commands of the package. These will be explained in Section 9.4 in detail.
In the present section, we only comment on options that are specific to a particular command.

ApproximateAnnihilator[〈list of expressions〉,〈identifier〉]

Input. 〈list of expressions〉 List of recognizable expressions for admissible sequences
f1(n), . . . , fm(n) (cf. Section 9.2)

〈identifier〉 Symbol for representing the polynomials in the output. If
that identifier is x, then x[i] will be used to refer to the vari-
able that is mapped to fi(n). If no identifier is given, the
expressions themselves will be used instead of x[i].

Output. A list of polynomials in x[1], . . . ,x[m].

If f1(n), . . . , fm(n) are the sequences declared in the 〈list of expressions〉, then this command
searches for elements of kerϕ, where the ring homomorphism ϕ :

�
[x1, . . . ,xm]→ � � is such

that xi 7→ fi(n) and
�

is invariant.

The implementation is close to Algorithm 6.19. It provides a combination of approximation from
below and above. By the Points option it can be declared how many points should be taken into
account in the approximation from above. The default is 0. The number of points chosen does
not influence the output, but only the runtime. Usually, 0 is the fastest choice.

A degree bound is required for the approximation from below, which is specified using the Degree
option. The default setting is 10, but whether this is a good choice depends heavily on the
particular example.

The command returns a list of polynomials in x[i] (assuming that x is the 〈identifier〉 supplied as
second argument) that generate the smallest subideal of ker ϕ which contains all polynomials of
ker ϕ whose total degree does not exceed the specified degree bound.

Example.

In[1]:= ApproximateAnnihilator[{(−1)n,Fibonacci[n],Fibonacci[n+1]}, t]

Out[1]= {t1 + t2
2 + t2t3− t2

3 , t2
1 −1}

In[2]:= ApproximateAnnihilator[{SUM[Fibonacci[k],{k,0,n}],Fibonacci[k]2}, t]
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Out[2]= {−16t2
1−48t3

1−68t4
1−56t5

1−28t6
1−8t7

1−t8
1 +36t2 +128t1t2 +232t2

1 t2 +280t3
1 t2 +210t4

1 t2 +
84t5

1 t2 +14t6
1 t2−49t2

2 −204t1t2
2 −306t2

1 t2
2 −204t3

1 t2
2 −51t4

1 t2
2 +14t3

2 +28t1t3
2 +14t2

1 t3
2 − t4

2}

Crack[〈expression〉]

Input. 〈expression〉 A recognizable expression for an admissible sequence f (n)
(cf. Section 9.2)

Output. An equivalent expression for f (n)

The Crack command computes solutions of the representation problem: for some other admissi-
ble sequences f1(n), . . . , fm(n), it searches for a rational function rat such that

f (n) = rat( f1(n), . . . , fm(n))

on the domain of definition. The underlying algorithm is a fine tuned version of Algorithm 6.17.
A degree bound is specified by the Degree option. The default value is Automatic, and causes a
heuristic degree bounding based on the degrees in the defining recurrences of the difference ring.
If no representation is found, the original 〈expression〉 is returned.

Which sequences are taken for f1(n), . . . , fm(n) depends on the value of the Into option. It takes
a list of recognizable expressions. By default, Into is set to Automatic. In this case, the subex-
pressions of 〈expression〉 are taken for the f i(n). The notion subexpression is meant here with
respect to field operations and the nesting of indefinite sum, product, and continued fraction quan-
tifiers. For instance, ∑n

k=1 k and n are subexpressions of ∑n
k=1 ∑k

i=1 i, but n is not considered as a
subexpression of Fn.

By saying, for instance, Into→ {Fibonacci[n]}, also the higher shift Fibonacci[n + 1] is implic-
itly specified as a possible subexpression of right hand side. In order to avoid this, the option
IncludingShifts has to be set to False.

Finally, it is also possible to restrict the search to polynomial solutions only. For this, set the
option Denominator to False.

Examples.

In[1]:= Crack[SUM[
Fibonacci[k]

Fibonacci[k +1]Fibonacci[k +2]
,{k,1,n}]]

Out[1]=
Fn +Fn+1−1

Fn +Fn+1

In[2]:= Crack[SUM[
Fibonacci[k]

Fibonacci[k +1]Fibonacci[k +2]
,{k,1,n}], Into→{Lucas[n]}]

Out[2]=
3Ln+1 +Ln−5

3Ln+1 +Ln

In[3]:= Crack[SUM[
Fibonacci[k]

Fibonacci[k +1]Fibonacci[k +2]
,{k,1,n}], Into→{Lucas[n]},

IncludingShifts→ False]
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Out[3]=

n

∑
k=1

Fk

Fk+1Fk+2

In[4]:= Crack[SUM[
Fibonacci[k]

Fibonacci[k +1]Fibonacci[k +2]
,{k,1,n}], Into→{Lucas[n]},

Denominator→ False]

Out[4]=

n

∑
k=1

Fk

Fk+1Fk+2

LinearRecurrence[〈expression〉]

Input. 〈expression〉 A recognizable expression for an admissible sequence f (n)
(cf. Section 9.2), or an definite sum expression of the form
SUM[〈summand〉,{k,a,bn}] with a ∈ � and b ∈ � , where
the expression 〈summand〉 syntactically contains n. The
〈summand〉 expression must be recognizable in both n and k.

Output. A linear difference equation which has f (n) as a solution,
or $Failed if no such equation is found.

In the resulting difference equation, the function is represented by SUM[n]. The symbol SUM
can be replaced by any other symbol using the Head option. The order of the desired recurrence
is specified by the option Order which accepts a nonnegative integer as value. The default value
is Infinity, which causes the finder to loop over the orders 0,1,2,3, . . . until a recurrence is found.

The details of command and option are slightly different, depending on whether 〈expression〉 is
a definite sum or not.

First consider the case where 〈expression〉 is not a definite sum. This case algorithmically works
similar to Crack, and it is guaranteed that no equation escapes from the search.

The Degree option can be used for specifying the total degree of the expressions that may appear
as coefficients of the recurrence. The default setting is Automatic and treated as in the Crack
command (see above). A more refined specification of degree bounds is possible as well. If a
list {d−1,d0, . . . ,d`} is given as degree bound, where each di is either a nonnegative integer or
the symbol Automatic, then d−1 will be used as degree bound for the inhomogeneous part and
dmax(i,`) will be used as degree bound for the coefficient of order i.

Analogous remarks as for the degree bounding hold for the choice of expressions that may appear
in the coefficients. The default choice (Automatic) can be overruled using the option In that points
to a list of expressions, or to a list {in−1, in0, . . . , in`} where each ini is an expression list or the
symbol Automatic, and the semantics is analogous to the degree bound specification.

The option IncludingShifts has the same meaning as in the Crack command (see above).

If the 〈expression〉 is a definite sum, then LinearRecurrence executes creative telescoping. In this
case, the degree bound and coefficient expressions refer to the telescoping inhomogeneous part
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of the recurrence on the summand level (cf. Section 8.4). Degree and expressions appearing in
the recurrence for the sum, as delivered by the command, cannot be influenced by options.

There is currently no way to specify bivariate admissible sequences f [n,k] with the Where option.
Understandable bivariate sequences are the binomial coefficient, expressions of the form f [an+
bk] with a,b ∈ � 0 and f either a user defined are a built-in function, and rational functions
thereof. For builtin functions such as Fn, the coefficients a and b may also be negative.

Examples.

In[1]:= LinearRecurrence[Fibonacci[n]]

Out[1]= SUM(n)+SUM(n+1)−SUM(n+2) 0

In[2]:= LinearRecurrence[Fibonacci[n],Head→ f ]

Out[2]= f (n)+ f (n+1)− f (n+2) 0

In[3]:= LinearRecurrence[SUM[Fibonacci[n+ k],{k,0,n}]]

Out[3]= −SUM(n)+SUM(n+1) −Fn +F2n+1 +F2n+2

ProveInequality[〈 formula〉]

Input. 〈 formula〉 A boolean combination of inequalities on both sides of
which there are recognizable expressions.

Output. True or False

This command is an implementation of the procedure described in Chapter 5. Here, the knowl-
edge specified via the Using option may also include inequalities that are known to be true.

ProveInequality also allows free sequences to appear in 〈 formula〉, whose heads have to be de-
clared via the Free option.

If the procedure encounters a point where the formula does not hold, it returns False. However,
if the formula to be proven involves parameters or special functions, it might not be possible to
distinguish a point violating the formula and a point at which the validity of the formula could
not be determined. In such a situation, an exception is thrown and the command terminates with
the return value $Failed.

Examples.

In[1]:= ProveInequality[SUM[
Lucas[k]2

Fibonacci[k]
,{k,1,n}] ≥ (Lucas[n+2]−3)2

Fibonacci[n+2]−1
]

Out[1]= False

In[2]:= ProveInequality[SUM[
Lucas[k]2

Fibonacci[k]
,{k,1,n}] ≥ (Lucas[n+2]−3)2

Fibonacci[n+2]−1
,From→ 2]
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Out[2]= $Aborted

In[3]:= ProveInequality[SUM[
Lucas[k]2

Fibonacci[k]
,{k,1,n}] ≥ (Lucas[n+2]−3)2

Fibonacci[n+2]−1
,From→ 2,

Using→{Fibonacci[n]≥ 1}]

Out[3]= True

In[4]:= ProveInequality[Fibonacci[n]≥ 1,From→ 2]

Out[4]= True

SolveLinearRecurrence[〈equation〉, f [n]]

Input. 〈equation〉 A linear difference equation, possibly inhomogeneous, in
f [n] whose coefficients are recognizable expressions in n

f [n] Function symbol and dependent variable of the equation

Output. Sum of a particular solution (possibly zero) and linearly in-
dependent solutions of the associated homogeneous equa-
tion, using C[1],C[2], . . . as coefficients

This command is an implementation of Algorithm 8.1.

Via the options In and Degree, it can be specified which terms may appear in the solution and
what the total degree of the solution might be. Both options by default have the value Automatic.

An early termination criterion is applied when a solution is found. If the equation is homoge-
neous, the command returns a

�
-basis for all linearly independent solutions of the smallest total

degree for which nontrivial solutions exist. In case of an inhomogeneous equation, the command
loops up the degree until the first inhomogeneous solution is found. If this happens at degree d, it
returns this inhomogeneous solution together with a basis of solutions of the homogeneous part
whose degree does not exceed d. The early termination can be switched off by setting the option
EarlyTermination to False.

Note that the difference ring in which the difference equation is solved might not be a faithful
representation of the corresponding admissible sequences. As a consequence, solutions for the
actual equation (with sequences in place of difference polynomials) might be missing, or there
might be additional solutions given, which are linearly independent as difference ring elements
but not as sequences. To exclude such phenomena, by the Using option one can specify a list
of relations that generates the annihilating ideal of the involved quantities, or a subideal thereof.
(See ApproximateAnnihilator above for computing such generators.) If the ideal is complete, the
underlying difference ring is isomorphic to a subring of the ring of sequences over

�
, and it is

guaranteed that all solutions are found and that linear independence in the difference ring agrees
with linear independence over the sequences.

Examples.

In[1]:= SolveLinearRecurrence[ f [n+1] f [n], f [n]]
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Out[1]= C1

In[2]:= SolveLinearRecurrence[ f [n+1] f [n], f [n], In→{Fibonacci[n]}]

Out[2]= C1

In[3]:= SolveLinearRecurrence[ f [n+1] f [n], f [n], In→{Fibonacci[n]},
EarlyTermination→ False]

Out[3]= C1 +C2(F
4
n +2F3

n Fn+1−F2
n F2

n+1−2FnF3
n+1 +F4

n+1)

In[4]:= SolveLinearRecurrence[ f [n+1] f [n], f [n], In→{Fibonacci[n]},
EarlyTermination→ False,Degree→ 8]

Out[4]= C1 +C2(F
4

n +2F3
n Fn+1−F2

n F2
n+1−2FnF3

n+1 +F4
n+1)+C3(F

8
n +4F7

n Fn+1 +2F6
n F2

n+1

−8F5
n F3

n+1−5F4
n F4

n+1 +8F3
n F5

n+1 +2F2
n F6

n+1−4FnF7
n+1 +F8

n+1)

In[5]:= SolveLinearRecurrence[ f [n+1] f [n], f [n], In→{Fibonacci[n]},
EarlyTermination→ False,Degree→ 20,

Using→{Fibonacci[n]4 +2Fibonacci[n]3 Fibonacci[n+1]

−Fibonacci[n]2 Fibonacci[n+1]2

−2Fibonacci[n]Fibonacci[n+1]3 +Fibonacci[n+1]4 1}]

Out[5]= C1

ZeroSequenceQ[〈expression〉]

Input. 〈expression〉 A recognizable expression for an admissible sequence f (n)

Output. True or False

This command contains an implementation of Algorithm 4.2. It returns True if f (n) = 0 for all n,
and False otherwise. This command always terminates, though the computation time might be
long on large examples.

ZeroSequenceQ also allows free sequences to appear in 〈expression〉, whose heads have to be
declared by the Free option.

In Algorithm 4.2, deciding zero equivalence of the admissible sequence f (n) is reduced to decid-
ing zero equivalence for some initial values f (1), f (2), . . . . By default, a ground field expression
is considered to be zero if it is—after some simplification—lexicographically identical to 0. In
nontrivial ground fields, it might happen that ZeroSequenceQ mistakenly returns False because
zero equivalence of some initial value could not be established. In such situations, the user should
specify which function should be used to determine zero equivalence in the ground field. Such a
function can be supplied via the ZeroQ option.
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There is also a multivariate extension. If the Variable option points to a list of variables, then
Algorithm 4.2 is applied with respect to the first variable of that list. Each initial condition is an
expression in the remaining variables, and zero equivalence of these expressions is decided by a
recursive application of the algorithm.

Examples.

In[1]:= ZeroSequenceQ[SUM[
(−1)k

Fibonacci[k]Fibonacci[k +1]
,{k,1,n}]+ Fibonacci[n]

Fibonacci[n+1]
]

Out[1]= True

With function symbols for free sequences and the Using option, it is possible to prove identities
like

n

∑
k=0

1√
k +1+

√
k

=
√

n+1 (n≥ 0).

A special function has to be employed for testing zero equivalence in the ground field � 〈√n〉.

In[2]:= ZeroSequenceQ[SUM[
1

x[k +1]+ x[k]
,{k,0,n}]− x[n+1],Free→{x},

Using→{x[n]2 n}]

Out[2]= False

In[3]:= ZeroSequenceQ[SUM[
1

x[k +1]+ x[k]
,{k,0,n}]− x[n+1],Free→{x},

Using→{x[n]2 n},ZeroQ→ (SameQ[0,Expand[#/. (x[i ]→ Sqrt[i])]]&)]

Out[3]= True

9.4 Summary of Options

Several options are shared by all commands of the SumCracker package. Some options like De-
gree and In/Into differ in syntax and/or semantics from one command to another. These options
are explained in Section 9.3 above. In the present section, we describe the options which are iden-
tical for all commands. Most of these options concern the specification of additional knowledge
for the expressions that are used to define admissible sequences.

Free→ 〈list of symbols〉 (default: {})
List of function symbols that represent free sequences. In the current version of Sum-
Cracker, free sequences are only supported by ProveInequality and ZeroSequenceQ, but it
seems possible to extend also the other commands such as to allow free sequences.

Function symbols without builtin meaning have to appear either in this list or in the admis-
sible system specified with the Where option (see below), otherwise an error is generated.

From→ 〈integer〉 or Automatic (default: Automatic)
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First point from which on the sequences are defined. If set to automatic, SumCracker de-
termines a startpoint from the lower indices of summation, product, and continued fraction
quantifiers, and from initial value specifications appearing in the admissible system spec-
ified with the Where option (see below). If this does not lead to a result, the default start
point 0 is taken.

Infolevel→ 〈integer〉 or Infinity (default: 0)

Amount of information that should be printed during a computation. If set to 0, no infor-
mation will be printed at all. If set to 1 (2, 3, . . . ), a one-line description will be printed for
every major step (substep, subsubstep, . . . ) of the computation. A sample output is given
on page 110. The finest level of information is obtained by setting Infolevel to Infinity.

Using→ 〈list of equations〉 (default: {})
Knowledge base. SumCracker starts every computation by building a difference ring that
represents the admissible sequences which are specified by the expressions of the input. The
difference polynomials that correspond to the identities in the knowledge base are taken as
generators of the annihilating ideal of these sequences. If the knowledge base contains an
identity which does not hold on the domain of definition (see From, above), no command
will produce a reliable result.

If the ideal generated by the identities in the knowledge base is not complete, Approxi-
mateAnnihilator and Crack may run slowlier, but their output is not affected. Other com-
mands may overlook solutions.

For the command ProveInequality, also inequalities can be given via the Using option.

Variable→ 〈symbol〉 (default: Automatic)

Dependent variable. This is the variable in which the recognizable expressions are given,
typically n or k. If set to Automatic, SumCracker tries to guess heuristically from the input
expressions what the dependent variables might be. This is successful in most cases, but not
always. When there are doubts about the choice, an error is generated and the computation
is aborted. Only in rare cases, in particular if nested C-finite expressions occur, the compu-
tation is continued with a wrong guess. If Infolevel is set to 3 or higher, the chosen variable
will be shown.

For the command ZeroSequenceQ, also a list of variables can be declared, see page 121.

Where→ 〈list of equations〉 (default: {})
Admissible system for user-defined sequences. The 〈list of equations〉 contains recurrences
and initial value specifications. The recurrences have to be as in Def. 3.1, though on the right
hand side, also recognizable expressions and free sequences may be used. The ordering in
which the recurrences are stated matters. Initial value specifications are of the form f [i] v
for integers i. They can appear at any position in the list. Missing initial values are padded
with symbolic values.

Function symbols without builtin meaning have to appear either in in the Free list (see
above) or in the admissible system specified by the Where option, otherwise an error is
generated.
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9.5 Example Session

Consider once more Exercise 6.61 of Graham et al. (1994): Prove the identity

n

∑
k=0

1
F2k

= 3− F2n−1

F2n
, integers n≥ 1.

What is ∑n
k=0 1/F3·2k ?

Let us first solve the exercise as it stands.

In[1]:= ZeroSequenceQ[SUM[
1

Fibonacci[2k]
,{k,0,n}]−

(

3− Fibonacci[2n−1]

Fibonacci[2n]

)

,From→ 1]

Out[1]= True

In[2]:= Crack[SUM[
1

Fibonacci[3 ·2k]
,{k,0,n}],From→ 1]

Out[2]=
9
4
− F3·2n+1

F3·2n

This is similar to the right hand side of the original identity. For perfect consistency, we can force
the negative shift in the numerator on the right hand side, for instance as follows.

In[3]:= Crack[SUM[
1

Fibonacci[3 ·2k]
,{k,0,n}]+ Fibonacci[3 ·2n−1]

Fibonacci[3 ·2n]
,From→ 1]

Out[3]=
5
4

Is there perhaps a more general identity of the form

n

∑
k=0

1
Fa2k

= c(a)− Fa2n−1

Fa2n
(a,n ≥ 1) (9.1)

for some numbers c(a) which are independent of n? Applying Crack as above for the particular
values a = 1,2,3, . . . ,20 indeed always gives a closed form that matches the right hand side
of (9.1), with the following values of c(a):

a 1 2 3 4 5 6 7 8 9 10

c(a) 3 2 5
4 1 46

55
3
4

263
377

2
3

837
1292

7
11

a 11 12 13 14 15 16 17 18 19 20

c(a) 11146
17711

5
8

75547
121393

18
29

257797
416020

13
21

3528150
5702887

47
76

24167167
39088169

34
55

Is there a closed form for these numbers? Let us apply Crack to the general sum.

In[4]:= Crack[SUM[1/Fibonacci[a ·2k],{k,0,n}]]
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Out[4]=

n

∑
k=0

1
Fa·2k

No result—we were too optimistic. We have to have a closer look at the numbers in the table.
By looking close enough, we detect that F10 = 55 is the denominator of c(5), F14 = 377 is the
denominator of c(7), and F22 = 17711 is the denominator of c(11). In general, the denominator
of c(a) divides F2a, so that F2ac(a) is an integer for small a. Let us apply the guessing function
of Mallinger’s package (Mallinger, 1996) to this sequence.

In[5]:= c = Table[Crack[SUM[1/Fibonacci[a2k],{k,0,n}]+Fibonacci[a2n−1]/Fibonacci[a2n],
From→ 1],{a,1,20}];

In[6]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – c© RISC Linz – V 0.68 (07/17/03)

In[7]:= c = c∗Table[Fibonacci[2a],{a,1,20}]; (∗ clear denominators ∗)
In[8]:= GuessRE[c,num[a],10,0]

Out[8]= {{num(a)−3num(a+1)−num(a+2)+7num(a+3)−5num(a+4)+num(a+5) 0,

num(0) 3,num(1) 6,num(2) 10,num(3) 21,num(4) 46},ogf}

Next, we can use SumCracker for expressing the numerator sequence in terms of Fibonacci num-
bers. Note that Mallinger’s package assumes that the sequence starts with a = 0 while c(a) is
defined for a≥ 1. We have to shift the initial values by 1.

In[9]:= Crack[num[a],

Where→{num[a+5] 5num[a+4]−7num[a+3]+num[a+2]+3num[a+1]−num[a],

num[1] 3,num[2] 6,num[3] 10,num[4] 21,num[5] 46}, Into→{Fibonacci[a]}]

Out[9]= 1−Fa +2F2
a +2Fa+1−2FaFa+1 +F2

a+1

Summarizing, we now have the conjecture

c(a) =
F2

a+1−2FaFa+1 +2F2
a +2Fa+1−Fa +1

F2a
(a≥ 1).

We will now prove this conjecture, also using facilities provided by our package. Before doing
so, it is wise to cross-check the conjecture by evaluating it at small points.

In[10]:= c[a ] = (1−Fibonacci[a]+2Fibonacci[a]2 +2Fibonacci[a+1]

−2Fibonacci[a]Fibonacci[a+1]+Fibonacci[a+1]2)/Fibonacci[2a];

In[11]:= And @@ Flatten[Table[

SUM[1/Fibonacci[a ·2k],{k,0,n}] c[a]−Fibonacci[a ·2n−1]/Fibonacci[a ·2n],

{a,1,100},{n,1,10}]]
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Out[11]= True

This looks convincing. Now we turn to proving identity (9.1) for the c(a) as above. We apply a
nested induction along n (outer induction) and a (inner induction). For this computation, special
purpose software was necessary to carry out the underlying Gröbner basis computations.

Theorem 9.2 For all a,n ∈ � , we have

n

∑
k=0

1
Fa·2k

=
F2

a+1−2FaFa+1 +2F2
a +2Fa+1−Fa +1

F2a
− Fa·2n−1

Fa·2n
.

Proof We rely on the SumCracker.

In[12]:= ZeroSequenceQ[

SUM[1/Fibonacci[a ·2k],{k,0,n}]+Fibonacci[a ·2n−1]/Fibonacci[a ·2n]− c[a],

Variable→ {n,a},From→ 1]

Out[12]= True

In[13]:= Quit
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Mathematical Notation

The notation which is used in this thesis follows as much as possible the established standards.
Below are listed, for disambiguation, the most important symbolisms that have been used, as well
as declarations of symbols whose meaning varies in the literature. The order follows roughly the
order of first appearance in the text. Concerning notation, also see the remarks on page 4.

� = {1,2,3, . . .} The set of natural numbers

� 0 = {0,1,2,3, . . . } The set of nonnegative integers

� , � , � ,
�

Sets of integer, rational, real, complex numbers

� p The residue class ring � /p � (p ∈ � )

f : A ↪→ B f is an injective (difference) homomorphism from A to B

f : A � B f is a surjective (difference) homomorphism from A to B

f : A
∼−→ B f is a bijective (difference) homomorphism from A to B

�
A computable field of characteristic zero

¯� The algebraic closure of the field
�

�
[X ] =

�
[x1, . . . ,xn] Ring of polynomials in x1, . . . ,xn with coefficients in

�

deg p Total degree of a polynomial p

degx p Degree of a polynomial p w.r.t. the variable x

[X ] The monoid of all terms in x1, . . . ,xn
�

(X) =
�

(x1, . . . ,xn) Field of rational functions in x1, . . . ,xn over
�

Q(R) The quotient field of a ring R

a E R a is an ideal of the ring R

a,b,c, . . . Symbols to denote ideals

a = 〈p1, . . . , ps〉 The ideal a is generated by p1, . . . , ps

V (a)⊆ � n The affine variety of the ideal a E
�

[X ]

I(A) E
�

[X ] The vanishing ideal of the set A⊆ � n

a+b Sum of ideals a,b
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a ·b Product of ideals a,b

Rad(a) E R The radical ideal of some ideal a E R

[b1, . . . ,bm]⊆ Rd The smallest submodule of Rd containing b1, . . . ,bm (R a
ring)

≺,�,4,< (Strict) term order

LM(p),LT(p),LC(p) Leading monomial, leading term, and leading coefficient,
respectively, of the polynomial p ∈ � [X ]

ε1, . . . ,εd Generators of the free
�

[X ]-module
�

[X ]d

Syz(p1, . . . , pn)⊆ Rn Syzygy module of p1, . . . , pn ∈ R (R a ring)
� �

The (difference) ring of all univariate sequences f :
� → �

E :
� � → � � Shift operator for sequences

Fn,Ln,Pn,Qn The sequences of Fibonacci numbers, Lucas numbers, Pell
numbers, and Pell-Lucas numbers, respectively

Pn(x),P
(α,β)
n (x),Cm

n (x),Lα
n (x) The families of Legendre, Jacobi, Gegenbauer, and La-

guerre polynomials, respectively

∑b
k=a

f (k) The sum f (a)+ f (a+1)+ · · ·+ f (b)

∏b
k=a

f (k) The product f (a) f (a+1) · · · f (b)

Kb

k=a
( f (k)/g(k)) The continued fraction with numerators f (a + 1), f (a +

2), . . . , f (b) and denominators g(a),g(a+1), . . . ,g(b)

n!,

(
n
k

)

Factorial n! = 1 · 2 · 3 · · · (n− 1) · n and binomial coefficient
(n

k

)
= n(n−1) · · · (n− k +1)/k!

Hn,H
(r)
n Harmonic number, and harmonic number of rth order,

H(r)
n = ∑n

k=1 k−r, Hn = H(1)
n

sgn x Sign function, sgn(x) :=−1 for x < 0, sgn(x) := 1 for x > 0
and sgn(0) := 0

� {t1, . . . , tm} The free difference ring over
�

in m difference variables
� 〈t1, . . . , tm〉 The free difference field over

�
in m difference variables

� {t1, . . . , tm}r,
� {t1, . . . , tm}`r Truncated difference rings (cf. pages 26 and 39)

const R The ring of all constants of the difference ring R

〈〈p1, . . . , pm〉〉E R The difference ideal generated by p1, . . . , pm ∈ R

bqc The greatest integer n ∈ � with n≤ q (Floor function)

a(n) n→∞−−−−→ a The sequence a(n) converges to a for n→ ∞
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ann( f1(n), . . . , fm(n)) Difference ideal of all polynomials p ∈ � {t1, . . . , tm} that
vanish upon substitution sit j 7→ f j(n+ i) (annihilating ideal)

alg( f1(n), . . . , fm(n)) Algebraic part of the annihilating ideal (see Chapter 6)

||b||, ||b||∞ Euclid norm and maximum norm of some vector b

We do not distinguish between column and row vectors.

Pseudo Code Constructs

Algorithms in the thesis are described using a pseudo code language. In the algorithm listings,
we give readability preference over formal rigor. Whereever it seems appropriate, we also use
natural language to describe steps of an algorithm. The “syntax” of the language should be self
explanatory. The explanations below are for the sake of completeness.

1 while A do
2 B
3 C

If A is true, execute B. If afterwards, A is still true, execute B
again. Repeat, until A becomes false. Then proceed with C.

1 repeat
2 B
3 while A
4 C

Execute B. If afterwards A is false, proceed with C. Other-
wise, execute B again until A becomes true.

1 for i = a to b do
2 A(i)

Execute A(a), then A(a + 1) then A(a + 2), and so on, and
finally A(b).

1 if A then
2 B
3 elseif C then
4 D
5 else
6 E

If A is true, execute B. If A is not true, but C is true, ex-
ecute D. If neither A nor C is true, execute E . The “else
if” clause can be omitted, or there might be several of them.
Also the “else” part can be omitted, in which case nothing
is executed if all conditions yield false.

1 return A Declare A as output of the algorithm and stop.

Blocks are indicated by indentation only. Loop- and branch constructs only apply to those lines
following the key word which are indented one level deeper than the key word itself. For example,

1 for i = 1 to 5
2 Print i
3 Print 0

produces the output 1,2,3,4,5,0, while

1 for i = 1 to 5
2 Print i
3 Print 0
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produces the output 1,0,2,0,3,0,4,0,5,0.

Algorithm 3.9 uses arrays. A one dimensional array a with n components a1, . . . ,an is written
a = [ai : i = 1, . . . ,n]. The function append composes a new array from a given one by appending
a given object to it. The notation for all other data structures should not be problematic.
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$Aborted, 110, 111, 120
addition theorem

for the Fibonacci sequence, 20
for the Tribonacci sequence, 91

additional information, 51
admissible ordering, 7
admissible sequences, 17–28

algebraic dependencies, see algebraic
dependencies

associated difference ideal, 24–28, 32, 39,
60

associated polynomial ideal, 26, 30
closure properties, 20–23
evaluation, 23–24
interlacing, 23
positivity, 45–58
zero equivalence, 29–44

admissible system, 17, 39
depth, 17
normal, 19
order, 17

algebraic decomposition, 46
cylindrical, see CAD

algebraic dependencies, 25, 59–73, 98
candidates, 65
geometric interpretation, 62–64
of C-finite sequences, 85–86

algebraic extension, 83
degree, 83

algebraic part, 59, 93
algebraic relation, see algebraic dependencies
algebraic sequences, 53
algebraic set, 6
algebraic variety, see variety
algorithm

Barreiss’, 68
Buchberger’s, see Gröbner basis

Chyzak’s, 1, 101
Collins’s, see CAD
creative telescoping, 101
evaluation of admissible sequences, 24
Ge’s, 79–85, 107
Gosper’s, 1, 101
Karr’s, 2
LLL, see LLL
Petkovšeks, 1
Risch’s, 2
solving C-finite systems, 76
solving difference equations, 94, 102
Tarski’s, 46
uncoupling, 76
Zeilberger’s, 1, 101
zero equivalence, 30, 40

analytic function, 29
annihilating ideal, 59–64, 97

algebraic part, 59
approximation from above, 64–67
approximation from below, 67–71

annihilator, see annihilating ideal
append, see pseudo code
approximant, 80
ApproximateAnnihilator (SumCracker

command), 107, 116
approximation

Diophantine, 79
of annihilating ideal, 64–71

arbitrarily many variables, see free sequence
Aristotle, 1
array, see pseudo code
associated difference ideal, 24–28, 32, 39, 60
associated polynomial ideal, 26, 30
associated prime ideals, 6
associated Tarski formula, 48
asymptotic analysis, 24
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atomic formula, 48
Automatic, 108, 117, 118, 120, 122, 123

Bareiss, 68, 100
basis, 5, 8, 79
basis theorem, Hilbert’s, 60, 68
Beck, Tobias, 4
Bernoulli numbers, 13
Bernoulli’s inequality, 52
Bézout factors, 92
Bieberbach conjecture, 45
Binet’s identity, 20
Binomial (SumCracker expression), 114
binomial coefficient, 1, 13, 22, 33, 34, 45, 53,

56, 76, 77, 102–106, 112, 113, 134
Bodnár, Gábor, 4
bottleneck, 100
Buchberger’s algorithm, see Gröbner basis
bug, 37

C-finite, 11, 20, 75–92, 97
algebraic dependencies, 85–86
characteristic polynomial, 75
closed form, 75, 88
multivariate, 86–88
recurrence, 11
roots, 51, 61
system, 76

CAD, 46–48
projection phase, 47

Cassini’s identity, 34, 38, 89
Cauchy-Schwarz inequality, 45, 52
cell, 46
certificate, 37–38
CFRAC (SumCracker expression), 115
characteristic polynomial, 75
characteristic sets, 2
Chebyshev polynomials, 115
ChebyshevT (SumCracker expression), 115
ChebyshevU (SumCracker expression), 115
Chinese remaindering, 68
Christoffel-Darboux identity, 44
Chyzak’s algorithm, 1, 101
closed form, 1, 88, 93, 99, 100

of C-finite sequences, 75

closure properties, 20–23
coefficient field, 5
cofactors, 8, 37, 92
Collins’s algorithm, see CAD
combgang, 4
complexity, 36–37
congruence, 91
consistency, 46
constant, 14, 97
continuant, 12, 44, 54
continued fraction, 12, 21, 44, 80

continuants, 12
expansion, 80

convergent, 80
coupled, 76
Crack (SumCracker command), 108, 117
creative telescoping, 101, 111
cylindrical, see CAD
cylindrical algebraic decomposition, see CAD

definite summation, 22, 100–104
Degree (SumCracker option), 116–118, 120
degree, 5
degree bound, 99
degree reverse lexicographic, 65
Denominator (SumCracker option), 117
dependencies, see algebraic dependencies
depth, 17
derivation, 1
difference algebra, 2, 13
difference equation, 1, 9–13

order, 10
solution, 10, 93–97
system, see system of difference equations
telescoping, see telescoping equation

difference field, 2, 13
free, 14

difference homomorphism, 13–15, 86
kernel, see annihilating ideal

difference ideal, 13–15, 24–28, 86
associated, 39
reflexive, 15

difference polynomial, 14
difference ring, 13–15



Index 139

constant, 14, 97
free, 14, 86
isomorphic, 15
multivariate, 86
shift, 13
underlying ring, 13

difference variable, 14, 86
differential algebra, 2, 13
differential equation, 1, 10
digamma function, 53
dimension, see ideal, dimension
Diophantine approximation, 79, 80
doubly exponential sequence, 12
dynamic programming, 23

e, 12
EarlyTermination (SumCracker option), 120
elimination ideal, 8, 27
Euclid norm, 79
evaluation

— of C-finite sequences, 91
— of admissible sequences, see

admissible sequences, evaluation
expansion, continued fraction, 80
exponent lattice, 78, 83–85
exponent vector, 5
exponential, 1, 50, 77
exponential integral, 34
extended Gosper algorithm, 45

factorial, 1
$Failed, 112–114, 118, 119
falling factorial, 115
FallingFactorial (SumCracker expression), 115
Fejér-Jackson inequality, 55
Fibonacci (SumCracker expression), 107, 115,

116
Fibonacci polynomials, 55

SumCracker expression, 115
Fibonacci sequence, 11, 20, 21, 32, 34, 36, 37,

55, 62, 63, 65, 66, 72, 86, 87, 89–92,
95–98, 103–110, 112, 115, 117–119,
121, 124–126, 134

addition theorem, 20
algebraic dependencies, 62

Cassini’s identity, see identity, Cassini’s
evaluation, 91
second order, 86
sum identities, 105
SumCracker expression, 115

field
coefficient, 5
computable, 5
difference, 13
finite, 68
ground, 5, 14

finite field, 68
Floor (SumCracker expression), 115
floor function, 134
for loop, see pseudo code
formula, 46, 48

order, 48
system, 46
valid, 48

forward difference, 44
Free (SumCracker option), 113, 114, 122
free difference field, 14
free difference ring, 14

multivariate, 86
free sequence, 38–44, 52–53
From (SumCracker option), 122
fundamental set, 77

Galois theory, 2
Gamma function, incomplete, 34
Gb (Gröbner basis computation), 36
Ge’s algorithm, 79–85
Gegenbauer polynomial, 11, 100, 115, 134
GegenbauerC (SumCracker expression), 115
generated, 8
generated ideal, 5
generating function, 2, 24
GeneratingFunctions.m, 125
Gerhold, Stefan, 4, 42, 45, 76
germ, 22
gfun, 73
Gosper’s algorithm, 1, 101

extended, 45
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Gröbner basis, 5–9, 30, 40, 61, 65–68, 70–72,
88, 92, 94

complexity, 36
special purpose software, 36

ground field, 5, 14
guessing, 125

harmonic number, 56, 95, 96, 105, 115, 134
of order r, 115
second order, 53

HarmonicNumber (SumCracker expression),
115

HC-polyominoes, 90
Head (SumCracker option), 109, 118
height, 84
Hemmecke, Ralf, 4
Hermite polynomial, 115
HermiteH (SumCracker expression), 115
Hilbert’s basis theorem, 7, 68
Hilbert’s Nullstellensatz, 8
holonomic, see P-finite
homomorphic image, 37, 68
homomorphism theorem, 15
hypergeometric, 1, 11, 33, 37, 101, 102

ideal, 5–9
algebraic part, see algebraic part
associated difference —, see associated

difference ideal
associated polynomial —, see associated

polynomial ideal
associated prime ideals, 6
basis, 5
difference, see difference ideal, 24–28
dimension, 6, 31, 63
elimination, 8
generated, 5
lattice, 78
membership, 8
primary, 6
primary decomposition, 6
prime, 6, 26
product, 6
radical, 6, 8, 29, 31, 32, 37, 38, 41, 134
sum, 6

zero-dimensional, 63
identity

Binet’s, 20
Cassini’s, 34, 38, 62, 89
Catalan’s, 89
Christoffel-Darboux, 44
Lagrange’s, 45

if statement, see pseudo code
In (SumCracker option), 109, 118, 120
in terms of, 71–72
IncludingShifts (SumCracker option), 117, 118
incomplete Gamma function, 34
inconsistent, 46
indefinite summation, 22, 99–100
induction step, 48
inequality, 45–58

Bernoulli’s, 52
Cauchy-Schwarz, 45, 52
Fejér-Jackson, 55
Knopp and Schur’s, 53
Levin’s, 54
polynomial, 46–48
Turan’s, 54
Vietoris’s, 55
with parameters, 52

infinite sum, 104
Infinity, 111, 118, 123
Infolevel (SumCracker option), 110, 123
information, additional, 51
initial values, 10
integer relation, 81–83
integration, 1
interlacing, 23
Into (SumCracker option), 108, 117
irreducible, 7
isomorphic, 15

Jacobi polynomial, 11, 45, 58, 72, 115, 134
JacobiP (SumCracker expression), 115
Jordan decomposition, 76

Karr’s algorithm, 2

Lagrange, 45
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Laguerre polynomial, 11, 100, 115, 134
LaguerreL (SumCracker expression), 115
lattice, 79

basis, 79
exponent, 78, 83–85

lattice ideal, 78
leading coefficient, 7
leading monomial, 7
leading term, 7
Legendre polynomial, 11, 21, 54, 100, 104,

106, 115, 134
LegendreP (SumCracker expression), 115
lexicographic, 61
linear recurrence, 10

— with constant coefficients, see C-finite
— with polynomial coefficients, see

P-finite
homogeneous, 10
inhomogeneous, 10

LinearRecurrence (SumCracker command),
109, 118

liouvillean sequence, 2
LLL, 79
Lucas (SumCracker expression), 108, 115
Lucas polynomial, 115
Lucas sequence, 11, 34, 55, 72, 89, 90, 92, 97,

104
SumCracker expression, 115

Maple, 44
Mathematica, 4, 24, 48, 84, 107, 108, 111
maximum norm, 79
module, 8

basis, 8
syzygy, see syzygy module

monic, 7
monoid, 5
multivariate difference ring, 86

free, 86
multivariate sequence, 9

C-finite, 86–88

Newton interpolation, 68
nonlinear, 2
nonlinear recurrence, 10

norm
Euclidean, 79
maximum, 79

normal form, 7
notation, 4, 133–135
Nullstellensatz, 8

operator algebra, 1
Order (SumCracker option), 118
order, 10, 13, 17, 48
orthogonal polynomial, 11, 100

Christoffel-Darboux identity, 44
Gegenbauer-, 11, 100, 115, 134
Jacobi-, 11, 45, 58, 72, 115, 134
Laguerre-, 11, 100, 115, 134
Legendre-, 11, 21, 54, 100, 104, 106, 115,

134
positive definite, 54

P-finite, 11, 20, 22, 73, 95
parameter, 52
parasite polynomial, 65
Paule, Peter, 1, 4, 45
Pell (SumCracker expression), 115
Pell polynomial, 115
Pell sequence, 11, 92, 105, 115, 134

SumCracker expression, 115
Pell-Lucas polynomial, 115
Pell-Lucas sequence, 11, 91, 92, 115, 134

SumCracker expression, 115
PellLucas (SumCracker expression), 115
periodicity, 63
Petkovšeks algorithm, 1
Points (SumCracker option), 116
polynomial, 5–9

difference, 14
Fibonacci-, 55
Gegenbauer-, 11, 100, 115, 134
ideal, 5–9
inequality, 46–48
irreducible, 7
Jacobi-, 11, 45, 58, 72, 115, 134
Laguerre-, 11, 100, 115, 134
Legendre-, 11, 21, 54, 100, 104, 106, 115,

134
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monic, 7
orthogonal, see orthogonal polynomial
parasite, 65
reduced, 7
symmetric, 43
total degree, 5

polyomino, 90
positive definite, 54
power product, see term
primary decomposition, 6
primary ideal, 6
prime ideal, 6, 26
PRODUCT (SumCracker expression), 115
projection, 47
proof certificate, 37–38
ProveInequality (SumCracker command), 114,

119
pseudo code, 135–136

quantifier elimination, 48

radical ideal, 6, 8, 29, 31, 32, 37, 38, 41, 134
radical membership, 8, 30
raising factorial, 115
RaisingFactorial (SumCracker expression),

115
rational function, 5
recognizable, 114
recurrence, 9–13

admissible, see admissible system
C-finite, see C-finite
guessing, 125
holonomic, see P-finite
hypergeometric, 11
linear, see linear recurrence
nonlinear, 10
order, 10
P-finite, see P-finite

reduced, 7
reducible, 7
reductum, 7
reflexive difference ideal, 15
repeat loop, see pseudo code
repeated squaring, 91
representation problem, 72, 93, 108

return, see pseudo code
ring, 5
Risch’s algorithm, 2
run, 35
runtime bottleneck, 100

Schicho, Josef, 4
Schneider, Carsten, 2–4, 22, 24, 43, 101
sequence, 9–13

admissible, see admissible sequences
algebraic, 53
algebraic dependencies, see algebraic

dependencies
annihilator, see annihilating ideal
bounded, 52
C-finite, see C-finite
doubly exponential, 12
exponential, 77
Fibonacci, see Fibonacci sequence
free, 38–44, 52–53, 113
holonomic, see P-finite
hypergeometric, see hypergeometric
initial values, 10
Lucas, see Lucas sequence
monotonic, 52
multivariate, 9
P-finite, see P-finite
Pell, 11, 92, 105, 115, 134
Pell-Lucas, 11, 91, 92, 115, 134
periodic, 63
positive, 52
Somos, 13, 34

shift, 1, 13
Sigma package, 22
sign function, 134
sign pattern, 46
software, see SumCracker
solution, 10
SolveLinearRecurrence (SumCracker

command), 112, 120
Somos sequences, 13, 34, 73
structure set, 68
subexpression, 93, 117
SUM (SumCracker expression), 108, 115, 118
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Sum, 108
SumCracker, 4, 107–126

ApproximateAnnihilator (command), 107,
116

Binomial (expression), 114
CFRAC (expression), 115
ChebyshevT (expression), 115
ChebyshevU (expression), 115
Crack (command), 108, 117
Degree (option), 116–118, 120
Denominator (option), 117
EarlyTermination (option), 120
FallingFactorial (expression), 115
Fibonacci (expression), 107, 115, 116
Floor (expression), 115
Free (option), 113, 114, 122
From (option), 122
GegenbauerC (expression), 115
HarmonicNumber (expression), 115
Head (option), 109, 118
HermiteH (expression), 115
In (option), 109, 118, 120
IncludingShifts (option), 117, 118
Infolevel (option), 110, 123
Into (option), 108, 117
JacobiP (expression), 115
LaguerreL (expression), 115
LegendreP (expression), 115
LinearRecurrence (command), 109, 118
Lucas (expression), 108, 115
Order (option), 118
Pell (expression), 115
PellLucas (expression), 115
Points (option), 116
PRODUCT (expression), 115
ProveInequality (command), 114, 119
RaisingFactorial (expression), 115
SolveLinearRecurrence (command), 112,

120
SUM (expression), 108, 115, 118
Using (option), 112, 114, 119, 120, 122,

123
Variable (option), 113, 122, 123
Where (option), 108, 114, 119, 123

ZeroQ (option), 121
ZeroSequenceQ (command), 112, 121

summation, see symbolic summation
summation by parts, 44
symbolic integration, 2
symbolic summation, 1, 93–106

definite, 100–104
indefinite, 99–100
telescoping, see telescoping equation

symmetric function, 43, 45
symmetric polynomials, 43
system of difference equations, 13

admissible, see admissible system, 39
C-finite, 76
coupled, 76
order, 13
solution, 13

system of formulas, 46
consistent, 46
inconsistent, 46
universally valid, 46

system of recurrences, 13
syzygy, 8, 70, 94
syzygy module, 8, 9, 70, 94, 95, 102, 134

Tarski formula, 46
associated, 48

Tarski’s algorithm, 46
telescoping equation, 1, 22, 99, 100
term, 5, 8, 68

hypergeometric, see hypergeometric
irreducible, 7
leading, 7
order, 7
reducible, 7
total degree, 5

term order, 7
degree reverse lexicographic, 65

total degree, 5
Tribonacci numbers, 91
Turan’s inequality, 54

uncoupling algorithms, 76
underlying ring, 13
unit element, 5
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universally valid, 46
Using (SumCracker option), 112, 114, 119,

120, 122, 123

valid, 46, 48
vanishing ideal, 6
Variable (SumCracker option), 113, 122, 123
variety, 6, 62
Vietoris, 55

Where (SumCracker option), 108, 114, 119,
123

while loop, see pseudo code

witness, 37

Zariski closure, 6, 63
Zeilberger, 53
Zeilberger’s algorithm, 1, 101
zero equivalence, 29–44

complexity, 36–37
proof certificate, 37–38

zero-dimensional, 63
ZeroQ (SumCracker option), 121
ZeroSequenceQ (SumCracker command), 112,

121
Zimmermann, Burkhard, 3, 4, 62, 75



Curriculum Vitæ

Personal data
Name Manuel Kauers
Nationality German
Date and place of birth Feb. 20, 1979, Lahnstein, Germany
Marital state Single, no children

Contact
Email manuel@kauers.de
WWW http://www.kauers.de

Education
1998 Abitur (high school graduation) at staatl. Gymnasium Lahnstein
1998–2002 Studies in computer science at the University of Karlsruhe, Ger-

many
2002 Diploma degree in computer science (Dipl.-Inform.)

Diploma thesis: “Verstehen natürlicher Sprache durch statistis-
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