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In this paper we outline a framework for causal inference in settings where random
assignment has taken place, but compliance is not perfect, i.e. the treatment received is
nonignorable. In an attempt to avoid the bias associated with simply comparing subjects by the
randomized treatment assignment, i.e. an "intention to treat analysis”, we make use of
instrumental variables, which have long been used by economists in the context of regression
models with constant treatment effects. We show that this technique can be fitted into the Rubin
Causal Model and be used for causal inference without assuming constant treatment effects. The
advantages of embedding this approach in the Rubin Causal Model are that it makes the nature

of the identifying assumptions more transparent, and that it allows us to consider sensitivity of
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1. INTRODUCTION

World War Two veterans live longer and earn more than non-veterans of the same age.
Does this mean that military service in World War Two improved the health and earnings
capacity of veterans? Probably not. The difference in civilian mortality between World War
Two veterans and nonveterans of the same generation is a classic example of the confounding
impact of selection on estimates of treatment effects. The fact that World War Two veterans
have lower mortality than nonveterans of the same age is usually attributed to the military
screening process (Jablon and Seltzer, 1975) and not to any beneficial effects of wartime
service. Moreover, surviving World War II veterans may have been intrinsically healthier
than non-surviving soldiers even before service and this too could lead to a possibly erroneous
conclusion that military service is good for one's health.

The importance of such bias in observational studies is widely appreciated in statistics.
epidemiology and in the medical and social sciences. The task of designing procedures to
evaluate treatments for AIDS and other life-threatening conditions has recently helped focus
attention on the possibility of similar biases even in randomized clinical trials (Ellenberg.
Finkelstein, and Schoenfeld, 1992). An early example of selection bias in clinical trials is the
1966-69 Coronary Drug Project (CDP, Coronary Drug Project Research Group. 1980) in
which a range of drugs was tested for efficacy in reducing serum cholesterol. A comparison
of treatment and control groups in the CDP shows little difference in outcomes, suggesting
the drugs were ineflective. Yel many "treated” patients failed to take their medication as
instructed; reasons presumably included negative side effects of the treatment. A compari-

son of "treated” patients who took the experimental drugs as instructed with the “treated”
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patients who did not, initially suggested beneficial eflects of cholesterol-reducing medica-
tions. Those drug—takefs in the CDP control group who actually took the placebo, however,
improved essentially as much as did drug-takers in the treatment group. It therefore seems
unlikely that simply comparing "treated” patients who took experimental drugs with those
who did not tells us much about the ability of these drugs to reduce cholesterol.

Such examples have motivated researchers in a variety of fields to search for new ex-
perimental designs and statistical adjustment techniques. In addition to the Ellenberg.
Finkelstein, and Schoenfeld paper on AIDS Trials, recent discussions of non-compliance in
clinical trials include papers by Efron and Feldman (1991). Gail (1985). Robins and Tsiatis
(1991). Lavori (1992) and Robins (1992). The problem of selection bias in observational
studies has been discussed for many years in articles and books from many fields. Examples
include Cochran (1965) and Rubin (1974) in statistics, Heckman and Robb (1985) and Man-
ski (1992) in economics, Kleinbaum. Kupper, and Morgenstern (1982) and Robins (1989) in
epidemiology and medicine, and Nathan (1988) in public policy research. These and many
dozens of related studies wrestle with one of the most important issues in applied statistics:
how to draw causal inferences in anything other than a controlled laboratory setting.

The purpose of this paper is to describe a framework for causal inference that provides
potential solutions to the problem of selection bias both in observational studies and exper-
iments (e.g., clinical trials) with imperfect compliance. The distinguishing {eature of our
discussion of causality is that we attempt to unify two alternative, and occasionally compet-
ing, methodological traditions. We begin with an informal discussion of these traditions. one

from statistics, evolving from work on randomized experiments, and one from economics.

[Sv]
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evolving from models for individual behavior.

9. CAUSAL INFERENCE IN STATISTICS AND ECONOMETRICS

Statisticians working on evaluation have been strongly influenced by an approach com-
monly referred to as Rubin's Causal Model (Rubin 1974, 1977, 1978; Holland 1986). Histor-
ical precursors include Fisher (1918), Neyman (1923), Kempthorne (1952), Cox (1958) and
others discussed in Rubin (1992). This approach uses the notion of a " potential outcome™ to
define causality. The causal effect of treatment on a single individual or unit of observation
is the difference between the value of the outcome if the unit is treated and the value of the
outcome if the unit is not treated. The target of estimation (the estimand) is typically the
average of differences in treated and untreated outcomes across all units in a population or
in some subpopulation (e.g. males or females).

For this definition of causality to be applicable to samples with units already exposed
to treatments. we must be able to imagine observing outcomes on a unit in circumstances
other than those to which the unit was actually exposed. In some cases, such as when the
circumstances have been or are to be manipulated by an experimenter (e.g.. a randomized
drug evaluation, or a proposed change in welfare benefits), this mental exercise is straight-
forward. In other examples, such as economic studies of the relationship between gender
and wages, it may be more difficult to fit the data into this framework. Many advocates of
Rubin’s model (see Holland 1986) claim that cases that are not fit into this framework are
studying only associational, not causal, relationships.

Partly for historical reasons, econometricians (Haavelmo. 1943; Goldberger. 1972; Heck-
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man 1992) have been inclined to use a more "structural” or equation-based approach
to causality than have statisticians. Of course, this is an over-simplification and many
economists use variations on the Rubin Causal Model as a framework for inference. Lewis
(1986), for example, discusses union wage effects in terms of individuals with pairs of wages.
one for the unionized status and one for the non-unionized status, only one of which is ob-
servable. The predominant approach to empirical work in econometrics, however, continues
to be structural.

In econometrics (and sometimes in sociology, psychology and educational research).
causal modeling typically begins with a set of theoretical relationships, as expressed in a
system of mathematical (usually linear) equations. The classic example of this approach is
the supply and demand paradigm used by economists to describe how markets determine
prices and quantities. The stochastic representation of a market is as a system of simulta-
neous equations with prices and quantities (the endogenous variables) jointly determined.?

In a market model, one typically assumes the existence of supply and demand functions.
which describe what quantities producers will supply and consumers will demand as a func-
tion of prices and other variables. The problem of causal inference in market models is then
reduced to the estimation of the effect of prices on demand (or supply) when we observe
only prices and quantities as theoretically generated by points of intersection of demand and
supply functions at different times or locations. Economists think of supply and demand

parameters as causal because they can be useful for predicting the impact of major market

Sociologists retain the term "path analysis” from the pioneering work of Sewall Wright (1934) for a
similar concept.



|

U1

interventions (i.e. treatments) such as changes in rates of taxation.?

The econometric approach to evaluation research - such as evaluating the impact of mil-
jtary service - typically also begins with a behavioral or structural model of the relationship
between treatment status and outcomes. For example, the choice to enter the military may
be modeled as being based on a comparison of the utilities of alternative options. The most
important component of almost all econometric evaluation research, however, is the notion
that particular observed variables are related to the outcomes of interest solely by virtue
of their relationship with treatment status (or prices in the case of market models). These
particular observed variables, which are often intrinsically uninteresting. are then said to be
usable as instruments. The Instrumental Variables (IV) estimation technique originated in
research on simultaneous equations models by Wright (1928, 1934) and Reiersol (1941). who
appears to have coined the term *instrumental variables” (Bowden and Turkington. 1984).

To illustrate the IV method as an approach to causal inference we return to the example
of veteran status. Vietnam veterans do not live as long as non-veterans the same age. but
perhaps this is just the reverse of the postulated positive selection observed among World War
Two inductees. Vietnam veterans may have been disproportionately drawn from unfortunate
groups in society who would have fared poorly even had they not served in the military.

In an attempt to overcome the selection bias inherent in comparisons of outcomes by
veteran status, epidemiologists Hearst, Newman, and Hulley (1986) compared the civilian

mortality experience of Vietnam-era cohorts subclassified by draft lottery number. Between

3Goldberger (1972) notes that the problem of causal inference in market models is clearly articulated in
Henry Schultz's (1938) "Theory and Measurement of Demand”. Another early reference is Haavelmo (1943).
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1970 and 1973, draft lottery numbers from 1 to 365 were randomly assigned to the birthdays
of men born between 1950 and 1953. These lottery numbers were used to determine who
would be eligible to be drafted. Veteran status itself was never randomly assigned, but men
with the lowest numbers were called earliest to begin the screening process for induction into
the military. -Men with high numbers were never drafted, but they could still volunteer for
military service. In fact, most Vietnam veterans were volunteers (although many evidently
volunteered to escape military service under less favorable terms as a draftee).

Hearst, Newman, and Hulley found that men with low lottery numbers were slightly
more likely to have died between 1974 and 1984 than men with high lottery numbers. Since
lottery numbers were randomly assigned, this clearly suggests some detrimental causal effect
of low lottery numbers.

An attempt to link the causal effect of low lottery numbers to a causal effect of veteran
status can be made as follows. Men with low lottery numbers were about 15 percentage
points more likely to have served in the military than men with high numbers. They were
also .09 percentage points more likely to have died of civilian causes during the postwar
period of 1974-1983. The standard IV argument states that: (1) if the effect of veteran
status on mortality is constant, and (2) the only reason lottery numbers are associated with
civilian mortality is because they are associated with veteran status, then the effect of veteran
status on mortality can be estimated by the IV formula which is the ratio of the difference
in mortality by lottery number to the difference in the probability of serving in the military
by lottery number. In the above example, the IV formula gives 0.0009/0.15 = 0.0056 as

the increase of the probability of dying of civilian causes due to serving in the military.
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Using the IV interpretation, differences in mortality by lottery number are attributed solely
to differences in the probability of having served in the military by lottery number. In a
re-analysis of the Hearst, Newman, and Hulley mortality data, we show below that applying
the IV formula to data on suicide by men from Vietnam-era cohorts leads to an estimated
probability of suicide for veterans nearly double that for nonveterans.*

In an econometric application inspired by Hearst, Newman, and Hulley’s work, Angrist
(1990) uses draft lottery numbers to construct IV estimates of the effect of Vietnam-era
military service on civilian earnings, which suggests that Vietnam veterans earn 15 percent
less than nonveterans the same age up to 10 years after their discharge from the military.
It turns out that World War Two veterans were also conscripted on the basis of birthdays.
and quarter of birth is the instrument used by Angrist and Krueger (1989) to estimate the
effect of World War 11 military service on civilian earnings. Here too, IV estimates suggest
negative eflects of military service on earnings.

Examples of IV approaches from fields other than economics include Powers and Swinton
(1984), who describe an experiment run by the Educational Testing Service that eflectively
uses a randomly assigned letter encouraging college applicants to study for the GRE as an
instrument in order to relate seli-reported hours of study to exam scores; this example is
analyzed in the framework of the Rubin Causal Model in Holland (1988). Permutt and Hebel
(1989) use a similar encouragement design to construct instrumental variables estimates of

the effect of maternal cigarette smoking on birth weight. Finally, Efron and Feldman (1991).

4In their original paper, Hearst, Newman, and Hulley make no reference to the IV interpretation of their
use of the draft lottery. But they independently derive an 1V-type formula for the effect of veteran status
on the relative risk of mortality.

-1
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and Robins (1989) present related formulas in their discussions of clinical trials compliance.

Although 1V estimators appear to give sensible answers to important causal questions
in a wide range of examples where treatment is nonignorable, these applications typically
rely on a regression framework with simple constant treatment effects. Recent research
in econometrics has been directed at more realistic models allowing for heterogeneity in
treatment effects (Heckman 1990; Manski, 1992). One difficuity is that in Rubin’s Causal
Model, the basic, regression-based, IV assumptions that the instrument affects treatment
status and be correlated with outcomes solely because of this, are no longer enough to
identify a meaningful average treatment effect estimable by the IV formula. Indeed. it is
easy to devise examples where the IV formula leads to misleading results.

Here we provide the conditions under which the IV estimand is a causal effect in the
sense of the Rubin Causal Model, and investigate sensitivity of this estimand to violations
of critical IV assumptions. The IV estimand is, in our approach. an average causal effect for
a subpopulation. This subpopulation cannot be identified from the data. unlike the average

casual effects that are typically the focus of evaluation research.

3. CAUSAL ESTIMANDS WITH INSTRUMENTAL VARIABLES.

We use a hypothetical evaluation of the effect of a new drug (D) on survival (}) in a
population of N units to describe the principles of causal inference using instrumental vari-
ables. The actual treatment status D is assumed to be beyond the control of the researcher.
Instead, we assume that the evaluation is based on the investigators’ randomly assigned

intention to treat, indicated by the variable Z; Z; = 1 implies that patient ¢ is assigned to
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the treatment group, which is to receive the new drug, whereas Z; = 0 indicates that patient
i is assigned to the control group, which is to receive a placebo instead of the new drug. Let
Z be the N dimensional vector of assignments with i*P element Z;, and let D;(Z) to be the
indicator for the drug unit i actually received given the vector of assignments Z. In an ideal
research environment, D;(Z) equals Z; for all i, that is, the treatment received equals the
treatment assigned. In practice, D;(Z) can differ from Z; for various reasons: individuals
may accidentally receive the incorrect drug, or they may attempt to obtain the new drug
despite being assigned to the control group, or individuals in the treatment group may fail
to take the assigned drug because of side effects, as in the Coronary Drug Project (1980).

Similar to the definition of D;(Z), we define ¥;(Z,D) to be the response for unit 7 given
the vector of treatments D and the vector of assignments Z; Y(Z, D) is the A" vector with i*h
element ¥;(Z,D). Holland (1988) uses a similar notation in his discussion of encouragement
designs with test scores depending on both the randomized “encouragement” and the sub-
sequent self-selected "amount of studying”. We refer to Di(Z) and Y;(Z.D) as "potential
outcomes.” The concept of potential outcomes is analogous to Neyman's (1923) notion of
" potential yields” in randomized agricultural experiments, as formally generalized in Rubin’s
Causal Model to encompass settings without randomization and with possible interference
between units and versions of treatments.

At this point in our development, D;(Z) and Y{(D,Z) are non-stochastic, fixed, but
unobserved, constants, and Z is the only variable that can be manipulated. Differences
in these outcomes due to assigned and received treatments will be revealed by analyzing

data obtained by randomly assigning Z in the finite population of N units under study. Our

9
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initial goal is to provide inferences solely about this finite population. This framework differs
importantly from the assumptions and motivation underlying econometric research, where
both outcomes and treatment assignments are immediately treated as random variables with
an iid (independent and identically distributed) structure governed by some hypothetical
parameters. The reason we use an "experimentalist” approach is that it allows us to precisely

define the quantities we wish to estimate without specifying the mode of inference to be used

to obtain estimators and measures of uncertainty.®
In evaluation research, some sort of assumption about how treatment units interact is
typically required. . Here we follow the convention in statistics and medical research by

disallowing interference between treatment units:

Assumption 1 (STABLE UNIT TREATMENT VALUE AssUMPTION (SUTVA) [RuBix
1982, 1990a])
(a) If Z; = Z] then D;(Z) = Di(Z').

(b) If Z; = Z! and D; = D!, then Y/(Z,D) = ¥;(Z',D').

SUTVA. or the stability assumption, means that potential outcomes for each particular unit
¢ do not depend on the treatment status of other units. This assumption, by disallowing
interference between treatment units, allows us to write ¥;(Z, D) and D;(Z) as Yi(Di.Z;) and
Di(Z;) respectively. SUTVA is an important limitation, and situations where this assumption
is not plausible cannot be analyzed using the simple techniques outlined below, although

generalizations can be formulated with SUTVA replaced by other assumptions. For example.

®Modes of causal inference are discussed in detail by Rubin (1990b, 1991).

10
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models of market phenomena are premised on the notation that large numbers of individuals
interact to determine prices and quantities. Each unit’s potential outcomes (each individual's
response to a price change) can be affected by the distribution of income and by prices and
quantities in other markets so that SUTVA is unlikely to be satisfied.

Under SUTVA, our framework allows six potential outcomes for each unit: Y3(0.0).
Y;(0,1), Yi(1,0), Y:(1,1), D;(0) and D;(1). Because an experimenter can assign Z; = 0 or
Z; = 1 to each unit, we can potentially observe D;(0), Di(1), Y;(0, D;(0)) and Yi(1, Di(1)).
But, it is impossible to observe Y;(0,1 — D;(0)) or ¥i(1,1 — Di(1)) because there is no value
of Z; that would leaAd to the realization of that outcome; that is, we assume here that there
is no manipulation by the researcher affecting D; other than Z;. The latter two outcomes
can be said to be a priori counterfactual because no experimental manipulation can reveal
them. Among the other potential outcomes, some are observed and others are not. Those
that are not observed can be said to be ez post counterfactual because while, er post (after
manipulation of Z;) they were not observed, they could have been observed under an alternate
manipulation of Z;.

For example, consider someone with D;(0) = D;(1) = 0; this person will not be treated

no matter whether assigned to treatment or control group. The a prior: counterfactuals in

this case are Y;(0,1) and ¥i(1,1); if Z; = 0, Y;(0,0) is observed and Yi(1,0) is an er post

counterfactual, whereas if Z; = 1, Y¥;(0,1) is observed and Y;(0,0) is an ez post counterfactual.
In the example we discuss this issue in more detail.
Given the set of "potential outcomes” we can define the causal effects of Z on D and on

Y in the standard fashion (Rubin, 1974).

11
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Definition 1 (CAUSAL EFFECTS OF Z ON D AND ON Y)
The causal effect for individval i of Z on D is D;(1) — Di(0). The causal effect of Z on Y

is Y:(1, Di(1)) = Yi(0, D;(0)).

These causal effects are the effects of Z, the treatment assignment, or the "intention to
treat” effects. Given Assumption 1 and ignorability of treatment assignment, Z, unbiased
estimators for the averages of the causal effects over the population of interest can be obtained
by taking the difference of sample averages of Y and D classified by the value of Z.i.e. by
treatment-control mean differences, as has been well known since at least Nevman (1923).

To define the causal effect of D on Y in a meaningful way requires more work. Holland
(1988) defines the causal effects of D on Y conditional on Z, Yi(z,1) — ¥;(=.0) for - = 0,1
and in some sense skirts the issue of a priori counterfactuals by assuming the causal effects
of D on Y to be equal for all units, even those who cannot be induced to receive treatment
D by the random assignment Z. This approach thus requires us to conceptualize the a priori
counterfactuals representing outcomes under a treatment that could not be induced by the
randomization. In contrast, our approach does not require this.

The following assumption requires the treatment assignment, Z, to be unrelated to po-

tential outcomes once treatment received, D, is taken into account.

Assumption 2 (EXCLUSION RESTRICTION OF TREATMENT ASSIGNMENT GIVEN TREAT-
MENT RECEIVED)

Y(Z,D) = Y(Z',D) for all Z,Z' and for all observable D.

This assumption implies that Yi(1,d) = Y;(0.d) for d = D;(0).D;(1). Thus, ¥;(0.d) =
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Yi(1,d) for d = 0,1 for units such that D;i(1) # D;(0), and, for all units such that D;(1) =

D;(0), Y;(0,D;(0)) = Yi(1,Di(1)). Itisa restriction, discussed informally in Section 2, that

~ implies that any effect of Z on Y must be via an effect of Z on the treatment received, D.

Since it is an restriction on a priori counterfactuals, it is not directly testable from the data
at hand. Notice that with this assumption we only need to conceptualize Y;(z, Di(1)) and
Y(z, Di(0)) for z = 0,1. We do not need to conceptualize the unobservable Y;(z,d) for a
value of d that is not potentially observable, i.e. we do not need to conceptualize a priori
counterfactuals involving unobservable treatments. In contrast, Holland’s (1988) application
of the Rubin Causal Model to encouragement designs requires us to consider restrictions on
Y:(z,d) for values d of the treatment that are not even potentially observable.

At this point we define the causal parameters of interest. By virtue of Assumption 2. we

can define potential outcomes Y(Z,D) as a function of D alone:
Y(D)=Y(Z,D) =Y(Z'.D) for all Z. Z' and for all observable D.
Equivalently, Yi(D\(z)) = Yi(z,Di(z)) for 2z =0,1.

Definition 2 (CausaL EFFECTS OF D ON Y GIVEN THE ExcLusioN RESTRICTION)
The causal effect of D on Y for units i with Di(0) # Di(1) is Y;(1) = ¥3(0). which is equal

to Yi(z,1) - Yi(z,0) for all 2,2 = 0,1.

We can never observe this causal effect, of course, although we can observe one of its
terms, and therefore focus on typical, e.g., average, causal effects across groups of units. We
draw inferences about such causal effects using changes in treatment status D induced by

treatment assignment Z.

13
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Assumptions 1 and 2 and Definition 2 are sufficient to establish a fundamental relationship
between thecausal effect of Z on Y and the causal effect of D on ¥ for units with D,(1) #

D;(0):
¥i(1, Di(1)) = Yi(0, Di(0)) = Yi(Di(1)) - Yi(D:(0))
= [);(1) - Di(1)+ Y;(0)- (1 - D.-(l))] - [Y.-(l) - Di(0) + Y:(0) - (1 — Di(0))
= (Yi(1) = ¥i(0)) - (Di(1) — Di(0)). (1)

Under these same assumptions, for units with D;(1) = D;(0), the causal effect of Z on Y is

Zero.
¥i(1, Di(1)) - ¥i(0, D;(0)) = 0,

which can be viewed as encompassed in Equation (1) by definition, even though };(1)-1Y;(0)
is not defined for these units.

The inlerpretaiion of relation (1) is that, for unit ¢, the causal effect of Z on } is the
product of the causal effect of D on ¥ and the causal effect of Z on D. This simple but
important relationship has been established given only SUTVA and the exclusion restriction
on Z given D. However, this relationship is not enough to guarantee the identification of
any meaningful average treatment effect because D;(0) and D;(1) can be equal to zero or
one, and the causal effect of Z on Y, Yi(1,D;(1)) — Y¥;(0, D;(0)), can be equal to plus or
minus the causal eflfect of D on Y, Y¥;(1) — ¥;(0), or zero. To see this even more clearly.

partition the population of units in a 2 by 2 table according to the values of D(0) and D(1).

14
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Table 1 illustrates this partition, and the corresponding treatment effects of Z on Y under

Assumptions 1 and 2.

Table 1: CAUsaL EFFECT OF Z oN Y, Yi(1,Di(1)) — Yi(0, D;(0)), FOR THE POPULATIOX
OF UNITS CLASSIFIED BY D;(0) AND D;(1)

D;(0)
0 1
Di(1) O ¥:(1,0) - ¥4(0,0)=0 Yi(1,0) - Yi(0,1) = —=(¥i(1) = Yi(0))
1 ¥i(1,1) = ¥;(0,0) = ¥;(1) — Yi(0) ¥:i(1,1) - ¥4(0,1) =0

The four values of (D;(0), Di(1)) in the 2 by 2 table generate three distinct values of
D,(1) = D;(0). Individuals with Di(1) — Di(0) = 1 (bottom left) are induced to “switch-
in" to the treatment by the assignment to the treatment, and the causal effect of Z on Y’
is Y;(1) = ¥7(0). A value of D;(1) — Di(0) = 0 (diagonal elements) implies the individual
does not change treatment status with the assigned treatment: the causal effect of Z on
Y is zero fo; such individuals by Definition 1 and Assumption 2. Finally. individuals with
D;(1) = D;(0) = ~1 (top right) do the opposite of their assignment, they are induced to
"cwitch-out” of the treatment by assignment to it; the causal effect of Z on Y in this case
is ¥i(0) = Yi(1).

At this point it is convenient to introduce a compact notation to denote averages over the

entire population or subpopulations. Let Elg] denote the average over the population of N

15
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units of any function g(+) of Z;, D;(1), D;(0), ¥:(0,0), ¥i(0,1), Yi(1,0), or Yi(1.1). Similarly.
the average of g(-) over the subpopulation defined by some fixed value ho of some function
h(-),

h(Zn D|(1)v Dl(o)a },l(oa 0)1 },I(Oy 1)» },i(la 0)1 },l(la 1)) = hO»

will be denoted by E[g|h(-) = ho). Finally, the relative size of this subpopulation s.atisfying
h{-) = hgis written here as P[h(-) = ho] = E[la()=h,), Where 1} is the indicator function. We
emphasize that this notation, E[], E[-]-], and P[], does not reflect (conditional) expectations
or probabilities with respect to any stochastic distribution, but simply reflects averages and
frequencies in a finite population or subpopulation.

Using this notation, from equation (1), we can write the average causal effect of Z on }’

as the weighted sum of the average causal effects for two subpopulations with D,(0) # D,(1):
E[Yi(1,Di(1)) - Yi(0, Di(0))}
= E[(Yi(1) = ¥i(0))|Di(1) = D:(0) = 1] - P[D,(1) — Di(0) = 1]

—E[(Yi(1) = ¥i(0))| Di(1) = Di(0) = =1]- P[Di(1) — D:(0) = —1]. (

[}

where the weights do not sum up to 1 but to P[D;(0) # Di(1)]. By virtue of Assumption
2, individuals whose treatment status is unaffected by the treatment assignment only affect
the average casual effect of Z on Y through their eflect on the sum of the weights. But
the groups for whom the treatment status is affected by the treatment assignment include
both "switchers-in” and "switchers—out.” From equation (2) it is clear that it is theoretically
possible to have a situation where the actual treatment effect of D on Y. ¥;(1) — Yi(0). is

16
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positive for all units, but the relative size of the group of "switchers-in” versus that of the
" cwitchers—out™ is such that the average eflect of Z on Y is zero or even negative. Suppose,
for example, the treatment effect equals C for "switchers-in" and 2C for "switchers-out™. If
P[Di(1) = Di(0) =1} = 1/2 and P[Di(1) - Di(0) = 1] = 1/4, then the average causal effect
of Z on Y, E[Yi(1,Di(1)) - Yi(0, Di(0))}, is equal to zero.

As originally noted by Imbens and Angrist (1991), Assumption 3 rules out situz;tions of
this type by requiring that, among a.Lll individuals whose treatment status D is affected by the

treatment assignment Z, everyone is either a nswitcher-in" or everyone is a "switcher—out™:

Assumption 3 (MOXNOTONICITY OF TREATMENT ASSIGNMENT AND TREATMENT RE-
CEIVED [IMBENS AND ANGRIST. 1991))

Either D;(1) > D;(0) for allt = 1,...N or D;(1) £ Di(0) for alli=1,2,....N.

Permutt and Hebel (1989) discuss a variant of this assumption informally in the context
of a program to induce pregnant women to stop smoking. In that context the assumption
implies that everyoﬁe who would stop smoking if they were in the control group that received
no encouragement to stop smoking, would also stop smoking if encouraged to do so in the
treatment group; a related discussion appears in Robins (1989).

Without loss of generality, assume that monotonicity holds with the existence of "switchers-

in", i.e. Di(1) 2 Di(0) for all z. Therefore D;(1) — D;(0) equals either zero or one, so that
E[Y/(Di(1),1) = ¥4 Di(0),0)] (3)

= E|[(¥:(1) - Y{O)ID:(1) = Di(0) = 1] - P[Di(1) - Di(0) = 1].
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Table 1 illustrates the way Assumptions 2 and 3 complement each other by ruling out
different causal effects. By virtue of Assumption 2, the two subpopulations corresponding
to the two diagonal elements of Table 1 are characterized by a zero causal effect of Z on }".
By virtue of Assumption 3, one of the groups corresponding to the off-diagonal elements is
empty. Combined, these assumptions imply that the non-zero average causal effect of Z on
Y arises from just one of the four subpopulations indexed by the values of D(0) and D(1).

This is what allows one to express causal effects of D on Y in terms of the causal effects of
ZonY and of Z on D.

In order to be able to use (3) to identify an average causal effect of D on Y. we need to

divide both sides by P[D;(1) — D;(0) = 1] and so we need the following assumption:

Assumption 4 (NON-ZERO AVERAGE CAUsAL EFFECT OF Z oN D)

The average causal effect of Z on D, E[D;(1) — D;(0)] is not equal to zero.

Note that Assumption 3 with the requirement that D;(1) # D;(0) for at least one unit ¢
implies Assumption 4. Even without Assumption 3, Assumption 4 leads to the following

definition of an instrument:

Definition 3 (INSTRUMENTAL VARIABLE)

A variable Z is an instrumental variable if il satisfies Assumptions 2 and 4.

This definition requires that Z satisfies an exclusion restriction on outcomes given treatment
status, and that it affects, on average, the treatment received. It is the combination of these
two assumptions that allows one to use Z as an instrument for uncovering causal relations

between D and Y.
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Rewriting equation (3), using Assumptions 3 and 4, gives

FI0i1) - YOD:() - Do) = 1 = ZABLL = K00 ()

because Assumption 3 implies that P[D;(1)—D;(0) = 1} = E[Di(1)- D;(0)) and Assumption
4 implies that this is not equal to zero. The ratio on the right-hand side of equation (4) will

be called the IV estimand, whether or not Assumptions 1-3 hold:

Definition 4 (IV ESTIMAND)

The IV estimand is the ratio of the average causal effect of Z on Y, E[Yi(1,D:(1)) -
Y;(0, D;(0))), to the average causal effect of Z on D, E[D;(1) — D;(0)].

Variations on this estimand has been analyzed extensively in econometrics. (Durbin. 1954.
Goldberger, 1972, Heckman and Robb, 1985), and recently in other fields, (Holland. 1988.

Permutt and, Hebel, 1989, Robins, 1989), often under the assumption that the causal effect

of D on Y is constant.

The relation between the IV estimand and causal effects of D on }" under our assumptions

is our main theoretical result and we summarize it as a formal proposition:
Proposition 1 (IDENTIFICATION OF CAUSAL ESTIMAND USING INSTRUMENTAL VARI-
ABLES)

Given Assumptions 1-4, the IV estimand is equal to the Local Average Treatment Effect.

E[Y{(1) - Y:(0)IDi(1) # Di(0)]

It is important to note that we cannot identify the group, defined by D;(1) # Di(0).
for which we can identify the average treatment effect. The average treatment effect iden-
tified here is therefore not the average treatment effect for the entire population or for an
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identifiable, observable subpopulation, which is typically the focus of attention in evaluation
research. Stronger assumptions are needed for the identification of average causal effects for
identifiable observable subpopulations. For examples of such assumptions see Robins (1989).

Heckman (1990), Efron and Feldman (1991) and Manski (1992).

4. SENSITIVITY OF THE IV ESTIMAND TO CRITICAL ASSUMPTIONS

Before returning to an application, we discuss the sensitivity of the Instrumental Variables
(IV) estimand to deviations from Assumptions 2 and 3. We focus on these assumptions
because they form the core of the IV approach, and, moreover, sensitivity to the other. more
conventional assumptions of ignorability of treatment assignment has been discussed in the
context of ihe conventional Rubin Causal Model (e.g., Rosenbaum and Rubin. 1983). The
focus of our ;!iscussion is on the consequences of deviations from the IV assumptions on the
average causal effect for the subpopulation defined by D;(1) # D;(0). This local average
is, under Assumptions 1-4 equal to the ratio of the average causal effect of Z on Y to the

average causal effect of Z on D.

4.1 VIOLATIONS OF THE EXCLUSION RESTRICTION.

First we consider violations of the exclusion restriction. Assumption 2. while maintaining
the monotonicity assumption, Assumption 3 (with monotonicity satisfied for “switchers-in~
for descriptive convenience), and the other Assumptions 1 and 4. The following assumption
allows us to define the causal effect of D on Y in the absence of Assumption 2 by forcing

the two conditional causal effects to be equal.
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Assumption 5 (ADDITIVE CAUSAL EFFECTS)

For all unils 1,
Yi(1, D;(0)) - Yi(0, D;(0)) = Yi(1, D;(1)) - Yi(0, Di(1))

For units with D;(1) = D;(0) this assumption is trivially satisfied. For units with D;(1) #
D;(0) Assumption 5 implies that the effects of Z and D are additive. For notational conve-

nience, define
Hi = Y:(1. Dy(1)) - ¥i(0. Di(1)) = ¥i(1, D;(0)) - Yi(0. D,(0))

to be the direct causal effect of Z on Y. Assumption 2, the exclusion restriction. implies
that H; = 0 for all units. and so the causal eflect of D on Y is uniquely defined. Under the

weaker Assumption 5, the causal effect of D on Y is still uniquely defined to be
Gi = Yi(z.1) = Y;(£,0) forz =0,1.
for all units with D;(1) # D,(0). The average causal eflect of Z on }" can now be written as

E[¥,(1.Di(1)) = ¥i(0, Di(0))]
= P[Di(1) # Di(0)]- E[Gi|Di(1) # D:(0)] + E[H.].

The average causal effect of Z on D is not affected by the violation of Assumption 2. The IV
estimand is the ratio of these two average causal effects and is therefore, given Assumptions

1, 3,4 and 5, equal to

E[Yi(1, D;(1)) - Yi(0, Di(0))]
E[Di(1) - Di(0)]

E[H,)
E[(Di(1) - Di(0)]

= E[Gi|Di(1) # D\(0)] +
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The ratio is equal to the sum of two parts: first the average causal eflect of D on Y} over
the subpopulation defined by D;(1) # D;(0), that is, E[(Gi|Di(1) # D;(0)]; and second. the
direct effect of Z on Y, E[H,], divided by the frequency of that subpopulation, which by
Assumption 3 is equal to P[D;(1) — Di(0) = 1] = E[D;(1) — Di(0)].

Consider first the special case where D;(1) — Di(0) = 1, in other words all units comply
with their randomized assignment. In this case, the IV estimand equals the average causal
effect of Zon Y, the "intent to treat” estimand, which equals the average causal effect of
D on Y, E|Gi). plus the average (direct) causal effect of Z on Y, E[H,]. Since with perfect

compliance D; # D;(0) for all units, this can be written as:
E[G: + Hi] = E[Gi|Di(1) # D.(0)} + E{H;|Di(1) # Di(0)] (3)

Thus if the assignment has a direct causal effect separate from the effect of treatment. even
a randomized experiment with perfect compliance will not estimate the average causal eflect
of the treatment D but the rather combined effect of D and Z.

This effect is well known, and it is the motivation for standard precautions in experimental
design. For example blinding. double blinding, and the use of placebos are designed to help
ensure that any effects observed can be attributed to the treatment being studied. D. and
not simply the result of the randomized assignment, Z.

Now consider the case of imperfect compliance. The IV estimand can be written as

E[H}]
E[Di(1) = Di(0)]

E[Gi\Di(1) # Di(0)) +

= E[Gi|Di(1) # Di(0)] + E[Hi|Di(1) # Di(0)] (6)
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PDi(1) = Di(0)]
P[Di(1) # Di(0))

+E[H;|Di(1) = Di(0)] -

Thus, comparing (5) and (6), we see that with additive effects, the increased bias in the
IV estimand due to non—compliance is the last term, which is directly proportional to the
product of (1) the average size of the direct effect of Z for those who cannot be induced

to change treatment, and (2) p/(1 — p) where p is the proportion of units that cannot be

induced to change.

The higher the correlation between the instrument and the treatment status, i.e.. the
"stronger” the instrument, the smaller p, the less sensitive the IV estimand is to violations
of the exclusion assﬁmption. Also, the smaller the direct effect of Z on Y, H;, for those who
do not change treatment as a result of a change in assignment (those with D;(0) = Di(1)).
the less affected the IV estimand is relative to the "intent to treat” estimand under random

assignment with perfect compliance.

4.2 VIOLATIONS OF THE MONOTONICITY CONDITION

Next we consider violations of the monotonicity assumption. Assumption 3. Since we
maintain Assumption 2, the causal effect of D on Y for unit ¢ with D;(1) # Di(0) is still
uniquely defined, and equal to Yi(1) — ¥i(0). Again we investigate the average causal eflect

of ZonY:
E[Yi(1, Di(1)) = ¥i(0, Di(0))]
= E[(Y;(1) - Yi(0))|Di(1) = Di(0) = 1} - P[Di(1) = Di(0) = 1]

~E[(¥(1) = Y{0))IDi(1) = Di(0) = =1} P[Di(1) = Di(0) = ~1}.
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This average causal eflect now consists of two terms. The IV estimand can be written

E[Yi(1, Di(1)) = Yi(0, Di(0))/ E[D:(1) = D;(0)]

= (1= A)- E[Y;(1) = Y(0)|Di(1) > Di(0)] + A - E[Yi(1) = Yi(0)|D:(1) < Di(0))]

= E[Yi(1) - ¥(0)IDi(1) > Di(0)] (

-1
—

+X - [E[¥:(1) - Y:(0)IDi(1) < Di(0)] - E[¥i(1) = Y(0)| Di(1) > Di(0)].

where A = —P[D,(1) — D;(0) = -1]/E[Di(1) — D;(0)] < 0. In the first representation.
the estiman.d is a weighted average of average treatment effects, but the weights are always
outside the unit interval. The latter term in the second representation is the bias. and it
is composed of two factors. The first factor, A, is related to the frequency of units with
Di(1) < D;(0); X is equal to zero under Assumption 3 because P{D;(1) - D,(0) = ~1] = 0.
Because ) is equal to the frequency of "switchers-out™ divided by the average causal effect
of Z on D, equal to E[D;(1)— D;(0)] = P[Di(1)— Di(0) = 1]— P[Di(1)— Di(0) = —1}. it can
be large even if P[D;(1)— D;(0) = —1]is small, as long as the average causal effect of Z on D
is small. The bias term resulting from the violation of the monotonicity assumption is also
proportional to the difference in average causal effects for the "switchers-in™ (D,(1) > D;(0)).
and the "switchers—out™ (D;(1) < D;(0)). If the average causal effects of D on }" are identical
for switchers-in and switchers-out, violations of Assumption 3 generate no bias. A constant
treatment effect of D on Y for units with D;(1) # D;(0) is sufficient but not necessary for
this. In general, the closer A is to zero, and the less variation there is in the causal effect of D
on Y, the smaller the bias will be from violating Assumption 3. Note that again the average
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causal effect of Z on D is in the denominator of the bias. The "weaker” the instrument, or
the further away the instrument from a "true” experiment with {ull compliance, the worse
the consequences of any violation of Assumption 3.

Finally, note that the assumptions laid out in Section 3 are sufficient conditions for
the identification of a meaningful average treatment effect. As this discussion makes clear
violations of these assumptions need not be catastrophic. However, the IV estimaﬁd is very
sensitive to vi.o]ations of Assumptions 2 and 3 when the average causal effect of the treatment

assignment Z on the treatment status D is low. In the next section we illustrate how this

sensitivity analysis can be applied.

5. AN APPLICATION: THE EFFECT OF MILITARY SERVICE ON CIVILIAN MORTALITY.
Hearst, Newman and Hulley (1986) showed that men who were at high risk of being
drafted in the Vietnam Era draft lottery had elevated mortality risk after their discharge
from the military. The authors attribute this elevated risk to the higher probability of
military service faced by draft-eligible men. This assumption is plausible because between
1970 and 1973. the risk of being drafted was randomly assigned in a lottery based on dates
of birth. Each date of birth in the cohorts at risk of being drafted was assigned a Random
Sequence Number (RSN) from 1-365. The Selective Service called men for induction by
RSN up to a ceiling determined by the defense department. Men born in 1950 were called
up to RSN 195, men born in 1951 were called up to RSN 125, and men born in 1952 were

called up to RSN 95.

In their paper, Hearst, Newman and Hulley focus on the difference in mortality risk by
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draft-eligibility status. For example, they compare the number of deaths of men born in
1950 with RSN below 195 to the number of deaths of men born in 1950 with RSN above
195. This procedure can be used to provide a valid estimate of the effects of military service
on mortality if draft—eligibility is correlated with civilian mortality solely by virtue of its
correlation with veteran status. Our purpose in returning to this example is threefold. First.
we use the example to illustrate the distinction between a priori and ez post counterfactual
outcomes. Second, we discuss the validity of Assumptions 1-4 in this context. Third. we show
how the sensitivity of the estimated average treatment effect to violations of Assumption 2
can be explored using the results from the previous section.

To apply the analysis of Section 3, let the instrument Z; be a binary indicator of draft
eligibility, equal to one if individual 1 was assigned an RSN less than the draft cutofl. Let
Di(z) indicate whether someone would have served in the military when draft eligible (= = 1)
or not (z = 0). It is perfectly reasonable to postulate the existence of both of these treatment
assignments even though one assignment is ez post (after Z is realized) counterfactual. The
reason both potential values of D;(z) are well-defined is that Z; was randomly set by the
federal government and could easily have been set in a different way.

The potential outcome in this example is an indicator variable, ¥;(z.d). equal to one
if person i died between 1974 and 1983. To distinguish this from mortality during the
war period we will refer to this as civilian mortality. For simplicity we ignore the effect
that different mortality during the war might have had on mortality after the war. Is it
reasonable to postulate a complete set of potential outcomes for all values of d and =7

Consider someone with D;(0) = D;{1) = 0 - this man would not have served in the military
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whether draft eligible or not. For such a man, ¥;(0,0) and ¥i(1,0) are clearly well defined
for the same reason that D;(0) and D;(1) are well-defined. But the definitions of };(0.1)
and Y;(1,1) can problematic. These outcome variables represent what would have happened
if such a man had served in the military, despite the fact that no manipulation of draft
lottery numbers could have revealed these outcomes. Of course, some other intervention or

manipulation might have been able to cause this man to serve in the military, but that would

‘be a different experiment from the one we have available, the draft lottery. However, the IV

estimand does not involve these a priori counterfactuals because it is an average over the
subpopulation that can be induced to serve by a change in lottery number.

Next, consider someone with D;(0) = 0 and D;(1) = 1. This man would not serve in the
military if not drafted, and would serve if drafted. For such men we need to conceptualize
the set of four potential outcomes, ¥7(0,0), ¥;(0.1), ¥;(1,0) and Yi(1.1). The two potentially
observable outcomes Y;(0,0) and Y;(1,1) are straightforward. but we also need to concep-
tualize the outcome when this man was drafted, but did not serve, despite the fact that he
would have served if drafted. Assumption 2 links this outcome to one that is potentially
observable, by assuming that, because the random assignment itself has no eflect. it equals
the outcome when drafted and serving, which is potentially observable.

Next we turn to the validity of Assumptions 1-5. These assumptions comprise SUTVA.
an exclusion restriction, and monotonicity in the relationship between instruments and treat-
ments. In other words, we require: (Assumption 1) that the veteran status of any man at
risk of being drafted in the lottery is not a function of the lottery number assigned to others.

Similarly, the civilian mortality risk of any man is not determined by the lottery number

o
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or veteran status of others; (Assumption 2) civilian mortality risk is not affected by lottery
numbers once veteran status is taken into account; (Assumption 3) A man who would serve
in the military given that his lottery number made him ineligible for the draft would also
have served in the military if his lottery number was below the cutoff ceiling, (Assumption
4) On average, men would have been more likely to serve with a low lottery number than
with a high lottery number.

Although we believe these assumptions are plausible, a case can be made for violations
of each one. For example. it has been argued that the fraction of a cohort that served in
the military affects the civilian labor market response to veterans (De Tray 1982). If this
assertion is true, then the SUTVA assumption very likely does not hold. Another reason
for possibly violations of SUTVA is that people with high lottery numbers may be induced
to serve in the military by friends who received low lottery numbers. There is also some
evidence that men with low lottery numbers changed their educational plans so as to retain
draft deferments and avoid the conscription (Angrist and Krueger 1992b). and this means
that the exclusion restriction could be violated because draft lottery numbers may have
affected civilian outcomes through channels other than veteran status. The third assumption.
monotonicity, may be violated if, for example, someone who would have volunteered for
the Navy when not at risk of being drafted would have chosen to avoid military service
altogether if he received a low lottery number, but it seems unlikely that there were many
in the population in this category.

The least controversial assumption required to use the draft lottery to estimate average

causal affects is ignorability of treatment assignment. needed for unbiased estimation of the
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average causal effects of Z on D and of z on Y. Here too, however, there is evidence that the
first lottery, executed using a poorly designed physical randomization, was not actually ran-
dom (Fienberg 1971), but even so, any correlation between lottery number and "potential”
outcomes is essentially impossible. Ignoring this complication and postponing consideration

of the potential problems outlined above, we can forge ahead with the instrumental variables

approach.

Table 2 presents data and some estimates of the effects of military service on civilian

mortality for white men born in 1950 and 1951.

Table 2: Data on civilian mortality for white men born in 1950 and 1951.

Year Draft No of Noof  Probof Probof Prob of
Eligibility® Deaths” Suicides® Deaths® Suicides Mil Service!®
1950 Yes 2601 436 0.0204  0.0034 0.3527
No 2169 352 0.0195 0.0032 0.1934
Difference (Yes minus No) 0.0009  0.0002 0.1593
IV estimates 0.0056  0.0013
1951 Yes 1494 279 0.0170  0.0032 0.2831
No 2823 480 0.0168  0.0029 0.1468
Difference (Yes minus No) 0.0002  0.0003 0.1362
IV estimates 0.0015  0.0022

Column 1 shows the number of deaths in Pennsylvania and California between 1974-83

SDetermined by lottery number cutofl: RSN 195 for men born in 1950, and RSN 125 for men born in
1951.

TFrom California and Pennsylvania administrative records, all deaths 1974-1983. Data sources and meth-
ods documented in Hearst, Newman and Hulley (1986). NOTE: Sample sizes differ from Hearst, et al..
because non-US-born are included
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by draft-eligibility.® Columns 3 and 4 show the probability of death and suicide respectively,
computed as the number of deaths divided by the population at risk estimated using the
1970 census.® Column 5 shows the probability of veteran status by year of birth and draft-
eligibility status, estimated from the 1984 Survey of Income and Program Participation
(SIPP).1° In columns 3-5 the entry in the third row gives the difference in frequency of
death, suicide and veteran status between those who were draft eligible and those who
where not. The fourth row in columns 3 and 4 gives the ratio of these differences to the
difference in the probability of being veteran by draft eligibility. As an example consider the
men born in 1950. Of the men that were draft eligible, 35.3% actually served in the military.
Of those that were not draft eligible only 19.3% served in the military. Standard application
of the Rubin causal model suggests that the draft had a causal effect that increased the
likelihood of serving by an estimated 15.9% on average. Similarly, of those that were draft
eligible, 2.04% died between 1974 and 1983, compared with 1.95% of those that were not.
The difference of 0.09% can be interpreted as an estimate of the average causal effect of the
draft lottery number on civilian mortality. Assuming that these estimated causal effects are
the population averages, the ratio of these two causal effects is, under the assumptions made
above, the causal effect of military service for the 15.9% who were induced by the draft to

serve in the military. For this group, the average causal effect is 0.56%, which amounts to a

8The mortality figures are tabulated from the data set analyzed by Hearst, Newman and Hulley (1986)

9The estimated population at risk is the author’s tabulation of the total number of white men born in
1950 and 1951 in California and Pennsylvania from the 1970 census (1ICPSR Study number 18). Estimates
by draft-eligibility status are computed assuming a uniform distribution of lottery numbers.

10These figures are taken from Angrist (1990), Table 2, and were tabulated using a special version of the
SIPP that has been matched to indicators of draft-eligibility. Note that probabilities estimated using the
SIPP are for the entire country and do not take account of mortality. The impact of mortality on differences
in the probability of being a veteran by eligibility status is small enough to have only trivial consequences
for the estimation.
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25% increase in the probability of death for this group (from 1.95% to 2.51%)."!

To investigate the sensitivity of the estimates to violations of the exclusion restriction.
suppose, for example, that Assumption 2 is violated because men with low lottery numbers
were more likely to stay in school. A schooling-lottery connection could arise because for
much of the Vietnam period, college and graduate students were exempt from the draft.
Although new graduates student deferments were eliminated in 1967 and new undergraduate
deferments were eliminated in December 1971, many of the men at risk in the 1970 and 1971
draft lotteries could, in theory, have postponed conscription by staving in school.

Working with special versions of the March 1979 and March 1981-85 Current Population
Surveys, Angrist aﬁd Krueger (1992b) show that men born in 1951 with lottery numbers
1-75 have completed .358 more years of schooling than men with higher lottery numbers
above 150 who were at no risk of being drafted.!?

How much bias in estimates of the effect of military service on mortality is this correlation
between lottery numbers and schooling likely to generate? To answer this question requires
data on the connection between schooling and mortality. The relationship between socioe-
conomic variables and mortality is uncertain and the subject of considerable research in
epidemiology and social sciences.!® For the purposes of illustration, we have taken estimates

from Duleep’s (1986) study of socioeconomic variables and mortality using men surveved in

1 These estimates highlight the fact that the IV estimator does not require observations on individuals:
sample averages of outcomes and treatment indicators by values of the instruments are sufficient. In applica-
tions like the one discussed here, these moments are drawn from different data sets. For a detailed discussion
of IV estimation with moments from two data sets, see Angrist and Krueger (1992)

12The standard error of this estimate is .147. Estimates of the effect of lottery numbers on schooling are
variable and imprecise for most of the age cohorts at risk of being drafted. There is evidence of a significant
correlation, however, for men born in 1945 and 1946 (at risk in the 1970 lottery) and men born in 1951 (at
risk in the 1971 lottery).

13An early study in this area is Kitagawa and Hauser 1973.
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the March 1973 CPS and linked 1973-78 Social Security data. Estimates presented in Table
1 of Duleep (1986) suggest that white married men 25 years old with 1-3 years of college
have mortality rates roughly .0017 higher than do high school graduates.!

Assume that the excess mortality among men with some college accumulates linearly.
so that an additional year of schooling raises mortality by .0017 x (1/3) = .00056. Draft
eligible men may have as much as .358 more years of schooling than ineligible men. Thus, an
estimate of the mortality difference attributable to the effect of lottery numbers on schooling
is .358 x .00036 = .00019. This last figure is almost as large as the .0002 observed difference
in mortality by draft—eligibility status for white men born in 1951. Assuming additive causal
effects of education and military service on mortality, the bias formula applied to this example
is (E[Hi(1)= Hi(0)))/(E[Di(1)— Di(0)]), which is estimated by .00019/.1362 = .0014 because
there is a .1362 difference in the probability being a veteran by draft eligibility status. Thus
the potential bias is large enough to reverse the sign of the estimated .0015 impact of veteran
status on civilian mortality.

This calculation provides useful cautionary background that should accompany the IV
estimates. But the extent to which the causal interpretation of the estimates in Table 2
should be discounted in light of these findings is unclear. First, there is no evidence of a
schooling-lottery number connection for the 1950 cohort yet; lottery-based estimates of the
effects of service are even larger for men born in 1950 than for the 1951 cohort used in the
illustration.

Second, the schooling-mortality connection is not well-determined (the Duleep (1986)

14This figure comes from a regression of mortality on age, income and interactions of age with income.
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estimate used here is not actually significantly different from zero), and this relationship
is also subject to sign reversals. For example, while men with some college have higher
mortality than high school graduates, the Duleep paper shows almost no difference between
the mortality of high school and college graduates. Thus, a calculation based solely on

graduates would indicate no bias.

6. CONCLUSION

In this paper we have outlined a framework for causal inference in settings where random
assignment has taken place, but compliance is not perfect, i.e. the treatment received is
nonignorable. In an attempt to avoid the bias associated with simply comparing subjects by
the randomized treatment assignment, i.e. an "intention to treat analysis™, we make use of
instrumental variables, which have long been used by economists in the context of regression
models with constant treatment effects. We show that this technique can be fitted into the
Rubin Causal Model and be used for causal inference without assuming constant treatment
effects. The advantages of embedding this approach in the Rubin Causal Model are that it
makes the nature of the identifying assumptions more transparent. and that it allows us to
consider sensitivity of the results to deviations from these assumptions in a straightforward

manner.
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