E. The Hahn-Banach Theorem

This Appendix contains several technical results, that are extremely useful in Functional Analysis. The following terminology is useful in formulating the statements.

Definitions. Let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C}, and let \mathcal{X} be a \mathbb{K}-vector space.
A. A $\operatorname{map} q: X \rightarrow \mathbb{R}$ is said to be a quasi-seminorm, if
(i) $q(x+y) \leq q(x)+q(y)$, for all $x, y \in \mathcal{X}$;
(ii) $q(t x)=t q(x)$, for all $x \in X$ and all $t \in \mathbb{R}$ with $t \geq 0$.
B. A $\operatorname{map} q: X \rightarrow \mathbb{R}$ is said to be a seminorm if, in addition to the above two properties, it satisfies:
(ii') $q(\lambda x)=|\lambda| q(x)$, for all $x \in X$ and all $\lambda \in \mathbb{K}$.
Remark that if $q: X \rightarrow \mathbb{R}$ is a seminorm, then $q(x) \geq 0$, for all $x \in \mathcal{X}$. (Use $2 q(x)=q(x)+q(-x) \geq q(0)=0$.

There are several versions of the Hahn-Banach Theorem.
Theorem E. 1 (Hahn-Banach, \mathbb{R}-version). Let \mathcal{X} be an \mathbb{R}-vector space. Suppose $q: X \rightarrow \mathbb{R}$ is a quasi-seminorm. Suppose also we are given a linear subspace $y \subset \mathcal{X}$ and a linear map $\phi: \mathcal{y} \rightarrow \mathbb{R}$, such that

$$
\phi(y) \leq q(y), \text { for all } y \in y
$$

Then there exists a linear map $\psi: \mathcal{X} \rightarrow \mathbb{R}$ such that
(i) $\left.\psi\right|_{y}=\phi$;
(ii) $\psi(x) \leq q(x)$ for all $x \in X$.

Proof. We first prove the Theorem in the following:
Particular Case: Assume $\operatorname{dim} \mathcal{X} / \mathcal{Y}=1$.
This means there exists some vector $x_{0} \in \mathcal{X}$ such that

$$
X=\left\{y+s x_{0}: y \in \mathcal{Y}, s \in \mathbb{R}\right\}
$$

What we need is to prescribe the value $\psi\left(x_{0}\right)$. In other words, we need a number $\alpha \in \mathbb{R}$ such that, if we define $\psi: \mathcal{X} \rightarrow \mathbb{R}$ by $\psi\left(y+s x_{0}\right)=\phi(y)+s \alpha, \forall y \in \mathcal{y}, s \in \mathbb{R}$, then this map satisfies condition (ii). For $s>0$, condition (ii) reads:

$$
\phi(y)+s \alpha \leq q\left(y+s x_{0}\right), \forall y \in \mathcal{Y}, s>0
$$

and, upon dividing by s (set $z=s^{-1} y$), is equivalent to:

$$
\begin{equation*}
\alpha \leq q\left(z+x_{0}\right)-\phi(z), \forall z \in \mathcal{y} \tag{1}
\end{equation*}
$$

For $s<0$, condition (ii) reads (use $t=-s$):

$$
\phi(y)-t \alpha \leq q\left(y-t x_{0}\right), \forall y \in y, t>0
$$

and, upon dividing by t (set $w=t^{-1} y$), is equivalent to:

$$
\begin{equation*}
\alpha \geq \phi(w)-q\left(w-x_{0}\right), \forall w \in y \tag{2}
\end{equation*}
$$

Consider the sets

$$
\begin{aligned}
Z & =\left\{q\left(z+x_{0}\right)-\phi(z) ; z \in y\right\} \subset \mathbb{R} \\
W & =\left\{\phi(w)-q\left(w-x_{0}\right): w \in y\right\} \subset \mathbb{R}
\end{aligned}
$$

The conditions (1) and (2) are equivalent to the inequalities

$$
\begin{equation*}
\sup W \leq \alpha \leq \inf Z \tag{3}
\end{equation*}
$$

This means that, in order to find a real number α with the desired property, it suffices to prove that sup $W \leq \inf Z$, which in turn is equivalent to

$$
\begin{equation*}
\phi(w)-q\left(w-x_{0}\right) \leq q\left(z+x_{0}\right)-\phi(z), \forall z . w \in \mathcal{y} \tag{4}
\end{equation*}
$$

But the condition (4) is equivalent to

$$
\phi(z+w) \leq q\left(z+x_{0}\right)+q\left(w-x_{0}\right)
$$

which is obviously satisfied because

$$
\phi(z+w) \leq q(z+w)=q\left(\left(z+x_{0}\right)+\left(w-x_{0}\right)\right) \leq q\left(z+x_{0}\right)+q\left(w-x_{0}\right)
$$

Having proved the Theorem in this particular case, let us proceed now with the general case. Let us consider the set Ξ of all pairs (\mathcal{Z}, ν) with

- Z is a subspace of X such that $Z \supset y$;
- $\nu: Z \rightarrow \mathbb{R}$ is a linear functional such that
(i) $\left.\nu\right|_{y}=\phi$;
(ii) $\nu(z) \leq q(z)$, for all $z \in \mathcal{Z}$.

Put an order relation \succ on Ξ as follows:

$$
\left(z_{1}, \nu_{1}\right) \succ\left(z_{2}, \nu_{2}\right) \Leftrightarrow\left\{\begin{array}{l}
z_{1} \supset \mathcal{Z}_{2} \\
\left.\nu_{1}\right|_{Z_{2}}=\nu_{2}
\end{array}\right.
$$

Using Zorn's Lemma, Ξ posesses a maximal element (\mathcal{Z}, ψ). The proof of the Theorem is finished once we prove that $\mathcal{Z}=\mathcal{X}$. Assume $\mathcal{Z} \subsetneq \mathcal{X}$ and choose a vector $x_{0} \in X \backslash \mathcal{Z}$. Form the subspace $\mathcal{V}=\left\{z+t x_{0}: z \in \mathcal{Z}, t \in \mathbb{R}\right\}$ and apply the particular case of the Theorem for the inclusion $\mathcal{Z} \subset \mathcal{V}$, for $\psi: \mathcal{Z} \rightarrow \mathbb{R}$ and for the quasi-seminorm $\left.q\right|_{\mathcal{V}}: \mathcal{V} \rightarrow \mathbb{R}$. It follows that there exists some linear functional $\eta: \mathcal{M} \rightarrow \mathbb{R}$ such that
(i) $\left.\eta\right|_{z}=\psi$ (in particular we will also have $\left.\eta\right|_{y}=\phi$);
(ii) $\eta(v) \leq q(v)$, for all $v \in \mathcal{V}$.

But then the element $(\mathcal{V}, \eta) \in \Xi$ will contradict the maximality of (\mathcal{Z}, ψ).
Theorem E. 2 (Hahn-Banach, \mathbb{C}-version). Let \mathcal{X} be an \mathbb{C}-vector space. Suppose $q: X \rightarrow \mathbb{R}$ is a quasi-seminorm. Suppose also we are given a linear subspace $y \subset X$ and a linear map $\phi: \mathcal{y} \rightarrow \mathbb{C}$, such that

$$
\operatorname{Re} \phi(y) \leq q(y), \text { for all } y \in y
$$

Then there exists a linear map $\psi: \mathcal{X} \rightarrow \mathbb{R}$ such that
(i) $\left.\psi\right|_{y}=\phi$;
(ii) $\operatorname{Re} \psi(x) \leq q(x)$ for all $x \in \mathcal{X}$.

Proof. Regard for the moment both X and y as \mathbb{R}-vector spaces. Define the \mathbb{R}-linear $\operatorname{map} \phi_{1}: \mathcal{y} \rightarrow \mathbb{R}$ by $\phi_{1}(y)=\operatorname{Re} \phi(y)$, for all $y \in \mathcal{y}$, so that we have

$$
\phi_{1}(y) \leq q(y), \forall y \in y
$$

Use Theorem E. 1 to find an \mathbb{R}-linear map $\psi_{1}: \mathcal{X} \rightarrow \mathbb{R}$ such that
(i) $\left.\psi_{1}\right|_{y}=\phi_{1}$;
(ii) $\psi_{1}(x) \leq q(x)$, for all $x \in \mathcal{X}$.

Define the map $\psi: \mathcal{X} \rightarrow \mathbb{C}$ by

$$
\psi(x)=\psi_{1}(x)-i \psi_{1}(i x), \text { for all } x \in X
$$

Claim 1: ψ is \mathbb{C}-linear.
It is obvious that ψ is \mathbb{R}-linear, so the only thing to prove is that $\psi(i x)=i \psi(x)$, for all $x \in X$. But this is quite obvious:

$$
\begin{aligned}
\psi(i x) & =\psi_{1}(i x)-i \psi_{1}\left(i^{2} x\right)=\psi_{1}(i x)-i \psi_{1}(-x)= \\
& =-i^{2} \psi_{1}(i x)+i \psi_{1}(x)=i\left(\psi_{1}(x)-i \psi_{1}(i x)\right)=i \psi(x), \forall x \in X
\end{aligned}
$$

Because of the way ψ is defined, and because ψ_{1} is real-valued, condition (ii) in the Theorem follows immediately

$$
\operatorname{Re} \psi(x)=\psi_{1}(x) \leq q(x), \forall x \in \mathcal{X}
$$

so in order to finish the proof, we need to prove condition (i) in the Theorem, (i.e. $\left.\left.\psi\right|_{y}=\phi\right)$. This follows from the fact that $\phi_{1}=\left.\psi_{1}\right|_{y}$, and from:

Claim 2: For every $y \in \mathcal{Y}$, we have $\phi(y)=\phi_{1}(y)-i \phi_{1}(i y)$.
But this is quite obvious, because

$$
\operatorname{Im} \phi(y)=-\operatorname{Re}(i \phi(y))=-\operatorname{Re} \phi(i y)=-\phi_{1}(i y), \forall y \in y .
$$

Theorem E. 3 (Hahn-Banach, for seminorms). Let X be a \mathbb{K}-vector space (\mathbb{K} is either \mathbb{R} or \mathbb{C}). Suppose q is a seminorm on X. Suppose also we are given a linear subspace $y \subset \mathcal{X}$ and a linear map $\phi: \mathcal{Y} \rightarrow \mathbb{K}$, such that

$$
|\phi(y)| \leq q(y), \text { for all } y \in \mathcal{y} \text {. }
$$

Then there exists a linear map $\psi: X \rightarrow \mathbb{K}$ such that
(i) $\left.\psi\right|_{y}=\phi$;
(ii) $|\psi(x)| \leq q(x)$ for all $x \in X$.

Proof. We are going to apply Theorems E. 1 and E.2, using the fact that q is also a quasi-seminorm.

The case $\mathbb{K}=\mathbb{R}$. Remark that

$$
\phi(y) \leq|\phi(y)| \leq q(y), \quad \forall y \in y .
$$

So we can apply Theorem E. 1 and find $\psi: X \rightarrow \mathbb{R}$ with
(i) $\left.\psi\right|_{y}=\phi$;
(ii) $\psi(x) \leq q(x)$, for all $x \in X$.

Using condition (ii) we also get

$$
-\psi(x)=\psi(-x) \leq q(-x)=q(x), \text { for all } x \in X .
$$

In other words we get

$$
\pm \psi(x) \leq q(x), \text { for all } x \in X,
$$

which of course gives the desired property (ii) in the Theorem.
The case $\mathbb{K}=\mathbb{C}$. Remark that

$$
\operatorname{Re} \phi(y) \leq|\phi(y)| \leq q(y), \forall y \in \mathcal{y} .
$$

So we can apply Theorem E. 2 and find $\psi: X \rightarrow \mathbb{R}$ with
(i) $\left.\psi\right|_{y}=\phi$;
(ii) $\operatorname{Re} \psi(x) \leq q(x)$, for all $x \in \mathcal{X}$.

Using condition (ii) we also get

$$
\begin{equation*}
\operatorname{Re}(\lambda \psi(x))=\operatorname{Re} \psi(\lambda x) \leq q(\lambda x)=q(x), \text { for all } x \in \mathcal{X} \text { and all } \lambda \in \mathbb{T} \tag{5}
\end{equation*}
$$

(Here $\mathbb{T}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.) Fix for the moment $x \in \mathcal{X}$. There exists some $\lambda \in \mathbb{T}$ such that $|\psi(x)|=\lambda \psi(x)$. For this particular λ we will have $\operatorname{Re}(\lambda \psi(x))=|\psi(x)|$, so the inequality (5) will give

$$
|\psi(x)| \leq q(x)
$$

In the remainder of this section we will discuss the geometric form of the Hahn-Banach theorems. We begin by describing a method of constructing quasiseminorms.

Proposition E.1. Let \mathcal{X} be a real vector space. Suppose $\mathcal{C} \subset \mathcal{X}$ is a convex subset, which contains 0 , and has the property

$$
\begin{equation*}
\bigcup_{t>0} t ؟=X \tag{6}
\end{equation*}
$$

For every $x \in \mathcal{X}$ we define

$$
Q_{\mathcal{C}}(x)=\inf \{t>0: x \in t \mathcal{C}\}
$$

(By (6) the set in the right hand side is non-empty.) Then the map $Q_{\mathcal{C}}: \mathcal{X} \rightarrow \mathbb{R}$ is a quasi-seminorm.

Proof. For every $x \in \mathcal{X}$, let us define the set

$$
T_{\mathbb{C}}(x)=\{t>0: x \in t \mathcal{C}\} .
$$

It is pretty clear that, since $0 \in \mathcal{C}$, we have

$$
T_{\mathbb{C}}(0)=(0, \infty)
$$

so we get

$$
Q_{\mathbb{C}}(0)=\inf T_{\mathbb{C}}(0)=0
$$

Claim 1: For every $x \in X$ and every $\lambda>0$, one has the equality

$$
T_{\mathbb{C}}(\lambda x)=\lambda T_{\mathbb{C}}(x)
$$

Indeed, if $t \in T_{\mathcal{C}}(\lambda x)$, we have $\lambda x \in t \mathcal{C}$, which menas that $\lambda^{-1} t x \in \mathcal{C}$, i.e. $\lambda^{-1} t \in$ $T_{\mathrm{C}}(x)$. Conequently we have

$$
t=\lambda\left(\lambda^{-1} t\right) \in \lambda T_{X}(x)
$$

which proves the inclusion

$$
T_{\mathbb{C}}(\lambda x) \subset \lambda T_{\mathbb{C}}(x)
$$

To prove the other inclusion, we start with some $s \in \lambda T_{\mathcal{C}}(x)$, which means that there exists some $t \in T_{\mathcal{C}}(x)$ with $\lambda t=s$. The fact that $t=\lambda^{-1} s$ belongs to $T_{\mathcal{C}}(x)$ means that $x \in \lambda^{-1} s \mathcal{C}$, so get $\lambda x \in s \mathcal{C}$, so s indeed belongs to $T_{\mathfrak{C}}(\lambda x)$.

Claim 2:: For every $x, y \in X$, one has the inclusion ${ }^{1}$

$$
T_{\mathbb{C}}(x+y) \supset T_{\mathbb{C}}(x)+T_{\mathbb{C}}(y)
$$

[^0]Start with some $t \in T_{\mathbb{C}}(x)$ and some $s \in T_{\mathbb{C}}(y)$. Define the elements $u=t^{-1} x$ and $v=s^{-1} y$. Since $u, v \in \mathcal{C}$, and \mathcal{C} is convex, it follows that \mathcal{C} contains the element

$$
\frac{t}{t+s} u+\frac{s}{t+s} v=\frac{1}{t+s}(x+y)
$$

which means that $x+y \in(t+s) \mathcal{C}$, so $t+s$ indeed belongs to $T_{\mathcal{C}}(x+y)$.
We can now conclude the proof. If $x \in X$ and $\lambda>0$, then the equality

$$
Q_{\mathrm{C}}(\lambda x)=\lambda Q_{\mathrm{C}}(x)
$$

is an immediate consequence of Claim 1 . If $x, y \in \mathcal{X}$, then the inequality

$$
Q_{\mathfrak{C}}(x+y) \leq \lambda Q_{\mathfrak{C}}(x)+Q_{\mathfrak{C}}(y)
$$

is an immediate consequence of Claim 2.
Definition. Under the hypothesis of the above proposition, the quasi-seminorm $Q_{\mathcal{C}}$ is called the Minkowski functional associated with the set \mathcal{C}.

Remark E.1. Let \mathcal{X} be a real vector space. Suppose $\mathcal{C} \subset \mathcal{X}$ is a convex subset, which contains 0 , and has the property (6). Then one has the inclusions

$$
\left\{x \in \mathcal{X}: Q_{\mathcal{C}}(x)<1\right\} \subset \mathcal{C} \subset\left\{x \in \mathcal{X}: Q_{\mathcal{C}}(x) \leq 1\right\}
$$

The second inclusion is pretty obvious, since if we start with some $x \in \mathcal{C}$, using the notations from the proof of Proposition E.1, we have $1 \in T_{\mathfrak{C}}(x)$, so

$$
Q_{\mathcal{C}}(x)=\inf T_{\mathbb{C}}(x) \leq 1
$$

To prove the first inclusion, start with some $x \in \mathcal{X}$ with $Q_{\mathcal{C}}(x)<1$. In particular this means that there exists some $t \in(0,1)$ such that $x \in t \mathrm{C}$. Define the vector $y=t^{-1} x \in \mathcal{C}$ and notice now that, since \mathcal{C} is convex, it will contain the convex combination $t y+(1-t) 0=x$.

Definition. A topological vector space is a vector space X over \mathbb{K} (which is either \mathbb{R} or \mathbb{C}), which is also a topological space, such that the maps

$$
\begin{aligned}
& X \times X \ni(x, y) \longmapsto x+y \in X \\
& \mathbb{K} \times X \ni(\lambda, x) \longmapsto \lambda x \in X
\end{aligned}
$$

are continuous.
Remark E.2. Let X be a real topological vector space. Suppose $\mathcal{C} \subset X$ is a convex open subset, which contains 0 . Then \mathcal{C} has the property (6). Moreover (compare with Remark E.1), one has the equality

$$
\begin{equation*}
\left\{x \in \mathcal{X}: Q_{\mathcal{C}}(x)<1\right\}=\mathcal{C} \tag{7}
\end{equation*}
$$

To prove this remark, we define for each $x \in \mathcal{X}$, the function

$$
F_{x}: \mathbb{R} \ni t \longmapsto t x \in \mathcal{X}
$$

Since X is a topological vector space, the map $F_{x}, x \in X$ are continuous. To prove the property (6) we start with an arbitrary $x \in \mathcal{X}$, and we use the continuity of the $\operatorname{map} F_{x}$ at 0 . Since \mathcal{C} is a neighborhood of 0 , there exists some $\rho>0$ such that

$$
F_{x}(t) \in \mathcal{C}, \quad \forall t \in[-\rho, \rho] .
$$

In particular we get $\rho x \in \mathcal{C}$, which means that $x \in \rho^{-1} \mathcal{C}$.
To prove the equality (7) we only need to prove the inclusion " \supset " (since the inclusion " \subset " holds in general, by Remark E.1). Start with some element $x \in \mathcal{C}$.

Using the continuity of the map F_{x} at 1 , plus the fact that $F_{x}(1)=x \in \mathcal{Q}$, there exists some $\varepsilon>0$, such that

$$
F_{x}(t) \in \mathcal{C}, \quad \forall t \in[1-\varepsilon, 1+\varepsilon] .
$$

In particular, we have $F(1+\varepsilon) \in \mathcal{C}$, which means precisely that

$$
x \in(1+\varepsilon)^{-1} \mathcal{C}
$$

This gives the inequality

$$
Q_{\mathrm{e}}(x) \leq(1+\varepsilon)^{-1},
$$

so we indeed get $Q_{\mathrm{e}}(x)<1$.
The first geometric version of the Hahn-Banach Theorem is:
Lemma E.1. Let \mathcal{X} be a real topological vector space, and let $\mathcal{C} \subset \mathcal{X}$ be a convex open set which contains 0 . If $x_{0} \in X$ is some point which does not belong to \mathcal{C}, then there exists a linear continuous map $\phi: X \rightarrow \mathbb{R}$, such that

- $\phi\left(x_{0}\right)=1$;
- $\phi(v)<1, \forall v \in \mathcal{C}$.

Proof. Consider the linear subspace

$$
y=\mathbb{R} x_{0}=\left\{t x_{0}: t \in \mathbb{R}\right\},
$$

and define $\psi: y \rightarrow \mathbb{R}$ by

$$
\psi\left(t x_{0}\right)=t, \quad \forall t \in \mathbb{R} .
$$

It is obvious that ψ is linear, and $\psi\left(x_{0}\right)=1$.

Claim: One has the inequality

$$
\psi(y) \leq Q_{\mathrm{e}}(y), \quad \forall y \in y .
$$

Let y be represented as $y=t x_{0}$ for some $t \in \mathbb{R}$. It $t \leq 0$, the inequality is clear, because $\psi(y)=t \leq 0$ and the right hand side $Q_{\mathbb{C}}(y)$ is always non-negative. Assume $t>0$. Since Q_{C} is a quasi-seminorm, we have

$$
\begin{equation*}
Q_{\mathrm{C}}(y)=Q_{\mathrm{C}}\left(t x_{0}\right)=t Q_{\mathrm{C}}\left(x_{0}\right), \tag{8}
\end{equation*}
$$

and the fact that $x_{0} \notin \mathcal{C}$ will give (by Remark E.2) the inequality $Q_{\mathbb{C}}\left(x_{0}\right) \geq 1$. Since $t>0$, the computation (8) can be continued with

$$
Q_{\mathrm{e}}(y)=t Q_{\mathrm{e}}\left(x_{0}\right) \geq t=\psi(y),
$$

so the Claim follows also in this case.
Use now the Hahn-Banach Theorem, to find a linear map $\phi: X \rightarrow \mathbb{R}$ such that (i) $\left.\phi\right|_{y}=\psi$;
(ii) $\phi(x) \leq Q_{\mathrm{e}}(x), \forall x \in \mathcal{X}$.

It is obvious that (i) gives $\phi\left(x_{0}\right)=\psi\left(x_{0}\right)=1$. If $v \in \mathcal{C}$, then by Remark E. 2 we have $Q_{\mathrm{C}}(v)<1$, so by (ii) we also get $\phi(v)<1$. This means that the only thing that remains to be proven is the continuity of ϕ. Since ϕ is linear, we only need to prove that ϕ is continuous at 0 . Start with some $\varepsilon>0$. We must find some open set $\mathcal{U}_{\varepsilon} \subset \mathcal{X}$, with $\mathcal{U}_{\varepsilon} \ni 0$, such that

$$
|\phi(u)|<\varepsilon, \quad \forall u \in \mathcal{U}_{\varepsilon} .
$$

We take $\mathcal{U}_{\varepsilon}=(\varepsilon \mathcal{C}) \cap(-\varepsilon \mathcal{C})$. Notice that, for every $u \in \mathcal{U}_{\varepsilon}$, we have $\pm u \in \varepsilon \mathcal{C}$, which gives $\varepsilon^{-1}(\pm u) \in \mathcal{C}$. By Remark E. 2 this gives $Q_{\mathrm{e}}\left(\varepsilon^{-1}(\pm u)\right)<1$, which gives

$$
Q_{\mathrm{e}}(\pm u)<\varepsilon .
$$

Then using property (ii) we immediately get

$$
\phi(\pm u)<\varepsilon
$$

and we are done.
It turns out that the above result is a particular case of a more general result:
Theorem E. 4 (Hahn-Banach Separation Theorem - real case). Let \mathcal{X} be a real topological vector space, let $\mathcal{A}, \mathcal{B} \subset \mathcal{X}$ be non-empty convex sets with \mathcal{A} open, and $\mathcal{A} \cap \mathcal{B}=\varnothing$. Then there exists a linear continuous map $\phi: \mathcal{X} \rightarrow \mathbb{R}$, and a real number α, such that

$$
\phi(a)<\alpha \leq \phi(b), \quad \forall a \in \mathcal{A}, b \in \mathcal{B} .
$$

Proof. Fix some points $a_{0} \in \mathcal{A}, b_{0} \in \mathcal{B}$, and define the set

$$
\mathcal{C}=\mathcal{A}-\mathcal{B}+b_{0}-a_{0}=\left\{a-b+b_{0}-a_{0}: a \in \mathcal{A}, b \in \mathcal{B}\right\} .
$$

It is starightforward that \mathcal{C} is convex and contains 0 . The equality

$$
\mathcal{C}=\bigcup_{b \in \mathcal{B}}\left(\mathcal{A}+b_{0}-a_{0}\right)
$$

shows that \mathcal{C} is also open. Define the vector $x_{0}=b_{0}-a_{0}$. Since $\mathcal{A} \cap \mathcal{B}=\varnothing$, it is clear that $x_{0} \notin \mathcal{C}$.

Use Lemma E. 1 to produce a linear continuous map phi : $\mathcal{X} \rightarrow \mathbb{R}$ such that
(i) $\phi\left(x_{0}\right)=1$;
(ii) $\phi(v)<1, \forall v \in \mathcal{C}$.

By the definition of x_{0} and \mathcal{C}, we have $\phi\left(b_{0}\right)=\phi\left(a_{0}\right)+1$, and

$$
\phi(a)<\phi(b)+\phi\left(a_{0}\right)-\phi\left(b_{0}\right)+1, \quad \forall a \in \mathcal{A}, b \in \mathcal{B},
$$

which gives

$$
\begin{equation*}
\phi(a)<\phi(b), \quad \forall a \in \mathcal{A}, b \in \mathcal{B} . \tag{9}
\end{equation*}
$$

Put

$$
\alpha=\inf _{b \in \mathcal{B}} \phi(b) .
$$

The inequalities (9) give

$$
\begin{equation*}
\phi(a) \leq \alpha \leq \phi(b), \quad \forall a \in \mathcal{A}, b \in \mathcal{B} \tag{10}
\end{equation*}
$$

The proof will be complete once we prove the following
Claim: One has the inequality

$$
\phi(a)<\alpha, \quad \forall a \in \mathcal{A}
$$

Suppose the contrary, i.e. there exists some $a_{1} \in \mathcal{A}$ with $\phi\left(a_{1}\right)=\alpha$. Using the continuity of the map

$$
\mathbb{R} \ni t \longmapsto a_{1}+t x_{0} \in \mathcal{X}
$$

there exists some $\varepsilon>0$ such that

$$
a_{1}+t x_{0} \in \mathcal{A}, \quad \forall t \in[-\varepsilon, \varepsilon]
$$

In particular, by (10) one has

$$
\phi\left(a_{1}+\varepsilon x_{0}\right) \leq \alpha,
$$

10008
which means that

$$
\alpha+\varepsilon \leq \alpha
$$

which is clearly impossible.
Theorem E. 5 (Hahn-Banach Separation Theorem - complex case). Let \mathcal{X} be a complex topological vector space, let $\mathcal{A}, \mathcal{B} \subset \mathcal{X}$ be non-empty convex sets with \mathcal{A} open, and $\mathcal{A} \cap \mathcal{B}=\varnothing$. Then there exists a linear continuous map $\phi: \mathcal{X} \rightarrow \mathbb{C}$, and a real number α, such that

$$
\operatorname{Re} \phi(a)<\alpha \leq \operatorname{Im} \phi(b), \forall a \in \mathcal{A}, b \in \mathcal{B} .
$$

Proof. Regard X as a real topological vector space, and apply the real version to produce an \mathbb{R}-linear continuous map $\phi_{1}: \mathcal{X} \rightarrow \mathbb{R}$, and a real number α, such that

$$
\phi_{1}(a)<\alpha \leq \phi_{1}(b), \quad \forall a \in \mathcal{A}, b \in \mathcal{B}
$$

Then the function $\phi: \mathcal{X} \rightarrow \mathbb{C}$ defined by

$$
\phi(x)=\phi_{1}(x)-i \phi_{1}(i x), \quad x \in X
$$

will clearly satisfy the desired properties.
There is another version of the Hahn-Banach Separation Theorem, which holds for a special type of topological vector spaces. Before we discuss these, we shall need a technical result.

Lemma E.2. Let X be a topological vector space, let $\mathcal{C} \subset X$ be a compact set, and let $\mathcal{D} \subset \mathcal{D}$ be a closed set. Then the set

$$
\mathcal{C}+\mathcal{D}=\{x+y: x \in \mathcal{C} y \in \mathcal{D}\}
$$

is closed.
Proof. Start with some point $p \in \overline{\mathcal{C}+\mathcal{D}}$, and let us prove that $p \in \mathcal{C}+\mathcal{D}$. For every neighborhood \mathcal{U} of 0 , the set $p+\mathcal{U}$ is a neighborhood of p, so by assumption, we have

$$
\begin{equation*}
(p+\mathcal{U}) \cap(\mathcal{C}+\mathcal{D}) \neq \varnothing \tag{11}
\end{equation*}
$$

Define, for each neighborhood \mathcal{U} of 0 , the set

$$
\mathcal{A}_{\mathcal{U}}=(p+\mathcal{U}-\mathcal{D}) \cap \mathcal{C} .
$$

Using (11), it is clear that $\mathcal{A}_{\mathcal{U}}$ is non-empty. It is also clear that, if $\mathcal{U}_{1} \subset \mathcal{U}_{2}$, then $\mathcal{A}_{\mathcal{U}_{1}} \subset \mathcal{A}_{\mathcal{U}_{2}}$. Using the compactness of \mathcal{C}, it follows that

$$
\bigcap_{\substack{u \text { neighborhood } \\ \text { of } 0}} \overline{\mathcal{A}}_{u} \neq \varnothing
$$

Choose then a point q in the above intersection. It follows that

$$
(q+\mathcal{V}) \cap \mathcal{A}_{u} \neq \varnothing
$$

for any two neighborhoods \mathcal{U} and \mathcal{V} of 0 . In other words, for any two such neighborphoods of 0 , we have

$$
\begin{equation*}
(q+\mathcal{V}-\mathcal{U}) \cap(p-\mathcal{D}) \neq \varnothing \tag{12}
\end{equation*}
$$

Fix now an arbitrary neighborhood \mathcal{W} of 0 . Using the continuity of the map

$$
X \times X \ni\left(x_{1}, x_{2}\right) \longmapsto x_{1}-x_{2} \in X
$$

there exist neighborhoods \mathcal{U} and \mathcal{V} of 0 , such that $\mathcal{U}-\mathcal{V} \subset \mathcal{W}$. Then $q+\mathcal{V}-\mathcal{U} \subset$ $q-\mathcal{W}$, so (12) gives

$$
(q-\mathcal{W}) \cap(p-\mathcal{D}) \neq \varnothing
$$

which yields

$$
(p-q+\mathcal{W}) \cap \mathcal{D} \neq \varnothing
$$

Since this is true for all neighborhoods \mathcal{W} of 0 , we get $p-q \in \overline{\mathcal{D}}$, and since \mathcal{D} is closed, we finally get $p-q \in \mathcal{D}$. Since, by construction we have $q \in \mathcal{C}$, it follows that the point $p=q+(p-q)$ indeed belongs to $\mathcal{C}+\mathcal{D}$.

Definition. A topological vector space X is said to be locally convex, if every point has a fundamental system of convex open neighborhoods. This means that for every $x \in \mathcal{X}$ and every neighborhood N of x, there exists a convex open set D, with $x \in D \subset N$.

Theorem E. 6 (Hahn-Banach Separation Theorem for Locally Convex Spaces). Let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C}, and let X be a locally convex \mathbb{K}-vector space. Suppose $\mathcal{C}, \mathcal{D} \subset \mathcal{X}$ are convex sets, with \mathcal{C} compact, \mathcal{D} closed, and $\mathcal{C} \cap \mathcal{D}=\varnothing$. Then there exists a linear continuous map $\phi: \mathcal{X} \rightarrow \mathbb{K}$, and two numbers $\alpha, \beta \in \mathbb{R}$, such that

$$
\operatorname{Re} \phi(x) \leq \alpha<\beta \leq \operatorname{Re} \phi(y), \quad \forall x \in \mathcal{C}, y \in \mathcal{D}
$$

Proof. Consider the convex set $\mathcal{B}=\mathcal{D}-\mathcal{C}$. By Lemma ??, \mathcal{B} is closed. Since $\mathcal{C} \cap \mathcal{D}=\varnothing$, we have $0 \notin \mathcal{B}$. Since \mathcal{B} is closed, its complement $X \backslash \mathcal{B}$ will then be a neighborhood of 0 . Since \mathcal{X} is locally convex, there exists a convex open set \mathcal{A}, with $0 \in \mathcal{A} \subset \mathcal{X} \backslash \mathcal{B}$. In particular we have $\mathcal{A} \cap \mathcal{B}=\varnothing$. Applying the suitable version of the Hahn-Banach Theorem (real or complex case), we find a linear continuous $\operatorname{map} \phi: X \rightarrow \mathbb{K}$, and a real number ρ, such that

$$
\operatorname{Re} \phi(a)<\rho \leq \operatorname{Re} \phi(b), \quad \forall a \in \mathcal{A}, b \in \mathcal{B} .
$$

Notice that, since $\mathcal{A} \ni 0$, we get $\rho>0$. Then the inequality

$$
\rho \leq \operatorname{Re} \phi(b), \quad b \in \mathcal{B}
$$

gives

$$
\operatorname{Re} \phi(y)-\operatorname{Re} \phi(x) \geq \rho>0, \forall x \in \mathcal{C}, y \in \mathcal{D}
$$

Then if we define

$$
\beta=\inf _{y \in \mathcal{D}} \operatorname{Re} \phi(y) \text { and } \alpha=\sup _{x \in \mathcal{C}} \operatorname{Re} \phi(x)
$$

we get $\beta \geq \alpha+\rho$, and we are done.

[^0]: ${ }^{1}$ For subsets $T, S \subset \mathbb{R}$ we define $T+S=\{t+s: t \in T, s \in S\}$.

