
E. The Hahn-Banach Theorem

This Appendix contains several technical results, that are extremely useful
in Functional Analysis. The following terminology is useful in formulating the
statements.

Definitions. Let K be one of the fields R or C, and let X be a K-vector space.

A. A map q : X → R is said to be a quasi-seminorm, if
(i) q(x+ y) ≤ q(x) + q(y), for all x, y ∈ X;
(ii) q(tx) = tq(x), for all x ∈ X and all t ∈ R with t ≥ 0.

B. A map q : X → R is said to be a seminorm if, in addition to the above
two properties, it satisfies:
(ii’) q(λx) = |λ|q(x), for all x ∈ X and all λ ∈ K.

Remark that if q : X → R is a seminorm, then q(x) ≥ 0, for all x ∈ X. (Use
2q(x) = q(x) + q(−x) ≥ q(0) = 0.)

There are several versions of the Hahn-Banach Theorem.

Theorem E.1 (Hahn-Banach, R-version). Let X be an R-vector space. Suppose
q : X → R is a quasi-seminorm. Suppose also we are given a linear subspace Y ⊂ X

and a linear map φ : Y → R, such that

φ(y) ≤ q(y), for all y ∈ Y.

Then there exists a linear map ψ : X → R such that

(i) ψ
∣∣
Y

= φ;
(ii) ψ(x) ≤ q(x) for all x ∈ X.

Proof. We first prove the Theorem in the following:

Particular Case: Assume dim X/Y = 1.

This means there exists some vector x0 ∈ X such that

X = {y + sx0 : y ∈ Y, s ∈ R}.

What we need is to prescribe the value ψ(x0). In other words, we need a number
α ∈ R such that, if we define ψ : X → R by ψ(y+ sx0) = φ(y)+ sα, ∀ y ∈ Y, s ∈ R,
then this map satisfies condition (ii). For s > 0, condition (ii) reads:

φ(y) + sα ≤ q(y + sx0), ∀ y ∈ Y, s > 0,

and, upon dividing by s (set z = s−1y), is equivalent to:

(1) α ≤ q(z + x0)− φ(z), ∀ z ∈ Y.

For s < 0, condition (ii) reads (use t = −s):

φ(y)− tα ≤ q(y − tx0), ∀ y ∈ Y, t > 0,

and, upon dividing by t (set w = t−1y), is equivalent to:

(2) α ≥ φ(w)− q(w − x0), ∀w ∈ Y.
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Consider the sets

Z = {q(z + x0)− φ(z) ; z ∈ Y} ⊂ R
W = {φ(w)− q(w − x0) : w ∈ Y} ⊂ R.

The conditions (1) and (2) are equivalent to the inequalities

(3) sup W ≤ α ≤ inf Z.

This means that, in order to find a real number α with the desired property, it
suffices to prove that sup W ≤ inf Z, which in turn is equivalent to

(4) φ(w)− q(w − x0) ≤ q(z + x0)− φ(z), ∀ z.w ∈ Y.

But the condition (4) is equivalent to

φ(z + w) ≤ q(z + x0) + q(w − x0),

which is obviously satisfied because

φ(z + w) ≤ q(z + w) = q
(
(z + x0) + (w − x0)

)
≤ q(z + x0) + q(w − x0).

Having proved the Theorem in this particular case, let us proceed now with
the general case. Let us consider the set Ξ of all pairs (Z, ν) with

• Z is a subspace of X such that Z ⊃ Y;
• ν : Z → R is a linear functional such that

(i) ν
∣∣
Y

= φ;
(ii) ν(z) ≤ q(z), for all z ∈ Z.

Put an order relation � on Ξ as follows:

(Z1, ν1) � (Z2, ν2) ⇔
{

Z1 ⊃ Z2

ν1
∣∣
Z2

= ν2

Using Zorn’s Lemma, Ξ posesses a maximal element (Z, ψ). The proof of the
Theorem is finished once we prove that Z = X. Assume Z ( X and choose a vector
x0 ∈ X r Z. Form the subspace V = {z + tx0 : z ∈ Z, t ∈ R} and apply the
particular case of the Theorem for the inclusion Z ⊂ V, for ψ : Z → R and for the
quasi-seminorm q

∣∣
V

: V → R. It follows that there exists some linear functional
η : M → R such that

(i) η
∣∣
Z

= ψ (in particular we will also have η
∣∣
Y

= φ);
(ii) η(v) ≤ q(v), for all v ∈ V.

But then the element (V, η) ∈ Ξ will contradict the maximality of (Z, ψ). �

Theorem E.2 (Hahn-Banach, C-version). Let X be an C-vector space. Suppose
q : X → R is a quasi-seminorm. Suppose also we are given a linear subspace Y ⊂ X

and a linear map φ : Y → C, such that

Reφ(y) ≤ q(y), for all y ∈ Y.

Then there exists a linear map ψ : X → R such that
(i) ψ

∣∣
Y

= φ;
(ii) Reψ(x) ≤ q(x) for all x ∈ X.

Proof. Regard for the moment both X and Y as R-vector spaces. Define the
R-linear map φ1 : Y → R by φ1(y) = Reφ(y), for all y ∈ Y, so that we have

φ1(y) ≤ q(y), ∀ y ∈ Y.

Use Theorem E.1 to find an R-linear map ψ1 : X → R such that
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(i) ψ1

∣∣
Y

= φ1;
(ii) ψ1(x) ≤ q(x), for all x ∈ X.

Define the map ψ : X → C by

ψ(x) = ψ1(x)− iψ1(ix), for all x ∈ X.

Claim 1: ψ is C-linear.
It is obvious that ψ is R-linear, so the only thing to prove is that ψ(ix) = iψ(x),

for all x ∈ X. But this is quite obvious:

ψ(ix) = ψ1(ix)− iψ1(i2x) = ψ1(ix)− iψ1(−x) =

= −i2ψ1(ix) + iψ1(x) = i
(
ψ1(x)− iψ1(ix)

)
= iψ(x), ∀x ∈ X.

Because of the way ψ is defined, and because ψ1 is real-valued, condition (ii)
in the Theorem follows immediately

Reψ(x) = ψ1(x) ≤ q(x), ∀x ∈ X,

so in order to finish the proof, we need to prove condition (i) in the Theorem, (i.e.
ψ

∣∣
Y

= φ). This follows from the fact that φ1 = ψ1

∣∣
Y
, and from:

Claim 2: For every y ∈ Y, we have φ(y) = φ1(y)− iφ1(iy).
But this is quite obvious, because

Imφ(y) = −Re (iφ(y)) = −Reφ(iy) = −φ1(iy), ∀ y ∈ Y.

�

Theorem E.3 (Hahn-Banach, for seminorms). Let X be a K-vector space (K
is either R or C). Suppose q is a seminorm on X. Suppose also we are given a
linear subspace Y ⊂ X and a linear map φ : Y → K, such that

|φ(y)| ≤ q(y), for all y ∈ Y.

Then there exists a linear map ψ : X → K such that
(i) ψ

∣∣
Y

= φ;
(ii) |ψ(x)| ≤ q(x) for all x ∈ X.

Proof. We are going to apply Theorems E.1 and E.2, using the fact that q is
also a quasi-seminorm.

The case K = R. Remark that

φ(y) ≤ |φ(y)| ≤ q(y), ∀ y ∈ Y.

So we can apply Theorem E.1 and find ψ : X → R with
(i) ψ

∣∣
Y

= φ;
(ii) ψ(x) ≤ q(x), for all x ∈ X.

Using condition (ii) we also get

−ψ(x) = ψ(−x) ≤ q(−x) = q(x), for all x ∈ X.

In other words we get
±ψ(x) ≤ q(x), for all x ∈ X,

which of course gives the desired property (ii) in the Theorem.
The case K = C. Remark that

Reφ(y) ≤ |φ(y)| ≤ q(y), ∀ y ∈ Y.

So we can apply Theorem E.2 and find ψ : X → R with
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(i) ψ
∣∣
Y

= φ;
(ii) Reψ(x) ≤ q(x), for all x ∈ X.

Using condition (ii) we also get

(5) Re
(
λψ(x)

)
= Reψ(λx) ≤ q(λx) = q(x), for all x ∈ X and all λ ∈ T.

(Here T = {λ ∈ C : |λ| = 1}.) Fix for the moment x ∈ X. There exists some λ ∈ T
such that |ψ(x)| = λψ(x). For this particular λ we will have Re

(
λψ(x)

)
= |ψ(x)|,

so the inequality (5) will give
|ψ(x)| ≤ q(x).

�

In the remainder of this section we will discuss the geometric form of the
Hahn-Banach theorems. We begin by describing a method of constructing quasi-
seminorms.

Proposition E.1. Let X be a real vector space. Suppose C ⊂ X is a convex
subset, which contains 0, and has the property

(6)
⋃
t>0

tC = X.

For every x ∈ X we define

QC(x) = inf{t > 0 : x ∈ tC}.
(By (6) the set in the right hand side is non-empty.) Then the map QC : X → R is
a quasi-seminorm.

Proof. For every x ∈ X, let us define the set

TC(x) = {t > 0 : x ∈ tC}.
It is pretty clear that, since 0 ∈ C, we have

TC(0) = (0,∞),

so we get
QC(0) = inf TC(0) = 0.

Claim 1: For every x ∈ X and every λ > 0, one has the equality

TC(λx) = λTC(x).

Indeed, if t ∈ TC(λx), we have λx ∈ tC, which menas that λ−1tx ∈ C, i.e. λ−1t ∈
TC(x). Conequently we have

t = λ(λ−1t) ∈ λTX(x),

which proves the inclusion
TC(λx) ⊂ λTC(x).

To prove the other inclusion, we start with some s ∈ λTC(x), which means that
there exists some t ∈ TC(x) with λt = s. The fact that t = λ−1s belongs to TC(x)
means that x ∈ λ−1sC, so get λx ∈ sC, so s indeed belongs to TC(λx).

Claim 2:: For every x, y ∈ X, one has the inclusion1

TC(x+ y) ⊃ TC(x) + TC(y).

1For subsets T, S ⊂ R we define T + S = {t + s : t ∈ T, s ∈ S}.
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Start with some t ∈ TC(x) and some s ∈ TC(y). Define the elements u = t−1x and
v = s−1y. Since u, v ∈ C, and C is convex, it follows that C contains the element

t

t+ s
u+

s

t+ s
v =

1
t+ s

(x+ y),

which means that x+ y ∈ (t+ s)C, so t+ s indeed belongs to TC(x+ y).
We can now conclude the proof. If x ∈ X and λ > 0, then the equality

QC(λx) = λQC(x)

is an immediate consequence of Claim 1. If x, y ∈ X, then the inequality

QC(x+ y) ≤ λQC(x) +QC(y)

is an immediate consequence of Claim 2. �

Definition. Under the hypothesis of the above proposition, the quasi-semi-
norm QC is called the Minkowski functional associated with the set C.

Remark E.1. Let X be a real vector space. Suppose C ⊂ X is a convex subset,
which contains 0, and has the property (6). Then one has the inclusions

{x ∈ X : QC(x) < 1} ⊂ C ⊂ {x ∈ X : QC(x) ≤ 1}.
The second inclusion is pretty obvious, since if we start with some x ∈ C, using the
notations from the proof of Proposition E.1, we have 1 ∈ TC(x), so

QC(x) = inf TC(x) ≤ 1.

To prove the first inclusion, start with some x ∈ X with QC(x) < 1. In particular
this means that there exists some t ∈ (0, 1) such that x ∈ tC. Define the vector
y = t−1x ∈ C and notice now that, since C is convex, it will contain the convex
combination ty + (1− t)0 = x.

Definition. A topological vector space is a vector space X over K (which is
either R or C), which is also a topological space, such that the maps

X× X 3 (x, y) 7−→ x+ y ∈ X

K× X 3 (λ, x) 7−→ λx ∈ X

are continuous.

Remark E.2. Let X be a real topological vector space. Suppose C ⊂ X is
a convex open subset, which contains 0. Then C has the property (6). Moreover
(compare with Remark E.1), one has the equality

(7) {x ∈ X : QC(x) < 1} = C.

To prove this remark, we define for each x ∈ X, the function

Fx : R 3 t 7−→ tx ∈ X.

Since X is a topological vector space, the map Fx, x ∈ X are continuous. To prove
the property (6) we start with an arbitrary x ∈ X, and we use the continuity of the
map Fx at 0. Since C is a neighborhood of 0, there exists some ρ > 0 such that

Fx(t) ∈ C, ∀ t ∈ [−ρ, ρ].
In particular we get ρx ∈ C, which means that x ∈ ρ−1C.

To prove the equality (7) we only need to prove the inclusion “⊃” (since the
inclusion “⊂” holds in general, by Remark E.1). Start with some element x ∈ C.
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Using the continuity of the map Fx at 1, plus the fact that Fx(1) = x ∈ C, there
exists some ε > 0, such that

Fx(t) ∈ C, ∀ t ∈ [1− ε, 1 + ε].

In particular, we have F (1 + ε) ∈ C, which means precisely that

x ∈ (1 + ε)−1C.

This gives the inequality
QC(x) ≤ (1 + ε)−1,

so we indeed get QC(x) < 1.

The first geometric version of the Hahn-Banach Theorem is:

Lemma E.1. Let X be a real topological vector space, and let C ⊂ X be a convex
open set which contains 0. If x0 ∈ X is some point which does not belong to C, then
there exists a linear continuous map φ : X → R, such that

• φ(x0) = 1;
• φ(v) < 1, ∀ v ∈ C.

Proof. Consider the linear subspace

Y = Rx0 = {tx0 : t ∈ R},
and define ψ : Y → R by

ψ(tx0) = t, ∀ t ∈ R.
It is obvious that ψ is linear, and ψ(x0) = 1.

Claim: One has the inequality

ψ(y) ≤ QC(y), ∀ y ∈ Y.

Let y be represented as y = tx0 for some t ∈ R. It t ≤ 0, the inequality is clear,
because ψ(y) = t ≤ 0 and the right hand sideQC(y) is always non-negative. Assume
t > 0. Since QC is a quasi-seminorm, we have

(8) QC(y) = QC(tx0) = tQC(x0),

and the fact that x0 6∈ C will give (by Remark E.2) the inequality QC(x0) ≥ 1.
Since t > 0, the computation (8) can be continued with

QC(y) = tQC(x0) ≥ t = ψ(y),

so the Claim follows also in this case.
Use now the Hahn-Banach Theorem, to find a linear map φ : X → R such that

(i) φ
∣∣
Y

= ψ;
(ii) φ(x) ≤ QC(x), ∀x ∈ X.

It is obvious that (i) gives φ(x0) = ψ(x0) = 1. If v ∈ C, then by Remark E.2 we
have QC(v) < 1, so by (ii) we also get φ(v) < 1. This means that the only thing
that remains to be proven is the continuity of φ. Since φ is linear, we only need to
prove that φ is continuous at 0. Start with some ε > 0. We must find some open
set Uε ⊂ X, with Uε 3 0, such that

|φ(u)| < ε, ∀u ∈ Uε.

We take Uε = (εC)∩ (−εC). Notice that, for every u ∈ Uε, we have ±u ∈ εC, which
gives ε−1(±u) ∈ C. By Remark E.2 this gives QC

(
ε−1(±u)

)
< 1, which gives

QC(±u) < ε.
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Then using property (ii) we immediately get

φ(±u) < ε,

and we are done. �

It turns out that the above result is a particular case of a more general result:

Theorem E.4 (Hahn-Banach Separation Theorem - real case). Let X be a real
topological vector space, let A,B ⊂ X be non-empty convex sets with A open, and
A ∩ B = ∅. Then there exists a linear continuous map φ : X → R, and a real
number α, such that

φ(a) < α ≤ φ(b), ∀ a ∈ A, b ∈ B.

Proof. Fix some points a0 ∈ A, b0 ∈ B, and define the set

C = A−B + b0 − a0 = {a− b+ b0 − a0 : a ∈ A, b ∈ B}.
It is starightforward that C is convex and contains 0. The equality

C =
⋃
b∈B

(A + b0 − a0)

shows that C is also open. Define the vector x0 = b0 − a0. Since A ∩ B = ∅, it is
clear that x0 6∈ C.

Use Lemma E.1 to produce a linear continuous map
phi : X → R such that

(i) φ(x0) = 1;
(ii) φ(v) < 1, ∀ v ∈ C.

By the definition of x0 and C, we have φ(b0) = φ(a0) + 1, and

φ(a) < φ(b) + φ(a0)− φ(b0) + 1, ∀ a ∈ A, b ∈ B,

which gives

(9) φ(a) < φ(b), ∀ a ∈ A, b ∈ B.

Put
α = inf

b∈B
φ(b).

The inequalities (9) give

(10) φ(a) ≤ α ≤ φ(b), ∀ a ∈ A, b ∈ B.

The proof will be complete once we prove the following
Claim: One has the inequality

φ(a) < α, ∀ a ∈ A.

Suppose the contrary, i.e. there exists some a1 ∈ A with φ(a1) = α. Using the
continuity of the map

R 3 t 7−→ a1 + tx0 ∈ X

there exists some ε > 0 such that

a1 + tx0 ∈ A, ∀ t ∈ [−ε, ε].
In particular, by (10) one has

φ
(
a1 + εx0) ≤ α,
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which means that
α+ ε ≤ α,

which is clearly impossible. �

Theorem E.5 (Hahn-Banach Separation Theorem - complex case). Let X be
a complex topological vector space, let A,B ⊂ X be non-empty convex sets with A

open, and A ∩ B = ∅. Then there exists a linear continuous map φ : X → C, and
a real number α, such that

Reφ(a) < α ≤ Imφ(b), ∀ a ∈ A, b ∈ B.

Proof. Regard X as a real topological vector space, and apply the real version
to produce an R-linear continuous map φ1 : X → R, and a real number α, such that

φ1(a) < α ≤ φ1(b), ∀ a ∈ A, b ∈ B.

Then the function φ : X → C defined by

φ(x) = φ1(x)− iφ1(ix), x ∈ X

will clearly satisfy the desired properties. �

There is another version of the Hahn-Banach Separation Theorem, which holds
for a special type of topological vector spaces. Before we discuss these, we shall
need a technical result.

Lemma E.2. Let X be a topological vector space, let C ⊂ X be a compact set,
and let D ⊂ D be a closed set. Then the set

C + D = {x+ y : x ∈ C y ∈ D}
is closed.

Proof. Start with some point p ∈ C + D, and let us prove that p ∈ C+D. For
every neighborhood U of 0, the set p+ U is a neighborhood of p, so by assumption,
we have

(11) (p+ U) ∩ (C + D) 6= ∅.

Define, for each neighborhood U of 0, the set

AU = (p+ U−D) ∩ C.

Using (11), it is clear that AU is non-empty. It is also clear that, if U1 ⊂ U2, then
AU1 ⊂ AU2 . Using the compactness of C, it follows that⋂

U neighborhood
of 0

AU 6= ∅.

Choose then a point q in the above intersection. It follows that

(q + V) ∩AU 6= ∅,

for any two neighborhoods U and V of 0. In other words, for any two such neigh-
borphoods of 0, we have

(12) (q + V− U) ∩ (p−D) 6= ∅.

Fix now an arbitrary neighborhood W of 0. Using the continuity of the map

X× X 3 (x1, x2) 7−→ x1 − x2 ∈ X,
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there exist neighborhoods U and V of 0, such that U− V ⊂ W. Then q + V− U ⊂
q −W, so (12) gives

(q −W) ∩ (p−D) 6= ∅,
which yields

(p− q + W) ∩D 6= ∅.
Since this is true for all neighborhoods W of 0, we get p − q ∈ D, and since D is
closed, we finally get p − q ∈ D. Since, by construction we have q ∈ C, it follows
that the point p = q + (p− q) indeed belongs to C + D. �

Definition. A topological vector space X is said to be locally convex, if every
point has a fundamental system of convex open neighborhoods. This means that
for every x ∈ X and every neighborhood N of x, there exists a convex open set D,
with x ∈ D ⊂ N .

Theorem E.6 (Hahn-Banach Separation Theorem for Locally Convex Spaces).
Let K be one of the fields R or C, and let X be a locally convex K-vector space.
Suppose C,D ⊂ X are convex sets, with C compact, D closed, and C∩D = ∅. Then
there exists a linear continuous map φ : X → K, and two numbers α, β ∈ R, such
that

Reφ(x) ≤ α < β ≤ Reφ(y), ∀x ∈ C, y ∈ D.

Proof. Consider the convex set B = D−C. By Lemma ??, B is closed. Since
C∩D = ∅, we have 0 6∈ B. Since B is closed, its complement X r B will then be a
neighborhood of 0. Since X is locally convex, there exists a convex open set A, with
0 ∈ A ⊂ X r B. In particular we have A ∩ B = ∅. Applying the suitable version
of the Hahn-Banach Theorem (real or complex case), we find a linear continuous
map φ : X → K, and a real number ρ, such that

Reφ(a) < ρ ≤ Reφ(b), ∀ a ∈ A, b ∈ B.

Notice that, since A 3 0, we get ρ > 0. Then the inequality

ρ ≤ Reφ(b), b ∈ B

gives
Reφ(y)− Reφ(x) ≥ ρ > 0, ∀x ∈ C, y ∈ D.

Then if we define
β = inf

y∈D
Reφ(y) and α = sup

x∈C
Reφ(x),

we get β ≥ α+ ρ, and we are done. �


