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FUNCTIONS ¢-ORTHOGONAL WITH RESPECT TO THEIR
OWN ZEROS

LUIS DANIEL ABREU

ABSTRACT: In [4], G. H. Hardy proved that, under certain conditions, the only
functions satisfying

/O Ot fOnt)dt = 0 (1)

where the A,’s are the zeros of f, are the Bessel functions. We replace the above
integral by the Jackson ¢-integral and give the g-analogue of Hardy “s result.
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1. Introduction
The orthogonality relations

1
/ sin(mmnt) sin(nwt)dt = 0 (2)
0
if m # n and, for Bessel functions .J, and their nth zero j,,,

[ Rt Gty = 3
0

lead J. M. Whittaker to call such functions orthogonal with respect to their
own zeros [13]. It is known that, under some restrictions, the only such
functions are the Bessel functions. This was shown by G. H. Hardy in [4].
For a remarkable big class of functions he proved that, denoting by A, the
nth zero of f, if f satisfies

/ Ot fOut)dt = 0 ()

then f must be a Bessel function. The classes of functions considered by
Hardy were defined in terms of the position of their zeros and their growth
as entire functions, in the following terms:
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Definition 1. The class A is constituted by all entire functions f of order
less than two or of order two and minimal type of the form

ra==11(1-5) 5)

n=1

where v > —%. The class B s constituted by all entire functions f of the form

f(z) = 2"F(z) (6)
where v > —% and F(z) is an entire function with real but not necessarily
positive zeros, and of order one, or of order one and minimal type, with

F(0) # 0.
Hardy proved that, if they satisfy (4), the functions on the class A must
be of the form Kz%JV_l/Q(cz) and the functions on the class B must be of

the form K.Jo,(cz'/?). We will replace (4) with the slightly more general
orthogonality relation

lAf@MVMJMMﬂ=0 (7)

where dp(t) is a positive defined measure in the real line and the \,s are the
zeros of f.

This paper is organized as follows. In the second section we derive a sam-
pling theorem for this functions that was implicit in Hardy s work. Then,
specializing the measure in (7) in order to obtain the Jackson g-integral,
we will formulate the g-version of the problem, and derive the g¢-difference
equations satisfied by the functions f. For the class A we will recognize the
resulting g-difference equation as being a parametrization of the second order
g-difference equation derived by Meijer and Swarttouw [12] and thus prove
that the only functions in class A that are g-orthogonal with respect to their
own zeros are the third Jackson ¢-Bessel functions.

2. Kramer kernels and Lagrange type interpolation for-
mulas

Suppose that f satisfies (7). If f € A, it is possible to prove that the set
{f(\ut)} is complete in L2[,u, (0,1)] and

fo )\ t d,u( ) 2\, f(z)
L%Vxdem> ISR

(8)
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This was done in [4] for the case du(t) = dx and the proof remains the same
if a general real positive measure du(t) is used. If f € B, the set {f(A,t)} is
complete in L2[x, (0,1)] and

fo fOnt)du(t) f(2)
I If tAn Wdpt) — FOn)(z =)

In the next sections the measure du(t) will be specialized in order to obtain
the g-integral.

The above formulas can be seen from the point of view of Kramer sampling
Lema. Kramer sampling Lema [11] states that if { K(x, A,)} is an orthogonal
basis for L*(u, I) and, for some u € L*(u, I) g can be written in the form

g(z) = / ut) K (1, 2)dpt) (10)

I
then g admits the sampling expansion

= Zg(An)Sn(m) (11)

Sn(a:) — f[ K(t7 /\n)K(l;? a:)d,u(t)
Ji 1K @A) dp(t)

The kernel K(x,t) is called a Kramer kernel. Sometimes the integral above

can be evaluated explicitly. For instance, when K(z,t) it is the solution of

a regular Sturm Liounville eigenvalue problem, the Kramer type sampling
expansion becomes a Lagrange type interpolation formula, with

L(z)
Lt)(z — )

L(t) = ﬁ (1 _ A%) (14)

k=0
As remarked by Everitt, Nasri-Roudsari and Rehberg in [2], the question
of whether there exists a Lagrange interpolation formula for every Kramer
kernel is open. The identities (8) and (9) provide an answer to this question
when K(z,t) = f(xt) (these sort of kernels are usually said to be of the
Watson type) and f in the classes A and B above. A simple application of
Kramer s Lema yields the following

(9)

where

(12)

Su() = (13)

where
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Theorem 1. Let f satisfy (7). If f is in the class A then, every function g
of the form

1
olt) = [ wlo)fat)du(z) (15)
has the sampling expansion

() =23 g0 75 (16)

If f is in the class B then every function g of the form (15) has the sampling
ETPANSLON

oo

010 = - 0 55 5 7

n=1

Special cases of (16) are known when f is the Bessel [5] or the g-Bessel
function [1]. These sampling theorems were originally obtained using special
function formulae and the unitary property of the Hankel and the ¢-Hankel
transform [10].

3. Functions ¢g—orthogonal with respect to their own ze-
ros
3.1. Basic definitions and facts. Following the standard notations in [3],

consider 0 < ¢ < 1 and define the g-shifted factorial for n finite and different
from zero as

(@:9)n=01—-¢q) (1 —aq)...(1—ag"") (18)

and the zero and infinite cases as
(a;9)0 =1 (19)
(43 @)oo = lim (a; q)n (20)

The g—difference operator D, is
f(z) — f(qz)
(1—-q)x

The g-analogue of the rule of the differentiation of a product is

Dy [f(x)g(x)] = f(q2)Deg(x) + g(x) Dy f (x) (22)

qu(x) -

(21)
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and the g—integral in the interval (0,1) is

/0 Wyt = (- ) S f (o) 2 (23)

k=0

It is possible to define an inner product by setting

< fig>= / £ () g(t)dyt (24)

The resulting Hilbert space is commonly denoted by L?](O, 1). We will say
that a function f € Lg(O, 1) is g-orthogonal with respect to its own zeros in
the interval (0, 1) if it satisfies the orthogonality relation

/ 1 F ) f(Ant)dgt = 0 (25)
that is,

> FOnd") fAag)d" =0 (26)

k=0

if n # m. An example of a function satisfying such an orthogonality relation

is the third Jackson ¢-Bessel function J,E?’) (also known in the literature as
the Hahn-Exton ¢-Bessel function) defined by the power series

(n+1)/2

1/+1
JB3) (2:q) (@75 9) 2t 27
( (43 9) nz; ”“,Q) (43 On 27)

Or equivalently, denoting by 7,,(q) the nth zero of I (x;q), by the infinite
product representation

9 ) = O T (1 ) (28)

(¢ Jin(@)

The equivalence of both definitions is an easy consequence of the Hadamard
factorization theorem. It is well known [9] that, if n # m,

1
/ 2 I (g (0%); ) T (@2 (62); ¢ dyr = 0 (29)
0

This function was discussed in the context of quantum groups by Koelink
[8] and the central concepts regarding its role in g-harmonic analysis were
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introduced by Koornwinder and Swarttouw [9]. The J,Ek), k = 1,2, 3 notation
for the Jackson analogues of the Bessel function is due to Ismail [6], [7].

3.2. ¢—difference equations. In [12], Meijer and Swarttouw proved that
the general solution of the g—difference equation

D2y(e) + 1Dl + | = S e =0 (a0)
} H,(z) = AJ® (z;¢°) — BY,, (%;¢%) (31)

where Y, (x; q2) is a g-analogue of Y,, (), the classical second solution of the
Bessel differential equation. The function Y, (:1:; q2) is defined, if v is not an
integer, as
Y, (z;q) = {cos(mv)q"2 T (x;q) — J5) (qu/ % q>} (32)
and, for n an integer, as the limit
Y, (x;q) = limY, (x;q) (33)

L)1 —v)

It is clear that, if v > 0 then Y, is unbounded near x = 0.

Lemma 1. The general solution of the equation

M2 (1—q"2)(1—q¥72)
D? — = 34
Ju(2) + 1= EE y(q2) (34)
s given by
f(z) = z22{AJD) (Mz;¢%) — BY, (Mz;¢°)} (35)
Proof: Set
y(r) =x2H,(Mx) (36)
Apply the operator D, to (36) and use (22) to obtain
1—q 3

MDyH,(Mz) = 22 Dgy(z) +

: _qq v Hy(gr) (37)

Now, to evaluate the second g¢-difference, apply again the operator D, to
(36), but switch the role of the functions f and ¢ in the formula (22). The
result is

MD,H,(Mz) = q 2z~ *Dyy(z) + x 2y (z) (38)
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Applying the operator D, to both members gives

2 12 _
M*D,H,(Mz) = (39)
1 s 1—q¢ ) (1—q3) _s
D) — g e D) + S ) (o)
Using these expressions it is not hard to see that the change of variable (36)
transforms equation (30) in (34). This proves the lemma. m

3.3. The main results. Observe that the g—integral (23) is a Riemann-
Stieltjes integral with respect to a step function having infinitely many points
of increase at the points ¢¥, with the jump at the point ¢* being ¢*. If we
call this step function W, () then dVU,(t) = d,t.

Theorem 2. If f is in the class A and satisfies (25) then f must be of the
form

flx )_Z2KJ< )1/2 (Mx;qQ) (41)
where
M? = —aq*(1 = ¢*)(1 = ) (42)

and K 1s a real constant.

Proof: Take in (8) pu(t) = ¥, (t) to obtain

A\,
/ O )

With minor adaptations, the argument used in [4, page 41 | can be extended
to the g-case to deduce, from the completeness of {f(\,t)} and identity (44),
the following g-integral equation for f(z)

z z 1 —
a/o W (u) dgu = (az® + 2) /0 u” f(u)dgu — 21_7(]23+1z”+1f(z) (45)

where a = —2 > 1/A\2. Then, applying the operator D, to both members of
this equation and dividing by z produces

1% 14 1
2"z W D,f(z) (46)

1— ¢ ~
—2q”+1#ﬁ“z”‘1f(z)—a(q+l) / u flu)dgu =0 (47)
_ 0
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Using the D, operator again and multiplying the resulting equation by the
factor

1=l —g g™ '27")/2 (48)
yields
Dfte) - | SO s DU 8T sy —o
(49)

Observe that replacing v by v — 3 and M by the value given by (42) in (34)
gives (49). Therefore, the general solution of (49) is

fz) = 2{ATY, ) (M;0%) — BY, 1 (Mz; %)} (50)

with M as in (42). But as we have seen, Y, is unbounded near x = 0 and f
is analytic at x = 0. This implies B = 0. Therefore, (41) holds. n

Remark 1. This agrees with orthogonality relation (29). To see this, just
replace in (41) v by v + % The result is

flz) = Az2JP (Mz; ¢*) (51)
with
M? = —aq (1 — ¢*) (1L — ¢>*?) (52)

To evaluate a, take the logarithmic derivative in (28) and set v = 0. This
yields

0 2

L q
) Rl s s w3 (53)

k=0 Jnv
Therefore M = q.

If f € B it is also possible to find the ¢-difference equation satisfied by f.

Theorem 3. If f is in the class B and f satisfies (25) then f must satisfy
the following q-difference equation:

1 (1-¢)1—=¢"") 1-=¢""(a+1)

Dgf(z)+q_quf(Z)_[ (1 _ q2)qy+lz2 o (1 + Q)qy+22 ]f(qz) =0 (54)

where a = F(0).
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Proof: Take in (9) pu(t) = ¥, (t) to obtain
/ F(2t) fOnt)d, A /() (55)

The integral equation obtained this time is

a /OZ T f (u) du = (az + 2) /OZ uw” f(u)dgu — %z”lf(z) (56)

Use of the ¢-difference operator as in Theorem 2 establishes (54). |
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