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FUNCTIONS q-ORTHOGONAL WITH RESPECT TO THEIR
OWN ZEROS

LUIS DANIEL ABREU

Abstract: In [4], G. H. Hardy proved that, under certain conditions, the only
functions satisfying

∫

1

0

f(λmt)f(λnt)dt = 0 (1)

where the λńs are the zeros of f , are the Bessel functions. We replace the above
integral by the Jackson q-integral and give the q-analogue of Hardy´s result.
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1. Introduction

The orthogonality relations
∫ 1

0

sin(mπt) sin(nπt)dt = 0 (2)

if m 6= n and, for Bessel functions Jν and their nth zero jνn,
∫ 1

0

tJν(jνmt)Jν(jνnt)dt = 0 (3)

lead J. M. Whittaker to call such functions orthogonal with respect to their
own zeros [13]. It is known that, under some restrictions, the only such
functions are the Bessel functions. This was shown by G. H. Hardy in [4].
For a remarkable big class of functions he proved that, denoting by λn the
nth zero of f , if f satisfies

∫ 1

0

f(λmt)f(λnt)dt = 0 (4)

then f must be a Bessel function. The classes of functions considered by
Hardy were defined in terms of the position of their zeros and their growth
as entire functions, in the following terms:
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Definition 1. The class A is constituted by all entire functions f of order
less than two or of order two and minimal type of the form

f(z) = zν
∞
∏

n=1

(

1 −
z2

λ2
n

)

(5)

where ν > −1
2 .The class B is constituted by all entire functions f of the form

f(z) = zνF (z) (6)

where ν > −1
2 and F (z) is an entire function with real but not necessarily

positive zeros, and of order one, or of order one and minimal type, with
F (0) 6= 0.

Hardy proved that, if they satisfy (4), the functions on the class A must

be of the form Kz
1

2Jν−1/2(cz) and the functions on the class B must be of

the form KJ2ν(cz
1/2). We will replace (4) with the slightly more general

orthogonality relation
∫ 1

0

f(λmt)f(λnt)dµ(t) = 0 (7)

where dµ(t) is a positive defined measure in the real line and the λńs are the
zeros of f .

This paper is organized as follows. In the second section we derive a sam-
pling theorem for this functions that was implicit in Hardy´s work. Then,
specializing the measure in (7) in order to obtain the Jackson q-integral,
we will formulate the q-version of the problem, and derive the q-difference
equations satisfied by the functions f . For the class A we will recognize the
resulting q-difference equation as being a parametrization of the second order
q-difference equation derived by Meijer and Swarttouw [12] and thus prove
that the only functions in class A that are q-orthogonal with respect to their
own zeros are the third Jackson q-Bessel functions.

2. Kramer kernels and Lagrange type interpolation for-

mulas

Suppose that f satisfies (7). If f ∈ A, it is possible to prove that the set
{f(λnt)} is complete in L2

q[µ, (0, 1)] and
∫ 1

0 f(zt)f(λnt)dµ(t)
∫ 1

0 |f(xλn)|
2 dµ(x)

=
2λn

f ′(λn)

f(z)

z2 − λ2
n

(8)
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This was done in [4] for the case dµ(t) = dx and the proof remains the same
if a general real positive measure dµ(t) is used. If f ∈ B, the set {f(λnt)} is
complete in L2

q[µ, (0, 1)] and
∫ 1

0 f(zt)f(λnt)dµ(t)
∫ 1

0 |f(tλn)|
2 dµ(t)

=
f(z)

f ′(λn)(z − λn)
(9)

In the next sections the measure dµ(t) will be specialized in order to obtain
the q-integral.

The above formulas can be seen from the point of view of Kramer sampling
Lema. Kramer sampling Lema [11] states that if {K(x, λn)} is an orthogonal
basis for L2(µ, I) and, for some u ∈ L2(µ, I) g can be written in the form

g(x) =

∫

I

u(t)K(t, x)dµ(t) (10)

then g admits the sampling expansion

g(x) =
∞

∑

n=1

g(λn)Sn(x) (11)

where

Sn(x) =

∫

I K(t, λn)K(t, x)dµ(t)
∫

I |K(t, λn)|
2 dµ(t)

(12)

The kernel K(x, t) is called a Kramer kernel. Sometimes the integral above
can be evaluated explicitly. For instance, when K(x, t) it is the solution of
a regular Sturm Liounville eigenvalue problem, the Kramer type sampling
expansion becomes a Lagrange type interpolation formula, with

Sn(x) =
L(x)

Ĺ(t)(x − λn)
(13)

where

L(t) =
∞
∏

k=0

(

1 −
t

λk

)

(14)

As remarked by Everitt, Nasri-Roudsari and Rehberg in [2], the question
of whether there exists a Lagrange interpolation formula for every Kramer
kernel is open. The identities (8) and (9) provide an answer to this question
when K(x, t) = f(xt) (these sort of kernels are usually said to be of the
Watson type) and f in the classes A and B above. A simple application of
Kramer´s Lema yields the following
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Theorem 1. Let f satisfy (7). If f is in the class A then, every function g
of the form

g(t) =

∫ 1

0

u(x)f(xt)dµ(x) (15)

has the sampling expansion

g(t) = 2
∞

∑

n=1

g(λn)
2λn

f ′(λn)

f(t)

t2 − λ2
n

(16)

If f is in the class B then every function g of the form (15) has the sampling
expansion

g(t) =
∞

∑

n=1

g(λn)
f(t)

f ′(λn)(t − λn)
(17)

Special cases of (16) are known when f is the Bessel [5] or the q-Bessel
function [1]. These sampling theorems were originally obtained using special
function formulae and the unitary property of the Hankel and the q-Hankel
transform [10].

3. Functions q−orthogonal with respect to their own ze-

ros

3.1. Basic definitions and facts. Following the standard notations in [3],
consider 0 < q < 1 and define the q-shifted factorial for n finite and different
from zero as

(a; q)n = (1 − q) (1 − aq) ...
(

1 − aqn−1
)

(18)

and the zero and infinite cases as

(a; q)0 = 1 (19)

(a; q)∞ = lim
n→∞

(a; q)n (20)

The q−difference operator Dq is

Dqf(x) =
f(x) − f(qx)

(1 − q)x
(21)

The q-analogue of the rule of the differentiation of a product is

Dq [f(x)g(x)] = f(qx)Dqg(x) + g(x)Dqf(x) (22)
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and the q−integral in the interval (0, 1) is
∫ z

0

f (t) dqt = (1 − q)
∞

∑

k=0

f
(

zqk
)

zqk (23)

It is possible to define an inner product by setting

< f, g >=

∫ 1

0

f (t) g(t)dqt (24)

The resulting Hilbert space is commonly denoted by L2
q(0, 1). We will say

that a function f ∈ L2
q(0, 1) is q-orthogonal with respect to its own zeros in

the interval (0, 1) if it satisfies the orthogonality relation
∫ 1

0

f(λmt)f(λnt)dqt = 0 (25)

that is,
∞

∑

k=0

f(λmqk)f(λnq
k)qk = 0 (26)

if n 6= m. An example of a function satisfying such an orthogonality relation

is the third Jackson q-Bessel function J
(3)
ν (also known in the literature as

the Hahn-Exton q-Bessel function) defined by the power series

J (3)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

∞
∑

n=0

(−1)n qn(n+1)/2

(qν+1; q)n(q; q)n
x2n+ν (27)

Or equivalently, denoting by jnν(q) the nth zero of J
(3)
ν (x; q), by the infinite

product representation

J (3)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

xν
∞
∏

n=1

(

1 −
x2

j2
nν(q)

)

(28)

The equivalence of both definitions is an easy consequence of the Hadamard
factorization theorem. It is well known [9] that, if n 6= m,

∫ 1

0

xJ (3)
ν (qxjnν(q

2); q2)J (3)
ν (qxjmν(q

2); q2)dqx = 0 (29)

This function was discussed in the context of quantum groups by Koelink
[8] and the central concepts regarding its role in q-harmonic analysis were



6 LUIS DANIEL ABREU

introduced by Koornwinder and Swarttouw [9]. The J
(k)
ν , k = 1, 2, 3 notation

for the Jackson analogues of the Bessel function is due to Ismail [6], [7].

3.2. q−difference equations. In [12], Meijer and Swarttouw proved that
the general solution of the q−difference equation

D2
qy(z) +

1

z
Dqy(z) +

[

q2−ν

(1 − q)2
−

(1 − qν)(1 − q−ν)

(1 − q)2z2

]

y(qz) = 0 (30)

is
Hν(x) = AJ (3)

ν

(

x; q2
)

− BYν

(

x; q2
)

(31)

where Yν

(

x; q2
)

is a q-analogue of Yν (x), the classical second solution of the

Bessel differential equation. The function Yν

(

x; q2
)

is defined, if ν is not an
integer, as

Yν (x; q) =
Γq(ν)Γq(1 − ν)

π
{cos(πν)qν/2J (3)

ν (x; q) − J
(3)
−ν

(

xq−ν/2; q
)

} (32)

and, for n an integer, as the limit

Yn (x; q) = lim
ν→n

Yν (x; q) (33)

It is clear that, if ν > 0 then Yν is unbounded near x = 0.

Lemma 1. The general solution of the equation

D2
qy(z) +

[

M 2q
3

2
−ν

(1 − q2)
−

(1 − qν− 1

2 )(1 − q−ν− 1

2 )

(1 − q2)z2

]

y(qz) = 0 (34)

is given by

f(z) = z
1

2{AJ (3)
ν

(

Mx; q2
)

− BYν

(

Mx; q2
)

} (35)

Proof : Set

y(x) = x
1

2Hν(Mx) (36)

Apply the operator Dq to (36) and use (22) to obtain

MDqHν(Mx) = x− 1

2Dqy(x) +
1 − q−

1

2

1 − q
x− 3

2y(qx) (37)

Now, to evaluate the second q-difference, apply again the operator Dq to
(36), but switch the role of the functions f and g in the formula (22). The
result is

MDqHν(Mx) = q−
1

2x− 1

2Dqy(x) +
1 − q−

1

2

1 − q
x− 3

2y(x) (38)
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Applying the operator Dq to both members gives

M 2D2
qHν(Mx) = (39)

q−1x− 1

2D2
qy(x) − q−1x− 3

2Dqy(x) +
(1 − q−

1

2 )(1 − q−
3

2 )

(1 − q)2
x− 5

2y(qx) (40)

Using these expressions it is not hard to see that the change of variable (36)
transforms equation (30) in (34). This proves the lemma.

3.3. The main results. Observe that the q−integral (23) is a Riemann-
Stieltjes integral with respect to a step function having infinitely many points
of increase at the points qk, with the jump at the point qk being qk. If we
call this step function Ψq(t) then dΨq(t) = dqt.

Theorem 2. If f is in the class A and satisfies (25) then f must be of the
form

f(x) = z
1

2KJ
(3)
ν−1/2

(

Mx; q2
)

(41)

where
M 2 = −aq−3(1 − q2)(1 − q2ν+1) (42)

a = −2
∑ 1

λ2
n

(43)

and K is a real constant.

Proof : Take in (8) µ(t) = Ψq(t) to obtain
∫ 1

0

f(zt)f(λnt)dqt =
2Anλn

f ′(λn)

f(z)

z2 − λ2
n

(44)

With minor adaptations, the argument used in [4, page 41 ] can be extended
to the q-case to deduce, from the completeness of {f(λnt)} and identity (44),
the following q-integral equation for f(z)

a

∫ z

0

uν+2f (u) dqu = (az2 + 2)

∫ z

0

uνf(u)dqu − 2
1 − q

1 − q2ν+1
zν+1f(z) (45)

where a = −2
∑

1/λ2
n. Then, applying the operator Dq to both members of

this equation and dividing by z produces

2qν+1zν 1 − q

1 − q2ν+1
Dqf(z) (46)

−2qν+1 1 − qν

1 − q2ν+1
zν−1f(z) − a(q + 1)

∫ qz

0

uνf(u)dqu = 0 (47)
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Using the Dq operator again and multiplying the resulting equation by the
factor

(1 − q2ν+1)(1 − q)−1q−2ν−1z−ν/2 (48)

yields

D2
qf(z) −

[

(1 − qν)(1 − qν−1)q−ν

(1 − q)2z2
+

a(1 + q)(1 − q2ν+1)q−ν−1

1 − q

]

f(qz) = 0

(49)
Observe that replacing ν by ν − 1

2 and M by the value given by (42) in (34)
gives (49). Therefore, the general solution of (49) is

f(x) = z
1

2{AJ
(3)
ν−1/2

(

Mx; q2
)

− BYν−1/2

(

Mx; q2
)

} (50)

with M as in (42). But as we have seen, Yν is unbounded near x = 0 and f
is analytic at x = 0. This implies B = 0. Therefore, (41) holds.

Remark 1. This agrees with orthogonality relation (29). To see this, just
replace in (41) ν by ν + 1

2. The result is

f(x) = Az
1

2J (3)
ν

(

Mx; q2
)

(51)

with

M 2 = −aq−3(1 − q2)(1 − q2ν+2) (52)

To evaluate a, take the logarithmic derivative in (28) and set x = 0. This
yields

∞
∑

k=0

1

j2
nv(q

2)
=

q2

(1 − q2)(1 − q2ν+2)
(53)

Therefore M = q.

If f ∈ B it is also possible to find the q-difference equation satisfied by f .

Theorem 3. If f is in the class B and f satisfies (25) then f must satisfy
the following q-difference equation:

D2
qf(z)+

1

qz
Dqf(z)−[

(1 − qν)(1 − qν−1)

(1 − q2)qν+1z2
−

(1 − q2ν+1)(a + 1)

(1 + q)qν+2z
]f(qz) = 0 (54)

where a = F́ (0).
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Proof : Take in (9) µ(t) = Ψq(t) to obtain
∫ 1

0

f(zt)f(λnt)dqt =
An

f ′(λn)

f(z)

z − λn
(55)

The integral equation obtained this time is

a

∫ z

0

uν+1f (u) dqu = (az + 2)

∫ z

0

uνf(u)dqu −
1 − q

1 − q2ν+1
zν+1f(z) (56)

Use of the q-difference operator as in Theorem 2 establishes (54).
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