

Cgroup
And

Memory Resource
Controller

Japan Linux Symposium 19/Nov/2008

Kame
kamezawa.hiroyu@jp.fujitsu.com

Contents

● Background
● Cgroup and subsystems

● Subsystems Quick Tour
● Memory Resource Controller

● Now and Future
● Demonstration

Background(1)

● In old ages, single-user system, all resource are
under control of users. Resource control was
simple.

● After multi-user system, Operating System(OS)

controls resource instead of users and shares it
in appropriate way by “Scheduling Algorithm”

Background(2)

● Scheduling algorithm works well ?
● Depends on workload.

● In '80-90 ages, many studies for “resource
control” are done. The operator can divide
OS's resource into several groups.

OS

Gold user

Silver user

Iron user

Background(3)

● In '00 ages, interests of study are moved to
security and Web.

● Cpu/Netowork getting faster and faster
● Server system is made by pc-cluster not by a

big iron.
● Where is resource should be divided ?.....

But....

Background(4)

● In these days
➔ Cpus are multi-core. SMP is usual machine.
➔ Memory is getting cheaper and cheaper.
➔ Virtual Machine is now popular system. Used in

production.

How about OS level control ?

Background(5)

● Proprietary Operating Systems (UNIX) provides

“resource management system”
● Popular design is 3-level.

➢ Virtualization by Virtual Machine
➢ Divide system into independent blocks.

(container, jail)
➢ Precise and Flexible control per group of processes.

3Levels of resource control

Virtual Machine

OS1 OS2

Isolation by
Virtual Machine

OS

VIEW1 VIEW2

Isolation by OS(Virtual OS)
(Container/Jail)

OS

Group1

Group2

Flexible Resource Control

Virtual Machine Container RC

Performance Not good Very good Good

Isolation/Security Very good Good Not good

Runtime
Flexibility

Not good Good Very good

Maintenance Not good Good Good

About Linux ?

● Out-of-tree controls
● Virtuozzo/OpenVZ
● Linux Vserver

need out-of-tree kernel patches.

● Several proposals are done and

Paul Menage(google) finally implemented
“cgroup” as base technology for control.

Contents

● Background

● Cgroup and subsystems
● Subsystems Quick Tour

● Memory Resource Controller
● Now and Future

● Demonstration

Cgroup

● Cgroup is a method to put processes into
groups.

● It was “container group” but is “control group”
● Has following characteristics

● Implemented as pseudo filesystem.
● Grouping can be done by a unit of thread.
● Many functions are implemented as “subsystem”
● A child process is automatically put into a group

under which its parent is.

Cgroup interface

1.mount
mount -t cgroup none /cgroup -o subsystem

2.mkdir
mkdir /cgroup/group01

3.attach
#echo <PID> > /cgroup/group01/tasks

After Work.

4.rmdir
rmdir /cgroup/group01

Cgroup Subsystems(1)

● Can be specified as mount option of cgroupfs.

ex) #mount -t cgroup none /cgroup -o cpu
● 2 types of subsystem in general

A) Isolation and special controls
cpuset, namespace, freezer, device, checkpoint/restart

B) Resource control

 cpu(scheduler), memory, disk i/o

● Each subsystem can be mounted independently.
=> next

Cgroup subsystems(2)

● Ex) mount each subsystem independently

mount -t cgroup none /cpu -o cpu
mount -t cgroup none /memory -o memory
mount -t cgroup none /devices -o device

● Ex) mount at once

mount -t cgroup none /xxx -o cpu,memory
● /proc/cgroups
● /proc/<PID>/cgroups

Cpuset (feature for isolation)

● Cpuset if for tying processes with cpu and
(NUMA) memory.

● Used in production

Memory

cpu cpucpucpu cpu cpu cpu cpu

Process
GroupA1

Process
GroupB

Process
GroupA2

Memory Memory Memory

Process
GroupA1

Process
GroupA2

Process
GroupB

Cpuset + Fake NUMA

● For SMP, Fake-NUMA is available(x86-64)

Memory

cpu cpucpucpu cpu cpu cpu cpu

Process
GroupA1

Process
GroupB

Process
GroupA2

Memory Memory

Process
GroupA1

Process
GroupA2

Process
GroupB

numa=fake=2

Namespace(feature for isolation)

● Namespace is for showing private view of
system to processes in cgroup. Mainly used for
OS-level virtualization. This subsystem itself
has no special functions and just tracks
changes in namespace via clone()/unshare().
● UTS namespace (for uname())
● IPC namespace (for SYSV ipc)
● USER namespace (for UID/GID)
● PID namespace (for PID)

/cgroups/(...)/node_<pid>/node_<pid>/....

Namespace(cont.)

NamespaceA

PID=512

PID=3856

ROOT System

Freezer(feature for control)

● Freezer cgroup is for freezing(stopping) all
tasks in a group.

#mount -t cgroup none /freezer -o freezer

....put task into /freezer/tasks...

#echo FROZEN > /freezer/freezer.state

#echo RUNNING > /freezer/freezer.state

Device(feature for isolation)

● Device cgroup as device-white-list.
● A system administrator can provide a list of

device can be accessed by processes under
group.

● Allow/Deny Rule.
● Allow/Deny : READ/WRITE/MKNOD

Device (Cont.)

Limits access to device (file system on device)

of tasks in specified cgroup.

#echo [b|c] MAJOR MINOR r/w/m >
devices.allow

cat devices.list to see list

checkpoint/restart(feature for control)

● Save all process's status in a cgroup to a dump
file, restart it later. (or just save and continue.)

● For allowing “saved container” moved between
physical machines.(as VM can do.)

● Dump all process's image to a file.

State: RFC. (not in -mm)

CPU(for resource control)

● Share cpu bandwidth between groups by group
scheduling function of CFS(a new scheduler)

● Mechanically complicated
● Latency problem still ? (default=n, now)

(bandwidth is well controlled.but..)

share=2000 share=1000 share=4000

Memory(for resource control)

● For limiting memory usage of processes.
● Just limit LRU pages (anonymous and file

cache)
● No limits for further kernel memory

● maybe in another subsystem if needed

● Details in later.

Disk I/O(for resource control)

● 6~7 proposals have been done by many
players.

● Recently, it seems they will be able to make a
consensus.

● In recent discussion,
● Developing 2-level scheduler will break something.
● Developing per-io-scheduler cgroup callback.
● Supporting both of “weight/share” and “limit”

Contents

● Background
● Cgroup and subsystems

● Subsystems Quick Tour

● Memory Resource Controller
● Now and Future

● Demonstration

Features of memory resource controller

● Limiting usage of anon and file-caches.
● Optionally limiting usage of memory+swap.

(now under test)
● Remaining page caches in obsolete cgroup can

be dropped.

Account logic(1)

● page_cgroup, new struct per page, is used for
tracking pages.

● Memory resouce controller has its own LRU.

Global LRU

struct page (memmap)

Private LRU1

Private LRU2

struct page cgroup

Account logic(2)

● A page is accounted when
● Anonymous page is allocated (page fault)
● File cache is added. (add to page cache)

● When account_swap=enabled
● Swap entry is also accounted.
● Swapped-in page goes back under its original

allocator.

Limiting memory

● Account logic works even if cgoup is not
mounted. (To disable, pass boot option.)

● When memory usage reaches limit, the kernel
try to reduce memory usage as global LRU
does by using private LRU.

Limiting memory (cont.)

#mount -t cgroup none /memory -o memory

#mkdir /memory/group01

#echo 128M > (...)/memory.limit_in_bytes

#echo $$ > (...)/tasks
#cp veryverybigfile tmpfile

(memory usage doesn't exceeds 128M)

#echo $$ > /memoy/tasks (moves back to..)
#rmdir group01

Out-Of-Memory(OOM)

● At OOM, a process in the cgroup will be killed
by oom-killer.

● Special OOM handler development is in plan.
● If global LRU hits OOM, usual OOM killer is

invoked.

Limiting Mem+Swap

● Now, tested under -mm kernel.
● Limiting usage of Memory+Swap.

echo 512M > memory.limit_in_bytes.

echo 1G > memory.memsw.limit_in_bytes.

In above case, memory usage will be limited to
300M when swap usage is 700M.

● Can be disabled by boot option.

Why Mem+Swap ?

● “swap” controller can be worked as a kind of
mlock(). This is bad.

● In Mem+Swap controller, global LRU will not be
affected by Mem+Swap controller.

Mem Swap

Swap controller

Have to charge against swap

Mem Swap

Mem+Swap

No changes in count

Hit Limits!

Overhead
● Implicitly accounted(means overhead) even when not mounted.

(can be disabled by boot option)

● My personal goal is 3~5%.(My boss's request is 3% ;)

● Unixbench on x86-64/8cpu/2.6.28-rc4mm, bigger is better.

test disabled enabled

Execl 1778 1731

shell(8) 2262 2207

Arithmetic 1558482 1557442

File Read/Write 773977 / 109065 751117 / 109092

C compier 1193 1165

TODO

● Hierarchy support
● User Land Tools!
● Stabilization/optimization/clean up
● Support for vm parameters,

● dirty_ratio , swapiness, etc....

● Fix LRU algorithm to be the same as global's
● Documentation
● And Disk I/O controller will be necessary.....

Memory Resource Controller: this year

● Almost one year of development.

2.6.25 2.6.28-rc4mm

(from http://sozai-free.com/)

Will be biggershould be careful about maintenance

Special thanks to
Balbir Singh(IBM) and Daisuke Nishimura(NEC), Hugh Dickins(Veritas)

and all folks

Questions?
2.6.X?

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39

