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Background(1)

● In old ages, single-user system, all resource are 
under control of users. Resource control was 
simple.

● After multi-user system, Operating System(OS)

controls resource instead of users and shares it 
in appropriate way by “Scheduling Algorithm”



  

Background(2)

●  Scheduling algorithm works well ?
● Depends on workload.

● In '80-90 ages, many studies for “resource 
control” are done.  The operator can divide 
OS's resource into several groups.

OS

Gold user

Silver user

Iron user



  

Background(3)

● In '00 ages, interests of study are moved to 
security and Web.

● Cpu/Netowork getting faster and faster
● Server system is made by pc-cluster not by a 

big iron.
● Where is resource should be divided ?.....

But....



  

Background(4)

● In these days
➔ Cpus are multi-core. SMP is usual machine.
➔ Memory is getting cheaper and cheaper.
➔ Virtual Machine is now popular system. Used in 

production.

How about OS level control ?



  

Background(5)

● Proprietary Operating Systems (UNIX) provides

“resource management system”
● Popular design is 3-level.

➢ Virtualization by Virtual Machine
➢ Divide system into independent blocks. 

(container, jail)
➢ Precise and Flexible control per group of processes.



  

3Levels of resource control

Virtual Machine

OS1 OS2

Isolation by
Virtual Machine

OS

VIEW1 VIEW2

Isolation by OS(Virtual OS)
(Container/Jail)

OS

Group1

Group2

Flexible Resource Control

Virtual Machine Container RC

Performance   Not good  Very good Good

Isolation/Security Very good Good  Not good

Runtime 
Flexibility

Not good Good Very good

Maintenance Not good  Good Good



  

About Linux ?

● Out-of-tree controls
● Virtuozzo/OpenVZ
● Linux Vserver

need out-of-tree kernel patches.

● Several proposals are done and

Paul Menage(google) finally implemented 
“cgroup” as base technology for control.
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Cgroup

● Cgroup is a method to put processes into 
groups.

● It was “container group” but is “control group”
● Has following characteristics

● Implemented as pseudo filesystem.
● Grouping can be done by a unit of thread.
● Many functions are implemented as “subsystem”
● A child process is automatically put into a group 

under which its parent is.



  

Cgroup interface

1.mount
# mount -t cgroup none /cgroup -o subsystem

2.mkdir
# mkdir /cgroup/group01

3.attach
#echo <PID> > /cgroup/group01/tasks

After Work.

4.rmdir
# rmdir /cgroup/group01



  

Cgroup Subsystems(1)

● Can be specified as mount option of cgroupfs.

ex) #mount -t cgroup none /cgroup -o cpu
● 2 types of subsystem in general

A) Isolation and special controls
cpuset, namespace, freezer, device, checkpoint/restart

B) Resource control

    cpu(scheduler),  memory, disk i/o

● Each subsystem can be mounted independently.
=> next



  

Cgroup subsystems(2)

● Ex) mount each subsystem independently

# mount -t cgroup none /cpu -o cpu
# mount -t cgroup none /memory -o memory
# mount -t cgroup none /devices -o device

● Ex) mount at once

# mount -t cgroup none /xxx -o cpu,memory
● /proc/cgroups
● /proc/<PID>/cgroups



  

Cpuset (feature for isolation)

● Cpuset if for tying processes with cpu and 
(NUMA) memory.

● Used in production

Memory

cpu cpucpucpu cpu cpu cpu cpu

Process
GroupA1

Process
GroupB

Process
GroupA2

Memory Memory Memory

Process
GroupA1

Process
GroupA2

Process
GroupB



  

Cpuset + Fake NUMA

● For SMP, Fake-NUMA is available(x86-64)

Memory

cpu cpucpucpu cpu cpu cpu cpu

Process
GroupA1

Process
GroupB

Process
GroupA2

Memory Memory

Process
GroupA1

Process
GroupA2

Process
GroupB

numa=fake=2



  

Namespace(feature for isolation)

● Namespace is for showing private view of 
system to processes in cgroup. Mainly used for 
OS-level virtualization. This subsystem itself 
has no special functions and just tracks 
changes in namespace via clone()/unshare().
● UTS namespace (for uname())
● IPC namespace (for SYSV ipc)
● USER namespace (for UID/GID)
● PID namespace (for PID)

/cgroups/(...)/node_<pid>/node_<pid>/....



  

Namespace(cont.)

NamespaceA

PID=512

PID=3856

ROOT System



  

Freezer(feature for control)

● Freezer cgroup is for freezing(stopping) all 
tasks in a group.

#mount -t cgroup  none /freezer -o freezer

....put task into /freezer/tasks...

#echo FROZEN > /freezer/freezer.state

#echo RUNNING > /freezer/freezer.state



  

Device(feature for isolation)

● Device cgroup as device-white-list.
● A system administrator can provide a list of 

device can be accessed by processes under 
group.

● Allow/Deny Rule.
● Allow/Deny  : READ/WRITE/MKNOD



  

Device (Cont.)

Limits access to device (file system on device)

of tasks in specified cgroup. 

#echo [b|c] MAJOR MINOR r/w/m > 
devices.allow

# cat devices.list to see list



  

checkpoint/restart(feature for control)

● Save all process's status in a cgroup to a dump 
file, restart it later. (or just save and continue.)

● For allowing “saved container” moved between 
physical machines.(as VM can do.)

● Dump all process's image to a file.

State: RFC. (not in -mm)



  

CPU( for resource control)

● Share cpu bandwidth between groups by group 
scheduling function of CFS(a new scheduler)

● Mechanically complicated
● Latency problem still ? (default=n, now)

(bandwidth is well controlled.but..)

share=2000 share=1000 share=4000



  

Memory(for resource control)

● For limiting memory usage of processes.
● Just limit LRU pages (anonymous and file 

cache)
● No limits for further kernel memory 

●  maybe in another subsystem if needed

● Details in later.



  

Disk I/O(for resource control)

● 6~7 proposals have been done by many 
players.

● Recently, it seems they will be able to make a 
consensus.

● In recent discussion,
● Developing 2-level scheduler  will break something.
● Developing per-io-scheduler cgroup callback.
● Supporting both of “weight/share” and “limit” 
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Features of memory resource controller

● Limiting usage of anon and file-caches.
● Optionally limiting usage of memory+swap.

(now under test)
● Remaining page caches in obsolete cgroup can 

be dropped.



  

Account logic(1)

● page_cgroup, new struct per page, is used for 
tracking pages.

● Memory resouce controller has its own LRU.

Global LRU

struct page (memmap)

Private LRU1

Private LRU2

struct page cgroup



  

Account logic(2)

● A page is accounted when
● Anonymous page is allocated (page fault)
● File cache is added. (add to page cache)

● When account_swap=enabled
● Swap entry is also accounted.
● Swapped-in page goes back under its original 

allocator.



  

Limiting memory

● Account logic works even if cgoup is not 
mounted. (To disable, pass boot option.)

● When memory usage reaches limit,  the kernel 
try to reduce memory usage as global LRU 
does by using private LRU.



  

Limiting memory (cont.)

#mount -t cgroup none /memory -o memory

#mkdir /memory/group01

#echo 128M > (...)/memory.limit_in_bytes

#echo $$ > (...)/tasks
#cp veryverybigfile  tmpfile

(memory usage doesn't exceeds 128M)

#echo $$ > /memoy/tasks (moves back to..)
#rmdir group01



  

Out-Of-Memory(OOM)

● At OOM, a process in the cgroup will be killed 
by oom-killer.

● Special OOM handler development is in plan.
● If global LRU hits OOM, usual OOM killer is 

invoked.



  

Limiting Mem+Swap

● Now, tested under -mm kernel.
● Limiting usage of Memory+Swap.

# echo 512M > memory.limit_in_bytes.

# echo 1G > memory.memsw.limit_in_bytes.

In above case, memory usage will be limited to 
300M when swap usage is 700M.

● Can be disabled by boot option. 



  

Why Mem+Swap ?

● “swap” controller can be worked as a kind of 
mlock(). This is bad.

● In Mem+Swap controller, global LRU will not be 
affected by Mem+Swap controller.

Mem Swap

Swap controller

Have to charge against swap

Mem Swap

Mem+Swap

No changes in count

Hit Limits!



  

Overhead
● Implicitly accounted(means overhead) even when not mounted.

(can be disabled by boot option)

● My personal goal is 3~5%.(My boss's request is 3% ;) 

● Unixbench on x86-64/8cpu/2.6.28-rc4mm, bigger is better.

test disabled enabled

Execl 1778 1731

shell(8) 2262 2207

Arithmetic 1558482 1557442

File Read/Write 773977 / 109065 751117 / 109092

C compier 1193 1165



  

TODO

● Hierarchy support
● User Land Tools!
● Stabilization/optimization/clean up
● Support for vm parameters,

● dirty_ratio , swapiness, etc....

● Fix LRU algorithm to be the same as global's
● Documentation
● And Disk I/O controller will be necessary.....



  

Memory Resource Controller: this year

● Almost one year of development.

2.6.25 2.6.28-rc4mm

(from http://sozai-free.com/)

Will be bigger ....should be careful about maintenance

Special thanks to 
Balbir Singh(IBM) and Daisuke Nishimura(NEC), Hugh Dickins(Veritas)

and all folks



  

Questions?
2.6.X?
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