
© NVIDIA Corporation 2011 

GPU Computing Applications 
ADASS 2011 

Dr. Gernot Ziegler  

Developer Technology (HPC Compute) 

NVIDIA UK 



Agenda 

• NVIDIA  and history of GPU-based HPC computing 
• Programming GPUs, an Overview 
• A Couple of Examples 
• GPU as a Signal Processor / Textures 
• Further Material 



c 

VISUALIZATION 

PARALLEL 

COMPUTING 
PERSONAL 

COMPUTING 



NVIDIA and HPC Evolution of GPUs 

NVIDIA: Based in Santa Clara, CA  |  ~$4B revenue  |  ~5,500 employees 

Founded in 1999 with primary business in semiconductor industry 
Products for graphics in workstations, notebooks, mobile devices, etc. 
 

Began R&D of GPUs for HPC in 2004, released first Tesla and CUDA C in 2007 

Development of GPUs as a co-processing accelerator for x86 CPUs 

 

 
 2004: Began strategic investments in GPU as HPC co-processor 

 

 2006: G80 first GPU with built-in compute features, 128 cores; CUDA SDK Beta 
 

 2007: Tesla 8-series based on G80, 128 cores – CUDA 1.0, 1.1 
 

 2008: Tesla 10-series based on GT 200, 240 cores – CUDA 2.0, 2.3 
 

 2009: Tesla 20-series, code named “Fermi” up to 512 cores – CUDA SDK 3.0, 3.2 

HPC Evolution of GPUs  

3 Years With 

3 Generations 



Workstations 

2 to 4 Tesla GPUs 

Integrated CPU-GPU  

Servers & Blades 

Tesla Data Center & Workstation GPU Solutions 

Tesla M-series GPUs 
M2090 | M2070 |  M2050 

Tesla C-series GPUs 
C2070  |  C2050 

M2090 M2070 M2050 

Cores 512 448 448 

Memory 6 GB 6 GB 3 GB 

Memory bandwidth  

(ECC off) 
177.6 GB/s 150 GB/s 148.8 GB/s 

Peak 

Perf 

Gflops 

Single 

Precision 
1331 1030 1030 

Double 

Precision 
665 515 515 

C2070 C2050 

448 448 

6 GB 3 GB 

148.8 GB/s 148.8 GB/s 

1030 1030 

515 515 



GPU CPU 

GPGPU Revolutionizes Computing 
Latency Processor + Throughput processor 



Low Latency or High Throughput? 

CPU 

Optimized for low-latency 

access to cached data sets 

Control logic for out-of-order 

and speculative execution 
 

GPU 

Optimized for data-parallel, 

throughput computation 

Architecture tolerant of 

memory latency 

More transistors dedicated to 

computation 
 



Low Latency or High Throughput? 

 CPU architecture must minimize latency within each thread 

 GPU architecture hides latency with computation (data-parallelism, to 30k 

threads!) 

GPU – High Throughput Processor 

CPU core – Low Latency Processor 

Computation Thread 

Tn 

 

Processing 

Waiting for data 

Ready to be processed 

T1 

 

T2 

 

T3 

 

T4 

 

T1 

 

T2 

 

T3 

 

T4 

 



GPUs are Disruptive 

Simulate more scenarios Real time analysis Days to minutes 
Minutes to seconds 

Throughput
 

Insight Speed 



More Performance, Less Power 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

0 1 2 3 4 5 6 7 8 

P
e

ta
fl

o
p

/s
 

Megawatts Power 

Performance per Megawatts Power 
Fastest Top500 Systems 

#2, Tienhe 1A 

7168 Tesla GPUs 

2.5 PFLOPS 

#4, Nebulae 

4650 Tesla GPUs 

1.2 PFLOPS 

#5, Tsubame 2.0 

4224 Tesla GPUs 

1.194 PFLOPS 

GPU Systems 

Traditional Systems 



GPU as Coprocessor 

Application Code 

+ 

GPU CPU Parallelize using CUDA  
Programming Model 

Only Critical Functions 
Rest of Sequential 

CPU Code 



CUDA: Easy to Use Parallel Programming Model 

C Fortran
 Java 

Python 
Wrappers 

Direct 
Compute

 OpenCL
tm 

OpenCL is trademark of Apple Inc. used under license to the Khronos Group Inc.  

C++ 

Libraries and Middleware 

cuFFT 

cuBLAS 

cuRAND 

cuSPARSE 

LAPACK 

CULA 

MAGMA 

NPP 

cuDPP 

Thrust 

VSIPL 

SVM 

OpenCurrent 

PhysX 

Video 

OptiX Ray 

tracing 

iray 

Rendering 

RealityServer 

MATLAB 

Mathematica 

NVIDIA GPU 

CUDA Parallel Computing Architecture 

GPU Computing Applications 



3 Ways to Accelerate Your Apps 

Libraries Directives 
Programming 

Languages 

Applications 

Easiest Approach for 2x to 10x Acceleration Maximum Performance 



Directives: Add One Line of Code 

main() { 

  double pi = 0.0; long i; 

 

   

  #pragma omp parallel for reduction(+:pi) 

  for (i=0; i<N; i++) 

  { 

    double t = (double)((i+0.05)/N); 

    pi += 4.0/(1.0+t*t); 

  } 

 

  printf(“pi = %f\n”, pi/N); 

} 

CPU 

OpenMP 

main() { 

  double pi = 0.0; long i; 

 

  #pragma omp acc_region_loop 

  #pragma omp parallel for reduction(+:pi) 

  for (i=0; i<N; i++) 

  { 

    double t = (double)((i+0.05)/N); 

    pi += 4.0/(1.0+t*t); 

  } 

  #pragma omp end acc_region_loop 

  printf(“pi = %f\n”, pi/N); 

} 

CPU GPU 

GPU Directives* 

*Directives from Cray 



PGI CUDA x86  
CUDA Now Available for CPUs and GPUs 

Single CUDA  

C / C++ 

Codebase 

NVIDIA C / C++ Compiler 

PGI CUDA X86 Compiler 

C / C++ Support 

GPU 

CPU 



GPU Libraries: Simply Use and Accelerate 

Parallel Algorithms QUDA 
Lattice QCD 

Dense Linear Algebra 

cuBLAS 



GPU Applications 



AMBER 10x Faster (@ less power) 

Processors 16 CPUs 16 CPUs + 24 GPUs 

10x Faster 0.36 ns/day 3.44 ns/day 

4x Energy Savings 7,737 kJ 1,142 kJ 

“Molecular Dynamics Simulation of a Biomolecule with High Speed, Low Power and Accuracy Using GPU-Accelerated TSUBAME2.0 Supercomputer”,  

Du, Udagawa, Endo, Sekijima  



World’s Fastest Molecular Dynamics Simulation 

Sustained Performance of 1.87 Petaflops/s 
Institute of Process Engineering (IPE) 

Chinese Academy of Sciences (CAS) 

 

Simulation for Crystalline Silicon 
Used for Photovoltaic cells & Semiconductors 

Used all 7168 Tesla GPUs on  
Tianhe-1A GPU Supercomputer 



TESLA enables medical scans to be performed 

faster, more accurately and at much lower doses 

of radiation. Up to 28,000 Americans each year 

develop cancer due to radiation from CT scans.  

A UCSD sophisticated algorithm for image 

reconstruction uses TESLA to reduce the CT 

radiation required by up to 70 times. 



25 

Successful Customers 

GPU vs CPU  

Improvements 

 

 

 

 

 

 

 

 

Performance / Watt 18x - 27x 12x - 17x 

Performance / Space 20x - 31x 15x - 20x 

Performance / Cost 15x - 20x 10x - 12x 

Oil & Gas ISVs 

20+ Oil & Gas Companies with CUDA Projects 



31 

JPMorgan Chase 
Innovation in Risk Management Technology Award 

Project:  GPU Deployment for Risk Computation  

 

 

“This transformation has not only reduced the total cost of ownership of JPMorgan’s risk-

management platform,” says Alain Gaudeau, CTO of global equity derivatives at JPMorgan. “It has 

also created a quantum leap forward in the speed of risk calculations and the speed we can service 

client requests opportunities.” 

 

Risk calculations on long-running exotics instruments, for example, 

are now performed up to 30 times faster. 
 

JPMorgan’s equity derivatives business alone had found itself spending more than $30m 

annually on servers for market, credit, scenario and regulatory risk computation. 

In response, the US bank launched an ambitious plan to reduce the computational costs of risk 

calculation by three-quarters over a three-year timeframe, while also enabling more accurate and 

frequent risk calculations. 

 



34 

WestLB 

Bernemann, A.; Schreyer, R.; Spanderen, K.; , "Pricing structured equity products on GPUs," High Performance Computational 

Finance (WHPCF), 2010 IEEE Workshop on , vol., no., pp.1-7, 14-14 Nov. 2010 

doi: 10.1109/WHPCF.2010.5671821 

URL:  http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5671821&isnumber=5671810 

 

 

https://nvgate4.nvidia.com/stamp/,DanaInfo=ieeexplore.ieee.org+stamp.jsp?tp=&arnumber=5671821&isnumber=5671810


35 

Who’s Who of Customers (see also CUDAZone) 

Higher Ed 

Others 

Government 

Life Sciences 

Oil & Gas 

Chinese Academy 

of Sciences 

Air Force Research 

Laboratory 

Naval Research 

Laboratory 

Max Planck  

Institute 

Mass General 

Hospital 

…and Many More Customers 



Jacket 



37 

Jacket™ for MATLAB®: Algorithm Development 

AccelerEyes 

Resources 

Platforms 

Whitepapers User Forums Application Examples 

Tesla Personal Supercomputer Tesla GPU Clusters 

Documentation 

Technology 

Case Studies 

http://www.accelereyes.com 

MATLAB® 

CUDA Libraries 

Run-time system 

JIT Compiler 

Applications Customers 

Rapid Prototyping 

Video Processing 

Image Processing 

Signal Processing 

Statistics 

Mathematics Government 

Bio/Life Science 

Academia & Research 

Financial Services 



38 

Cross-Correlation on GPUs 

Cross-Correlation of multiple signal sources 

The X-engine is "just" linear algebra 

O(N2) compute, O(N) memory traffic (load) 

GPUs well very suited to this task 

Apply multi-level memory tiling to memory hierarchy 

Software-managed cache gives explicit control 

Maximize arithmetic intensity (flop:byte ratio) 

Achieves 79% peak performance on Fermi 

> 1 Tflops on M2090  

Repository: https://github.com/mikeaclark/xGPU 

Preprint: http://arxiv.org/abs/1107.4264 

Clark, La Plante and Greenhill 

see also talk by Greenhill 

https://github.com/mikeaclark/xGPU


39 

GPU Tree-code 
(Leiden University, Netherlands) 

Bonsai  

Multi-GPU, everything runs on the GPU,  

(CPU only starts the kernels) 

Novel octree GPU data algorithm 

Current GPU version ~45x faster on a GTX480  

than comparable quad-core CPU code 

 

Usage 

Galaxy merger simulations 

Suitable for Large N  

and many small N simulations 

 
By: Jeroen Bédorf, Evghenii Gaburov and Simon Portegies Zwart 

[1] http://arxiv.org/abs/1106.1900  and http://castle.strw.leidenuniv.nl/ 



40 

Movie: Snapshot of the baryonic matter, colored by density 

22 Million particles (20M dark matter, 2M baryonic) 

Takes ~2 days on 16 GTX480 GPUs 

 



Last but not least: 

GPU-accelerated astro-research @ 

SWINBURNE (as presented) 

CRICOS provider 00111D 



42 

Real-time Terascale Volume Rendering 

• Aim: Enable fully interactive, 

real-time 3D visualisation of 

terascale datasets. 

• Method: Volume rendering via 

customised message passing 

and job control over distributed 

cluster of GPUs.  

 

A.Hassan, C.Fluke, D.Barnes (Monash) 

• Achieved better than 30 fps on 200 GB data file. 

• Within reach of TB data from ASKAP radio telescope.  

Real-time volume rendering of HIPASS 

Data: HIPASS/ 

 R.Jurek(CSIRO) 



43 

Analysing algorithms for GPUs and beyond 

• Aim: Develop a generalised 

approach to using GPUs for 

scientific computing. 

• Method: Algorithm analysis 

techniques allow rapid 

assessment of GPU-suitability for 

a broad range of problems. 

B.Barsdell, D.Barnes (Monash), C.Fluke 

• A generalised approach to GPUs makes it easier to exploit their power and avoids the risk of wasted development time. 

GPUs are taking us to exciting new territories, beyond the 

current CPU multi-core corner 



44 

GERLUMPH: Gravitational Microlensing survey 

• Aim: Perform high-resolution 

numerical parameter survey in 

preparation for future all-sky 

searches for microlensed 

quasars. 

• Method: ray-shooting is 

embarrassingly parallel, so ideal 

for GPUs. 

 

C.Fluke, G.Vernardos, D.Croton, N.Bate (USyd)  

• Improved microlensing modeling will lead to better  

constraints on quasar properties.  

Microlensing map generated with a GPU 



45 

Realistic N-body Models of Star Clusters 

• Aim: Evolve direct N-body models 

of star clusters to study their 

evolution from the dawn of the 

universe until today. 

• Method: Gravitational force 

calculations between stars are 

optimal to be parallelized and hence 

excellent for GPUs.  

Jarrod Hurley, Anna Sippel, Juan Madrid, Guido Moyano-Loyola  

• Larger and improved star cluster models will lead to better understanding of how they 

evolve within the framework of galaxy formation. 

Star cluster model evolved on a GPU 



46 

DSPSR: Digital Signal Processing for Radio Pulsars 

• Aim: Develop affordable & 

efficient pulsar instrumentation 

for next-generation telescopes 

(e.g. Square Kilometre Array) 

• Method: GPUs love the large 

FFT sizes required to correct the 

dispersive effects of the 

interstellar medium. 

W. van Straten, A. Jameson, J. Kocz, M. Bailes, & P. Demorest (NRAO) 

• GPUs have eliminated the need for costly specialized hardware at the 

observatory 

Pulsar signal processed using GPU cluster 



47 

Spotting radio transients with GPUs 

• Aim: Detect radio pulsars and 

transient events in real time. 

• Method: GPUs eat up signal 

processing and large parameter 

space searches, allowing us to 

break through the real-time 

barrier. 

B.Barsdell. M.Bailes, D.Barnes (Monash), C.Fluke 

• Real-time detection opens a new window on the Universe, allowing us to catch short-lived transient events in the act. 

Signals smeared in the interstellar medium can be 

reconstructed in real-time with GPUs 



48 

17X 

Neuro-imaging 

Georgia Tech 

4.5X 

Geophysics 

Boise State 

20X 

Video Processing 

Google 

10X 

Fluid Dynamics 

LSU 

12X 

Medical Devices 

Spencer Tech 

5X 

Weather Modeling 

NCAR 

35X 

Power Engineering 

IIT India 

17X 

Track Bad Guys 

BAE Systems 

70X 

Drug Delivery 

Georgia Tech 

35X 

Bioinformatics 

Leibniz Research 

http://www.accelereyes.com/successstories 



© NVIDIA Corporation 2011 

GPU as Signal Processor 

 & Texture Concepts 



50 

GPU as signal processor 

Massive on-board memory bandwidth (150 GB/s) 

PCIexpress can be bottleneck,  
but can overlap computation and transfers 

CUDA C: Program (Kernel) for single data element,  
parallelization "in background"  
(e.g. branching divergences handled  by hardware) 

Scales with future GPUs  
(Design intention: 2 x of existing code  
 per architecture generation) 

TEXTURES:  
GPU-specific technology that accelerates Image and volume processing! 

See  
Dr.-Ing. Karl Schwarz, Siemens Medical Computer Tomography,  
International Supercomputing 2011 Proceedings,  

"Texture Unit as a Performance booster" 



51 

Texturing  

Original purpose:  

Provide surface coloring for 3D meshes (a "wrapping") 

3D mesh has "texture coordinates", hardware looks up 2D color array 



52 

 Read-only object 

 Dedicated cache 

 

 Dedicated filtering hardware 

(Linear, bilinear, trilinear) 

 

 Addressable as 1D, 2D or 3D 

 

 Out-of-bounds address 

handling 

(Wrap, clamp) 

Textures 

0 1 2 3 
0 

1 

2 

4 

(2.5, 0.5) 

(1.0, 1.0) 



53 

Texture Unit 

SP SP 

SP SP 

SP SP 

SP SP 

SFU SFU 

Shared 

Memory 

C-Cache 

I-Cache 

MT Issue 

SP SP 

SP SP 

SP SP 

SP SP 

SFU SFU 

Shared 

Memory 

C-Cache 

I-Cache 

MT Issue 

SMC 

Geometry Controller 

Texture Unit 

Tex L1 

SP SP 

SP SP 

SP SP 

SP SP 

SFU SFU 

Shared 

Memory 

C-Cache 

I-Cache 

MT Issue 

SP SP 

SP SP 

SP SP 

SP SP 

SFU SFU 

Shared 

Memory 

C-Cache 

I-Cache 

MT Issue 

SMC 

Geometry Controller 

Texture Unit 

Tex L1 

Interconnection Network 

Work Distribution 

L2 ROP L2 ROP 

GPU 

DRAM DRAM 

Texture Read:  

Global memory read via  

texture hardware path 

Data reads are cached  

Texture Cache (separate from L1) 

Specialized for 2D/3D spatial locality 



54 

Texture Unit 

 

 

 

Data conversion (integer to float, 16 bit float to 32 bit float) 

Data Interpolation (aka Filtering) 
Linear / bilinear / trilinear data interpolation in hardware 

Boundary modes (for “out-of-bounds” addresses) 
Addressable in 1D, 2D, or 3D.  

Coordinate normalization mode (access becomes resolution-
independent) 

Clamp to edge / Clamp to Border color / Repeat / Mirror  

Works best with CUDA Array as Data Storage 



55 

Texture Coordinates 

Texture fetch in device code takes floating point texture coordinates 

Lookup mode and coordinates determine data element fetch from global memory: 

"Nearest neighbour" mode uses less data than "linear interpolation" mode 

Coordinate bounds can reflect input data dimensions, or be normalized (0.0 .. 1.0) 

Boundary handling in different ways: 

 Out-of-bounds coordinate is 

wrapped (modulo arithmetic) 

Clamp 

0    1    2    3    4 

1 

2 

3 

0 
(5.5, 1.5) 

0    1    2    3    4 

1 

2 

3 

0 
(5.5, 1.5) 

Wrap 
 Out-of-bounds coordinate is 

clamped to closest boundary 



56 

Texture Data Processing 

Texture unit can convert integer input to floating point output 

E.g. 8bit input: uchar4(255, 128, 0, 0) becomes float4(1.0, 0.5, 0.0, 0.0) 

Coordinate to Data mapping for "Nearest neighbour" mode: 

Example: Input data T, four values: 

 

 

 

 All input data elements 

cover equal output ranges 

 

 Details in  

Programming Guide, 

Appendix E 

 

T[0] 

 

T[1] 

 

T[2] 

 

 

T[3] 



57 

Texture Interpolation 
 

Texture unit can interpolate between adjacent data elements  

Fractional part of texture coordinate becomes interpolation weight  

(Note: Interpolation weight is 8 bit quantized!) 

Only in float conversion mode, bind to CUDA array or pitchlinear memory 

 

 

 

 

 

 

 

 Warning:  

Input's data values 

can NOT be read at 

integer offsets!  

 But: Additional GFlops! 

 Details in  

Programming Guide, 

Appendix E 

0.5 

T[0] 

0.125 

1.5 

T[1] 

0.375 

2.5 

T[2] 

0.625 

3.5 

T[3] 

0.885 



58 

Summary 

 Texturing provides additional performance 

 Extra cache capacity 

 Linear interpolation of adjacent data in hardware 

 Array boundary handling 

 Integer-to-float conversion, data unpacking 

 Algorithmic design considerations 

 Texture binding modes (linear memory, pitchlinear memory, CUDA Array) 

 Texture coordinate offsets for correct linear interpolation 

 8bit weight quantization during linear interpolation 

 Can't flush texture cache during kernel execution 

 3D: xy-interpolation (layered textures) vs.  Trilinear xyz-interpolation (3D textures) 



59 

Questions? … 

Further reading 

 Textures, Surfaces and CUDA Array creation: 

Programming Guide, 3.2.10 Texture and Surface Memory 

 Texture lookups in device code:  

Programming Guide, Appendix B.8 

 Specification of texture interpolation modes and clamping: 

Programming Guide, Appendix E 

 Surface read/write operations in device code:  

Programming Guide, Appendix B.9 

 Texture and surface exchange with OpenGL / DirectX:  

Programming Guide, 3.2.11 Graphics Interoperability 

 Texture usage in applications:  

Best Practices Guide, 3.2.4 Texture Memory 



60 

Eikonal  

Rendering  

 

 

 

 

 

 

 

SIGGRAPH 2007 (Computer Graphics) 

Simulates light wavefront passing through volume of refractive indices  

All simulation on GPU, esp. wavefront culling and tesselation 

10 secs running, took 10 minutes on CPU 

Google and YouTube "Eikonal Rendering" 



61 

Eikonal Rendering  



62 

CUDA Programming Resources 

CUDA Toolkit 

Compiler, free libraries like cuBLAS, cuFFT 

Documentation (Programming Guide, Best Practices Guide) 

Free download for Windows, Linux, and MacOS 

GPU Computing SDK 

Code samples 

Whitepapers 

Instructional materials on NVIDIA Developer site 

CUDA introduction & optimization webinar: slides and audio 

Parallel programming course at University of Illinois UC 

Tutorials 

Forums 



63 

GPU Tools 

Profiler 

Available for all supported OSs 

Command-line or GUI 

Sampling signals on GPU for: 

Memory access parameters 

Execution (serialization, divergence) 

Debugger 

Linux: cuda-gdb 

Windows: Parallel Nsight 

Runs on the GPU 



64 

(Application) 

Questions? 



Latest Developments in CUDA Eco-System 



CUDA 4.0 



67 

Rapid Application Porting 

Unified Virtual Addressing 

Faster Multi-GPU Programming 

GPUDirect 2.0 

CUDA 4.0 
Application Porting Made Simpler 

Easier Parallel Programming in C++  

Thrust 



68 

NVIDIA CUDA Overview 

New in  

CUDA 4.0 
 

Libraries 
 

Thrust C++ Library 
Templated Performance 
Primitives 

 
 

NVIDIA Library Support 

Complete math.h 

Complete BLAS Library (1, 2 and 3) 

Sparse Matrix Math Library 

RNG Library 

FFT Library (1D, 2D and 3D) 

Image Processing Library (NPP) 

Video Processing Library (NPP) 

 

  

3rd Party Math Libraries 

• CULA Tools 

• MAGMA 

• IMSL 

• VSIPL 

Tools 
 

Parallel Nsight Pro 
 

 

 

NVIDIA Tools Support 

Parallel Nsight  1.0 IDE 

cuda-gdb Debugger with multi-GPU 

CUDA/OpenCL Visual Profiler 

CUDA  Memory Checker 

CUDA  C SDK 

CUDA  Disassembler 

 

CUDA Partner Tools 

 
Allinea DDT 

   RogueWave /Totalview 

   Vampir 

   Tau 

   CAPS HMPP 

Platform 
 

GPUDirect 2.0 
Fast Path to Data 

 

 

Hardware Support 

ECC Memory 

Double Precision 

Native 64-bit Architecture 

Concurrent Kernel Execution 

Dual Copy Engines 

 Multi-GPU support 

   6GB per GPU supported 

 

Operating System Support 
MS Windows 32/64 

Linux 32/64 support 

Mac OSX support 

 

Cluster Management 

NVIDIA GPUDirect  

Tesla Compute Cluster (TCC) 

Graphics Interoperability 
 

Programming Model 
 

Unified Virtual Addressing 

C++ new/delete 

C++ Virtual Functions 
 

C support 

• NVIDIA C Compiler 

• CUDA C Parallel Extensions 

• Function Pointers  

• Recursion 

• Atomics 

• malloc/free 

 

C++ support 
• Classes/Objects 

• Class Inheritance 

• Polymorphism 

• Operator Overloading  

• Class Templates 

• Function Templates 

• Virtual Base Classes  

• Namespaces 
 

Fortran, OpenCL 



69 

World’s Top Open Science 
Computing Research 

Facility 

18,000+ Tesla GPUs 

 

20+ PetaFlops 

 

3x More Energy Efficient than 
Current #1 (K Computer) 


