
The math of Nxt forging

mthcl∗

June 29, 2014. Version 0.5.1

Abstract

We discuss the forging algorithm of Nxt from the probabilistic
point of view, and obtain explicit formulas and estimates for several
important quantities, such as the probability that an account gener-
ates a block, the length of the longest sequence of consecutive blocks
generated by one account, and the probability that one concurrent
blockchain wins over another one.

1 Forging algorithm

In this article we concentrate on the 1-block-per-minute regime, which is
not implemented yet. Assume that there are N forging accounts at a given
(discrete) time, B1, . . . , BN are the corresponding balances, and we denote
by

bk =
Bk

B1 + · · ·+BN

, k = 1, . . . , N

the proportion of total forging power that the kth account has. Then, to
determine which account will generate the next block, we take i.i.d. random
variables U1, . . . , UN with Uniform distribution on interval (0, 1), and the
account which maximizes bk/Uk generates the block; i.e., the label k0 of the
generating account is determined by

k0 = arg max
j∈{1,...,N}

bj
Uj

= arg min
j∈{1,...,N}

Uj
bj
. (1)
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We refer to the quantity bk/Uk as the weight of the kth account, and to
bk0/Uk0 as the weight of the block, i.e., we choose the account with the
maximal weight (or, equivalently, with the minimal inverse weight) for the
forging. This procedure is called the main algorithm (because it is actually
implemented in Nxt at this time), or the U-algorithm (because the inverse
weights have Uniform distribution).

As a general rule, it is assumed that the probability that an account
generates a block is proportional to the effective balance, but, in fact, this is
only approximately true (as we shall see in Section 2). For comparison, we
consider also the following rule of choosing the generating account: instead
of (1), we use

k0 = arg min
j∈{1,...,N}

| lnUj|
bj

. (2)

The corresponding algorithm is referred to as Exp-algorithm (since the inverse
weights now have Exponential probability distribution).

Important note: for all the calculations in this article, we assume that
all accounts are forging and all balances are effective (so that B1 + · · ·+BN

equals the total amount of NXT in existence). In the real situation when
only the proportion α of all money is forging, one can adjust the formulas
in the following way. Making a reasonable assumption that all money of the
bad guy is forging and his (relative) stake is b′, all the calculations in this
article are valid with b = α−1b′.

2 Probability of block generation

Observe that (see e.g. Example 2a of Section 10.2.1 of [10]) the random
variable | lnUj|/bj has Exponential distribution with rate bj. By (2), the
inverse weight of the generated block is also an Exponential random variable
with rate b1 + · · ·+ bN = 1 (cf. (5.6) of [11]), and the probability that the kth
account generates the block is exactly bk (this follows e.g. from (5.5) of [11]).

However, for U-algorithm the calculation in the general case is not so
easy. We concentrate on the following situation, which seems to be critical
for accessing the security of the system: N is large, the accounts 2, . . . , N
belong to “poor honest guys” (so b2, . . . , bN are small), and the account 1
belongs to a “bad guy”, who is not necessarily poor (i.e., b := b1 need not be
very small).
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We first calculate the probability distribution of the largest weight among
the good guys: for x� maxk≥2 bk let us write

P
[

max
k≥2

bk
Uk

< x
]

=
∏
k≥2

P
[
Uk >

bk
x

]
=
∏
k≥2

(
1− bk

x

)
= exp

∑
k≥2

ln
(

1− bk
x

)
≈ e−

1−b
x , (3)

since ln(1−y) ∼ −y as y → 0 and b2+ · · ·+bN = 1−b. We calculate now the
probability f(b) that the bad guy generates the block, in the following way.
Let Y be a random variable with distribution (3) and independent of U1, and
we write (conditioning on U1)

f(b) := P
[ b
U1

> Y
]

=

∫ 1

0

P
[
Y <

b

z

]
dz

=

∫ 1

0

e−
1−b
b
z dz

=
b

1− b
(

1− e− 1−b
b

)
. (4)

It is elementary to show that f(b) > b for all b ∈ (0, 1) (see also Figure 1),
and (using the Taylor expansion) f(b) = b+ b2 +O(b3) as b→ 0.

Let us remark also that, since f(b) ∼ b as b→ 0 and using a calculation
similar to (3), if all relative balances are small, the situation very much
resembles that under Exp-algorithm (see also (9) below).

2.1 Splitting of accounts

Here we examine the situation when an owner of an account splits it into
two (or even several) parts, and show that, in general, this strategy is not
favorable to the owner.
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Figure 1: The plot of f(b) (black curve)
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First of all, as discussed in the beginning of Section 2, for the Exp-
algorithm, the probability that one of the new (i.e., obtained after the split-
ting) accounts will generate the next block does not change at all. Indeed,
this probability is exactly the proportion of the total balance owned by the
account, and any splitting does not change this proportion (i.e., all the new
accounts forge exactly as the old one).

Now, let us consider the case of U-algorithm. We shall prove that splitting
is always unfavorable for a Nxt holder. Namely, we can prove the following
result1:

Theorem 2.1. Assume that a person or entity controls a certain number of
Nxt accounts, and let p be the probability of generating the next block (i.e.,
the account that forges the block belongs to this person or entity). Suppose
now that one of these accounts is split into two parts (while the balances of
all other accounts stay intact), and let p′ be the probability of block generation
in this new situation. Then p′ < p.

By induction, one easily obtains the following

Corollary 2.2. Under the U-algorithm, in order to maximize the probability
of generating the next block, all NXT that one controls should be concentrated
in only one account.

Proof of Theorem 2.1. Let b1, . . . , b` be the relative balances of accounts con-
trolled by that person or entity, and let b`+1, . . . , bn be the balances of the
other active accounts. Assume without restriction of generality that the first
account is split into two parts with (positive) relative balances b′1, b

′′
1 (so that

b′1 + b′′1 = b1).
Let U1, . . . , Un, U ′1, U

′′
1 be i.i.d. Uniform[0, 1] random variables. Let

Y = min
j=1,...,`

Uj
bj
,

Y ′ = min
(U ′1
b′1
,
U ′′1
b′′1
, min
j=2,...,`

Uj
bj

)
,

Z = min
j=`+1,...,n

Uj
bj
.

1The author is happy that he is able to add at least one theorem to this text. Without
theorems, he had a strong feeling of doing something unusual.
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Let us denote x+ := max(0, x) for x ∈ R. Analogously e.g. to (3), we have
for t > 0

P[Y > t] =
∏

j=1,...,`

(1− bjt)+,

P[Y ′ > t] = (1− b′1t)+(1− b′′1t)+
∏

j=2,...,`

(1− bjt)+,

and a similar formula holds for Z; we, however, do not need the explicit form
of the distribution function of Z, so we just denote this function by ζ.

Observe that for 0 < t < min
(

1
b′1
, 1
b′′1

)
it holds that

(1− b′1t)(1− b′′1t) = 1− b1t+ b′1b
′′
1t

2

> 1− b1t,
so

(1− b′1t)+(1− b′′1t)+ ≥ (1− b1t)+
for all t ≥ 0 (if the left-hand side is equal to 0, then so is the right-hand
side), and, moreover, the inequality is strict in the interval

(
0,min

(
1
b′1
, 1
b′′1

))
.

Then, conditioning on Z, we obtain

1− p = P[Y > Z]

=

∫ ∞
0

∏
j=1,...,`

(1− bjt)+ dζ(t)

=

∫ ∞
0

(1− b1t)+
∏

j=2,...,`

(1− bjt)+ dζ(t)

<

∫ ∞
0

(1− b′1t)+(1− b′′1t)+
∏

j=2,...,`

(1− bjt)+ dζ(t)

= P[Y ′ > Z]

= 1− p′,
and this concludes the proof of the theorem.

One should observe, however, that the disadvantage of splitting under the
U-algorithm is not very significant. For example, if one person controls 5%
of total active balance and has only one account, then, according to (4), the
forging probability is approximately 0.0526. For any splitting, this probabil-
ity cannot fall below 0.05 (this value corresponds to the the extreme situation
when all this money is distributed between many small accounts).
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Conclusions:

1. Under Exp-algorithm, the probability that an account with relative
active balance b generates the next block is exactly b; if all relative
balances are small, then the U-algorithm essentially works the same
way as the Exp-algorithm.

2. For the U-algorithm, if an account has proportion b of the total active
balance and the forging powers of other accounts are relatively small,
then the probability that it generates the next block is given by f(b)
of (4).

3. With small b, f(b) ≈ b + b2, i.e., the block generating probability is
roughly proportional to the effective balance with a quadratic correc-
tion.

4. It is also straightforward to obtain that the probability that a good
guy k generates a block is bk(1− f(b)), up to terms of smaller order.

5. In general, splitting has no effect on the (total) probability of block
generation under Exp-algorithm, and this probability always decreases
under U-algorithm. However, the difference is usually not very signifi-
cant (even if the account is split to many small parts).

6. Thus, neither algorithm encourages splitting (anyhow, there is some
cost in maintaining many forging accounts, so, in principle, there is no
reason to increase too much the number of them in the case of Exp-
algorithm as well). The reader should be warned, however, that all the
conclusions in this article are valid for mathematical models, and the
real world can introduce some corrections.

7. In particular, it should be observed that, if the attacker could harm
the network by splitting his account into many small ones, then a very
small gain that he achieves by not splitting would not prevent him
from attacking the network. If this attacker’s strategy presents any
real danger, we may consider introducing a lower limit for forging (e.g.,
only accounts with more than, say, 100 NXT are allowed to forge).
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3 Longest run

We consider a “static” situation here: there are no transactions (so that the
effective balances are equal to full balances and do not change over time).
The goal is to be able to find out, how many blocks in a row can be typically
generated by a given account over a long period n of time.

So, assume that the probability that an account generates the next block
is p (see in Section 2 an explanation about how p can be calculated). It is
enough to consider the following question: let Rn be the maximal number of
consecutive 1’s in the sequence of n Bernoulli trials with success probability p;
what can be said about the properties of the random variable Rn?

The probability distribution of Rn has no tractable closed form, but is
nevertheless quite well studied, see e.g. [12] (this article is freely available in
the internet). The following results are taken from [9]: we have

ERn = log1/p qn+
γ

ln 1/p
− 1

2
+ r1(n) + ε1(n), (5)

VarRn =
π2

6 ln2 1/p
+

1

12
+ r2(n) + ε2(n), (6)

where q = 1− p, γ ≈ 0.577 . . . is the Euler-Mascheroni constant, ε1,2(n)→ 0
as n → ∞, and r1,2(n) are uniformly bounded in n and very small (so, in
practice, r1,2 and ε1,2 can be neglected).

In the same work, one can also find results on the distribution itself.
Let Γp be a random variable with Gumbel-type distribution: for y ∈ R

P[Γp ≤ y] = exp(−py+1).

Then, for x = 0, 1, 2, . . . it holds that

P[Rn = x] ≈ P[x− log1/p qn < Γp ≤ x+ 1− log1/p qn], (7)

with the error decreasing to 0 as n → ∞. So, in particular, one can obtain
that

P[Rn ≥ x] ≈ 1− exp(−px+1qn)

≈ px+1qn (8)

if px+1qn is small (the last approximation follows from the Taylor expansion
for the exponent).
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For example, consider the situation when one account has 10% of all
forging power, and the others are relatively small. Then, according to (4),
the probability that this account generates a block is p ≈ 0.111125. Take
n = 1000000, then, according to (5)–(7), we have

ERn ≈ 6.00273,

VarRn ≈ 0.424,

P[Rn ≥ 7] ≈ 0.009 .

Conclusions:

1. The distribution of the longest run of blocks generated by one particular
account (or group of accounts) is easily accessible, even though there is
no exact closed form. Its expectation and variance are given by (5)–(6),
and the one-sided estimates are available using (8).

4 Weight of the blockchain and concurrent

blockchains

First, let us look at the distribution of the inverse weight of a block. In
the case of Exp-algorithm, everything is simple: as observed in Section 2, it
has the Exponential distribution with rate 1. This readily implies that the
expectation of the sum of weights of n blocks equals n.

As for the U-algorithm, we begin by considering the situation when all
relative balances are small. Analogously to (3), being W the weight of the
block, for x� (maxk bk)

−1 we calculate

P
[ 1

W
> x

]
= P

[
max
k

bk
Uk

<
1

x

]
=
∏
k

P
[
Uk > xbk

]
=
∏
k

(1− xbk)

= exp
∑
k

ln(1− xbk)

≈ e−x, (9)
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so also in this case the distribution of the inverse weight is approximately
Exponential with rate 1.

We consider now the situation when all balances except the first one are
small, and b := b1 need not be small. For the case of U-algorithm, similarly
to (9) we obtain for x ∈ (0, 1/b)

P
[ 1

W
> x

]
=
∏
k

(1− xbk)

= (1− bx) exp
∑
k≥2

ln(1− xbk)

≈ (1− bx)e−(1−b)x, (10)

so

E
1

W
≈
∫ 1/b

0

(1− bx)e−(1−b)x dx

=
be−

1−b
b + 1− 2b

(1− b)2 . (11)

One can observe (see Figure 2) that the right-hand side of (11) is strictly
between 1/2 and 1 for b ∈ (0, 1).

Let us consider now the following attack scenario: account 1 (the “bad
guy”, with balance b) temporarily disconnects from the network and forges
its own blockchain; he then reconnects hoping that his blockchain would be
“better” (i.e., has smaller sum of weights). Then, while the account 1 is
disconnected, the “good” part of the network produces blocks with weights
having Exponential distribution with rate 1−b, and thus each inverse weight
has expected value 1

1−b .
Let X1, X2, X3, . . . be the inverse weights of the blocks produced by the

“good part” of the network (after the bad guy disconnects), and we denote
by Y1, Y2, Y3, . . . the inverse weights of the blocks produced by the bad guy.
We are interested in controlling the probability of the following event (which
means that the blockchain produced by the bad guy has smaller sum of
inverse weights and therefore wins)

Hm = {X1 + · · ·+Xm − Y1 − · · · − Ym ≥ 0}

for “reasonably large” m (e.g., m = 10 or so). If the probability of Hm

is small, this means that the bad guy just does not have enough power to
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Figure 2: Expectation of the inverse weight (as a function of b)
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attack the network; on the other hand, if this probability is not small, then
the system should be able to fence off the attack by other means, which we
shall not discuss in this note.

We obtain an upper bound on the probability of the event Hm using the
so-called Chernoff theorem (see e.g. Proposition 5.2 of Chapter 8 of [10]).
More specifically, using Chebyshev’s inequality and the fact that the random
variables are i.i.d., we write for any fixed t > 0

P[Hm] = P[X1 + · · ·+Xm − Y1 − · · · − Ym ≥ 0]

= P
[

exp
(
t(X1 + · · ·+Xm − Y1 − · · · − Ym)

)
≥ 1
]

≤ E exp
(
t(X1 + · · ·+Xm − Y1 − · · · − Ym)

)
=
(
Eet(X1−Y1)

)m
.

Since the above is valid for all t > 0, we have

P[Hm] ≤ δm, where δ = inf
t>0

Eet(X1−Y1). (12)

It is important to observe that this bound is nontrivial (i.e., δ < 1) only in
the case EX1 < EY1.

For U-algorithm, X1 is Exponentially distributed with rate 1− b, and Y1
has Uniform(0, b−1) distribution. So, the condition EX1 < EY1 is equivalent
to (1 − b)−1 < (2b)−1, that is, b < 1/3. Then, for b < 1/3, the parameter δ
from (12) is determined by

δ = δ(b) = b(1− b) inf
0<t<1−b

1− e−t/b
t(1− b− t) (13)

(see the plot of δ(b) on Figure 3), so we have

P[Hm] ≤ δ(b)m. (14)

For example, for b = 0.1 we have δ(b) ≈ 0.439. We have, however, δ(b) ≈
0.991 for b = 0.3, which means that one has to take very large m in order to
make the right-hand side of (14) small in this case.

For the Exp-algorithm, the bad guy would produce blocks with inverse
weights having Exponential distribution with rate b, so each inverse weight
has expected value 1

b
. Similarly to the above, one obtains that the condition

EX1 < EY1 is equivalent to b < 1/2, and

P[Hm] ≤
(
4b(1− b)

)m
(15)

(that is, δ can be explicitly calculated in this case and equals 4b(1 − b);
observe that 4b(1− b) < 1 for b < 1/2).
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Figure 3: The plot of δ(b)
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Conclusions:

1. We analyze an attack strategy when one account (or a group of ac-
counts) temporarily disconnects from the main network and tries to
forge a “better” blockchain than the one forged by other accounts, in
the situation when one bad rich guy has proportion b of total amount
of NXT, and the stakes of the others are relatively small.

2. The probability that the bad guy forges a better chain of length m can
be controlled using (14) (for the U-algorithm) or (15) (for the Exp-
algorithm).

3. It should be observed that this probability does not tend to 0 (as
m → ∞) if the bad guy has at least 1/3 of all active balances in
the network in the case of U-algorithm (correspondingly, at least 1/2
in the case of Exp-algorithm). There should exist some specific meth-
ods for protecting the network against such an attack in the case when
there is risk that (active) relative balance of the bad guy could become
larger than the above threshold.

4. For the current realization of the U-algorithm, the author expects that
this analysis can be performed in a quite similar way (because the
inverse weight is then proportional to the time to the next block, and
the longest blockchain wins), with an additional difficulty due to the
oscillating BaseTarget.

5. It may be a good idea to limit the forging power of accounts by some
fixed threshold, e.g., if an account has more than, say, 1M NXT, then
it forges as if it had exactly 1M NXT. Of course, a rich guy can
split his fortune between smaller accounts, but then all those accounts
would forge roughly as one big account (without threshold) under Exp-
algorithm. So, one can use the computationally easier U-algorithm
without having its drawbacks (the 1/3 vs. 1/2 issue) discussed in this
section.

5 More on account splitting

In this section we analyze the following attack strategy: if the bad guy wins
the forging lottery at the current step but owns several accounts with inverse

14



weights less than all the accounts of good guys (i.e., these accounts of the bad
guy are first in the queue), then he chooses which of his accounts will forge.
Effectively, that means that he has several independent tries for choosing the
hash of the block, and so he may be able to manipulate the lottery in his
favor.

Of course, following this strategy requires that the balance of the winning
accounts should be small (because of the ban for non-forging), but, as we
shall see below, splitting into small parts is exactly the right strategy for
maximizing the number of the best accounts in the queue.

First of all, let us estimate the probability that in the sequence of accounts
ordered by the inverse weights, the first k0 ones belong to the same person
or entity, who controls the proportion b of all active balance. We will do the
calculations for the case of Exp-algorithm, since the attacker would have to
split his money between many (or at least several) accounts anyway, and, as
observed in Section 2, in this situation both algorithms work essentially in
the same way.

One obvious difficulty is that we do not know, how exactly the money of
the attacker are distributed between his accounts. It is reasonable, however,
to assume that the balances of the other accounts (those not belonging to
the attacker) are relatively small. Let us show the following remarkable fact:

Proposition 5.1. The best strategy for the attacker to maximize the prob-
ability that the best k0 accounts belong to him (under the Exp-algorithm), is
to split his money uniformly between many accounts.

Proof. We assume that r is the minimal relative balance per account that
is possible, and let us assume that the attackers money are held in ac-
counts with relative balances n1r, . . . , n`r, where ` ≥ k0. Denote also m =
n1 + · · · + n`, so that b = mr. Now, we make use of the elementary prop-
erties of the Exponential probability distribution discussed in the beginning
of Section 2. Consider i.i.d. Exponential(r) random variables Y1, . . . , Ym,
and let Y(1), . . . , Y(k0) be the first k0 order statistics of this sample. Then,
abbreviating sj = n1 + · · ·+ nj, s0 := 0, we have that

Zj = min
i=sj−1,...,sj

Yi, j = 1, . . . , `

are independent Exponential random variables with rates n1r, . . . , n`r. So,
the orders statistics of Z-variables form a subset of the order statistics of Y -
variables; since the inverse weights of the attacker’s accounts are the first k0
order statistics of Z1, . . . , Z`, the claim follows.
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The above proposition leads to a surprisingly simple (approximate) upper
bound for the probability that the best k0 accounts belong to the attacker.
Assume that all the accounts in the network have the minimum relative
balance r; then each account in the (ordered with respect to the inverse
weights) sequence has probability b to belong to the attacker. Since k0 should
be typically small compared to the total number of accounts, we may assume
that the ownerships of the first k0 accounts are roughly independent, and this
means that the probability that all the best k0 accounts belong to the attacker
should not exceed bk0 .

Now, let us estimate the conditional probability p∗(b) that the attacker
wins the forging lottery on the next step, given he was chosen to forge at
the current step. The above analysis suggests that the number of the best
accounts in the queue that belong to the attacker can be approximated by
a Geometric distribution with parameter b. Now, given that the attacker
owns k best accounts in the queue, the probability that he wins the next
forging lottery is 1 − (1 − b)k (since there are k independent trials at his
disposal, and the probability that all will fail is (1− b)k).

Using the memoryless property of the Geometric distribution (i.e., as one
can easily verify, P[X = k] = P[X = k + n | X ≥ n] if X has the Geometric
law) we have that, given that the winning account belongs to the attacker,
he also owns the next k − 1 ones with probability (1− b)bk−1. So,

p∗(b) =
∞∑
k=1

(1− b)bk−1(1− (1− b)k)

= (1− b)
∞∑
j=0

bj + (1− b)2
∞∑
j=0

(b(1− b))j

= 1− (1− b)2
1− b(1− b) , (16)

see the plot of the above function on Figure 4. The quantity p∗(b) is almost b
for small stakes (e.g., 0.1099 for b = 0.1), but dramatically increases for
large b. For b = 0.9, for instance, this probability becomes 0.989, i.e., the
attacker will be able to forge typically around 90 blocks in a row, instead of
just 10.

Observe also, that this calculation applies to the following strategy of the
attacker: take the first of his accounts that assures that he forges on the
next step (so that the attacker minimizes the number of his accounts that
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Figure 4: The plot of p∗(b) = 1− (1−b)2
1−b(1−b) .
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will get banned). For this strategy, the attacker looks only one step to the
future. One can consider also a more advanced strategy: since the future
is (for now) deterministic, the attacker can try to calculate deeper into the
future. We shall prove now that, under current implementation of the forging
algorithm, an attacker who owns more than 50% of all NXT can eventually
forge all the blocks (i.e., at some moment he starts forging and never stops).
To prove this, we construct a Galton-Watson branching process (cf. e.g. [8]
for the general theory) in the following way. Assume that the block `0 + 1
is about to be forged. Let Z0 := 1, and let Z1 be the number of attacker’s
accounts that are first in the queue (i.e., win over any account not belonging
to the attacker). Now, the attacker can choose which of these Z1 accounts

will forge. Let Z
(j)
2 , j = 1, . . . , Z1 be the number of attacker’s accounts that

are first in the queue for the block `0 + 2, provided he has chosen the jth
account to forge at the previous step. Let Z2 = Z

(1)
2 + · · · + Z

(Z1)
2 . Then,

we define Z3, Z4, Z5, . . . in an analogous way; it is then elementary to see
that (Zn, n ≥ 0) is a Galton-Watson branching process with the offspring
law given by pk = (1− b)bk, k ≥ 0. The mean number of offspring

µ =
∞∑
k=1

k(1− b)bk =
b

1− b

is strictly greater than 1 when b > 1
2
. Since a supercritical branching process

survives with positive probability (in fact, one can calculate that in this case
the probability of survival equals 1−b

b
), the attacker can choose an infinite

branch in the genealogical tree of the branching process, and follow it.
The attacker can also use the same strategy with b ≤ 1

2
; this, of course,

will not permit him to forge all the blocks, but there is still a possibility to
increase the number of generated blocks. Let us do the calculations. The
probability generating function of the number of offspring (corresponding to
the Geometric distribution) is

g(s) =
∞∑
j=0

sj(1− b)bj =
1− b
1− sb,

so an(b) := P[Zn = 0] satisfies the recursion

a1(b) = 1− b, an+1(b) =
1− b

1− ban(b)
,
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Figure 5: The plot of h(b)
1+h(b)

(it is not very evident from this picture, but
h(b)

1+h(b)
→ 1 as b→ 1

2
).

and the mean lifetime h(b) of the branching process is

h(b) =
∞∑
n=1

(1− an(b)).

Unfortunately, usually there is no closed form expression for the expected
lifetime of a subcritical branching process, but, as a general fact, it holds
that h(b) ∼ b as b → 0 and h(b) → ∞ as b → 1

2
. Since each streak of

attacker’s blocks has the expected length b−1h(b) and the expected length
of each streak of good guy’s blocks is b−1, the attacker is able to forge the
proportion h(b)

1+h(b)
of all blocks, see Figure 5 (the author thanks Mathematica

for doing the computations).

Conclusions:

1. The probability that the attacker controls the best k0 accounts can be
bounded from above by bk0 , where b is the attacker’s stake.
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2. Under current implementation of the forging algorithm, an attacker
who owns more than 50% of all NXT can eventually forge all the blocks
(i.e., at some moment he starts forging and never stops).

3. For additional network protection, we can recommend to have also a
lower limit for forging, i.e., an account that has less than (say) 500
NXT does not forge at all.

4. In fact, it may be a good idea to change this lower limit dynamically:
In normal situation (there are not many non-forging events) it can be
relatively low. However, if someone is starting playing games (and so
there are many non-forging events), then the lower limit increases in
order to protect the network. Incidentally, this increase of the lower
limit will greatly decrease the attacking strength of the bad guy, since
most of his accounts suddenly are unable to forge at all.

5. The community should be warned that if someone is advertising a forg-
ing pool but makes the forgers link to many different accounts, then it
is a very suspicious behavior.

6 On the “difficulty” adjustment algorithm

In the current forging implementation (as of June 2014) the intervals between
the blocks are not fixed to 1 minute, but are rather random (it is sometimes
referred to as the Blind Shooter algorithm, cf. [2]). The algorithm of block
generation can be described in the following way (to simplify notations, we
assume that the total amount of NXT equals 1, and the time is measured
in minutes). As before, let bi be the (relative) balance of ith account, and
in this section we refer to the Uniform random variable Ui as the hit of ith
account.

Let us just start at time 0 (effectively, the moment of generation of the
last block, say, of height n), and see when the next block of height n + 1
appears and which account produces it. The target value Ti(t) of ith account
at time t is defined as

Ti(t) = Λnbit, (17)

where Λn is the parameter called baseTarget, which will be explained later.
When the value of the target of an account reaches its hit value Ui, this
account may forge a block; this block, however will only be accepted by the
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network when no other account managed to forge before. That is, the time ti
when the ith account has the right to forge is calculated by

ti =
Ui

Λnbi
,

and (since Λn is the same for all accounts) the account which minimizes Ui/bi
will effectively forge. Thus, regarding the question of who-will-forge, we
recover the algorithm of Section 1.

Observe also that the time to the next block is proportional to the minimal
inverse weight, with the factor Λ−1n . As noted in Section 4 (see formula (9)),
at least in the situation when all relative balances are small, the minimal
inverse weight has approximately Exponential(1) distribution, so the time to
the next block is approximately Exponential(Λn). In particular, the expected
time to the next block is roughly Λ−1n .

Now, the goal is to produce a chain with 1 minute average time between
the blocks, so why not just set Λn to 1 and forget about it? The reason for
having this baseTarget variable is the following: not all accounts are online,
and so sometimes the first account in the queue just would not produce
a block because of that. When only α < 1 of all NXT are online (i.e.,
ready to forge and participating in the forging race) arguments similar to
the above show that the time to the next block will have approximately
Exponential(α) distribution, with expectation α−1. So, in such circumstances
it would be desirable to compensate that by setting Λn := α, thus restoring 1
minute average blocktime. However, the problem is that it is quite difficult to
determine the current active balance of the network: it would require pinging
every node, which is clearly impractical.

So, an algorithm for automatic adjustment of the baseTarget was pro-
posed. It takes as an input only the last blocktime; intuitively, if the last
blocktime was too long, one should increase the baseTarget to make the next
blocktime shorter, and vice-versa. (Such procedure also introduces negative
correlation between the blocktimes, which is good for variance reduction.)

This algorithm can be described in the following way.

• Λ0 := 1;

• let X be an Exponential random variable with rate Λn (one may put
X = Λ−1n lnU , where U is a Uniform[0,1] random variable);

• if X ≥ 2, then Λn+1 = 2Λn;
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• if X ≤ 1/2, then Λn+1 = Λn/2;

• if X ∈ (1/2, 2), then Λn+1 = XΛn (note that XΛn = lnU , so XΛn is
an Exponential(1) random variable).

In the above algorithm, the variable X represents the time to the next block.
The idea was Λn should fluctuate around 1, so we’ll have one block per minute
in average. In fact, it turns out that this is not the case. Additionally, with
this algorithm the rate occasionally becomes rather close to 0, leading to long
intervals between the blocks (recall that the expectation of an Exponential(r)
random variable equals r−1). The first problem (average blocktime is not 1) is
easy to correct by a simple rescaling, but the second one (occasional very long
block time) is more serious, since it is an inherent feature of this algorithm.

So, we propose a modified version of this algorithm. Let γ ∈ (0, 1] be a
parameter (γ = 1 corresponds to the current version of the algorithm). Then
(abbreviating also β = (1− γ

2
)−1)

• Λ0 := 1;

• let X be an Exponential random variable with rate Λn;

• if X ≥ 2, then Λn+1 = 2Λn;

• if X ≤ 1/2, then Λn+1 = Λn/β;

• if X ∈ (1, 2), then Λn+1 = XΛn;

• if X ∈ (1/2, 1), then Λn+1 = (1− γ(1−X))Λn.

In words, we make it easier to increase the rate than to decrease it (which hap-
pens when X is “too small”). This is justified by the following observation:
if Y is an Exponential(1) random variable, then P[Y < 1/n] = 1−e−1/n ≈ 1/n
and P[Y > n] = e−n, and the latter is much smaller than the former. In other
words, the Exponential distribution is quite “asymmetric”; even for n = 2,
we get P[Y < 1/2] ≈ 0.393 and P[Y > 2] ≈ 0.135.

Now, to evaluate how does the modified algorithm work, there are two
methods. First, one can do simulations. Otherwise, we can write the balance
equation for the density f of the stationary measure of the above process in
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Figure 6: The densities of the stationary measures (with their corresponding
cumulative distribution functions) for γ = 1 and γ = 1/2

the following way:

f(x) =
1

2
e−xf(x/2) + β(1− e−βx/2)f(βx)

+ e−x
∫ x

x/2

f(s) ds+ γ−1e−x/γ
∫ βx

x

e(1−γ)s/γf(s) ds. (18)

Here, f(x) is positive for x > 0 and
∫∞
0
f(s) ds = 1 (since f is a density).

There is little hope to obtain a closed form analytic solution to (18), but
it is possibly to find a numerical one (many thanks to Sebastien256!), see
Figure 6. The average blocktime (which equals

∫∞
0
s−1f(s) ds) can be approx-

imately calculated using the above numerical solution and is roughly 1.954
for the currently used algorithm (with γ = 1). In comparison, for γ = 1/2,
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the average blocktime is 1.015, i.e., quite close to 1 minute. In addition,
long blocktimes are also much less probable for this modified algorithm with
γ = 1/2. In the following table, we give probabilities that the baseTarget

falls below a small parameter ε, thus potentially leading to long (of order ε−1)
blocktimes:

ε = 0.05 ε = 0.1 ε = 0.2
γ = 1/2 2.243 · 10−9 2.491 · 10−6 5.331 · 10−4

γ = 1 2.278 · 10−4 4.559 · 10−3 4.574 · 10−2

Now, it’s time for another important observation regarding the baseTarget
adjustment algorithm. In fact, there is a very important difference between
baseTarget in PoS and difficulty in PoW. In PoW, there are no limits on
the hashing power of the network: it can be very close to 0, and also it can
grow really a lot. However, in PoS there is a clear upper limit on the forging
power: just 100% of all available stake.

So, there is no reason at all, why we should even allow the baseTarget Λn

to become close to 0! We can introduce another parameter w > 0, and never
let the baseTarget to decrease below w (i.e., if Λn “attempts” to fall below w,
we just set it equal to w). It is elementary to write down the balance equation
for the stationary measure of this version of the algorithm; this stationary
measure, however, will be of a “mixed” type (density on [w,+∞) and an atom
in w). The numerical analysis similar to the above may then be performed.

We refer also to [1] for related discussions.

Conclusions:

1. The current version of the baseTarget adjustment algorithm has some
disadvantages: it does not lead to 1 minute average blocktimes, and
the occasional long blocktimes are quite annoying.

2. An easy-to-implement algorithm (in fact, only a few lines of code need
to be modified) with better properties has been proposed in this section.
Further research may be needed to find an even better versions.

7 On predictability and randomness

All the previous discussion in this paper was restricted to the mathemati-
cal model of Section 1, defined in terms of i.i.d. Uniform random variables
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U1, . . . , Un. This, however, is only an approximation of reality (similarly
to all other mathematical models in this world); in fact, the U -variables are
pseudorandom, i.e., they are deterministically computed from the information
contained in the previous block together with the account hashes. That is, in
the static situation (no transactions and the nodes do not connect/disconnect
to/from the network) one can precisely determine who will generate the sub-
sequent blocks. Some people have expressed concern whether this situation is
potentially dangerous, i.e., an attacker could somehow exploit this in order
to forge “too many” (= more than the probability theory permits) blocks
in a row. To fence off this kind of treat, we may want to introduce some
“true randomness” to the system; i.e., we want the network to produce a
“truly unpredictable” random number U (say, with Uniform distribution on
[0, 1]) in a decentralized way, with no central authority. Of course, one is
not obliged to use this random number for forging (see the first remark in
“conclusions” below), but nevertheless the ability to produce random num-
bers may be useful for other applications, e.g., lotteries on top of the Nxt
blockchain.

In principle, this is not an easy task, since the nodes controlled by the
attacker can cheat by producing some carefully chosen nonrandom numbers,
and it is not clear, how does the network recognize who cheats, and who does
not. To deal with this problem, we first consider the following algorithm2:

• each account obtains a random number (say, in the interval [0, 1]) using
some local randomizing device (e.g., rand() or whatever), and pub-
lishes the hash of this number;

• we calculate the inverse weights of all accounts (using U-algorithm or
Exp-algorithm);

• then, first k0 accounts (with respect to the inverse weights, in the in-
creasing order) publish the numbers themselves;

• if at least one the published number does not correspond to its hash
or at least one chosen account does not publish its number at all, the
corresponding account is penalized (i.e., not allowed to forge during
some time), and the whole procedure must be repeated (immediately,
or somewhat later);

2a similar procedure was proposed in [5].
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• we then “mix” these numbers (e.g., by summing them modulo 13), to
obtain the random number we are looking for.

The parameter k0 is supposed to be large enough so that the attacker would
never control exactly all of k0 best (with respect to the inverse weights) ac-
counts. Below we will discuss the question how k0 should be chosen, depend-
ing on the maximal amount of active balance that the attacker can obtain.
At this point it is important to observe that even one “honest” account in k0
is enough; indeed, for the above mixing method, this follows from the fact
that if U is a Uniform[0, 1] random variable and X is any random variable
independent of U , then (X +U mod 1) is also a Uniform[0, 1] random vari-
able.

Note that this two-step procedure (first publish the hash, and only then
the number itself) is necessary. If we do not obscure the numbers, then the
attacker can see the k0 − 1 numbers that are already published, and then
publish something nonrandom that suits him. If we obscure them first, then
the attacker cannot manipulate the procedure.

Let us explain also why the procedure should be restarted when at least
one account attempts to cheat. It seems to be more “economical” to just
pick the next account in the queue if some previous account excludes itself
for whatever reason. However, this opens the door for the following attacking
strategy. Assume, for example, that first k0−1 accounts have already revealed
their numbers, and the k0th and (k0 + 1)th accounts belong to the attacker.
Then, he can actually choose, which of the two numbers will be published;
this, obviously, creates a bias in his favor. In fact, we will see below that the
best strategy for the attacker is to have many small accounts, so, invalidating
one round of this procedure would not cost much to him. However, still each
attempt costs one banned account, and, more importantly, if many rounds
of the procedure are invalidated, it is likely that the identity of the attacker
could be revealed (one can analyze the blockchain to investigate the origin
of the money in offending accounts).

As discussed in Section 5, the probability that all the best k0 accounts
belong to the attacker can be bounded from above by bk0 . For example, if
b = 0.9 (i.e., the attacker has 90% of all NXT) and k0 = 150, then bk0 ≈
0.00000013689.

3By definition, (x mod 1) is the fractional part of x, i.e., set the integer part to 0 and
keep the digits after the decimal point.
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There are, however, questions about the practical implementation of this
algorithm: the difficulty about obtaining consensus on who are the top ac-
counts in the lottery, if such a procedure can slow down the network, etc.
Nevertheless, it is conceptually important; in the next section we’ll discuss a
more “practical” variant of this algorithm.

The contents of this and the next sections is based on private discussions
with ChuckOne and mczarnek at nxtforum.org; see also [4].

Conclusions:

1. The current forging algorithm is only pseudorandom (deterministic but
unpredictable), and there is concern whether this situation could be
potentially dangerous.

2. Nevertheless, it is possible to propose an extra randomization algo-
rithm, i.e., the network can achieve a consensus on a Uniform[0,1] ran-
dom number independent of the previously published data.

3. The procedure for obtaining this random number can be roughly de-
scribed in the following way. First k0 accounts (with respect to the
weights) choose some “random” numbers locally (e.g., take a local out-
put of rand()), and publish their hashes. Then, they publish numbers
themselves; if the published number does not correspond to the hash
or is not published at all, then the corresponding account is penal-
ized. If that happens for at least one account, the whole procedure is
invalidated (and we wait for the next try).

4. One can then “mix” the k0 numbers (e.g., by summing them modulo 1);
if at least one of the best k0 accounts does not belong to the attacker,
the result is “truly random” (it cannot be manipulated, even if we
suppose that the attacker controls the other k0−1 accounts and cheats
by choosing their numbers at will).

5. Because of issues related to the practical implementation, we’ll propose
a modified version of this algorithm in the next section.
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8 A proposal for the Transparent Forging al-

gorithm

In this section we describe a forging algorithm which is intended to make
a full use of the following advantage that PoS has over PoW: the forgers of
the next blocks in PoS are known (at least to some extent), while in PoW
they are completely unpredictable. This allows to implement a number of
interesting features, which would be hardly accessible in PoW systems, see
[6, 7].

We also use a modified version of the randomization algorithm; what we
achieve is

• the (main) blocks are forged in a deterministic way, one per minute;

• one can (relatively) accurately predict who will forge the next L blocks;

• however, the forgers of the subsequent blocks after the Lth one from
now, are completely unpredictable.

In the following, a hashchain of length ` is the sequence x1, x2 = h(x1), x3 =
h(x2) . . . , x` = h(x`−1), where h is a hash function (such as, for example,
sha256), and x1 is the initial seed. The algorithm is then described in the
following way:

(a) each forging account must maintain two hashchains of fixed length S:
active hashchain, reserve hashchain (actually, the nodes must main-
tain them for their accounts), and publish the last hash of the active
hashchain;

– if active hashchain is depleted at blockB, then the reserve hashchain
becomes the active hashchain, next reserve hashchain must be cre-
ated and its hash must be published in B;

– if forger invalidates the active hashchain at block B, then the re-
serve hashchain becomes the active hashchain, next reserve hashchain
must be created and its hash must be published in B, and the non-
forging penalty is applied.

(b) at blocks N`, ` = 1, 2, 3, . . ., the list of K richest accounts with respect
to the effective balance is formed, and this list becomes valid for blocks
N`+ L, . . . , N(`+ 1) + L− 1
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(c) special “randomizing” blocks (Rn, n ≥ 1) are forged just in between of
every two main blocks (this can be adjusted, maybe does not need to
be so frequent);

(d) randomizing blocks are forged by the accounts from the valid list, e.g.,
in the cyclic order; they contain the hash from the hashchain preceding
to the one already published (so the forger cannot cheat);

(e) for each main blockBn, the forging queue of accountsA1,n, A2,n, A3,n, . . .
is formed, according to the algorithm of Section 1 (to limit the num-
ber of accounts that need to be considered for the minimization of the
inverse weight, the lower forging limit should be introduced);

(f) the accounts in the queue submit their versions of the main block, and
the one with the highest legitimacy (i.e., the position of the forging
account in the forging queue) wins;

(g) to determine the forger of the next block (Bn+1), the random num-
ber we use for jth account is sha256(generating signature of Bn,

public key of the account, sum of hashes in L′ last randomizing

blocks published before the block n− L);

(h) to calculate the generating signature of Bn, we always use the public
key of A1,n (the account with highest legitimacy at time n), even if the
block was effectively forged by another account (as discussed below,
this is for getting rid of the forks).

One may take e.g. N = 1440, K = 100, L = 10, L′ = 50, but, of course,
these constants may be adjusted. We stress that, to avoid forks, it is essential
that the “random number” we use to determine the next forging queue is
calculated using the public key of the top account in the queue (i.e., not
necessarily of the one who actually forged the block). The same idea may be
used for the randomizing blocks as well.

We refer to Figure 7 for an illustration of the blockchains we use for the
TF. It remains to explain the chain (actually, the DAG) in the lower part
of the picture. As proposed in [3], we may use a “fast” chain or DAG for
storing certain kind of information; the set of forgers of this DAG can be the
same as the set of forgers of the randomizing blockchain, and we may use the
(modified) Blind Shooter algorithm (cf. Section 6) to produce it.
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Figure 7: The TF blockchains: main, randomizing, registration (DAG)

This DAG may be used for various purposes, but its importance for the
main blockchain construction can be explained in the following way. Assume
that the account A1,n (the first one in the forging queue for the nth main
block) intentionally delays publishing his block, and reveals it only a bit
later, when the majority of nodes have already accepted the block forged by
A2,n (the second account in that forging queue). For the algorithm currently
in use, each forger in some sense validates the previous block; but for the
algorithm proposed in this section it can be a problem, since the next forger
already assumed that the previous block was forged by A2,n. How can we
prove that A1,n did not publish his block in time? The proposed solution is
the following: the nodes that forge the DAG, act as supervisors: if they see
the block published by the accounts in the forging queue, they report that in
their “registration” blocks. If no supervisor reported the block of A1,n before
certain deadline, the network assumes that A1,n did not forge.

A few concluding remarks and explications. An account that must forge
the current block but does not do it, is penalized. We may consider also that
an account may declare on the blockchain if it goes online or offline.

About the penalizations: it is probably a good idea not to apply it imme-
diately, but only after some time, to help the network achieve consensus on
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who is penalized, and who is not. If an account was penalized on block n for
whatever reason, the penalization only becomes effective at the block n+L′′

(and this account still can legitimately forge between n+ 1 and n+L′′− 1).
With this algorithm, by the way, we can predict the next L forgers (but

not more!), which was also a desirable feature of TF, as far as the author
remembers.

The point of having the richest accounts do the randomization job is the
following: it is probably impossible for the attacker to control e.g. top 100
accounts, that is just too expensive. And another point: since the accounts
must be big, cheating by not publishing the random number now becomes
very expensive as well (an account that does not forge the randomizing block
when it must to, is banned and so unable to forge normal blocks for some
period). Anyhow, it seems reasonable that the accounts that have something
to lose, do some additional job, like the randomization and the supervision.
Also, the author is not convinced that accounts that forge the main chain
should be penalized for nonforging: the bad guy can split his balance into
many small accounts, retaining his forging power and making those penal-
izations inefficient.
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