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Abstract

A central problem in machine learning is identifying a reganatative set of features from
which to construct a classification model for a particulaktaThis thesis addresses the
problem of feature selection for machine learning througloraelation based approach.
The central hypothesis is that good feature sets contaiarssathat are highly correlated
with the class, yet uncorrelated with each other. A featwaduation formula, based
on ideas from test theory, provides an operational defmitbthis hypothesis. CFS
(Correlation based Feature Selection) is an algorithmdbiaples this evaluation formula

with an appropriate correlation measure and a heuristicsesdrategy.

CFS was evaluated by experiments on artificial and natutatdés. Three machine learn-
ing algorithms were used: C4.5 (a decision tree learned) (8 instance based learner),
and naive Bayes. Experiments on artificial datasets sholaddFS quickly identifies

and screens irrelevant, redundant, and noisy featuresidentifies relevant features as
long as their relevance does not strongly depend on otharrésa On natural domains,

CFS typically eliminated well over half the features. In messes, classification accuracy
using the reduced feature set equaled or bettered accusamythe complete feature set.
Feature selection degraded machine learning performancasies where some features

were eliminated which were highly predictive of very smaéias of the instance space.

Further experiments compared CFS with a wrapper—a well knapproach to feature
selection that employs the target learning algorithm tduata feature sets. In many cases
CFS gave comparable results to the wrapper, and in genettplerdormed the wrapper
on small datasets. CFS executes many times faster than éppe which allows it to

scale to larger datasets.

Two methods of extending CFS to handle feature interactrenpeesented and exper-

imentally evaluated. The first considers pairs of features the second incorporates



feature weights calculated by the RELIEF algorithm. Exmemts on artificial domains
showed that both methods were able to identify interacagures. On natural domains,

the pairwise method gave more reliable results than usinghtseprovided by RELIEF.
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Chapter 1

Introduction

We live in the information-age—accumulating data is eagy storing it inexpensive. In
1991 it was alleged that the amount of stored informatiorbtEsievery twenty months
[PSF91]. Unfortunately, as the amount of machine readatfternation increases, the
ability to understand and make use of it does not keep padeitsigrowth. Machine
learning provides tools by which large quantities of data loa automatically analyzed.
Fundamental to machine learningfeature selection Feature selection, by identifying
the most salient features for learning, focuses a learriggyithm on those aspects of
the data most useful for analysis and future prediction. Aym@othesis explored in this
thesis is that feature selection for supervised classficatisks can be accomplished
on the basis of correlation between features, and that sdehtare selection process
can be beneficial to a variety of common machine learningrdlgos. A technique for
correlation-based feature selection, based on ideas fesintheory, is developed and
evaluated using common machine learning algorithms oniatyasf natural and artificial
problems. The feature selector is simple and fast to exetiugdiminates irrelevant and
redundant data and, in many cases, improves the perfornodfeaning algorithms. The
technigue also produces results comparable with a stateecdrt feature selector from

the literature, but requires much less computation.

1.1 Motivation

Machine learning is the study of algorithms that automd#gicanprove their performance

with experience. At the heart of performance is predictidm algorithm that—when

1



presented with data that exemplifies a task—improves it#yato predict key elements
of the task can be said to hal@arned Machine learning algorithms can be broadly
characterized by the language used to represent learnedddge. Research has shown
that no single learning approach is clearly superior in alies, and in fact, different
learning algorithms often produce similar results [LS98]ne factor that can have an
enormous impact on the success of a learning algorithm inahere of the data used
to characterize the task to be learned. If the data fails Inibéxthe statistical regularity
that machine learning algorithms exploit, then learning fail. It is possible that new
data may be constructed from the old in such a way as to exdtdiistical regularity and
facilitate learning, but the complexity of this task is subht a fully automatic method is
intractable [Tho92].

If, however, the data is suitable for machine learning, tthentask of discovering regu-
larities can be made easier and less time consuming by regpéeatures of the data that
areirrelevantor redundantwith respect to the task to be learned. This process is called
feature selectionUnlike the process of constructing new input data, feasetection is
well defined and has the potential to be a fully automatic, matationally tractable pro-
cess. The benefits of feature selection for learning camdech reduction in the amount
of data needed to achieve learning, improved predictivaracy, learned knowledge that
is more compact and easily understood, and reduced exedurie. The last two factors
are of particular importance in the area of commercial addstrialdata mining Data
mining is a term coined to describe the process of siftingugh large databases for inter-
esting patterns and relationships. With the declining obdisk storage, the size of many
corporate and industrial databases have grown to the pdiatevanalysis by anything
but parallelized machine learning algorithms running oecgd parallel hardware is in-
feasible [JL96]. Two approaches that enable standard madbarning algorithms to be
applied to large databases are feature selection and semBlbth reduce the size of the
database—feature selection by identifying the most safleaturesin the data; sampling
by identifying representativexample$JL96]. This thesis focuses on feature selection—a
process that can benefit learning algorithms regardledsedadmount of data available to

learn from.



Existing feature selection methods for machine learnirgcslly fall into two broad
categories—those which evaluate the worth of featuregubi® learning algorithm that
is to ultimately be applied to the data, and those which atalthe worth of features by
using heuristics based on general characteristics of ttee ddne former are referred to
aswrappersand the lattefilters [Koh95b, KJ96]. Within both categories, algorithms can
be further differentiated by the exact nature of their eatain function, and by how the

space of feature subsets is explored.

Wrappers often give better results (in terms of the final jgtae accuracy of a learning
algorithm) than filters because feature selection is ogtuhifor the particular learning
algorithm used. However, since a learning algorithm is eygd to evaluate each and
every set of features considered, wrappers are prohilyitesgensive to run, and can be
intractable for large databases containing many featlfaghermore, since the feature
selection process is tightly coupled with a learning alidyoni, wrappers are less general

than filters and must be re-run when switching from one legraigorithm to another.

In the author’s opinion, the advantages of filter approatbésature selection outweigh
their disadvantages. In general, filters execute many tiastsr than wrappers, and there-
fore stand a much better chance of scaling to databases Wwatiyjeanumber of features
than wrappers do. Filters do not require re-execution ftieint learning algorithms.
Filters can provide the same benefits for learning as wrapger If improved accuracy
for a particular learning algorithm is required, a filter gamovide an intelligent starting
feature subset for a wrapper—a process that is likely toltr@swa shorter, and hence
faster, search for the wrapper. In a related scenario, aperapight be applied to search
the filtered feature space—that is, the reduced feature space providedilier. Both
methods help scale the wrapper to larger datasets. Fortbasens, a filter approach to

feature selection for machine learning is explored in thésts.

Filter algorithms previously described in the machinenéag literature have exhibited a
number of drawbacks. Some algorithms do not handle noisata, dnd others require
that the level of noise be roughly specified by the user arprin some cases, a subset
of features is not selected explicitly; instead, featuresranked with the final choice left

to the user. In other cases, the user must specify how mahyésaare required, or must
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manually set a threshold by which feature selection tertagiaSome algorithms require
data to be transformed in a way that actually increases tti@ imumber of features. This

last case can result in a dramatic increase in the size oktrels space.

1.2 Thesis statement

This thesis claims that feature selection for supervisedhing learning tasks can be
accomplished on the basis of correlation between featimgmrticular, this thesis inves-

tigates the following hypothesis:

A good feature subset is one that contains features highlseleded with

(predictive of) the class, yet uncorrelated with (not patisie of) each other.

Evaluation of the above hypothesis is accomplished by ioigat feature selection algo-
rithm that evaluates the worth of feature sets. An implewugont (Correlation based
Feature Selection, or CFS) is described in ChapterCFS measures correlation be-
tween nominal features, so numeric features are first dizece However, the general
concept of correlation-based feature selection does nmérdeon any particular data
transformation—all that must be supplied is a means of meagthe correlation be-
tween any two variables. So, in principle, the technique tmaapplied to a variety of
supervised classification problems, including those inciiihe class (the variable to be

predicted) is numeric.

CFS is a fully automatic algorithm—it does not require therus specify any thresholds
or the number of features to be selected, although bothmadesto incorporate if desired.
CFS operates on the original (albeit discretized) featpees, meaning that any knowl-
edge induced by a learning algorithm, using features saldny CFS, can be interpreted
in terms of the original features, not in terms of a transfedspace. Most importantly,
CFS is a filter, and, as such, does not incur the high computtcost associated with

repeatedly invoking a learning algorithm.

CFS assumes that features are conditionally independest the class. Experiments in
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Chapter6 show that CFS can identify relevant features when modeeatefe dependen-
cies exist. However, when features depend strongly on sthgen the class, CFS can
fail to select all the relevant features. Chapteexplores methods for detecting feature

dependencies given the class.

1.3 Thesis Overview

Chapter2 defines terms and provides an overview of concepts from gigeel machine
learning. It also reviews some common machine learningrailgns and techniques
for discretization—the process of converting continuoiisbaites to nominal attributes.
Many feature selectors (including the implementation oSG¥fesented here) and ma-
chine learning algorithms are best suited to, or cannotlegrdblems in which attributes

are nominal.

Chapter3 surveys feature selection techniques for machine learnihgo broad cat-
egories of algorithms are discussed—those that involve eéhma learning scheme to
estimate the worth of features, and those that do not. Adgastand disadvantages of

both approaches are discussed.

Chapter4 begins by presenting the rationale for correlation basatlife selection, with
ideas borrowed from test theory. Three methods of measaggagciation between nom-
inal variables are reviewed and empirically examined intiSect.3. The behaviour of
these measures with respect to attributes with more valgshe number of available
training examples is discussed; emphasis is given to thaalslity for use in a correla-
tion based feature selector. Sectibtdescribes CFS, an implementation of a correlation
based feature selector based on the rationale of Settioand incorporating the cor-
relation measures discussed in Sectidh Operational requirements and assumptions
of the algorithm are discussed, along with its computatiexpense and some simple

optimizations that can be employed to decrease execution ti

Chapter5 describes the datasets used in the experiments discus€éaders, 7, and

8. It also outlines the experimental method.
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The first half of Chapteé empirically tests three variations of CFS (each employing o
of the correlation measures examined in Chapjeon artificial problems. It is shown
that CFS is effective at eliminating irrelevant and reduntdeatures, and can identify
relevant features as long as they do not strongly dependtar &atures. One of the
three correlation measures is shown to be inferior to therdthio when used with CFS.
The second half of Chaptérevaluates CFS with machine learning algorithms applied
to natural learning domains. Results are presented angzaubin detail for one of the
three variations of CFS. It is shown that, in many cases, @k8adves the performance
and reduces the size of induced knowledge structures fohimagearning algorithms. A
shortcoming in CFS is revealed by results on several datasesome cases CFS will fail
to select locally predictive features, especially if they avershadowed by strong, glob-
ally predictive ones. A method of merging feature subseshi@vn to partially mitigate

the problem.

Chapter7 compares CFS with a well known implementation of the wragpgroach to
feature selection. Results show that, in many cases, CES giasults comparable to the
wrapper, and, in general, outperforms the wrapper on srasdlsgts. Cases where CFS
is inferior to the wrapper can be attributed to the shortemnaf the algorithm revealed
in Chapter6, and to the presence of strong class-conditional featyseratency. CFS is

shown to execute significantly faster than the wrapper.

Chapter8 presents two methods of extending CFS to detect classtoomalifeature de-
pendency. The first considers pairwise combinations otifeat the second incorporates
a feature weighting algorithm that is sensitive to high@eor(including higher than pair-
wise) feature dependency. The two methods are comparedeantisr show that both
improve results on some datasets. The second method is gbdvenless reliable than
the first.

Chapte presents conclusions and suggests future work.



Chapter 2
Supervised Machine Learning:

Concepts and Definitions

The field of artificial intelligence embraces two approadeartificial learning [Hut93].
The first is motivated by the study of mental processes ansl tbay artificial learning is
the study of algorithms embodied in the human mind. The aita discover how these
algorithms can be translated into formal languages and atenprograms. The second
approach is motivated from a practical computing standoid has less grandiose aims.
It involves developing programs that learn from past datd, as such, is a branch of data
processing. The sub-field of machine learning has come toraje the second approach
to artificial learning and has grown rapidly since its binththe mid-seventies. Machine
learning is concerned (on the whole) witbncept learningand classification learning

The latter is simply a generalization of the former [Tho92].

2.1 The Classification Task

Learning how to classify objects to one of a pre-specifiedEeategories or classes is a
characteristic of intelligence that has been of keen isteeresearchers in psychology
and computer science. ldentifying the common “core” charéstics of a set of objects
that are representative of their class is of enormous usecursfng the attention of a per-
son or computer program. For example, to determine whethanenal is a zebra, people
know to look for stripes rather than examine its tail or ediisus, stripes figure strongly

in ourconcepigeneralization) of zebras. Of course stripes alone arsuffitient to form
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a class description for zebras as tigers have them alsoheytare certainly one of the
important characteristics. The ability to perform classifion and to be able tiearnto
classify gives people and computer programs the power terdakisions. The efficacy

of these decisions is affected by performance on the cleatdh task.

In machine learning, the classification task described ali®eommonly referred to as
supervised learningn supervised learning there is a specified set of clasadexample
objects are labeled with the appropriate class (using thenple above, the program is
told what is a zebra and what is not). The goal is to generéitren class descriptions)
from the training objects that will enable novel objects ¢éddientified as belonging to one
of the classes. In contrast to supervised learningnsupervised learningln this case
the program is not told which objects are zebras. Often tla¢igainsupervised learning
is to decide which objects should be grouped together—iaratlords, the learner forms
the classes itself. Of course, the success of classifickt@rning is heavily dependent on
the quality of the data provided for training—a learner haly ¢he input to learn from.
If the data is inadequate or irrelevant then the conceptrigegmns will reflect this and

misclassification will result when they are applied to newada

2.2 Data Representation

In a typical supervised machine learning task, data is sgprted as a table ekamples
or instances Each instance is described by a fixed number of measurenoefesitures
along with a label that denotes its class. Features (sorestaalledattributeg are typ-
ically one of two types: nominal (values are members of arrder@d set), or numeric
(values are real numbers). Table 2.1 [Qui86] shows fourtestances of suitable and
unsuitable days for which to play a game of golf. Each instasca day described in
terms of the (nominal) attributes Outlook, Humidity, Temgdare and Wind, along with

the class label which indicates whether the day is suitailplflying golf or not.

A typical application of a machine learning algorithms riegsi two sets of examples:

training examplesndtest examplesThe set of training examples are used to produce the
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Instance # Features Class
Outlook Temperature Humidity Wind

1 sunny hot high false  Don't play

2 sunny hot high true Don't Play

3 overcast hot high false  Play

4 rain mild high false  Play

5 rain cool normal false  Play

6 rain cool normal true Don't Play

7 overcast cool normal true Play

8 sunny mild high false  Don't Play

9 sunny cool normal false  Play

10 rain mild normal false  Play

11 sunny mild normal true Play

12 overcast mild high true Play

13 overcast hot normal false  Play

14 rain mild high true Don't Play|

Table 2.1: The “Golf” dataset.

learned concept descriptions and a separate set of tespkesane needed to evaluate the
accuracy. When testing, the class labels are not presemtiad algorithm. The algorithm
takes, as input, a test example and produces, as outpussalalzl (the predicted class

for that example).

2.3 Learning Algorithms

A learning algorithm or aninduction algorithm forms concept descriptions from ex-
ample data. Concept descriptions are often referred toeaknibwledgeor modelthat
the learning algorithm has induced from the data. Knowladgg be represented differ-
ently from one algorithm to another. For example, C4.5 [@Qli@presents knowledge
as a decision tree; naive Bayes [Mit97] represents knovdé@athe form of probabilistic

summaries.

Throughout this thesis, three machine learning algoritaresised as a basis for compar-
ing the effects of feature selection with no feature sebectThese are naive Bayes, C4.5,
and IB1l—each represents a different approach to learnirgesé algorithms are well
known in the machine learning community and have proved laou practice. C4.5 is

the most sophisticated algorithm of the three and inducesvliadge that is (arguably)
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easier to interpret than the other two. IB1 and naive Bayee peoved popular because
they are simple to implement and have been shown to perfompettively with more
complex algorithms such as C4.5 [CN89, CS93, LS94a] . THevihg three sections
briefly review these algorithms and indicate under what s feature selection can

be useful.

2.3.1 Naive Bayes

The naive Bayes algorithm employs a simplified version ofd&&dprmula to decide which
class a novel instance belongs to. The posterior probalbiieach class is calculated,
given the feature values present in the instance; the iostenassigned the class with
the highest probability. Equation 2.1 shows the naive Bdgaaula, which makes the

assumption that feature values are statistically indepetndithin each class.

p(Ci) H}Ll p(v;]Ci)

(2.1)
p(v1,v9, ..., Up)

p(Cilvi, v, ... v,) =

The left side of Equation 2.1 is the posterior probabilityctdssC; given the feature
values,< vy, v9,... ,v, >, observed in the instance to be classified. The denominator
of the right side of the equation is often omitted becausg & constant which is easily
computed if one requires that the posterior probabilitiehe classes sum to one. Learn-
ing with the naive Bayes classifier is straightforward ansives simply estimating the
probabilities in the right side of Equation 2.1 from the miiag instances. The result is

a probabilistic summary for each of the possible classethelle are numeric features it

is common practice to assume a normal distribution—agam#tessary parameters are

estimated from the training data.

Tables 2.2(a) through 2.2(d) are contingency tables shpfwaguency distributions for
the relationships between the features and the class irolhdajaset (Table 2.1). From

these tables is easy to calculate the probabilities negessapply Equation 2.1.

Imagine we woke one morning and wished to determine whektgeday is suitable for a

game of golf. Noting that the outlook is sunny, the tempeaisihot, the humidity is nor-
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Play Don't Play Play Don't Play
Sunny 2 3 ) Hot | 2 2 4
Overcast| 4 0 4 Mild | 4 2 6
Rain 3 2 5 Cool | 3 1 4

9 ) 14 9 ) 14

(a) Outlook (b) Temperature

Play Don't Play Play Don't Play
High | 3 4 7 True | 3 5 6
Norm | 6 1 7 False| 6 2 8

9 ) 14 9 5 14

(c) Humidity (d) Wind

Table 2.2: Contingency tables compiled from the “Golf” data

mal and there is no wind (wind=false), we apply Equation 2d ealculate the posterior

probability for each class, using probabilities deriveatirTables 2.2(a) through 2.2(d):

p(Don't Play| sunny, hot, normal, falge

p(Play| sunny, hot, normal, falge

On this day we would play golf.

p(Don't Play) X p(sunny| Don’t Play) X

p(hot| Don't Play) X p(normal| Don't Play) X

p(false| Don't Play)

5/14 x 3/5 x 2/5 x 1/5 x 2/5

0.0069.

p(Play) X p(sunny| Play) x

p(hot| Play) x p(normal| Play) x

p(false| Play)

0.0141.

9/14x2/9%x2/9%x6/9 x6/9

Due to the assumption that feature values are independéninwhe class, the naive

Bayesian classifier’s predictive performance can be adiyeedffected by the presence
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of redundant attributes in the training data. For exampléhere is a featureX that is
perfectly correlated with a second feature then treating them as independent means
that X (or Y) has twice as much affect on Equation 2.1 as it should haveigles
and Sage [LS94a] have found that naive Bayes performancewep when redundant
features are removed. However, Domingos and Pazzani [Di#8&] found that, while
strong correlations between features will degrade perdoca, naive Bayes can still per-
form very well when moderate dependencies exist in the ddta.explanation for this is
that moderate dependencies will result in inaccurate itibygestimation, but the prob-

abilities are not so far “wrong” as to result in increased-piassification.

The version of naive Bayes used for the experiments destiibthis thesis is that pro-
vided in the M LC++ utilities [KILT94]. In this version, the probabilities for nominal
features are estimated using frequency counts calculatedthe training data. The prob-
abilities for numeric features are assumed to come from malodistribution; again, the
necessary parameters are estimated from training datazé&nyfrequencies are replaced

by 0.5/m as the probability, where: is the number of training examples.

2.3.2 CA4.5 Decision Tree Generator

C4.5 [Qui93], and its predecessor, ID3 [Qui86], are aldgon$ that summarise training
data in the form of a decision tree. Along with systems thdtioe logical rules, decision
tree algorithms have proved popular in practice. This isidyart to their robustness and
execution speed, and to the fact that explicit concept gegms are produced, which
users can interpret. Figure 2.1 shows a decision tree thanswises the golf data. Nodes
in the tree correspond to features, and branches to theiciassd values. The leaves
of the tree correspond to classes. To classify a new instamasimply examines the
features tested at the nodes of the tree and follows the lheanmorresponding to their
observed values in the instance. Upon reaching a leaf, theeps terminates, and the

class at the leaf is assigned to the instance.

Using the decision tree (Figure 2.1) to classify the exangalg (sunny, hot, normal,

false) initially involves examining the feature at the robthe tree (Outlook). The value
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sunny overcast rain
high normal true false

Don't Play @ Don't Play @

Figure 2.1: A decision tree for the “Golf” dataset. Branchesespond to the values of
attributes; leaves indicate classifications.

for Outlook in the new instance is “sunny”, so the left brarcfollowed. Next the value
for Humidity is evaluated—in this case the new instance hasvalue “normal”, so the
right branch is followed. This brings us to a leaf node anditis¢ance is assigned the

class “Play”.

To build a decision tree from training data, C4.5 and ID3 em@ greedy approach that
uses an information theoretic measure as its guide. Chgasimattribute for the root
of the tree divides the training instances into subsetssponding to the values of the
attribute. If the entropy of the class labels in these sgisdess than the entropy of the
class labels in the full training set, then information hasmgained (see Section 4.2.1 in
Chapterd) through splitting on the attribute. C4.5 uses ¢fa@n ratio criterion [Qui86] to
select the attribute attribute to be at the root of the tre®e dain ratio criterion selects,
from among those attributes with an average-or-better, glanattribute that maximsises
the ratio of its gain divided by its entropy. The algorithmajgplied recursively to form

sub-trees, terminating when a given subset contains ios$aof only one class.

The main difference between C4.5 and ID3 is that C4.5 prutesiecision trees.
Pruning simplifies decision trees and reduces the probalilioverfitting the training

data [Qui87]. C4.5 prunes by using the upper bound of a camfelenterval on the re-
substitution error. A node is replaced by its best leaf wineneistimated error of the leaf

is within one standard deviation of the estimated error efrtbde.
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C4.5 has proven to be a benchmark against which the perfaegnairmachine learning
algorithms are measured. As an algorithm it is robust, ateufast, and, as an added
bonus, it produces a comprehensible structure summarismgnowledge it induces.
C4.5 deals remarkably well with irrelevant and redundafarmation, which is why fea-
ture selection has generally resulted in little if any imgment in its accuracy [JKP94].
However, removing irrelevant and redundant informatiom iduce the size of the trees
induced by C4.5 [JKP94, KJ96]. Smaller trees are prefereahisse they are easier to

understand.

The version of C4.5 used in experiments throughout thisshsghe original algorithm

implemented by Quinlan [Qui93].

2.3.3 IBl-Instance Based Learner

Instance based learners represent knowledge in the forpeoffic cases or experiences.
They rely on efficient matching methods to retrieve storezbsaso they can be applied
in novel situations. Like the Naive Bayes algorithm, insebased learners are usually
computationally simple, and variations are often congdexs models of human learn-
ing [CLW9T7]. Instance based learners are sometimes cldisdearners because learn-
ing is delayed until classification time, with most of the mowesiding in the matching

scheme.

IB1 [AKA91] is an implementation of the simplest similaribased learner, known as
nearest neighbour. IB1 simply finds the stored instanceestqgccording to a Euclidean
distance metric) to the instance to be classified. The netanos is assigned to the

retrieved instance’s class. Equation 2.2 shows the distaratric employed by IB1.

Die.y) = |3 Feiou) (2.2)

Equation 2.2 gives the distance between two instan@@y; =; andy, refer to thejth

feature value of instanceandy, respectively. For numeric valued attributgs;, y;) =
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(z; — y;)% for symbolic valued attributeg(x, y) = 0, if the feature values; andy; are

the same, and if they differ.

Table 2.3 shows the distance from the example day (sunnynbonal, false) to each of

the instances in the golf data set by Equation 2.2. In thie tasre are three instances
that are equally close to the example day, so an arbitrariceleould be made between
them. An extension to the nearest neighbour algorithmedéalhearest neighbours, uses
the most prevalent class from tleclosest cases to the novel instance—whleris a

parameter set by the user.

Instance # DistanC(ﬁ Instance # Distanc¢

1 1 8 2
2 2 9 1
3 2 10 2
4 3 11 2
) 2 12 4
6 3 13 1
7 2 14 4

Table 2.3: Computed distance values for the “Golf” data.

The simple nearest neighbour algorithm is known to be aélyeesfected by the presence
of irrelevant features in its training data. While nearesghbour can learn in the presence
of irrelevant information, it requires more training datado so and, in fact, the amount
of training data needed (sample complexity) to reach or taaira given accuracy level
has been shown to grow exponentially with the number ofeuaht attributes [AKA91,
LS94c, LS94b]. Therefore, itis possible to improve the prtgk performance of nearest

neighbour, when training data is limited, by removing iexelnt attributes.

Furthermore, nearest neighbour is slow to execute due tathéhat each example to be
classified must be compared to each of the stored trainirgggagurn. Feature selection
can reduce the number of training cases because fewerdsa&tguates with fewer distinct
instances (especially when features are nominal). Redubanumber of training cases
needed (while maintaining an acceptable error rate) camatiaally increase the speed

of the algorithm.

The version of IB1 used in experiments throughout this gssihe version implemented

by David Aha [AKA91]. Equation 2.2 is used to compute simtiabetween instances.
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Attribute values are linearly normalized to ensure eactibate has the same affect on

the similarity function.

2.4 Performance Evaluation

Evaluating the performance of learning algorithms is a amdntal aspect of machine
learning. Not only is it important in order to compare conpgtlgorithms, but in many
cases is an integral part of the learning algorithm itseli.e&timate of classification ac-
curacy on new instances is the most common performanceatialicriterion, although

others based on information theory have been suggested[KBAN96].

In this thesis, classification accuracy is the primary eatadun criterion for experiments
using feature selection with the machine learning algor#hFeature selection is consid-
ered successful if the dimensionality of the data is redaeebithe accuracy of a learning
algorithm improves or remains the same. In the case of Cdessize (humber of nodes)
of the induced trees is also important—smaller trees arffepesl because they are easier
to interpret. Classification accuracy is defined as the p¢age of test examples correctly
classified by the algorithm. The error rate (a measure mareraanly used in statistics)
of an algorithm is one minus the accuracy. Measuring acgwaa@ test set of examples
is better than using the training set because examples iteshaet have not been used
to induce concept descriptions. Using the training set tasuee accuracy will typically
provide an optimistically biased estimate, especiallyé kearning algorithnoverfitsthe

training data.

Strictly speaking, the definition of accuracy given abovéhissample accuracyf an
algorithm. Sample accuracy is an estimate of the (unmebl&)raue accuracyof the
algorithm, that is, the probability that the algorithm walbrrectly classify an instance
drawn from the unknown distributio of examples. When data is limited, it is com-
mon practice taesamplethe data, that is, partition the data into training and tess s
in different ways. A learning algorithm is trained and telster each partition and the

accuracies averaged. Doing this provides a more reliatil& of the true accuracy of
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an algorithm.

Random subsamplingnd k-fold cross-validationare two common methods of resam-
pling [Gei75, Sch93]. In random subsampling, the data iseamy partitioned into dis-
joint training and test sets multiple times. Accuraciesaoi#d from each partition are
averaged. Irk-fold cross-validation, the data is randomly split iitonutually exclusive
subsets of approximately equal size. A learning algorithrindined and testekl times;
each time it is tested on one of thdolds and trained using the remainikg- 1 folds.
The cross-validation estimate of accuracy is the overatilmer of correct classifications,
divided by the number of examples in the data. The randomasapkng method has
the advantage that it can be repeated an indefinite numbene$.t However, it has the
disadvantage that the test sets are not independently dvétvnespect to the underlying
distribution of examplesD. Because of this, using tatest for paired differences with
random subsampling can lead to increased chance of Typeretinat is, identifying

a significant difference when one does not actually exise®B]. Using a-test on the
accuracies produced on each foldkofold cross-validation has lower chance of Type |
error but may not give a stable estimate of accuracy. It isnompractice to repedt
fold cross-validatiom times in order to provide a stable estimate. However, thioafse
renders the test sets non-independent and increases tieeabfalype | error. Unfortu-
nately, there is no satisfactory solution to this probleniterhative tests suggested by
Dietterich [Die88] have low chance of Type | error lhugih chance of Type Il error—that

is, failing to identify a significant difference when one d@etually exist.

Stratificationis a process often applied during random subsamplingkafudd cross-
validation. Stratification ensures that the class distiiloufrom the whole dataset is pre-
served in the training and test sets. Stratification has lséewn to help reduce the

variance of the estimated accuracy—especially for degagigh many classes [Koh95b].

Stratified random subsampling with a pairetkst is used herein to evaluate accuracy.
Appendix D reports results for the major experiments usiveg3x 2cv pairedt test rec-
ommended by Dietterich [Die88]. As stated above, this tastdecreased chance of type

| error, but increased chance of type Il error (see the appdoddetails).
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Plotting learning curvesare another way that machine learning algorithms can be com-
pared. A learning curve plots the classification accuracg tdarning algorithm as a
function of the size of the training set—it shows how quicityalgorithm’s accuracy im-
proves as it is given access to more training examples. Uatsiins where training data is
limited, it is preferable to use a learning algorithm thatiages high accuracy with small

training sets.

2.5 Attribute Discretization

Most classification tasks in machine learning involve lgggro distinguish among nom-
inal class valués but may involve features that are ordinal or continuous eléag nom-
inal. While many machine learning algorithms have been ldgesl to deal with mixed
data of this sort, recent research [Tin95, DKS95] shows¢bhatmon machine learning
algorithms such as instance based learners and naive Bage8tlfrom treating all fea-
tures in a uniform fashion. One of the most common methodsadraplishing this is
calleddiscretization Discretization is the process of transforming continuealsed at-
tributes to nominal. In fact, the decision tree algorithm3Cui93] accomplishes this
internally by dividing continuous features into discrea@ges during the construction of
a decision tree. Many of the feature selection algorithnscidieed in the next chapter
require continuous features to be discretized, or give supresults if discretization is
performed at the outset [AD91, HNM95, KS96b, LS96]. Disization is used as a pre-
processing step for the correlation-based approach tarkeaetlection presented in this

thesis, which requires all features to be of the same type.

This section describes some discretization approachestfie machine learning litera-

ture.

1CART [BFOS84], Mv'[WW97], and K*[CT95] are some machine learning algorithms capable ofdeal
ing with continuous class data.
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2.5.1 Methods of Discretization

Dougherty, Kohavi, and Sahami [DKS95] defibi@xes along which discretization meth-

ods can be categorised:

1. Supervised versus. unsupervised,
2. Global versus. local,

3. Static versus. dynamic.

Supervised methods make use of the class label when dBogefeatures. The dis-
tinction between global and local methods is based on whesretization is performed.
Global methods discretize features prior to induction, iehe local methods carry out
discretization during the induction process. Local methodhy produce different dis-
cretization$ for particular local regions of the instance space. Somerelization meth-
ods require a parametek, indicating the maximum number of intervals by which to
divide a feature. Static methods perform one discretinatiass on the data for each
feature and determine the value /offor each feature independently of the others. On
the other hand, dynamic methods search the space of possialeies for all features

simultaneously. This allows inter-dependencies in featliscretization to be captured.

Global methods of discretization are most relevant to theufe selection algorithm pre-
sented in this thesis because feature selection is genamlibbal process (that is, a single
feature subset is chosen for the entire instance spacepvikahd Sahami [KS96a] have
compared static discretization with dynamic methods ushogs-validation to estimate
the accuracy of different values 6f They report no significant improvement in employ-

ing dynamic discretization over static methods.

The next two sections discuss several methods for unsigeehand supervised global

discretization of numeric features in common usage.

Unsupervised MethodsThe simplest discretization method is calledual interval

2For example, C4.5 may split the same continuous featurerdiitly down different branches of a
decision tree
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width. This approach divides the range of observed values for tareanto k£ equal
sized bins, wheré is a parameter provided by the user. Doughettgl. [DKS95] point
out that this method of discretization is sensitive to @utlithat may drastically skew the

range. For example, given the observed feature values

0,0,0.5,1,1,1.2,2,2,3,3,3,4,4

and settingc = 4 gives a bin width of4 — 0) + 4 = 1, resulting in discrete ranges

0—1],(1—2],(2—3],(3—14]

with a reasonably even distribution of examples across it biowever, suppose there

was an outlying value of00. This would cause the ranges

[0 — 25], (25 — 50], (50 — 75], (75 — 100]

to be formed. In this case, all the examples except the exawigh the valuel 00 would

fall into the first bin.

Another simple discretization methogfjual frequency intervalsequires a feature’s val-
ues to be sorted, and assigh&: of the values to each bin. Wong and Chiu [WC87]
describe a variation on equal frequency intervals catheckimal marginal entropyhat

iteratively adjusts the boundaries to minimise the entratpgach interval.

Because unsupervised methods do not make use of the classng sterval boundaries,
Doughertyet al. [DKS95] note that classification information can be lost agsult of

placing values that are strongly associated with diffexdasses in the same interval.
The next section discusses methods for supervised dizatiethn which overcome this

problem.

Supervised MethodsHolte [Hol93] presents a simple supervised discretizatrethod
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that is incorporated in his one-level decision tree alhomi{lR). The method first sorts
the values of a feature, and then attempts to find intervaitbaties such that each interval
has a strong majority of one particular class. The methodnstrained to form intervals

of some minimal size in order to avoid having intervals wignywfew instances.

Setiono and Liu [SL95] present a statistically justified hstic method for supervised
discretization called Chi2. A numeric feature is initiaigrted by placing each observed
value into its own interval. The next step uses a chi-squtatistc y? to determine
whether the relative frequencies of the classes in adjaotarivals are similar enough to
justify merging. The formula for computing the value for two adjacent intervals is

2 & (A — Ey)?

= D (2.3)

i=1j=1

whereC' is the number of classed,; is the number of instances in th¢h interval with
classj, R; is the number of instances in th¢h interval,C; is the number of instances
of classj in the two intervals)V is the total number of instances in the two intervals, and

E;; is the expected frequency df; = R; x C;/N.

The extent of the merging process is controlled by an auticaibtsety? threshold. The

threshold is determined through attempting to maintairfittedity of the original data.

Catlett [Cat91] and Fayyad and Irani [FI93] use a minimunmamyt heuristic to discretize
numeric features. The algorithm uses the class entropyrafidate partitions to select
a cut point for discretization. The method can then be agpieeursively to the two
intervals of the previous split until some stopping coradis are satisfied, thus creating
multiple intervals for the feature. For a set of instan§ea feature4, and a cut point’,
the class information entropy of the partition inducedIbis given by

E(AT;S) = %‘Ent(sl) + %Ent(&), (2.4)

whereS; and.S; are two intervals of5 bounded by cut point’, and EntS) is the class
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entropy of a subsef given by

C
Ent(S) = — > p(Ci, S)logy(p(Ci, 5)). (2.5)

=1

For featureA, the cut poinfl” which minimises Equation 2.5 is selected (conditionally) a
a binary discretization boundary. Catlett [Cat91] emplagishoc criteria for terminating
the splitting procedure. These include: stopping if the hanof instances in a partition
is sufficiently small, stopping if some maximum number oftpians have been created,
and stopping if the entropy induced by all possible cut ofot a set is equal. Fayyad
and Irani [FI93] employ a stopping criterion based on theimirm description length
principle [Ris78]. The stopping criterion prescribes autogg a partition induced by’

if and only if the cost of encoding the partition and the atssef the instances in the
intervals induced by is less than the cost of encoding the classes of the instaetee

splitting. The partition induced by cut poifitis acceptedff

logy(N — 1) N A(A,T;S)

Gain(A, T; S) > N N , (2.6)
whereN is the number of instances in the skt
GainA,T;S) =Ent(S) — E(A,T;95), (2.7)
and
A(A,T;S) =logy(3° —2) — [cENt(S) — c1ENt(S1) — c2ENt(Sy)]. (2.8)

In Equation 2.8¢, ¢;, andc, are the number of distinct classes present,irb;, and.S,

respectively.

C4.5[Qui86, Qui93] uses Equation 2.7 locally at the nodesddcision tree to determine
a binary split for a numeric feature. Kohavi and Sahami [Kg96se C4.5 to perform
global discretization on numeric features. C4.5 is appieedach numeric feature sepa-
rately to build a tree which contains binary splits that otdgt a single feature. C4.5’s
internal pruning mechanism is applied to determine an gp@at® number of nodes in

the tree and hence the number of discretization intervals.
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A number of studies [DKS95, KS96a] comparing the effectssihg various discretiza-
tion techniques (on common machine learning domains aratitlgns) have found the
method of Fayyad and Irani to be superior overall. For thasoe, this method of dis-

cretization is used in the experiments described in chapi&rands.
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Chapter 3

Feature Selection for Machine Learning

Many factors affect the success of machine learning on angagk. The representation
and quality of the example data is first and foremost. Thexakyt, having more features
should result in more discriminating power. However, grattexperience with machine
learning algorithms has shown that this is not always the.dslany learning algorithms
can be viewed as making a (biased) estimate of the prohadilibe class label given a set
of features. This is a complex, high dimensional distribotiUnfortunately, induction is
often performed on limited data. This makes estimating theyyprobabilistic parameters
difficult. In order to avoid overfitting the training data, myaalgorithms employ the
Occam’s Razor [GL97] bias to build a simple model that stihi@ves some acceptable
level of performance on the training data. This bias ofte$ean algorithm to prefer a
small number of predictive attributes over a large numbdeafures that, if used in the
proper combination, are fully predictive of the class lalbethere is too much irrelevant
and redundant information present or the data is noisy araliahle, then learning during

the training phase is more difficult.

Feature subset selection is the process of identifyingamedying as much irrelevant and
redundant information as possible. This reduces the diimeality of the data and may
allow learning algorithms to operate faster and more dffelst In some cases, accuracy
on future classification can be improved; in others, theltéswa more compact, easily

interpreted representation of the target concept.

Recent research has shown common machine learning algesrith be adversely af-
fected by irrelevant and redundant training informatiorhe Simple nearest neighbour

algorithm is sensitive to irrelevant attributes—its saengbmplexity (number of training
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examples needed to reach a given accuracy level) grows erpaltty with the number
of irrelevant attributes [LS94b, LS94c, AKA91]. Sample quexity for decision tree
algorithms can grow exponentially on some concepts (sugaaty) as well. The naive
Bayes classifier can be adversely affected by redundaititaéis due to its assumption
that attributes are independent given the class [LS94aLisim tree algorithms such
as C4.5 [Qui86, Qui93] can sometimes overfit training dataylting in large trees. In
many cases, removing irrelevant and redundant informa@orresult in C4.5 producing

smaller trees [KJ96].

This chapter begins by highlighting some common links betwieature selection in pat-
tern recognition and statistics and feature selection ichime learning. Important aspects
of feature selection algorithms are described in secti@n Section 3.3 outlines some
common heuristic search techniques. Sections 3.4 throuigiediew current approaches

to feature selection from the machine learning literature.

3.1 Feature Selection in Statistics and Pattern Recogni-

tion

Feature subset selection has long been a research area stétistics and pattern recog-
nition [DK82, Mil90]. It is not surprising that feature set&n is as much of an issue
for machine learning as it is for pattern recognition, ashd@ids share the common task
of classification. In pattern recognition, feature setatttan have an impact on the eco-
nomics of data acquisition and on the accuracy and complekithe classifier [DK82].
This is also true of machine learning, which has the addederonof distilling useful
knowledge from data. Fortunately, feature selection has lsbown to improve the com-

prehensibility of extracted knowledge [KJ96].

Machine learning has taken inspiration and borrowed froh lpattern recognition and
statistics. For example, the heuristic search techniqgaes#ial backward elimination
(section 3.3) was first introduced by Marill and Green [MG6Rijttler [Kit78] intro-

duced different variants, including a forward method antepwise method. The use of
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cross-validation for estimating the accuracy of a featutessst—which has become the
backbone of the wrapper method in machine learning—wasesigd by Allen [All74]

and applied to the problem of selecting predictors in limegression.

Many statistical methodsor evaluating the worth of feature subsets based on charac-
teristics of the training data are only applicable to numéatures. Furthermore, these
measures are often monotonic (increasing the size of tharéeaubset can never de-
crease performance)—a condition that does not hold fotipedenachine learning algo-
rithms?. Because of this, search algorithms such as dynamic progi@gnand branch
and bound [NF77], which rely on monotonicity in order to petthe search space, are not
applicable to feature selection algorithms that use ongitéo match the general bias of

machine learning algorithms.
3.2 Characteristics of Feature Selection Algorithms

Feature selection algorithms (with a few notable excegliperform a search through the
space of feature subsets, and, as a consequence, mussdddrdsasic issues affecting

the nature of the search [Lan94]:

1. Starting point. Selecting a point in the feature subsatsgfrom which to begin the
search can affect the direction of the search. One optianbsgin with no features
and successively add attributes. In this case, the seasghiddo proceed forward
through the search space. Conversely, the search can begialifeatures and
successively remove them. In this case, the search probeela/ard through the
search space. Another alternative is to begin somewheteimtddle and move

outwards from this point.

2. Search organisation. An exhaustive search of the featepace is prohibitive
for all but a small initial number of features. WitN initial features there exist

2V possible subsets. Heuristic search strategies are maibliethan exhaustive

IMeasures such as residual sum of squares (RSS), Matlowand separability measures suchfas
Ratio and its generalisations are described in Miller [M]l&nd Parsons [Par87] respectively.

2For example, decision tree algorithms (such as C4.5 [Qui@i8tover regularities in training data by
partitioning the data on the basis of observed feature galMaintaining statistical reliability and avoiding
overfitting necessitates the use of a small number of stygmgidictive attributes.
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ones and can give good results, although they do not guaréintkng the optimal
subset. Section 2.2.3 discusses some heuristic seartdgstsathat have been used

for feature selection.

. Evaluation strategy. How feature subsets are evaluatéitki single biggest dif-
ferentiating factor among feature selection algorithmsni@chine learning. One
paradigm, dubbed thidter [Koh95b, KJ96] operates independent of any learning
algorithm—undesirable features are filtered out of the afare learning begins.
These algorithms use heuristics based on general chasticeeof the data to eval-
uate the merit of feature subsets. Another school of thoagiuies that the bias
of a particular induction algorithm should be taken into@aot when selecting
features. This method, called thgapper[Koh95b, KJ96], uses an induction al-
gorithm along with a statistical re-sampling techniquehsas cross-validation to
estimate the final accuracy of feature subsets. Figure [Bdtriites the filter and

wrapper approaches to feature selection.

. Stopping criterion. A feature selector must decide wlwestdp searching through
the space of feature subsets. Depending on the evaluataiagt, a feature selec-
tor might stop adding or removing features when none of ttegrstives improves
upon the merit of a current feature subset. Alternativélg,dlgorithm might con-
tinue to revise the feature subset as long as the merit ddedegoade. A further
option could be to continue generating feature subsets ngaithing the opposite

end of the search space and then select the best.

3.3 Heuristic Search

Searching the space of feature subsets within reasonafectinstraints is necessary if

a feature selection algorithm is to operate on data withgelaumber of features. One

simple search strategy, called greedy hill climbing, cdess local changes to the current

feature subset. Often, a local change is simply the additiateletion of a single feature

from the subset. When the algorithm considers only additiorthe feature subset it is
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Figure 3.1: Filter and wrapper feature selectors.

known asforward selection considering only deletions is known aackward elimina-
tion [Kit78, Mil90]. An alternative approach, called stepwisedirectional search, uses
both addition and deletion. Within each of these variatighe search algorithm may
consider all possible local changes to the current subsktteam select the best, or may
simply choose the first change that improves the merit of tineeat feature subset. In ei-
ther case, once a change is accepted, it is never recorsidiégaire 3.2 shows the feature
subset space for the golf data. If scanned from top to bottieegliagram shows all local
additions to each node; if scanned from bottom to top, thgrdia shows all possible
local deletions from each node. Table 3.1 shows the algorftr greedy hill climbing

search.

Best first search [RK91] is an Al search strategy that allosgkbracking along the search
path. Like greedy hill climbing, best first moves through $kearch space by making local
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Figure 3.2: Feature subset space for the “golf” dataset.

Let s «—start state.
Expands by making each possible local change.
Evaluate each chiltof s.

Let s’ «—child ¢ with highest evaluation(t).
If e(s’) > e(s) thens — &', goto 2.
Returns.

S otk =

Table 3.1: Greedy hill climbing search algorithm
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changes to the current feature subset. However, unlikeclimtibing, if the path being

explored begins to look less promising, the best first seaachback-track to a more
promising previous subset and continue the search frome tii&@ven enough time, a best
first search will explore the entire search space, so it igwonto use a stopping criterion.
Normally this involves limiting the number of fully expandfesubsets that result in no

improvement. Table 3.2 shows the best first search algorithm

1. Begin with the OPEN list containing the start state, the GED list empty,
and BESF—start state.

Lets = arg maxe(z) (get the state from OPEN with the highest evaluation).
Removes from OPEN and add to CLOSED.

If e(s) > e(BEST),then BEST« s.

For each child of s that is not in the OPEN or CLOSED list, evaluate and add to OPEN
If BEST changed in the last set of expansions, goto
Return BEST.

A e

Table 3.2: Best first search algorithm

Genetic algorithms are adaptive search techniques bastw grinciples of natural se-
lection in biology [Hol75]. They employ a population of coetmg solutions—evolved
over time—to converge to an optimal solution. Effectivéhe solution space is searched
in parallel, which helps in avoiding local optima. For fe&tselection, a solution is typi-
cally a fixed length binary string representing a featuresstis-the value of each position
in the string represents the presence or absence of a partieature. The algorithm is
an iterative process where each successive generationdsiqged by applying genetic
operators such agossoverandmutationto the members of the current generation. Mu-
tation changes some of the values (thus adding or deletatgries) in a subset randomly.
Crossover combines different features from a pair of sghséd a new subset. The ap-
plication of genetic operators to population members ismeined by their fithess (how
good a feature subset is with respect to an evaluation gyratBetter feature subsets have
a greater chance of being selected to form a new subset thi@ogsover or mutation.
In this manner, good subsets are “evolved” over time. TalesBows a simple genetic

search strategy.

3A fully expanded subset is one in which all possible localnges have been considered.
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Begin by randomly generating an initial populatiBn

Calculatee(x) for each member € P.

Define a probability distributiop over the members d? wherep(z) o« e(z).
Select two population membersandy with respect tg.

Apply crossover ta: andy to produce new population membearsandsy’.
Apply mutation toz’ andy’.

Insertz’ andy’ into P’ (the next generation).

If |P'| < |P]|, gotod.

LetP « P'.

If there are more generations to process, goto

Returnz € P for whiche(z) is highest.

REEO0NoE e

= O

Table 3.3: Simple genetic search strategy.

3.4 Feature Filters

The earliest approaches to feature selection within madeisrning were filter methods.
All filter methods use heuristics based on general chaiatitey of the data rather than
a learning algorithm to evaluate the merit of feature suhséts a consequence, filter
methods are generally much faster than wrapper methodsaasdch, are more practical

for use on data of high dimensionality.

3.4.1 Consistency Driven Filters

Almuallim and Dieterich [AD91] describe an algorithm ongily designed for boolean
domains called FOCUS. FOCUS exhaustively searches the gfdeature subsets un-
til it finds the minimum combination of features that dividég training data into pure
classes (that is, where every combination of feature vakiessociated with a single
class). This is referred to as the “min-features bias”.dwaithg feature selection, the final
feature subset is passed to ID3 [Qui86], which constructscisin tree. There are two
main difficulties with FOCUS, as pointed out by Caruanna aredt&g [CF94]. Firstly,
since FOCUS is driven to attain consistency on the trainiaig,dan exhaustive search
may be intractable if many features are needed to attainstensy. Secondly, a strong
bias towards consistency can be statistically unwarraatedmay lead to overfitting the

training data—the algorithm will continue to add featur@sdpair a single inconsistency.

The authors address the first of these problems in their 19@2rp[AD92]. Three
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algorithms—each consisting of forward selection searalpt=a with a heuristic to ap-
proximate the min-features bias—are presented as metbhauske FOCUS computa-

tionally feasible on domains with many features.

The first algorithm evaluates features using the followifgimation theoretic formula:

glRl_1

Entropy(@) = — -

1=0

p; +n; Di

Pi U Y
1 1 . (31
|Sample| | p; + N; 082 ©8 3-1)

_'_ K3
pi+ N pitn pi+n

For a given feature subsét, there are2/?! possible truth value assignments to the fea-
tures. A given feature sép divides the training data into groups of instances with the
same truth value assignments to the featureg.ikquation 3.1 measures the overall en-
tropy of the class values in these groups—andn,; denote the number of positive and

negative examples in theth group respectively. At each stage, the feature which min

imises Equation 3.1 is added to the current feature subset.

The second algorithm chooses the most discriminating featuadd to the current subset
at each stage of the search. For a given pair of positive agatie examples, a feature
is discriminating if its value differs between the two. Afckastage, the feature is cho-
sen which discriminates the greatest number of positigatiee pairs of examples—that

have not yet been discriminated by any existing featureerstibset.

The third algorithm is like the second except that each pesitegative example pair
contributes a weighted increment to the score of each fedhat discriminates it. The

increment depends on the total number of features thaticiisate the pair.

Liu and Setiono [LS96] describe an algorithm similar to FC&thlled LVF. Like FO-
CUS, LVF is consistency driven and, unlike FOCUS, can handisy domains if the
approximate noise level is known a-priori. LVF generatearadom subse$ from the
feature subset space during each round of executighcéintains fewer features than the
current best subset, tlireconsistencyate of the dimensionally reduced data described by
S is compared with thenconsistencyate of the best subset. §fis at least as consistent as
the best subses, replaces the best subset. The inconsistency rate of tingnigadata pre-

scribed by a given feature subset is defined over all groupsatéhing instances. Within
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a group of matching instances the inconsistency count isitingber of instances in the
group minus the number of instances in the group with the negtient class value. The
overall inconsistency rate is the sum of the inconsistenayts of all groups of matching

instances divided by the total number of instances.

Liu and Setiono report good results for LVF when applied tmsatrtificial domains and
mixed results when applied to commonly used natural domdihsy also applied LVF
to two “large” data sets—the first havigg, 000 instances described B9 attributes; the
second having, 909 instances described By attributes. They report that LVF was able
to reduce the number of attributes on both data sets by manghihlf. They also note that
due to the random nature of LVF, the longer it is allowed tocexe, the better the results

(as measured by the inconsistency criterion).

Feature selection based on rough sets theory [Mod93, Pawg@%]notions of consistency
similar to those described above. In rough sets theoipfanmation systens a 4-tuple
S=(U,Q,V,f),where

U is the finite universe of instances.

Q is the finite set of features.

V is the set of possible feature values.

f is the information function. Given an instance and a featfireaps it to a value

veV.

For any subset of featurd3 C @), anindiscernibility relationIND (P) is defined as:

IND(P) = (z,y) €U xU: f(x,a) = f(y,a), (3.2)

for every feature:. € P

The indiscernibility relation is an equivalence relatioreoU. Hence, it partitions the
instances into equivalence classes—sets of instancesardible with respect to the fea-
tures in P. Such a partition (classification) is denoted GyIND(P). In supervised

machine learning, the sets of instances indiscernible veiipect to the class attribute
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contain (obviously) the instances of each class.

For any subset of instancés C U and subset of featurd3 C @, the lowerP, and the

upper,P approximations ofX are defined as follows:
P(X)=U{Y eU/IND(P):Y C X} (3.3)

P(X)=U{Y € U/IND(P) : Y N X # )} (3.4)

If P(X)= P(X)thenX is an exact setdefinableusing feature subsét), otherwiseX

is aroughset with respect t@ .

The instances itV that can be classified to the equivalence classés' D (P) by using

feature sef? is called thepositive regiorof P with respect tak, and is defined as follows:

POS(P)= | R(X). (3.5)
XecU/IND(P)
The degree of consistency afforded by feature suRseith respect to the equivalence
classes ot/ /IND(P) is given by:

_ |[PO%(P)|

Yr(P) = U] (3.6)

IF vr(P) = 1 thenP is totally consistent with respect .

Feature selection in rough sets theory is achieved by iiyérgia reductof a given set of
features. AseR C P is areduct ofP if it is independenand IND(R) = IND(P). R is
independent if there does not exist a strict suigedf R such that INDR') = IND(R).
Each reduct has the property that a feature cannot be renfimradt without changing

the indiscernibility relation.

Both rough sets and the LVF algorithm are likely to assigmbrgconsistency to attributes
that have many values. An extreme example is an attributééseas many values as there
are instances. An attribute such as this has little poweet®mlize beyond the training

data. If R is such an attribute, an@ is the class attribute, then it is easy to show that
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PO (C) contains all the instancéand~z(P) = 1. Similarly, for LVF, the featureR

guarantees that there is no inconsistency in the data.

3.4.2 Feature Selection Through Discretization

Setiono and Liu [SL95] note that discretization has the pideto perform feature se-
lection among numeric features. If a numeric feature catifigisly be discretized to a
single value, then it can safely be removed from the data. cbinebined discretization
and feature selection algorithm Chi2 (discussed in se@ibri), uses a chi-square statis-
tic y? to perform discretization. Numeric attributes are inljiadorted by placing each
observed value into its own interval. Each numeric attebsthen repeatedly discretized
by using they? test to determine when adjacent intervals should be mergée. ex-
tent of the merging process is controlled by the use of annaatically sety? threshold.
The threshold is determined by attempting to maintain thgirwal fidelity of the data—
inconsistency (measured the same way as in the LVF algod#@suribed above) controls

the process.

The authors report results on three natural domains cangganmixture of numeric and
nominal features, using C4.5 [Qui86, Qui93] before andrafiscretization. They con-
clude that Chi2 is effective at improving C4.5’s performarand eliminating some fea-
tures. However, itis not clear whether C4.5’s improvemegdtie entirely to some features

having been removed or whether discretization plays a oieedl.

3.4.3 Using One Learning Algorithm as a Filter for Another

Several researchers have explored the possibility of wsipgrticular learning algorithm

as a pre-processor to discover useful feature subsets fanany learning algorithm.

Cardie [Car95] describes the application of decision tigerdhms to the task of select-
ing feature subsets for use by instance based learners.wW@4.applied to three natural

language data sets; only the features that appeared in Hialénision trees were used

4Each element i/ /IND(R) is a set containing exactly one unique instance fidnTherefore, each
element ofU/IND(R) is a subset of one of the equivalence classés/ilND (C).
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with a k& nearest neighbour classifier. The use of this hybrid systsulted in signif-
icantly better performance than either C4.5 or theearest neighbour algorithm when

used alone.

In a similar approach, Singh and Provan [SP96] use a grekliljiousdecision tree algo-
rithm to select features from which to construct a Bayesitmwvark. Oblivious decision
trees differ from those constructed by algorithms such a® @that all nodes at the
same level of an oblivious decision tree test the same atg&ril-eature subsets selected
by three oblivious decision tree algorithms—each emplgwdifferent information the-
oretic splitting criterion—were evaluated with a Bayesratwork classifier on several
machine learning datasets. Results showed that Bayestamnke using features se-
lected by the oblivious decision tree algorithms outpenfed Bayesian networks without

feature selection and Bayesian networks with featuresteeldy a wrapper.

Holmes and Nevill-Manning [HNM95] use Holte’s 1R system [Big] to estimate the pre-
dictive accuracy of individual features. 1R builds rulesdxhon a single features (called
1-rule$). If the data is split into training and test sets, it is pbksto calculate a classifi-
cation accuracy for each rule and hence each feature. Fassifitation scores, a ranked
list of features is obtained. Experiments with choosing lactenumber of the highest
ranked features and using them with common machine leaaigggithms showed that,
on average, the top three or more features are as accurasangshe original set. This
approach is unusual due to the fact that no search is cortiukctstead, it relies on the

user to decide how many features to include from the ranlsgdhlithe final subset.

Pfahringer [Pfa95] uses a program for inducing decisioletatajority classifiers to select
features. DTM (Decision Table Majority) classifiers are msle type of nearest neigh-
bour classifier where the similarity function is restrictedeturning stored instances that
are exact matches with the instance to be classified. If ianuss are returned, the most
prevalent class in the training data is used as the predotésd; otherwise, the majority
class of all matching instances is used. DTMs work best whigeatures are nominal.
Induction of a DTM is achieved by greedily searching the spafcpossible decision ta-

bles. Since a decision table is defined by the features iuded, induction is simply

51-rules can be thought of as single level decision trees.
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feature selection. In Pfahringer’s approach, the minimestdption length (MDL) prin-
ciple [Ris78] guides the search by estimating the cost obéimg a decision table and
the training examples it misclassifies with respect to argfeature subset. The features
appearing in the final decision table are then used with déaening algorithms. Exper-
iments on a small selection of machine learning datasetseshthat feature selection by
DTM induction can improve the accuracy of C4.5 in some caSd@¥4 classifiers induced
using MDL were also compared with those induced using cvafigation (a wrapper ap-
proach) to estimate the accuracy of tables (and hence ées#ts). The MDL approach

was shown to be more efficient than, and perform as well agpas-walidation.

3.4.4 An Information Theoretic Feature Filter

Koller and Sahami [KS96b] recently introduced a featured&n algorithm based on
ideas from information theory and probabilistic reasorirga88]. The rationale behind
their approach is that, since the goal of an induction allyoriis to estimate the proba-
bility distributions over the class values, given the orgifeature set, feature subset se-
lection should attempt to remain as close to these origiis#tilutions as possible. More
formally, letC' be a set of classe¥] a set of featuresX a subset o}/, v an assignment
of values(vy, ... ,v,) to the features i/, andv, the projection of the values in onto
the variables inX. The goal of the feature selector is to chodsso that P{C| X = v,)

is as close as possible to(Pf{V = v). To achieve this goal, the algorithm begins with all
the original features and employs a backward eliminati@ancteto remove, at each stage,
the feature that causes the least change between the twibwdisns. Because it is not
reliable to estimate high order probability distributidram limited data, an approximate
algorithm is given that uses pair-wise combinations ofdeeg. Cross entropy is used to
measure the difference between two distributions and tke msist specify how many
features are to be removed by the algorithm. The cross gnubihe class distribution

given a pair of features is:

D(PrCIV; = v, V; = 1), PHC|V; = vy) ) =

p(cVi = v;, V; = v;)
p(c|V; = v;, V; = v;)log :
cezc TR p(e|V =)

(3.7)

38



For each feature, the algorithm finds a set/;, containingK attributes from those that
remain, that is likely to subsurfiéne information featuré has about the class values,
containsk features out of the remaining features for which the valuEgifation 3.7 is
smallest. The expected cross entropy between the distnbaf the class values, given
M;, V;, and the distribution of class values given jigt, is calculated for each feature
i. The feature for which this quantity is minimal is removednir the set. This process

iterates until the user-specified number of features arevethfrom the original set.

Experiments on four natural domains and two artificial domeaising C4.5 and naive
Bayes as the final induction algorithm, showed that the feaselector gives the best
results when the siz& of the conditioning se/ is set to2. In two domains containing
over 1000 features the algorithm is able to reduce the number of feathy more than

half, while improving accuracy by one or two percent.

One problem with the algorithm is that it requires featuréb wiore than two values to be
encoded as binary in order to avoid the bias that entropicsuorea have toward features
with many values. This can greatly increase the number d¢éifes in the original data,
as well as introducing further dependencies. Furtherntbieemeaning of the original

attributes is obscured, making the output of algorithm$isasgcC4.5 hard to interpret.

3.4.5 An Instance Based Approach to Feature Selection

Kira and Rendell [KR92] describe an algorithm called RELIfBBEt uses instance based
learning to assign a relevance weight to each feature. Esathre’s weight reflects its
ability to distinguish among the class values. Featuresarked by weight and those
that exceed a user-specified threshold are selected to fierfimtl subset. The algorithm
works by randomly sampling instances from the training data each instance sampled,
the nearest instance of the same class (nearest hit) anditgplass (nearest miss) is
found. An attribute’s weight is updated according to howlitelvalues distinguish the
sampled instance from its nearest hit and nearest miss. tAbuae will receive a high
weight if it differentiates between instances from differelasses and has the same value

for instances of the same class. Equation 3.8 shows the tgiglating formula used by

6, is an approximation of enarkov blankgPea88] for feature.
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RELIEF:

diff (X, R, H)? diff(X, R, M)?
Wx =Wx — (m )‘1‘ ( m )7 (3.8)

where Wy is the weight for attributeX, R is a randomly sampled instanc#, is the
nearest hit) is the nearest miss, and is the number of randomly sampled instances.
The function diff calculates the difference between twaanses for a given attribute. For
nominal attributes it is defined as eithefthe values are different) or(the values are the
same), while for continuous attributes the difference esdhtual difference normalised

to the interval0, 1]. Dividing by m guarantees that all weights are in the intefval, 1.

RELIEF operates on two-class domains. Kononenko [Kon9d¢dlees enhancements to
RELIEF that enable it to cope with multi-class, noisy andimplete domains. Kira and
Rendell provide experimental evidence that shows RELIEBeteffective at identifying
relevant features even when they intefgfor example, in parity problems). However,

RELIEF does not handle redundant features. The authors stat

“If most of the given features are relevant to the concegRELIEF) would
select most of the given features even though only a smalbeuwf them are

necessary for concept description.”

Scherf and Brauer [SB97] describe a similar instance bappdach (EUBAFES) to
assigning feature weights developed independently of EELLike RELIEF, EUBAFES
strives to reinforce similarities between instances ofséi@e class while simultaneously
decrease similarities between instances of differense®sA gradient descent approach

is employed to optimize feature weights with respect to gioial.

3.5 Feature Wrappers

Wrapper strategies for feature selection use an inductgorithm to estimate the merit

of feature subsets. The rationale for wrapper approachbatishe induction method that

’Interactingfeatures are those whose values are dependent on the vhbtheidfeatures and the class,
and as such, provide further information about the classth®mther handiedundantfeatures, are those
whose values are dependent on the values of other feattasgéctive of the class, and as such, provide no
further information about the class.
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will ultimately use the feature subset should provide advedstimate of accuracy than a
separate measure that has an entirely different inductase[ban94]. Feature wrappers
often achieve better results than filters due to the factttigt are tuned to the specific
interaction between an induction algorithm and its tragrdata. However, they tend to be
much slower than feature filters because they must repgatalithe induction algorithm

and must be re-run when a different induction algorithm isdusSince the wrapper is a
well defined process, most of the variation in its applicatioe due to the method used
to estimate the off-sample accuracy of a target inductigordhm, the target induction

algorithm itself, and the organisation of the search. Thigtien reviews work that has

focused on the wrapper approach and methods to reduce ifsutanonal expense.

3.5.1 Wrappers for Decision Tree Learners

John, Kohavi, and Pfleger [JKP94] were the first to advocatenttapper [All74] as a
general framework for feature selection in machine leaynirhey present formal defini-
tions for two degrees of feature relevance, and claim trattapper is able to discover
relevant features. A featut’; is said to be strongly relevant to the target concept(s) if
the probability distribution of the class values, given tuk feature set, changes when
X; is removed. A featureX; is said to be weakly relevant if it is not strongly relevant
and the probability distribution of the class values, gigeme subse$ (containing.X;)

of the full feature set, changes whéan is removed. All features that are not strongly or
weakly relevant are irrelevant. Experiments were condlotethree artificial and three
natural domains using ID3 and C4.5 [Qui86, Qui93] as the atidn algorithms. Accu-
racy was estimated by usij-fold cross validation on the training data; a disjoint test
set was used for reporting final accuracies. Both forwaredcsein and backward elimi-
nation search were used. With the exception of one artifitmatain, results showed that
feature selection did not significantly change 1D3 or C4dgseralisation performance.

The main effect of feature selection was to reduce the siflesdifrees.

Like John et al., Caruanna and Freitag [CF94] test a numbgresfdy search methods

with ID3 on two calendar scheduling domains. As well as bakielimination and for-
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ward selection they also test two variants of stepwise taetional search—one starting
with all features, the other with none. Results showed thhbagh the bi-directional
searches slightly outperformed the forward and backwaadckes, on the whole there
was very little difference between the various search esgias except with respect to
computation time. Feature selection was able to improveénmrmance of ID3 on both

calendar scheduling domains.

Vafaie and De Jong [VJ95] and Cherkauer and Shavlik [CS9¢¢ bath applied genetic
search strategies in a wrapper framework for improving #régpmance of decision tree
learners. Vafaie and De Jong [VJ95] describe a system thsatvi@ genetic algorithm
driven modules—the first performs feature selection, aedstttond performs construc-
tive inductiorf [Mic83]. Both modules were able to significantly improve therfor-
mance of ID3 on a texture classification problem. Cherkandr&havlik [CS96] present
an algorithm called SET-Gen which strives to improve the pahesibility of decision
trees as well as their accuracy. To achive this, SET-Gemietgesearch uses a fithess
function that is a linear combination of an accuracy termasdnplicity term:

FithessX) — ZA 4 i<1 - “%) (3.9)

where X is a feature subsetd is the average cross-validation accuracy of C4.5s
the average size of the trees produced by C4.5 (normalizeidojpumber of training
examples), and’ is is the number of features is the subde{(normalized by the total

number of available features).

Equation 3.9 ensures that the fittest population membershase feature subsets that

lead C4.5 to induce small but accurate decision trees.

3.5.2 Wrappers for Instance Based Learning

The wrapper approach was proposed at approximately the ser@and independently

8Constructive induction is the process of creating newlaites by applying logical and mathematical
operators to the original features.
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of John et al. by Langley and Sage [LS94c, LS94b] during time&stigation of the sim-
ple nearest neighbour algorithm’s sensitivity to irrel@vattributes. Scaling experiments
showed that the nearest neighbour’s sample complexityn{ith@er of training examples
needed to reach a given accuracy) increases exponentidiyhe number of irrelevant
attributes present in the data [AKA91, LS94c, LS94b]. Anoaighm called OBLIVION

is presented which performs backward elimination of fezgwrsing an oblivious decision
tre€ as the induction algorithm. Experiments with OBLIVION ugik-fold cross vali-
dation on several artificial domains showed that it was abtemove redundant features

and learn faster than C4.5 on domains where features interac

Moore and Lee [ML94] take a similar approach to augmentingrest neighbour algo-
rithms, but their system uses leave-one-out insteak-fold cross-validation and con-
centrates on improving the prediction of numeric rathenttiescrete classes. Aha and
Blankert [AB94] also use leave-one-out cross validatian,dair it with a beam searéh
instead of hill climbing. Their results show that featuréesgon can improve the per-
formance of IB1 (a nearest neighbour classifier) on a spaesg (ew instances) cloud
pattern domain with many features. Moore, Hill, and Johr#dHJ92] encompass not
only feature selection in the wrapper process, but also tineber of nearest neighbours
used in prediction and the space of combination functiorsendJleave-one-out cross val-
idation, they achieve significant improvement on severatrob problems involving the
prediction of continuous classes. In a similar vein, Ska&#a94] combines feature se-
lection and prototype selection into a single wrapper msaesing random mutation hill
climbing as the search strategy. Experimental results stasignificant improvement
in accuracy for nearest neighbour on two natural domainsaaghéstic reduction in the

algorithm'’s storage requirement (number of instancesmetbduring training).

Domingos [Dom97] describes@ntext sensitivevrapper approach to feature selection
for instance based learners. The motivation for the appragathat there may be fea-

tures that are either relevant in only a restricted areaefribtance space and irrelevant

SWhen all the original features are included in the tree anérgia number of assumptions at clas-
sification time, Langley and Sage note that the structurenstfonally equivalent to the simple nearest
neighbour; in fact, this is how it is implemented in OBLIVION

10Beam search is a limited version of best first search that @myembers a portion of the search path
for use in backtracking
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elsewhere, or relevant given only certain values (weakbracting) of other features and
otherwise irrelevant. In either case, when features aimattdglobally (over the en-
tire instance space), the irrelevant aspects of theseadatures may overwhelm their
useful aspects for instance based learners. This is trueveven using backward search
strategies with the wrappér Domingos presents an algorithm called RC which can de-
tect and make use of context sensitive features. RC workelegting a (potentially)
different set of features for each instance in the traingtg & does this by using a back-
ward search strategy and cross validation to estimate acguFor each instance in the
training set, RC finds its nearest neighbour of the same eladsemoves those features
in which the two differ. The accuracy of the entire trainirgtaket is then estimated by
cross validation. If the accuracy has not degraded, the fieddnstance in question is
accepted; otherwise the instance is restored to its ofigiate anddeactivatedno fur-
ther feature selection is attempted for it). The featurecaln process continues until all

instances are inactive.

Experiments on a selection of machine learning datasetseshthat RC outperformed
standard wrapper feature selectors using forward and kacksearch strategies with
instance based learners. The effectiveness of the corgaesitive approach was also
shown on artificial domains engineered to exhibit restddature dependency. When
features are globally relevant or irrelevant, RC has no m@idwge over standard wrapper
feature selection. Furthermore, when few examples ardadl@j or the data is noisy,
standard wrapper approaches can detect globally irrelégatures more easily than RC.
Domingos also noted that wrappers that employ instanceddaseners (including RC)
are unsuitable for use on databases containing many irstdm@cause they are quadratic

in N (the number of instances).

Kohavi [KF94, Koh95a] uses wrapper feature selection tdaeghe potential of decision
table majority (DTM) classifiers. Appropriate data struetiallow the use of fast incre-
mental cross-validation with DTM classifiers. Experimestiswed that DTM classifiers

using appropriate feature subsets compared very favounathl sophisticated algorithms

"n the wrapper approach, backward search strategies aezajlgrmore effective than forward search
strategies in domains with feature interactions. Becausskward search typically begins with all the
features, the removal of a strongly interacting featuresigally detected by decreased accuracy during
cross validation.
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such as C4.5.

3.5.3 Wrappers for Bayes Classifiers

Due to the naive Bayes classifier's assumption that, withitcheclass, probability dis-
tributions for attributes are independent of each othengley and Sage [LS94a] note
that its performance on domains with redundant featuresbeamproved by removing
such features. A forward search strategy is employed tatsieglatures for use with naive
Bayes, as opposed to the backward strategies that are ustaftem with decision tree
algorithms and instance based learners. The rationalefdoward search is that it should
immediately detect dependencies when harmful redundaititaes are added. Experi-
ments showed overall improvement and increased learntagrethree out of six natural

domains, with no change on the remaining three.

Pazzani [Paz95] combines feature selection and simplércmtige induction in a wrap-
per framework for improving the performance of naive BayEsrward and backward
hill climbing search strategies are compared. In the foroaese, the algorithm consid-
ers not only the addition of single features to the currebsst) but also creating a new
attribute by joining one of the as yet unselected featurék aach of the selected fea-
tures in the subset. In the latter case, the algorithm censiboth deleting individual
features and replacing pairs of features with a joined featiResults on a selection of
machine learning datasets show that both approaches impheverformance of naive
Bayes. The forward strategy does a better job at removingneht attributes than the
backward strategy. Because it starts with the full set diies, and considers all possible
pairwise joined features, the backward strategy is morct¥e at identifying attribute

interactions than the forward strategy.

Improvement for naive Bayes using wrapper-based featueetsmn is also reported by
Kohavi and Sommerfield [KS95] and Kohavi and John [KJ96].

Provan and Singh [PS96] have applied the wrapper to selattrés from which to con-
struct Bayesian networks. Their results showed that wiedgure selection did not im-

prove accuracy over networks constructed from the full 6&tatures, the networks con-
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structed after feature selection were considerably smeatie faster to learn.

3.5.4 Methods of Improving the Wrapper

Most criticism of the wrapper approach to feature seleasaroncerned with its compu-
tational cost. For each feature subset examined, an irugkjorithm is invoked times

in an k-fold cross validation. This can make the wrapper prohiblti slow for use on
large data sets with many features. This drawback has led sesearchers to investigate

ways of mitigating the cost of the evaluation process.

Caruanna and Freitag [CF94] devised a scheme that cachisgddoees. This can sub-
stantially reduce the number of trees grown during featetection and allow larger

spaces to be searched.

Moore and Lee [ML94] present a method to “race” competing et®dr feature sub-
sets. If at some point during leave-one-out cross-valata subset is deemed to be
unlikely to have the lowest estimated error, its evaluaisoterminated. This has the ef-
fect of reducing the percentage of training examples usedgievaluation and reduces
the computational cost of fully evaluating each subset. dlgerithm also “blocks” all
near identical feature subsets—except one—in the race. pravents having to run fea-
ture subsets with nearly identical predictions right to ¢inel. Both racing and blocking
use Bayesian statistics to maintain a probability distidysuon the estimate of the mean
leave-one-out cross validation error for each competifigsu The algorithm uses for-
ward selection, but instead of sequentially trying all latsanges to the best subset, these
changes are raced. The race finishes when only one compeliagtsemains or the cross

validation ends.

Kohavi and John [KS95] introduce the notion of “compounddred space operators in
an attempt to make backward and best first search strategmegutationally feasible.
When all local changes (additions or deletions of singléuiess) to a given feature sub-
set have been evaluated, the first compound operator issdreambining the two best
local changes. This operator is then applied to the featubeed, creating a new subset

further away in the search space. If the first compound opelaads to a subset with
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an improved estimate, a second compound operator is cotesfrthat combines the best
three local changes, and so forth. The use of compound ape@bpels the search more
quickly toward the strongly relevant features. Experirseumging compound operators
with a forward best first search showed no significant changthe accuracy for ID3
and naive Bayes. When compound operators were combinedaviattkward best first
search, accuracy degraded slightly for ID3 but improvedX¥ér5. The poor results with
ID3 suggest that the best first search can still get stucknmeslocal maxima. The im-
provement with C4.5 is due to C4.5’s pruning (again a formeaitéire selection), which

allows the best first search to overcome the local maxima.

Moore and Lee [ML94] describe another search variant calbd@mata search that takes
interacting features into account and speeds up the seaschgs. Rather than starting
with an empty or full set of features, the search begins wlitfeatures marked as “un-
known”. In each iteration, a feature is chosen and raceddmvibeing in the subset or
excluded from it. All combinations of unknown features ased with equal probabil-
ity. Due to the probabilistic nature of the search, a feathet should be in the subset
will win the race, even if it is dependent on another featugxperiments on artificial
domains showed schemata search to be effective at idengifglevant features (more
so than raced versions of forward and backward selectioth)naunch faster than raced

backward selection.

3.6 Feature Weighting Algorithms

Feature weighting can be viewed as a generalisation ofrieatlection. In feature se-
lection, feature weights are restricted(t@r 1 (a feature is used or it is not). Feature
weighting allows finer differentiation between featuresasgigning each a continuous
valued weight. Algorithms such as nearest neighbour (tbanally treat each feature
equally) can be easily modified to include feature weightirigen calculating similarity
between cases. One thing to note is that, in general, featighting algorithms do not
reduce the dimensionality of the data. Unless features weiti low weight are removed
from the data initially, it is assumed that each feature efuldor induction; its degree

of usefulness is reflected in the magnitude of its weight.ngsiontinuous weights for
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features involves searching a much larger space and irvvalgeeater chance of overfit-
ting [KLY97].

Salzberg [Sal91] incorporates incremental feature weighh an instance based learner
called EACH. For each correct classification made, the wéagleach matching feature is
incremented by\; (the global feature adjustment rate). Mismatching featinave their
weights decremented by this same amount. For incorrecsiitagions, the opposite
occurs—mismatching features are incremented while thghtgiof matching features
are decremented. Salzberg reported that the value,afeeds to be tuned for different

data sets to give best results.

Wettschereck and Aha [WA95] note that EACH’s weighting sokeis insensitive to
skewed concept descriptions. IB4 [Aha92] is an extensiotheft nearest neighbour
algorithm that addresses this problem by calculating aragpaet of feature weights for

each concept. The weight for featurs computed using

lativeWeight
wi:max<cumuatlve eigh 0.5,0). (3.10)

WeightNormaliser

CumulativeWeight is expected to approach one half of Wélghtnaliser for apparently
irrelevant attributes. Both CumulativeWeight and Weigiitidaliser are incrementally
updated during learning. Let be the higher of the observed frequencies among the
classes of two instances (the instance to be classified) aridits most similar neighbour

in the concept description). CumulativeWeighktincremented by

1 —diff (z;, ;) x (1 —A) if X andY have the same class, (3.11)

diff (z;, y;) x (1 — A) otherwise.

WeightNormaliser is always incremented [dy— A). Experiments with IB4 showed it to

be more tolerant of irrelevant features than theearest neighbour algorithm.

RELIEF*? [KR92] is an algorithm that uses an instance based approaa$sign weights
to features. Wettschereck and Aha [WA95] use RELIEF to dateuweights for ak

?RELIEF was originally used for feature selection and is dbsd in section 2.5.5
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nearest neighbour algorithm—they report significant improent over standardnearest

neighbour in seven out of ten domains.

Kohavi, Langley, and Yun [KLY97] describe an approach tadea weighting that con-

siders a small set of discrete weights rather than contimweeights. Their approach
uses the wrapper coupled with simple nearest neighboutitoats the accuracy of fea-
ture weights and a best first search to explore the weightspaexperiments that vary
the number of discrete weights considered by the algoritiesylts showed that there is
no advantage to increasing the number of non-zero discreighte above two; in fact,

with the exception of some carefully crafted artificial dansausing one non-zero weight

(equivalent to feature selection) was difficult to outpeario

The above methods for feature weighting all use feedback finearest neighbour al-
gorithm (either incrementally during learning or in a spéstage prior to induction) to
adjust weights. Some non-feedback methods for settinghteigclude: theper cate-
gory feature importancBCMSW92] which sets the weight for a feature to the condgion
probability of the class given the feature, ttress-category feature importanp&/A95],
which is like the per category feature importance but avesagcross classes, and the
mutual informatio® [SW48] between the feature and the class. All of these appesa

require numeric features to be discretized.

3.7 Chapter Summary

Practical machine learning algorithms often make assumsgtor apply heuristics that
trade some accuracy of the resulting model for speed of ¢éxec@nd comprehensibility
of the result. While these assumptions and heuristics asorable and often yield good
results, the presence wfelevantandredundantinformation can often fool them, result-
ing in reduced accuracy and less understandable resuétBirEesubset selection can help
focus the learning algorithm on the important features foaicular problem. It can also
reduce the dimensionality of the data, allowing learnirgpeathms to operate faster and

more effectively.

3This is also known as the informatigain between the feature and the class. See Chapter 3 for details.
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There are two main approaches to feature subset selectarilued in the literature. The
wrapper—which is tuned to the specific interaction between an indaatlgorithm and
its training data—has been shown to give good results, boitaotise may be too slow to
be of practical use on large real-world domains containimagyrfeaturesFilter methods
are much faster as they do not involve repeatedly invokireaening algorithm. Existing
filter solutions exhibit a number of drawbacks. Some algang are unable to handle
noise (or rely on the user to specify the level of noise for digaar problem). In some
cases, a subset of features is not selected explicitheaastfeatures are ranked with the
final choice left to the user. Some algorithms do not handtke tedundant and irrelevant
features. Other algorithms require features to be transfdrin such a way that actually
increases the initial number of features and hence thelssparce. This last case can
result in a loss of meaning from the original representatinich in turn can have an

impact on the interpretation of induced models.

Feature weights are easily incorporated into learningrédlgas such as nearest neigh-
bour, but the advantage of feature weighting over featusegen is minimal at best, due
to the increased chance of overfitting the data. In genesatufe weighting does not

reduce the dimensionality of the original data.
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Chapter 4

Correlation-based Feature Selection

This thesis claims that feature selection for classificatasks in machine learning can
be accomplished on the basis of correlatibatween features, and that such a feature se-
lection procedure can be beneficial to common machine leguadgorithms. This chap-
ter presents a correlation based feature selector (CF® s this claim; subsequent
chapters examine the behaviour of CFS under various condiand show that CFS can

identify useful features for machine learning.

Section 4.1 outlines the rationale and motivation for aelatron-based approach to fea-
ture selection, with ideas borrowed from psychological saeament theory. Various
machine learning approaches to measuring correlationdsetwominal variables are dis-
cussed in Section 4.2; their respective biases and imgitafor use with CFS are dis-
cussed in Section 4.3. Section 4.4 presents the CFS algoaitid the variations used for

experimental purposes.

4.1 Rationale

Genariet al. [GLF89] state that

“Features are relevant if their values vary systematicaitih category mem-

bership.”

1The term correlation is used in its general sense in thidghdsis not intended to refer specifically
to classical linear correlation; rather it is used to reteatdegree of dependence or predictability of one
variable with another.
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In other words, a feature is useful if it is correlated withpoedictive of the class; other-

wise it is irrelevant. Kohavi and John [KJ96] formalize tdifinition as

Definition 1: A featureV; is said to be relevanff there exists some, andc for which

p(V; = v;) > 0 such that

p(C = clVi = v) # p(C = o). (4.1)

Empirical evidence from the feature selection literatureves that, along with irrelevant
features, redundant information should be eliminated dk[v894a, KJ96, KS95]. A

feature is said to be redundant if one or more of the otheufeatare highly correlated
with it. The above definitions for relevance and redundarey lto the following hypoth-

esis, on which the feature selection method presentedsritibsis is based:

A good feature subset is one that contains features highiseleted with

(predictive of) the class, yet uncorrelated with (not patisie of) each other.

In test theory [Ghi64], the same principle is used to desigoraposite test for predicting
an external variable of interest. In this situation, theattees” are individual tests which
measure traits related to the variable of interest (clabg). example, a more accurate
prediction of a person’s success in a mechanics trainingseatan be had from a com-
posite of a number of tests measuring a wide variety of t(aidity to learn, ability to
comprehend written material, manual dexterity and so jordtther than from any one

individual test which measures a restricted scope of tr@itsselli states:

“When we develop a composite which we intend to use as a basisré-
dicting an outside variable, it is likely that the comporsant select to form
the composite will have relatively low inter-correlation&/hen we seek to
predict some variable from several other variables, weatsetect predictor

variables which measure different aspects of the outsidahia.”

If the correlation between each of the components in a tedttlam outside variable is

known, and the inter-correlation between each pair of campts is given, then the cor-
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relation between a composite test consisting of the summegbonents and the outside

variable can be predicted from

ki

zc — 5 4.2
' VE A+ k(k— 1) “-2)

wherer.. is the correlation between the summed components and tealewtariable,

k is the number of components;; is the average of the correlations between the com-
ponents and the outside variable, afds the average inter-correlation between compo-
nents [Ghi64, Hog77, Zaj62].

Equation 4.2 is, in fact, Pearson’s correlation coefficigvtiere all variables have been
standardized. It shows that the correlation between a ceitgpand an outside variable
is a function of the number of component variables in the cositp and the magnitude
of the inter-correlations among them, together with the mitage of the correlations
between the components and the outside variable. Entevingltistrative values for;

in Equation 4.2, and allowing the valuesiofind7; to vary, the formula is solved for,,
and the values are plotted in Figure 4.1. From this figure ¢llewing conclusions can

be drawn:

e The higher the correlations between the components andutisele variable, the

higher the correlation between composite and the outsidabla.

e The lower the inter-correlations among the componentshitieer the correlation

between the composite and the outside variable.

e As the number of components in the composite increasesn@sgthe additional
components are the same as the original components in téthnscaverage inter-
correlation with the other components and with the outsateble), the correlation

between the composite and the outside variable increases.

From Figure 4.1, it can be seen that increasing the numbesraponents substantially
increases the correlation between the composite and tlsgdeutariable. However, it

is unlikely that a group of components that are all highlyretated with the outside
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Figure 4.1: The effects on the correlation between an oeitgidiable and a composite
variable(r,.) of the number of components), the inter-correlations among the compo-
nents(7;), and the correlations between the components and the ewithble(7;).

variable will at the same time bear low correlations withteather [Ghi64]. Furthermore,
Hogarth [Hog77] notes that, when addition of an additiomahponent is considered, low
inter-correlation with the already selected componentg wall predominate over high

correlation with the outside variable.

Equation 4.2 is used in this thesis as a heuristic measutedfierit” of feature subsets
in supervised classification tasks. In this situatiorfthe external variable) becomés
(the class); the problem remaining is to develop suitablgswed measuring the feature-
class correlation and feature-feature inter-correlati®upervised learning tasks often
involve different data features, any of which may be cordimn ordinal, nominal, or
binary. In order to have a common basis for computing theetations in Equation 4.2,
it is desirable to have a uniform way of treating differerniey of features. Discretization
using the method of Fayyad and Irani [FI93] is applied as gapoeessing step to convert

continuous features to nominal.

For prediction it is clear that redundant attributes shdadceliminated—if a given fea-
ture’s predictive ability is covered by another then it cafely be removed. Indeed, some

learning algorithms (such as naive Bayes) require thisdeioio maximise predictive per-
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formance [LS94a]. However, for data mining applicationsevehcomprehensible results
are of paramount importance, it is not always clear thatmddacy should be eliminated.
For example, a rule may make more “sense” to a user if an atitris replaced with one
highly correlated with it. CFS (described in section 4.4@umodates this situation by
providing a report generation facility. For any given dtttre in the final subset, CFS can
list its close substitutes, either in terms of the overaltitref the final subset if the at-
tribute in question was to be replaced by one of the subssitair simply correlation with

the attribute in question.

4.2 Correlating Nominal Features

Once all features and the class are treated in a uniform matteefeature-class corre-
lation and feature-feature inter-correlations in Equada2 may be calculated. Research
on decision tree induction has provided a number of methodsdtimating the quality
of an attribute—that is, how predictive one attribute is nbther. Measures of attribute
quality characterize the variability present in the cdilats of instances corresponding to
the values of a particular attribute. For this reason theysametimes known as impurity
functions [Bre96b, CB97]. A collection of instances is cddesedpureif each instance is
the same with respect to the value of a second attribute;altection of instances isn-
pure (to some degree) if instances differ with respect to theevalithe second attribute.
Decision tree induction typically only involves measurlmgyv predictive attributes are of
the class. This corresponds to the feature-class cooefain Equation 4.2. To calculate
the merit of a feature subset using Equation 4.2, featuat#e inter-correlations—the

ability of one feature to predict another (and vice versaustibe measured as well.

Because decision tree learners perform a greedy simpestgalex hill climbing search
through the space of possible trees, their general indubias is to favour smaller trees
over larger ones [Mit97]. One factor that can impact on bbih size of the tree and
how it well it generalizes to new instances is the bias inhiene the attribute quality
measure used to select among attributes to test at the nbdes wee. Some quality

measures are known to unfairly favour attributes with maiees over those with fewer
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values [Qui86, WL94, Kon95]. This can result in the condiiarcof larger trees that may
overfit the training data and generalize poorly. Similaflguch measures are used as the
correlations in Equation 4.2, feature subsets contaireatufes with more values may be
preferred—a situation that could lead to inferior perfonteby a decision tree learner if

it is restricted to using such a subset.

Kononenko [Kon95] examines the biases of eleven measurestionating the quality of
attributes. Two of theseelief and MDL, with the most acceptable biases with respect to
attribute level (number of values), are described in thidgise. For the inter-correlation
between two features, a measure is needed that charastimézpredictive ability of one
attribute for another and vice versa. Simple symmetricigassofrelief and MDL are
presented for this purpose. A third measure (not tested byoKenko), symmetrical

uncertainty [PFTV88], with bias similar telief and MDL, is also presented.

Section 4.3 reconstructs experiments done by Kononenkoalyze the bias of attribute
guality measures. The behaviour of symmetrical uncestdidDL, andreliefwith respect
to attribute level and how this may affect feature selecisatiscussed. The experimental
scenario is extended to examine the behaviour of the mesasitterespect to the number

of available training examples; again implications fortéea selection are discussed.

Versions of the CFS feature selector usmtief, MDL, and symmetric uncertainty are

empirically compared in Chaptér

4.2.1 Symmetrical Uncertainty

A probabilistic model of a nominal valued featurecan be formed by estimating the
individual probabilities of the valueg € Y from the training data. If this model is used
to estimate the value df for a novel sample (drawn from the same distribution as the
training data), then the entropy of the model (and henceeéttribute) is the number of
bits it would take, on average, to correct the output of thel@ehaEntropy is a measure of

theuncertaintyor unpredictability in a system. The entropyofis given by

— > p(y)log,(p(y))- (4.3)

yey
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If the observed values of in the training data are partitioned according to the vabies
second featur&’, and the entropy of” with respect to the partitions induced Ryis less
than the entropy oY prior to partitioning, then there is a relationship betwéssaturesy”

and X. Equation 4.4 gives the entropy Bfafter observingX.

HY|X) == p(x) Y plylr)log,(p(y|z)). (4.4)

reX yey

The amount by which the entropy &f decreases reflects additional information about
Y provided by X and is called thenformation gain[Qui86], or, alternativelymutual

information[SW48]. Information gain is given by

gain = H(Y)—-H(Y|X) (4.5)
= H(X) - H(XJY)
= HY)+H(X)-H(X,Y).

Information gain is a symmetrical measure—that is, the arhotiinformation gained
aboutY after observingX is equal to the amount of information gained abautfter
observingY. Symmetry is a desirable property for a measure of feaeatife inter-
correlation to have. Unfortunately, information gain iaded in favour of features with
more values. Furthermore, the correlations in Equatiorsdduld be normalized to en-
sure they are comparable and have the same affect. Symahetnicertainty [PFTV88]
compensates for information gain’s bias toward attribuwtgs more values and normal-

izes its value to the range, 1]:

(4.6)

. . . gain
symmetrical uncertainty coefficieat 2.0 x

HY)+H(X)|

4.2.2 Relief

RELIEF [KR92] is a feature weighting algorithm that is seivel to feature interactions
(see Chapter8 ands for details). Kononenko [Kon95] notes that RELIEF attemiots
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approximate the following difference of probabilities the weight of a feature:

Wx = P(different value ofX| nearest instance of different class (4.7)

— P(different value ofX | nearest instance of same class

By removing the context sensitivity provided by the “nearestance” condition, at-
tributes are treated as independent of one another; Equétothen becomes [Kon94,
Kon95]

Relief, = P(different value ofX| different clas$ (4.8)

— P(different value ofX | same clasgs

which can be reformulated as

Gini' x 3 ,cx p(z)?

Relief, = , 4.9
e = 5o (09 Sooce 9O 49
where(C is the class variable and
Gint' = |01 = 90| = 3 (2D S ptcke)1 - piele)). (830
ceC zeX ZmGX p( ceC

Gini' is a modification of another attribute quality measure callee Gini-index
[Bre96b]. BothGini’ and the Gini-index are similar to information gain in thaeyh

are biased in favour of attributes with more values.

To userelief symmetrically for two features, the measure can be calkedlatvice (each
feature is treated in turn as the “class”), and the resulesagyed. Whenevaelief is

mentioned in subsequent chapters, it is the symmetricaloethat is referred to.

2The only difference to Equation 4.10 is that the Gini-indegsp(z) in place ofp(z)?/ > p(x)?.
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4.2.3 MDL

Roughly speaking, the minimum description length (MDL)ngiple [Ris78] states that
the “best” theory to infer from training data is the one thatimizes the length (complex-
ity) of the theory and the length of the data encoded witheesip the theory. The MDL
principle can be taken as an operational definition of Ocsd®azo?. More formally, if

T is a theory inferred from dat®, then the total description length is given by

DL(T, D) = DL(T) + DL(D|T). (4.11)

In Equation 4.11, all description lengths are measured t® bif the data(D) is the
observed values of a feature and these values are partitioned according to the values of
a second featur&(, then the description length of the data given the theory $écond
term in Equation 4.11) can be approximated by multiplying #verage entropy af

given X by the number of observed instances.

One problem with just using entropy to measure the qualitg afiodel (and hence an
attribute) is that it is possible to construct a model thadpts the data perfectly, and as
such has zero entropy. Such a model is not necessarily asagabdeems. For example,
consider an attribut&’ that has as many distinct values as there are instances diathe
If the data is partitioned according to the valuesXof then there will be exactly one
value of Y (with probability 1) in each of these partitions, and therepy of Y with
respect taX will be zero. However, a model such as this is unlikely to galze well
to new data; it hasverfittedthe training data—that is, it is overly sensitive to sttt
idiosyncrasies of the training data. The first term in Equa#d.11 deals with just this
sort of problem. A model such as the one just described is gemgplex and would
take many bits to describe. So although the model has redbheetkscription length of
the data to zero, the value of Equation 4.11 would still bgdadtue to the high cost of
describing the model. The best models (according to the Miicjple) are those which

are predictive of the data and, at the same time, have captiheeunderlying structure

3The Occam’s Razor principle, commonly attributed to Witliaf Occam (earlyl 4th century), states:
“Entities should not be multiplied beyond necessity.” Thigciple is generally interpreted as: “Given the
choice between theories that are equally consistent witloliserved phenomena, prefer the simplest”.
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in a compact fashion. Quinlan [Qui89] discusses the useeoMbBL principle in coding

decision trees; Kononenko [Kon95] defines an MDL measurdtobate quality:

(PriorrMDL — PostMDL)

MDL = (4.12)
n
. n n+C—1
PriorMDL =1 1 413
Og2<n1,...,nc>+0g2< Cc-1 ) ( )
n; n;,+C-—1
PostMDL = l 7 1 7 4.14
;()g2<n1j,.-.,n0j>+; 0g2< C—1 )7 ( )

wheren is the number of training instances, is the number of class values; is the
number of training instances from claSs n ; is the number of training instances with
the j-th value of the given attribute, ang; is the number of training instances of cla&ss

having the j-th value for the given attribute.

Equation 4.12 gives the average compression (per instarficbg class afforded by an
attribute. PriortMDL is the description length of the class labels prior totpianing

on the values of an attribute. PdgiDL performs the same calculation as PridDL

for each of the partitions induced by an attribute and surasrdéisult. The first term
of Equation 4.13 and Equation 4.14 encodes the class labtigegpect to the model
encoded in the respective second term. The model for 4L is simply a probability
distribution over the class labels (that is, how many instgrof each class are present);
the model for PosMDL is the probability distribution of the class labels inckaof the

partitions induced by the given attribute.

To obtain a measure that lies betweeand 1, Equation 4.12 can be normalized by di-
viding by Priot MDL /n. This gives the fraction by which the average descriptiogle

of the class labels is reduced through partitioning on tHeegof an attribute. Equa-
tion 4.12 is a non-symmetric measure; exchanging the rdlgeeattribute and the class
does not give the same result. To use the measure symmigtfaratwo features, it can
be calculated twice (treating each feature in turn as thess®) and the results averaged.

Whenever the MDL measure is mentioned in subsequent clsajittés the normalized
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symmetrical version that is referred to.

4.3 Bias in Correlation Measures between Nominal Fea-

tures

This section examines bias in the methods, discussed afmveeasuring correlation
between nominal features. Measures such as informationtgad to overestimate the
worth of multi-valued attributes. This problem is well known the decision tree com-
munity. Quinlan [Qui86] shows that the gain of an attributémeasured with respect
to the class or another feature) is less than or equal to tineofjan attributeA’ formed

by randomly partitioningA into a larger number of values. This means that, in general,
the derived attribute (and by analogy, attributes with m@lees) will appear to be more

predictive of or correlated with the class than the origomag.

For example, suppose there is an attribdtevith valuesa, b and there are two possible
classe®, n (as shown in Table 4.1(a)). Given the eight instances shawalble 4.1(a),
the entropy of the class k0 bit, the entropy of the class given attributeis 1.0 bit,
and the gain (calculated from Equation 4.6)i8 (the attribute provides no further in-
formation about the class). If a second attribdtes formed by converting ‘b’ values of
attribute A into the value ‘c’ with probabilitg.5, then the examples shown in Table 4.1(b)
may occur. In this case, the entropy of the class with redpettributeA’ is 0.84 bits and
the gain is0.16 bits. However, since the the additional partitioning4ifwas produced

randomly,A’ cannot be reasonably considered more correlated with diss tham.

One approach to eliminating this bias in decision tree itidads to construct only binary
decision trees. This entails dividing the values of anlaite into two mutually exclusive
subsets. Bias is now eliminated by virtue of all featuresiigaonly two values. How-
ever, Quinlan [Qui86] notes that this process results meancrease in computation—for

a given featured with « values, at a given node in the tree, there 2fr@ossible ways

of subsetting the values of, each of which must be evaluated in order to select the

best. Some feature selection algorithms, such as the omneiltkx$ by Koller and Sa-
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A | Class A’ | Class
a P a P
a P a P
a n a n
a n a n
b P b P
b D b D
b n b n
b n c n

@) (b)

Table 4.1: A two-valued non informative attributig(a) and a three valued attributé de-
rived by randomly partitioning! into a larger number of values (b). Attributg appears
more predictive of the class than attributeaccording to the information gain measure.

hami [KS96b], avoid bias in favour of multi-valued featul®susing a boolean encoding.
Each value of an attributé is represented by binary indicator attribute. For a givdnea
of attribute A in a dataset, the appropriate indicator attribute is sét tnd the indicator

attributes corresponding to the other possible valued afe set td). This can greatly

increase the number of features (and hence the size of thehsgzace) and also intro-
duce more dependencies into the data than were originadsept. Furthermore, both
subsetting in decision trees and boolean encoding forfeatlection can result in less

intelligible decision trees and a loss of meaning from thgioal attributes.

In the following sections the bias of symmetrical unceigirelief, and MDL is exam-

ined. The purpose of exploring bias in the measures is tarohtaindication as to how
each measure will affect the heuristic “merit” calculateoni Equation 4.2, and to get
a feel for which measures exhibit bias similar to that emetbigy common learning al-
gorithms. Each measure’s behaviour with respect to iregleattributes is of particular

interest for the feature selection algorithm presentetlimthesis.

4.3.1 Experimental Measurement of Bias

To test bias in the various measures, the Monte Carlo simalaéchnique of White
and Liu is adopted [WL94]. The technique approximates tis&ributions of the various

measures under differing conditions (such as the numbettrifige values and/or class
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values). Estimated parameters derived from these distritmican then be compared to
see what effects (if any) these conditions have on the measWhite and Liu examined
effects of attribute and class level on various measureguandom (irrelevant) attributes
generated independently of the class. Kononenko [Kon9telnebed this scenario by in-
cluding attributes predictive of the class. Section 4.3&nsines the bias of symmetrical
uncertainty, normalized symmetrical MDL, and symmetriedief using the experimen-
tal methodology of Kononenko [Kon95]. Section 4.3.3 exptothe effect of varying the

sample size on the behaviour of the measures.

Method The experiments in this section use artificial data geneénaith the following

properties:

e two, five or ten equiprobable classes;
e two, five, ten, twenty or forty attribute values;

e attributes are either irrelevant (have values drawn froe uhiform distribution
independently of the class), or are made informative usingddenko’s method
[Kon95];

e 1000 training instances are used for the experiments ind®e4t3.2; the number

of training instances is allowed to vary for the experimentSection 4.3.3.

Multi-valued attributes are made informative by joining thalues of the attribute into
two subsets. If an attribute hasvalues, then subsefs, ... , (a div2)} and{(a div 2 +
1),...,a} are formed. The probability that the attribute’s value @rirone of the subsets
depends on the class; the selection of one particular vakidd the subset is random
from the uniform distribution. The probability that therditite’s value is in one of the

subsets is given by

‘ X a \ 1/(i+ kC) imod2 =0 15
p<‘7€{"”’<5>}|2>_{1—1/(z‘+k0) imod2 # 0 (#13)

whereC' is the number of class valuesjs an integer indexing the possible class val-

ues{c,...,c}, andk is a parameter controlling the level of association betwtben
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attribute and the class—higher valueskoiake the attribute more informative. From
Equation 4.15 it can be seen that attributes are also mavemative for higher numbers

of classes. All experiments presented in this sectiorkusel.

The merit of all features is calculated using symmetricaleutainty, MDL, andrelief.

The results of each measure are averaged & trials.

4.3.2 Varying the Level of Attributes

This section explores the effects of varying the number wibatte values on the bias of
the measures, using a fixed number of training instancesiré-2 show the results for

informative and non-informative attributes when there2arg and10 classes.

The estimates of informative attributes by all three measdecrease exponentially with
the number of values. The effect is less extreme for sympattuncertainty compared
with the other two. This behaviour is comparable with OcsaRézor, which states that,
all things being equal, the simplest explanation is usuthiéybest. In practical terms,
feature selection using these measures will prefer feaituith fewer values to those with
more values; furthermore, since probability estimatiotiksly to be more reliable for

attributes with fewer values (especially if data is limitetthere is less risk of overfitting

the training data and generalizing poorly to novel cases.

For non-informative attributes, the MDL measure is the loéshe three. Its estimates
are always less than zero—clearly distinguishing them ftbeninformative attributes.
Symmetrical uncertainty anelief both exhibit a linear bias in favour of non-informative
attributes with more valuesRelief’sestimates are lower (relative to the informative at-
tributes) than symmetrical uncertainty. When the curvesesponding to the number of
classes are compared between informative and non-inforeregdttributes for symmetrical
uncertainty andelief, it can be seen from the scale of the graphs that there is asgpa
aration between the estimates for informative and nonsméaive attributes—even when
the informative attributes are least informative, thatwvben the number of classesis

(see Equation 4.15). However, there is a possibility that@informative attribute with
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Figure 4.2: The effects of varying the attribute and clagsllen symmetrical uncertainty
(@ & b), symmetrical relief (¢ & d), and normalized symmeatid/DL (e & f) when
attributes are informative (graphs on the left) and nowsimiative (graphs on the right).
Curves are shown fd, 5, and10 classes.
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many values could be estimated as more useful than a sligtitigmative attribute by
symmetrical uncertainty anelief. The next section—which examines the behaviour of
the measures when the sample size is varied—shows that igerdaf this occurring is

greater when there are fewer training examples.

4.3.3 Varying the Sample Size

Experiments described in this section vary the number ofitrg examples and examine
the effect this has on the behaviour of the correlation nregsulraining data sets con-
taining betweerb0 and 20, 000 instances were generated. The results of each measure
were averaged ovei000 trials for each training set size. In the graphs present&mhbe

the number of classes is set 10 and curves are generated f3r10, and20 attribute
values. Curves fo? classes show similar (but less extreme) tendencies as shose

below and can be found in appendix A.

Figure 4.3 shows the results for the three correlation nreasuThe behaviour of all
three measures is stable for large training set sizes. Tiraates of both symmetrical
uncertainty and symmetriceglief show a tendency to increase exponentially with fewer
training examples. The effect is more marked for attribbegh informative and non-

informative) with more values.

Since the number of training examples for a given problempgally fixed, an increase
in the value of the measure for a smaller training set doegpasé a problem for in-
formative attributes, given that the increase is the samattabutes of differing levels.
However, as can be seen from the graphs, the increase is m&taobd with respect to at-
tribute level and applies to non-informative attributesaaedl. Symmetrical uncertainty
andrelief show greater increase for both informative and non-infareattributes with

greater numbers of values.

In the graph for the symmetrical uncertainty coefficieng(fe 4.3a and Figure 4.3b), the
worth of an informative attribute witR0 values becomes greater than that of an informa-
tive attribute with10 values for training sets of less thaf0 examples. Both informative

attributes with10 and20 values “overtake” the informative attribute withvalues atl 00

66



and200 training examples respectively. Furthermore, the noormétive attribute with

20 values appears to be more useful than the informative atérilvith2 values forl00 or
fewer training exampleReliefis slightly better behaved than the symmetrical uncenyaint
coefficient—while the estimate of an informative attributih 20 values does overtake
that of an informative attribute with0 values, the estimates of irrelevant attributes do not

exceed those of informative attributes.

For informative attributes, the behaviour of the MDL meas(figure 4.3e and Fig-
ure 4.3f) is the exact opposite to that of symmetrical uradety andrelief. Whilst stable
for large numbers of training examples, the MDL measurelatda tendency to decrease
exponentially with fewer training examples. A similar temdy can be observed for non-
informative attributes. However, when there are fewer th#t training examples, the
trend reverses and the measure begins to increase. Agaigffétt is more prominent
for attributes with greater numbers of values. At less th@ntraining examples, non-
informative attributes with0 and20 values appear slightly informative-(0). In general,
the MDL measure is more pessimistic than the other two—itireg more data in order

to ascertain the quality of a feature.

4.3.4 Discussion

The preceding section empirically examined the bias ofetlat¢ribute quality measures

with respect to attribute level and training sample size.

For informative attributes, all three measures exhibitavébur in the spirit of Occam’s
Razor by preferring attributes with fewer values when gigechoice between equally
informative attributes of varying level. When calculatitige heuristic merit of feature
subsets using Equation 4.2, this bias will result in a peafee for subsets containing pre-
dictive features with fewer values—a situation that shdaddaconducive to the induction

of smaller models by machine learning schemes that prefeslsihypotheses.

With respect to irrelevant attributes, the MDL measure &shiest of the three. Except
when there are very few training examples, the MDL measuwearlky identifies an ir-

relevant attribute by returning a negative value. Symroatnincertainty andelief are
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symmetricakelief (c & d), and normalized symmetrical MDL (e & f) when attribatare
informative and non-informative. The number of classes murves are shown fdr, 10,
and20 valued attributes.

68



linearly biased in favour of irrelevant attributes with gter numbers of values. This is
undesirable when measuring an attribute’s ability to mtetie class because an irrele-
vant attribute with many values may appear more useful thanfarmative attribute with
few values. The experiments of Section 4.3.3 show that tingefaof this occurring is
greater for small training set sizes. However, this biasatol multi-valued irrelevant
attributes can be advantageous with respect to the fetdatere inter-correlations used
in the denominator of Equation 4.2. In Equation 4.2, a featarmore acceptable if it
has low correlation with the other features—a multi-valireglevant feature will appear

more correlated with the others and is less likely to be itetlin the subset.

Symmetrical uncertainty anelief are optimistic measures when there is little training
data; the MDL measure is pessimistic. When training setssarall, using the MDL
measure in Equation 4.2 may result in a preference for snfaliure subsets containing

only very strong correlations with the class.

The next section introduces CFS, a correlation based &eaalection algorithm that uses

the attribute quality measures described above in its sgwgvaluation function.

4.4 A Correlation-based Feature Selector

CFS is a simple filter algorithm that ranks feature subsetsraing to a correlation based
heuristic evaluation function. The bias of the evaluationction is toward subsets that
contain features that are highly correlated with the clasksuamcorrelated with each other.
Irrelevant features should be ignored because they wi kaw correlation with the class.
Redundant features should be screened out as they will béyrigrrelated with one or

more of the remaining features. The acceptance of a featilirdepend on the extent

to which it predicts classes in areas of the instance spacalmeady predicted by other
features. CFS’s feature subset evaluation function (Eodt?2) is repeated here (with

slightly modified notation) for ease of reference:

_ kTer
VE -+ k(k — 1777
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where My is the heuristic “merit” of a feature subsstcontainingk features,7; is
the mean feature-class correlatioh € S), and7; is the average feature-feature inter-
correlation. The numerator of Equation 4.16 can be thoufys providing an indication
of how predictive of the class a set of features are; the damaior of how much redun-

dancy there is among the features.

Equation 4.16 forms the core of CFS and imposes a ranking atarke subsets in the
search space of all possible feature subsets. This addiiesse3 (evaluation strategy) in
Langley’s [Lan94] characterization of search based feasetection algorithms (Chapter
3, Section2). Since exhaustive enumeration of all possible featursetslis prohibitive
in most cases, issuds 2, and4, concerning the organization of the search, start point,
and stopping criterion must be addressed also. The impleti@m of CFS used in the
experiments described in this thesis allows the user tosthfrom three heuristic search
strategies: forward selection, backward elimination, aedt first. Forward selection
begins with no features and greedily adds one feature ateaumtil no possible single
feature addition results in a higher evaluation. Backwdnahieation begins with the
full feature set and greedily removes one feature at a tinteragsas the evaluation does
not degrade. Best first can start with either no featuresl dealures. In the former, the
search progresses forward through the search space adujigfsatures; in the latter the
search moves backward through the search space deletgig &atures. To prevent the
best first search from exploring the entire feature subsethespace, a stopping criterion
is imposed. The search will terminate if five consecutivé/fakpanded subsets show no

improvement over the current best subset.

Figure 4.4 shows the stages of the CFS algorithm and how #&d in conjunction with

a machine learning scheme. A copy of the training data is diistretized using the
method of Fayyad and Irani [FI93], then passed to CFS. CRaulzdés feature-class and
feature-feature correlations using one of the measuresided in section refsec:cnf and
then searches the feature subset space. The subset witlyktestimerit (as measured
by Equation 4.16) found during the search is used to redueelithensionality of both
the original training data and the testing data. Both redutzasets may then be passed

to a machine learning scheme for training and testing. Imipdrtant to note that the
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general concept of correlation-based feature selecties dot depend on any one module
(such as discretizaton). A more sophisticated method obmr@ay correlation may make
discretization unnecessary. Similarly, any conceivabbrch strategy may be used with
CFsS.

CFS

Data pre-processing Kalculate \
— feature

correlations
feature
set merit

feature-class:

Training data fl f2 f3 f4

o—— = | Discretisation

class

feature-feature:

Feature
fl €—» 12

¢X¢ evaluatlon
f3 <>

feature

set

ML algorithm

e

DlmenS|onaI|ty

Testing data Reduction

[ >

Final
evaluation

Estimated
accuracy

Figure 4.4: The components of CFS. Training and testingidatduced to contain only
the features selected by CFS. The dimensionally reducedadat then be passed to a
machine learning algorithm for induction and prediction.

Three variations of CFS—each employing one of the attriquidity measures described
in the previous section to estimate correlations in Equadid6—are evaluated in the
experiments described in Chapter CFS-UC uses symmetrical uncertainty to measure
correlations, CFS-MDL uses normalized symmetrical MDL teasure correlations, and
CFS-Relief uses symmetricatlief to measure correlations. Unknown (missing) data
values are treated as a separate value when calculatinglatmns. The best way to
deal with unknowns depends on their meaning in the domairthefunknown has a
special meaning (for example, a blank entry for a particalanptom of a disease may
mean that the patient does not exhibit the symptom), trgatias a separate value is

the best approach. However, if the unknowns represent tnigging information, then a

71



more sophisticated scheme such as distributing the cossteimted with missing entries
across the values of an attribute (in proportion to theatre¢ frequencies) may be more

appropriate.

Table 4.2 and Table 4.3 give an example of CFS applied to thaf*@ata set (Table
2.1). Table 4.2 shows the feature correlation matrix fordat set—elief has been used
to calculate the correlations. Table 4.3 illustrates a #vdiselection search through the
feature subset space along with the merit of each subsetilasdd using Equation 4.16.
The search begins with the empty set of features, which has reerit. Each single
feature addition to the empty set is evaluated; Humidityddeal to the subset because it
has the highest score. The next step involves trying eacheofemaining features with
Humidity and choosing the best (Outlook). Similarly, in thext stage Wind is added to
the subset. The last step tries the single remaining feéferaperature) with the current
subset; this does not improve its merit and the search tatesn The best subset found
(Outlook, Humidity, Wind) is returned.

| | Outlook | Temperaturegl Humidity | Wind | Class |

Outlook 1.000 0.116 0.022 0.007 | 0.130
Temperature 1.000 0.248 0.028 | 0.025
Humidity 1.000 0.000 | 0.185
Wind 1.000 | 0.081

Table 4.2: Feature correlations calculated from the “GdHtaset.Reliefis used to cal-
culate correlations.

Computational ExpenseThe time complexity of CFS is quite low. It requires(n? —
n)/2) operations for computing the pairwise feature correlatiatrix, wherem is the
number of instances andis the initial number of features. The feature selectiondea
requires(n? — n)/2 operations (worst case) for a forward selection or backvetirdi-
nation search. Best first search in its pure form is exhagishivt the use of a stopping
criterion makes the probability of exploring the entirersbaspace small. In evaluating
Equation 4.16 for a feature subsgtcontainingk features,k additions are required in
the numerator (feature-class correlations) &ktl— k) /2 additions are required in the
denominator (feature-feature inter-correlations). 8itlee search algorithm imposes a
partial ordering on the search space, the numerator andhdeatr of Equation 4.16

can be calculated incrementally; this requires only onetiad(or subtraction if using a
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Feature set | k] 77 | 57 ] Merit |

N/A N/A 0.0
1x0.130 _
0.130 | 1.000 N 0.130
1x0.025 —
0.025 | 1.000 Ny 0.025
1x0.185 _
0.185 | 1.000 N 0.185
1x0.081 _
0.081 | 1.000 N 0.081
0.158 | 0.022 | ——2xU158 __ _ (220
\/2+2(2—1)0.022
0.105 | 0.258 | ——2x0105 __ _ () 133
\/2+2(2-1)0.258
2x0.133 _
0.133 | 0.0 NereTomy 0.188
0.113 | 0.132 | —=2x0113 __ 175
\/3+3(3-1)0.132
0.132 | 0.0096 | ——3x0132 ___ _ () 296
3+3(3—1)0.0096

4x%0.105 —
0.105 | 0.0718 N 0.191
Table 4.3: A forward selection search using the correlationTable 4.2. The search
starts with the empty set of features [] which has m@fit Subsets in bold show where
a local change to the previous best subset has resulted mwepent with respect to the
evaluation function.
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backward search) in the numerator @nddditions/subtractions in the denominator.

If a forward search is used, it is not necessary to pre-coenihu#t entire feature correla-
tion matrix; feature correlations can be calculated as #reyneeded during the search.
Unfortunately, this can not be applied to a backward seaschl@ackward search begins

with all features.

Independence AssumptiorLike the naive Bayesian classifier, CFS assumes that feature
are conditionally independent given the class. Experisaith naive Bayes on real data
sets has shown that it can perform well even when this assomist moderately vio-
lated [DP96, DP97]; it is expected that CFS can identifyvate features when moderate
feature dependencies exist. However, when strong featteeactions occur, CFS may
fail to select all the relevant features. An extreme exaropthis is a parity problem—no
feature in isolation will appear any better than any othatufee (relevant or not). Chapter

8 explores two additional methods for detecting feature ddpacies given the class.
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4.5 Chapter Summary

This chapter presents a new feature selection techniquisitnete-class supervised learn-
ing. The technique, dubbed CFS (Correlation-based Fe&eleztion) assumes that use-
ful feature subsets contain features that are predictithetlass but uncorrelated with
one another. CFS computes a heuristic measure of the “nodré feature subset from

pair-wise feature correlations and a formula adapted freshtheory. Heuristic search is
used to traverse the space of feature subsets in reasoimad]¢te subset with the highest

merit found during the search is reported.

CFS treats features uniformly by discretizing all continsiéeatures in the training data at
the outset. The supervised discretization method of Fagyadrani [FI193] is employed
because this method has been found to perform the best wikdnassa pre-processing

step for machine learning algorithms [DKS95, KS96a].

Three measures of association between nominal variabéeseaiewed for the task of
guantifying the feature-class and feature-feature caticels necessary to calculate the
merit of a feature subset from Equation 4.16. Symmetricaktainty, MDL, andelief

all prefer predictive features with fewer values over theséh more values. The bias
of these measures is likely to promote the choice of featubsets that will give good
results with machine learning algorithms (especially &gt prefer compact predictive
theories) than the bias of measures (such as informatior) gzt favour multi-valued
attributes. All three measures may report irrelevantlaitas with many values as being
predictive to some degree. The chance of an irrelevanbaté&ibeing preferred to a

predictive one is greatest when there are few training el@snp
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Chapter 5

Datasets Used in Experiments

In order to evaluate the effectiveness of CFS for selecwaduires for machine learning,
this thesis takes an empirical approach by applying CFS az-grmpcessing step for

several common machine learning algorithms.

This chapter reviews the datasets and the general methypdosed in the experiments

presented in Chapte6s 7, ands.

5.1 Domains

Twelve natural domains and six artificial domains were usedef/aluating CFS with
machine learning algorithms. The natural domains and theethrtificial Monk’s do-
mains [TBB"91] are drawn from the UCI repository of machine learningabates
[MM98]. These domains were chosen because of (a) their prgdmce in the liter-
ature, and (b) the prevalence of nominal features, thuscreduhe need to discretize

feature values.

In addition, three artificial domains of increasing diffiguvere borrowed from Langley
and Sage [LS94c], where they were used to test a wrapperdesdlector for nearest
neighbour classification. Artificial domains are usefuldgse they allow complete con-
trol over parameters such as attribute level, predictiviétyalof attributes, number of
irrelevant/redundant attributes, and noise. Varying matars allows conjectures to be

tested and the behaviour of algorithms under extreme dondito be examined.
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Table 5.1 summarises the characteristics of these domams.default accuracy is the
accuracy of always predicting the majority class on the whadtaset. For the three
artificial domains (A, A2, and A3), the default accuracy is the default accuracy in the
limit, that is, given that each example is equally likely adinfinite sample is available.
Variations of the three artificial domains with added irvalet and redundant features are

used to test CFS’s ability to screen out these types of featur

Average # Max/Min # Default
Domain || Instances Features % Missing Feature Vals Feature Vals s@#ds Accuracy
mu 8124 22 1.3 5.3 12/1 2 51.8
VO 435 16 5.3 2.0 2/2 2 61.4
vl 435 15 5.3 2.0 2/2 2 61.4
cr 690 15 0.6 4.4 14/2 2 59.95
ly 148 18 0.0 2.9 8/2 4 54.7
pt 339 17 3.7 2.2 3/2 23 24.8
bc 286 9 0.3 4.6 11/2 2 70.3
dna 106 55 0.0 4.0 4/4 2 50.0
au 226 69 2.0 2.2 6/2 24 25.2
sb 683 35 9.5 2.8 7/2 19 13.5
hc 368 27 18.7 23.8 346/2 2 62.7
kr 3196 36 0.0 2.0 3/2 2 52.2
Al 1000 3 0.0 2.0 2/2 2 87.5
A2 1000 3 0.0 2.0 2/2 2 50.0
A3 1000 3 0.0 2.0 2/2 2 75.0
M1 432 6 0.0 2.8 4/2 2 50.0
M2 432 6 0.0 2.8 4/2 2 67.1
M3 432 6 0.0 2.8 4/2 2 52.8

Table 5.1: Domain characteristics. Datasets above thedrgal line are natural domains;
those below are artificial. The % Missing column shows what@atage of the data
set’s entries (number of featuresnumber of instances) have missing values. Average #
Feature Vals and Max/Min # Feature Vals are calculated flembminal features present
in the data sets.

The following is a brief description of the datasets.

Mushroom (mu) This dataset contains records drawn from The Audubon SoEietd
Guide to North American Mushrooms [Lin81]. The task is totidiguish edible from
poisonous mushrooms on the basi2®dihominal attributes describing characteristics of
the mushrooms such as the shape of the cap, odour, and gilhgpaThis is a large
dataset containing 8124 instances. C4.5 and IB1 can acbier®9% accuracy on this
dataset, but naive Bayes does not do as well, suggestingitrat of the attributes may

be redundant.
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Vote (vo, v1)In this dataset the party affiliation of U.S House of Représt@res Con-
gressmen is characterised by how they voted on 16 key issubsas education spending
and immigration. There a5 (267 democrats]68 republicans) instances and all fea-
tures are binary. In the original data, there were nine wifietypes of vote a congressman
could make. Some of these have been collapsed into relatedywaategories. Thelv
version of this dataset has the single most predictivebati (physician-fee-freeze) re-

moved.

Australian credit screening (cr) This dataset contair@0 instances from an Australian
credit company. The task is to distinguish credit-worthynirnon credit-worthy cus-
tomers. There aréb attributes whose names and values have been converted mingrea
less symbols to ensure confidentiality of the data. Thereiareontinuous features and

nine nominal. The nominal features range froto 14 values.

Lymphography (ly) This is a small medical dataset containintg instances. The task
is to distinguish healthy patients from those with metasgasr malignant lymphoma.
All 18 features are nominal. This is the one of three medical dosn@ie others being
Primary Tumour and Breast Cancer) provided by the UniweM#dical Centre, Institute

of Oncology, Ljubljana, Yugoslavia.

Primary Tumour (pt) This dataset involves predicting the location of a tumouthi
body of a patient on the basis bf nominal features. There a?@ classes corresponding

to body locations such as lung, pancreas, liver, and so.f@éthinstances are provided.

Breast Cancer (bc)The task is to predict whether cancer will recur in patiefitsere are
9 nominal attributes describing characteristics such aotursize and location. There

are286 instances.

Dna-promoter (dna) A small dataset containirigp positive examples of E. coli promoter
gene sequences aid negative examples. There && nominal attributes representing
the gene sequence. Each attribute is a DNA nucleotide (*pas® having four possible
values (A, G, T, C).

Audiology (au) The task is to diagnose ear dysfunctions. There are 226nirestade-
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scribed by69 nominal features. There a?d classes. This dataset is provided by Profes-

sor Jergen at the Baylor College of Medicine.

Soybean-large (sb)The task is to diagnose diseases in soybean plants. TheG8are
examples described B35 nominal features. Features measure properties of leagkes an

various plant abnormalities. There drfeclasses (diseases).

Horse colic (hc) There are368 instances in this dataset, provided by Mary McLeish
and Matt Cecile from the University of Guelph. There areattributes, of whichr are
continuous. Features include whether a horse is young omdidther it had surgery,
pulse, respiratory rate, level of abdominal distensian, €here are a number of attributes

that could serve as the class—the most commonly used is eietbsion is surgical.

Chess end-game (kr)This dataset contain$196 chess end-game board descriptions.
Each end game is a King + Rook versus King + Pawn dr{cane square away from
gueening) and it is the King + Rook’s side (white) to move. Tdsk is to predict if white
can win on the basis &6 features that describe the board. There is one feature hvitl t

values; the others are binary.

Al, A2, A3 These three boolean domains are borrowed from Langley agel [E&94c].
They exhibit an increasing level of feature interactiorelvant and redundant attributes

are added to these domains to test CFS’s ability to deal Wébe sorts of features.

Al is a simple conjunction of three features and exhibits tlstl@mount of feature
interaction. The concept is:
ANBANC

The class id when A, B, andC all have the valué, otherwise the class %

A2 is a disjunct of conjuncts (sometimes known aswaof-n concept). In this case it is

a2-of-3 concept—that is, the classisf 2 or more of bitsA, B, andC are set tal:

(ANB)V(ANC)V (BAC)

This problem is more difficult than Adue to the higher degree of interaction among the
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3 features.

A3 exhibits the highest degree of feature interaction, sinidaa parity problem in that

no single feature in isolation will appear useful. The cqicse:

(ANBANC)V (ANBAC)

This last domain is included as an example of a situation vi2ted will fail to select the
relevant features due to the fact that its assumption dbate independence given the

class is completely incorrect.

Monk’s problems The Monk’s problems are three artificial domains, each ugiagame
representation, that have been used to compare machiminigatgorithms [TBB 91].

Monk’s domains contain instances of robots described byaininal features:

Head-shape € {round, square, octagén
Body-shape € {round, square, octagén
Is-smiling € {yes, ng
Holding € {sword, balloon, flag
Jacket-colour € {red, yellow, green, bluye

Has-tie € {yes, ng

There are three Monk’s problems, each wifi2 instances in total. For each problem

there is a standard training and test set.

Monk1 (M1) The concept is:

(head-shape- body-shapgor (jacket-colour= red)

This problem is difficult due to the interaction between thstfiwo features. Note that

only one value of the jacket-colour feature is useful.
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Monk2 (M2) The concept is:
Exactly two of the features have their first value.

This is a hard problem due to the pairwise feature interastand the fact that only one
value of each feature is useful. Note that all six featuregalevant to the concept. C4.5

does no better than predicting the default class on thisl@nmob

Monk3 (M3) The concept is:

(Jacket-colour= green and holding- sword or

(jacket-colour#£ blue and body-shapg octagon

The standard training set for this problem 1386 class noise added—that i€ of the
training examples have had their label reversed. This iotig Monk’s problem that
is not noise free. It is possible to achieve approxima#d®b6 accuracy using only the

(jacket-colour£ blue and body-shapg octagon) disjunct.

5.2 Experimental Methodology

The experiments described in this thesis compare runs ohimadearning algorithms
with and without feature selection on the datasets destiibéhe previous section. Ac-
curacy of algorithms is measured using random subsampihhgsh performs multiple
random splits of a given dataset into disjoint train andsess. In each trial, an algorithm
is trained on the training dataset and the induced theomilsiated on the test set. When
algorithms are compared, each is applied to the same tgeamid test sets. The testing ac-
curacy of an algorithm is the percentage of test exampldassifies correctly. Table 5.2
shows the train and test set sizes used with the natural dsraad the Monk’s problems.
On the natural domains, a two-thirds training and one-ttesding split was used in all
but four cases. A fifty/fifty split was used on the vote datasgbne-third/two-thirds split

on credit and one-eighth of the instances were used folitigaon mushroom (the largest
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dataset). In the case of the Monk’s problems, testing isopeéd on the full dataset (as
was done originally by Thrun et al. [TBB1]). Various different train and test set sizes

are used with the artificial domainslA3 (see Chapter 6 for details).

Domain | Train size  Test size

mu 1000 7124
VO 218 217
vl 218 217
cr 228 462
ly 98 50
pt 226 113
bc 191 95
dna 69 37
au 149 77
sb 450 223
hc 242 126
kr 2110 1086
M1 124 432
M2 169 432
M3 122 432

Table 5.2: Training and test set sizes of the natural donaidghe Monk’s problems.

With the exception of learning curve experiments (descrielow), accuracy is averaged
over 50 train-test trials on a given dataset. Furthermaxehdrain and test set split is
stratified Stratification ensures the class distribution from the vltataset is preserved
in the training and test sets. Stratification has been showelp reduce the variance of

the estimated accuracy—especially for datasets with miasges [Koh95b].

Since CFS requires datasets to be discretized, the dizatietn method of Fayyad and
Irani [FI93] is applied to a copy of each training datasebbeft is passed to CFS. Be-
cause only the effects of feature selection are of inteaishyduction is performed using
the original, undiscretized training datasets. For a tesiguCFS with datasek’, for

example, the dataset is discretized, features are selelstadthe machine learning algo-

rithm is run, using the selected features in their originahdiscrete form.

Two-tailed paired t-tests are used to determine whethedifference between two al-
gorithms is significant or not. Difference in accuracy is sidered significant when the
p-value is less thaf.05 (confidence level is greater thah%). When two or more algo-
rithms are compared, a table of accuracies is given sumimgtise results. The symbols

“+” (or “—") are used to denote that one algorithm is (statisticalighisicantly better
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(or worse) than the other. In discussion of results, if og@@ihm is stated to be bet-
ter or worse than another then it is significantly better orseat the).05 level. Often,

a bar graph showing the absolute accuracy difference bativee algorithms is given.

For example, Figure 5.1 shows the absolute difference inracyg between naive Bayes
using CFS for feature selection and naive Bayes withoutifeagelection. A bar above
the zero line indicates that CFS has managed to improve fsye’s performance; a
bar below the zero line indicates that CFS has degraded Baiyes performance. Stars
on the bar graph show where differences are statisicalfgréifit. For C4.5, tables and

graphs summarising induced tree sizes are reported.
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Figure 5.1: Effect of CFS feature selection on accuracy ofenBayes classification.
Dots show results that are statistically significant

The experiments described in Sectibaf the next chapter examine CFS’s ability to deal
with irrelevant and redundant attributes. It is interegtio examine learning curves for
algorithms (such as naive Bayes and IB1) that are advers§ielgted by these kinds of
attributes. A learning curve shows how quickly an algorithperformance improves as
it is given access to more training examples. Random suldsamps described above,
is used to generate training datasets of a given gzénktances are added at every suc-
cessive iteration). Testing is performed on the remainitsgainces. Accuracy for each

training set size is averaged over ten trials. For exampfyreé 5.2 shows a learning
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curve for IB1 on the A artificial domain with17 added irrelevant attributes. The error

bars represent a 90% confidence interval.
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Figure 5.2: The learning curve for IB1 on the datasetwith 17 added irrelevant at-
tributes.

Three variations of CFS, using the attribute correlatiomsuees from the previous chap-

ter, are evaluated in the experiments:

e CFS-UC uses symmetrical uncertainty to measure attritartelations.
e CFS-MDL uses normalized symmetrical MDL to measure attélmorrelations.

e CFS-Relief uses symmetricadlief to measure attribute correlations.

A forward best first search is used with all three variatioh€BS; initial experiments
showed this search strategy performed slightly betterftvavard selection, and the same
as backward elimination. The forward best first search etatlfewer subsets than back-
ward elimination. The best first search stops wheronsecutive fully expanded nodes
showing no improvement (according to the heuristic meritction) have been evaluated.
This stopping criterion is the default used in theé£LC++ [KIL194] implementation of

the wrapper feature selector. Chapt@rompares CFS with the wrapper.
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When execution times for algorithms are mentioned, theyeperted in CPU units on a

Sun Sparc servei000.
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Chapter 6
Evaluating CFS with 3 ML Algorithms

This chapter describes an evaluation of CFS using artifaridlnatural machine learning
datasets. With artificial domains, the relevant featureskawown in advance and CFS
performance can be directly ascertained. With natural dasnshe relevant features are
often not known in advance, so the performance of CFS mus#asuned indirectly. One
way to do this is to compare a learning algorithm’s perforogawith and without feature

selection by CFS.

Section 6.1 examines CFS’s ability to deal with irrelevamd adundant features in ar-
tificial domains. In Section 6.2, CFS is used to select fegtun natural domains and
the performance of machine learning algorithms, before aftet feature selection, is

compared.

6.1 Artificial Domains

The purpose of the experiments described in this sectiam ésripirically test the claim
that CFS'’s feature evaluation heuristic (Equation 4.1@)fdeer irrelevant and redundant

features.

Boolean domainsSections 6.1.1 and 6.1.2 discuss the performance wheavart and
redundant features are added to three artificial boolearaoienborrowed from Langley

and Sage [LS94c]. The three concepts are:

Al ANBANC
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A2 (ANB)V(ANC)V (BAC)
A3 (ANBAC)V(AANBAC)

The concepts exhibit an increasing level of feature intevacand therefore provide the
opportunity to test CFS’s behaviour when its assumptioreafure independence given

the class is violated.

For each domain, a dataset is randomly generated contaifiirigexamples with irrel-
evant attributes added, and a second dataset is randongyaged containing000 ex-
amples with redundant attributes added. In the experinmetented below, the number
of relevant and irrelevant/redundant attributes seleloje@FS is plotted as a function of
the number of training examples shown to CFS. This allow$®#iaviour of the different
attribute correlation measures used in 3hariations of CFS (CFS-UC, CFS-MDL, and
CFS-Relief) to be compared. Training sets increasing imI3y20 examples per iteration
are selected by the random subsampling method describéeé jprévious chapter. The
number of relevant and irrelevant/redundant attributesésaged ovet0 trials for each
training set size. Because IB1 is sensitive to irrelevaimibates, learning curves illus-
trating the impact of feature selection on IB1’s accura®y srown for the datasets with
added irrelevant attributes. Similarly, as naive Bayes lmaraffected by redundant at-
tributes, learning curves are shown for naive Bayes on ttesdes with added redundant

attributes.

Monk'’s problems The Monk’s problems [TBB91] are challenging artificial domains
that have been used to compare the performance of machimenigalgorithms. These
domains involve irrelevant features, noise, and high dego# feature interaction. Sec-

tion 6.1.3 tests CFS on these concepts.

6.1.1 Irrelevant Attributes

These versions of the boolean domains A2, and A3 each have fifteen uniformly ran-
dom boolean attributes, one uniformly randémalued attribute, and one uniformly ran-

dom 20-valued attribute added for a total of twenty attributeyeseeen of which are
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irrelevant.

Concept Al Figure 6.1 shows the number of irrelevant attributes setebly the three
variations of CFS on concept Al. The results show that theageenumber of irrelevant
attributes included by all three versions of CFS decreasgadly as more training exam-
ples are seen. CFS-MDL decreases faster than either CFS-OES3Relief. This agrees
with the results of Chapterwhich showed the MDL measure to be the most effective at

identifying irrelevant attributes.
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Figure 6.1: Number of irrelevant attributes selected orcephAl (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functiomaining set size.

CFS-Relief selects fewer irrelevant attributes than CESdt training sets o020 exam-
ples, but requires more training examples than either obther two methods before the
number of irrelevant attributes drops to zero. Howeveregi training examples, all

three variations of CFS select, on average, less thaelevant attribute of the7.

Figure 6.2 shows the number of relevant attributes selduayethe three variations of
CFS on concept A The best results are exhibited by CFS-UC, which alway<tekl

3 relevant features onc#) training examples have been seen. The average number of
relevant features selected by CFS-MDL starts low, but exes rapidly as more training

examples are seen. This is consistent with the results gbt€ng which show that the

87



35

A
4 N
s 1 ~
/ j \ /
K 1 N ,
i ! N /
25 i - ! N
i / Sl /
T / w N !
- i / N
i / N
i
1

st ,

CFS-UC r— o
CFS-MDL H—t
CFS-Relief ra—

relevant features
A
=

i
i
0.5 B

0 | | | | | | | | | | |
20 60 100 140 180 220 260 300 340 380 420 460 500
training set size

Figure 6.2: Number of relevant attributes selected on qunaé (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functiomaining set size.

MDL measure is pessimistic (compared to either gain raticebef) in its estimates of

relevant attributes when there are few training examples.

The results for CFS-Relief are worse than those for the dthemethods. The average
number of relevant features selected by CFS-Relief ineseas more training instances
are seen, but not as rapidly as the other two methods, and ihenore variation (the
curve is less stable). CFS-Relief does not reliably inclalli¢hree relevant features by
the time500 training examples have been sé€hhis is a curious result that bears further

investigation.

Understanding the poor performance of CFS-Relief, redatitvthe other methods, be-
gins with consideration of the feature-class correlatiassigned by the three methods.
Table 6.1 shows the feature-class correlations assigntetthree relevant features by
symmetrical uncertainty, MDL, anetlief using the full1000 instances in the dataset for
concept A. The values assigned to the three features by symmetricarianty and
MDL are very close (the estimate for is slightly lower thanA or B), which is what one

would expect. In fact, if examples of the concept are drawwmfia uniformly random

1The experiment was continued up0o0 training examples. Afteg00 training examples, CFS-Relief
was selecting all three relevant features consistently.
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distribution, in the limit (as the sample size approachénity) the correlation values for
all three features will be equal. Howeveslief estimates attribut€’ much lower (relative

to A and B) than symmetrical uncertainty or MDL does.

symmetrical
Attribute | uncertainty | MDL relief
A 0.1855 0.1906 | 0.1074
B 0.1866 0.1918 | 0.1104
C 0.1710 0.1749 | 0.0682

Table 6.1: Feature-class correlation assigned to featdre3, and C' by symmetrical
uncertainty, MDL, andelief on concept A.

Since Al is a conjunctive concept, splitting the instances on théslisany of the three
relevant attributes will produce a pure subset (all instarare of clas8) corresponding
to the value) of the attribute. Using 1R [Hol93] to produce rules for theethrelevant
attributes on the full set df000 instances gives:

Rule for A:
clasg0) :- A(1). (covers364 out of490 examples)
clasg0) :- A(0). (covers 510 out of 510 examples)

Rule for B:
clasg0) :- B(1). (covers362 out of 488 examples)
clasg0) :- B(0). (covers>12 out of 512 examples)

Rule for C"
clasg0) :- C(1). (covers391 out of 517 examples)
clasg0) :- C'(0). (covers483 out of 483 examples)

The proportion of clasg@ examples covered when an attribute has the vala@about74%

for all three attributes, which indicates that they are geilifferentiated on the basis of the
size of their respective pure nodes. When the valOe iscoverss12 examplesA covers
510 examples, and’ coversd83 examples—which is exactly the ranking assigned by the
3 measures in Table 6.Reliefis a modification of the gini impurity measdfBre96b].
Breiman notes that the gini criterion prefers splits thattpe largest class into one pure
node.Reliefappears to be more sensitive to the size of the pure node itihain €/mmet-

rical uncertainty or MDL.

Figure 6.3 shows the learning curves for IB1 with and withfmatture selection. The

2See Chaptet Sectiord.2.2.
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Figure 6.3: Learning curves for IB1, CFS-UC-IB1, CFS-MDR1, and CFS-Relief-IB1
on concept Al (with added irrelevant features)
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Figure 6.4: Number of irrelevant attributes selected orcephA2 (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functidraining set size. Note:
CFS-UC and CFS-Relief produce the same result.
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accuracy of IB1 without feature selection increases slaglyhe number of training ex-
amples increases due to the high number of irrelevant festuB1’s accuracy starts off
at84.6% (below the default accuracy for the concept) and finishaer(af0 training ex-
amples) ai9.6 In contrast, the accuracy of IB1 after feature selection BYs@C and
CFS-MDL increases rapidly—reaching0% after only80 and100 training examples re-
spectively. The accuracy of IB1 after feature selection Bys@Relief is still better than
that of IB1 without feature selection, but does not rea@b’ due to the fewer relevant
features included by this method. The shape of the learninges for IB1 with feature
selection correspond very closely to the shape of the cuorethe number of relevant

features shown in Figure 6.2.

Concept A2 Figure 6.4 shows the number of irrelevant attributes setebly the three
variations of CFS on concept2A The results show that all three variations of CFS filter
irrelevant features very quickly on this domain—fewer lgx@nt features are included
compared to results for concept AConcept & has a uniform distribution of classes—
unlike concept A, which has a large majority of clags Therefore, the differentiation
between informative and non-informative attributes fon@ept Al is done primarily on
the basis of the small percentage of instances that have kcld®elevant attributes will
always have valué when the class i$; when there are few training examples, an irrel-
evant attribute may match a relevant attribute for the speitentage of clask cases
by chance, making it seem just as informative. For conceptairelevant attribute will
have valuel when the class i$ for 75% of the cases; similarly, a relevant attribute will
have valud) when the class i8 for 75% of the cases. In this case, it is less likely that
an irrelevant attribute’s distribution of values given thass will match that of a relevant
attribute’s by chance. As with conceptil ACFS-MDL screens irrelevant features faster

than the other two methods.

Figure 6.5 shows the number of relevant attributes seldmtéke three variations of CFS
on concept R. All three variations rapidly identify the three relevatiributes. CFS-UC
and CFS-Relief consistently choose all three relevanbates once60 training exam-
ples have been seen; CFS-MDL does the same aitetraining examples. Figure 6.6

shows the learning curves for IB1 with and without featudecen on concept A As
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with concept A, IB1’s accuracy without feature selection improves sloagymore train-
ing examples are seen—frod8% to 76% after 500 examples. Feature selection allows
IB1 to learn more rapidly and achiex€0% accuracy on this concept after only a small
number of training examples. As expected, the shape of #raitey curves for IB1 after
feature selection correspond closely to the shape of theesdor the number of relevant

features selected by the three variations of CFS.

Concept A3 This concept has the highest degree of feature interacfitimedhree, and

it is therefore expected that CFS will be unable to distisguhe relevant features from
the irrelevant features. Figure 6.7 and Figure 6.8 show thmeber of irrelevant and

relevant features selected by the three variations of C&ectively, on this concept.
The graphs show that CFS is indeed unable to distinguisteneiérom irrelevant features.
CFS-UC and CFS-Relief select more features (especiadjeirant features) than CFS-
MDL and exhibit a tendency to include more features as maigitrg examples are seen.
Conversely, CFS-MDL appears to favour fewer features asrtraining examples are

seen.

For this concept CFS’s assumption that features are indigmengiven the class, means
that—assuming an ideal correlation measure and an infiriaeyje sample—all feature-
class correlations should be zero, and, by Equation 4.&anirit of all feature subsets
should also be zero. However, when training examples ariéelimfeatures may appear
to be slightly correlated with the class by chance. Whenettege very few training
instances, a feature may stand out as somewhat better thathiers. As the number of
training examples increases, features will become moreogemeous—their correlations
with the class will be more similar to each other (though méaeeoming exactly zero).
In Chapter4 it was shown that a feature will be accepted into a subset ikhancrease
the merit of the subset) if its correlation with the class aadrage inter-correlation with
the features in the subset is the same as the features alretiysubset. This explains
why there is a small increasing tendency for features to tladed by CFS-UC and CFS-
Relief. CFS-MDL on the other hand, has a small penalty aasetiwith the size of the
model for a feature—decreasing its correlation with thesknd often resulting in a value

less than zero. This is shown graphically by Figure 6.9, Wiplots the average number
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Figure 6.5: Number of relevant attributes selected on gqonae (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functidnaining set size.
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Figure 6.6: Learning curves for IB1, CFS-UC-IB1, CFS-MDR1l, and CFS-Relief-IB1
on concept A (with added irrelevant features).
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Figure 6.7: Number of irrelevant attributes selected orceph A3 (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functiamnaining set size.
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Figure 6.8: Number of relevant attributes selected on qunéa (with added irrelevant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functianaining set size.
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Figure 6.9: Number of irrelevant multi-valued attributedested on concept A(with
added irrelevant features) by CFS-UC, CFS-MDL, and CF3eRa$ a function of train-
ing set size.

of multi-valued irrelevant attributes (there is obalued and on&0-valued irrelevant
attribute) selected by the three variations of CFS. CFS-Miaker selects any multi-
valued irrelevant attributes. The MDL measure’s increasediel penalty for features

with more values compensates for any slight “by-chancefetations with the class.

Figure 6.10 shows the learning curves for IB1, with and witifeature selection, on con-
cept A3. IB1 without feature selection learns slowly but consitiiennlike IB1 following
feature selection, which shows no clear trend. Interelstifgature selection using CFS-
MDL results in more consistent performance than using ei@fS-UC or CFS-Relief.
CFS-MDL’s performance is roughly3%, which is the default accuracy for this version
of the dataset. The tendency of CFS-UC and CFS-Relief tadlecore irrelevant fea-
tures leads to an erratic performance which is often worae the default accuracy for

the dataset.

6.1.2 Redundant Attributes

These versions of the boolean domains/A3 each have nine redundant attributes added,
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Figure 6.10: Learning curves for IB1, CFS-UC-IB1, CFS-MIR, and CFS-Relief-1B1
on concept A (with added irrelevant features).

for a total of twelve attributes. The redundant attributescaopies of attributel in each

of the domaind There are three boolean redundant attributes, thnedued redundant
attributes, and thre20-valued redundant attributes. In each level of redunddribate
(booleanj-valued, an®0-valued) there are two attributes which match attriblited0%

of the time (exact copies), and one attribute that mateh&88% of the time and is uni-
formly random for the remaining0%. The multi-valued attributes are made redundant by
joining the values of the attribute into two subsets. If anlaite has: values, then sub-
sets{1,...,(adiv2)}and{(adiv2)+1),...,a)} are formed. If attributel’s value is0,
then the redundant attribute’s value is selected at random the first subset; otherwise,

its value is selected at random from the second subset.

Since there are six attributes that match attribdite00% of the time, there are actually
seven subsets that contain exactly three relevant feaamckao redundant features. The
three attributes that match attribute80% of the time are treated as relevant but noisy,

adding another three subsets that are not quite as good athtreseven.

Concept AlFigure 6.11 shows the number of redundant attributes seldut the three

30ther combinations of redundant attributes—for exampimesfromA and some fronB—were also
tried. Results were similar to those reported here.
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variations of CFS on conceptlA The average number of redundant attributes decreases
rapidly for CFS-UC and CFS-MDL, with both including lessithane redundant attribute
after seeing onlyt0 training examples. CFS-Relief selects more redundaniatés, on
average, than the other two variations. As with the corredpm dataset for concept
A1l (with added irrelevant attributes) the sizes of the pureesdar the three relevant
attributes vary in this version as well. This time attributecovers499 examples when

it has value0, attribute B covers488 examples, and attribut€’ covers482 examples.
Table 6.2 shows the feature-class correlations assignatittee features by symmetrical
uncertainty, MDL, andelief using the full1000 instances for this version of concept
Al. All three measures rank attributeand its two binary copies highest. Symmetrical
uncertainty and the MDL measure rank attribit@andC' next highest on the lisRelief
however, ranks the twé-valued attributes which match attribute 100% of the time

higher than either attribut8 or C.

Relief’s sensitivity to the size of an attribute’s pure nadehis domain has outweighed
its bias against attributes with more values. Examinatfadhefeature subsets selected by
CFS-Relief shows that attributés and/ (the two 5-valued attributes) are often present.
On the full dataset, the correlation between attribdfesnd I assigned byelief is lower
(relative to the other features) than that assigned by sytnoakuncertainty or the MDL

measure, which also helps explain why CFS-Relief ofteruithes these features.

For smaller training set sizes (less thz29 examples), Figure 6.11 shows that, on av-
erage, CFS-MDL selects slightly more redundant featuras @FS-UC. Examining the
feature-feature correlation between either of the 0% redundant boolean features
and attributeA, for MDL, reveals a value 0f.982—not the value ofl.0 that symmet-
rical uncertainty assigns, which is what one would expecafoorrelation between two
features that are exact copies of each other. The explan@atighis is again due to the
MDL measure’s extra cost for model complexity. The MDL meastan never achieve

the upper bound af.0 due to the fact that PastiDL, in Equation 4.12, can never be zero.

Figure 6.12 shows the number of relevant attributes sealdayethe three variations of
CFS on concept A As in the case with irrelevant attributes, CFS-UC and CH3EM

quickly asymptote to selecting three relevant featureden®i-S-Relief takes longer.
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Figure 6.11: Number of redundant attributes selected onegutrAl (with added redun-
dant features) by CFS-UC, CFS-MDL, and CFS-Relief as a fandf training set size.

CFS-UC CFS-MDL CFS-Relief
symm.
attr vals red. uncert} attr vals red. MDL | attr vals red. relief
A 2 100% 0.1957 | A 2 100% 0.1985 | A 2 100% 0.1046
E 2 100% 0.1957 | E 2 100% 0.1985 | E 2 100% 0.1046
F 2 100% 0.1957 | F 2 100% 0.1985 | F 2 100% 0.1046
B 2 0% 0.1893 | B 2 0% 0.1917 | H 5 100% 0.0907
cC 2 0% 0.1860 | C 2 0% 0.1881 | I 5 100% 0.0896
D 2 80% 0.1280 | H 5 100% 0.1460 | B 2 0% 0.0882
H 5 100% 0.1092 | I 5 100% 0.1442 | C 2 0% 0.0795
I 5 100% 0.0677 | D 2 80% 0.1301 | D 2 80%  0.0738
L 20 100% 0.0691 | L 20 100% 0.0904 | G 5 80%  0.0614
G 5 80%  0.0689 | G 5 80%  0.0894 | L 20 100% 0.0137
K 20 100% 0.0647 | K 20 100% 0.0783 | K 20 100% 0.0130
J 20 80%  0.0447 | J 20 80%  0.0405 | J 20 80%  0.0072

Table 6.2: Feature-class correlations assigned by the theasures to all features in the
dataset for A containing redundant features. The first three columnsnsatsh measure
lists the attribute 4, B, andC' are the original features), number of values the attribute
has, and the level of redundancy.
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Figure 6.12: Number of relevant attributes selected onepin&1 (with added redundant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functiomaining set size.
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Figure 6.13: Number of multi-valued attributes selectecconcept Al (with added re-
dundant features) by CFS-UC, CFS-MDL, and CFS-Relief asmation of training set
sSize.
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Figure 6.14: Number of noisy attributes selected on condépfwith added redundant
features) by CFS-UC, CFS-MDL, and CFS-Relief as a functiomaining set size.

Figure 6.13 shows the average number of multi-valued featselected by the three vari-
ations of CFS. The results show that CFS-UC and CFS-MDL dextefe at filtering
the multi-valued features and preferring the boolean edemnts. CFS-Relief, due to its
higher preference for the twvalued features, averages betwéeand2 multi-valued
features. The shape of the graph for CFS-Relief in Figuré & ery similar to Fig-

ure 6.13, indicating that the redundant features selectedlmost always multi-valued.

Figure 6.14 shows the average number of noisy featurestedlbg the three variations
of CFS (there are three copies of attributevith 20% noise). The results show that all
three variations of CFS prefer not to include noisy featukess than one noisy feature is
included on average by all three variations; CFS-UC and ®IE&- perform better than
CFS-Relief.

Figure 6.15 shows the learning curves for naive Bayes withvathout feature selection
on concept A. For the sake of clarity, 90% confidence intervals have beeitted for
CFS-Relief as they are much wider than for CFS-UC and CFS-Milthree variations
of CFS enable naive Bayes to learn much faster than withatiife selection. The points
at which CFS-UC-nbayes and CFS-MDL-nbayes dip down skghtim 100% accuracy
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Figure 6.15: Learning curves for nbayes (naive-Bayes),-OEShbayes, CFS-MDL-
nbayes, and CFS-Relief-nbayes on concep{with added redundant features).

correspond roughly to the peaks of Figure 6.11, where mateneant attributes have
been included in the selected subsets. The larger dips irutive for CFS-Relief-nbayes
correspond to the points on Figure 6.12, where CFS-Reliedverage, selects fewer than

three relevant attributes.

Concept A2 As in the case with added irrelevant features, all threeatians of CFS
perform approximately equally well on concep2.A0On average, less than one redundant
feature is included in the subsets chosen by CFS after seeaiygl0 training examples
(Figure 6.16). CFS-MDL starts off by including slightly neoredundant attributes than
the other two methods. All three variations of CFS performiksirly in identifying the
relevant attributes (Figure 6.17); all three relevantifesg are consistently identified after
360 training examples have been seen. This is reflected in theihgacurves for naive
Bayes with and without feature selection (Figure 6.18). it feature selection naive
Bayes does not improve its performance as more training pbegnare seen. With feature
selection naive Bayes accuracy starts i@at and rapidly increases t0% after 220
training examples. The graphs for multi-valued and noisylaites are not shown as very

few (zero after 00 training examples) of these attributes were selected srctmncept by
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Figure 6.16: Number of redundant attributes selected oneqan®2 (with added redun-
dant features) by CFS-UC, CFS-MDL, and CFS-Relief as a fandf training set size.
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Figure 6.18: Learning curves for nbayes (naive Bayes), OESabayes, CFS-MDL-
nbayes, and CFS-Relief-nbayes on concep{with added redundant features).

all three variations of CFS.

Concept A3 The results for CFS on concepBAwith added redundant features, is very
similar to the results for CFS on3Awith added irrelevant features. CFS is unable to
distinguish between attributes and often fails to inclutiehsee relevant features. As
in the case with added irrelevant features, CFS-UC and CéllefRshow a tendency to
include more features as the sample size increases, wh8eMIBPL selects fewer features

(often no features). The full set of graphs can be found ireagdpx B.

Figure 6.19 shows the learning curves for naive Bayes befodeafter feature selection.
Naive Bayes cannot improve beyond the default accur@¢y o) for this version of
concept A due to the extreme feature interaction. The accuracy ofenBayes after
feature selection by CFS-MDL reaches this maximum fastn the other versions due
to the small number of features (on average) selected. Wihéatures are present, naive

Bayes predicts using the prior probabilities of the cladsesobserved in the training
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Figure 6.19: Learning curves for nbayes (naive Bayes), OESabayes, CFS-MDL-
nbayes, and CFS-Relief-nbayes on concep{with added redundant features).

data; since training and test sets are stratified, this whileve the default accuracy.

6.1.3 Monk’s problems

This section tests CFS on the three Monk’s problems. Eadbigmouses the same repre-
sentation and has six features. There are three relevantdean Ml and M3; M2 uses

all six features.

There aret32 examples of each problem and each has a pre-defined traieingrbe
training sets contaim24, 169, and122 examples, respectively; the full datasets are used
for testing [TBB"91]. In the experiments below, training sets of the same aizthe
pre-defined sets are generated using the random subsammithgd described in the
previous chapter; tesing still uses the full dataset as dgrihrun et. al. [TBB 91]. The

results are averaged ovar trials.

Table 6.3 shows the average number of features selectee llyrtre variations of CFS on
the Monk’s problems. All three variations are unable to cieddl the relevant features for
M1 and M2 due to the high order feature interactions. The jacketwaoleature is con-

sistently selected for Mand is one of the three relevant features in this conceptsiAll
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[ Domain ]| CFS-UC | CFS-MDL | CFS-Relief]

M1 1.0£00 | 1.0£0.0 1.0+£0.0
M2 29+12 | 03+0.6 28+1.1
M3 20+£0.0| 2.0+0.0 1.9+03

Table 6.3: Average number of features selected by CFS-UG;@BL, and CFS-Relief
on the Monk’s problems.

features are relevant for Mand all interact. CFS assigns feature-class correlatimse ¢
to zero for all features, which results in approximatelyf llaé features being selected
by CFS-UC and CFS-Relief. CFS-MDL often assigns featuresetorrelations less than
zero, which accounts for it selecting fewer features thather two. On M, CFS-UC
and CFS-MDL consistently choose body-shape and jacketicoWwhich together give
the second conjunction of the concept (jacket-colduniue and body-shapg octagon).

CFS-Relief occasionally omits one of these features.

Tables 6.4 — 6.6 show the results of three machine learngayighms with and without

feature selection on the Monk’s problems.

| Domain || naive Bayes| CFS-UC-nbayes CFS-MDL-nbayes CFS-Relief-nbayes

M1 72.55+£2.0 | 75.00 £ 0.0+ 75.00 £ 0.0+ 75.00 £ 0.0+
M2 62.75 £ 2.7 | 64.93 £ 2.0+ 67.04 £ 0.7+ 64.47 + 2.2+
M3 97.17+04 | 97.17£04 97.17+04 95.83 +£4.6—

+, — statistically significant improvement or degradation

Table 6.4: Comparison of naive Bayes with and without feag@lection on the Monk’s
problems.

[ Domain [ 1B1 [ CFS-UC-IBL _ CFS-MDL-IB1 _ CFS-Relief-B]
M1 7671+ 1.2 | 7500 £0.0— 75.00£0.0—  75.00 £ 0.0—
M2 79.06+ 0.8 | 66.94+0.6— 67.13+£0.0— 6716+ 1.7—
M3 7941+ 15 | 97.22£0.0+ 97.22+£0.0+ 9322+ 13.7+

+, — statistically significant improvement or degradation

Table 6.5: Comparison of IB1 with and without feature seteton the Monk’s problems.

CFS is able to improve the accuracy of naive Bayes on the WasMonk’s problems by
eliminating all or some of the interacting features in thesecepts. On N, the removal
of the two interacting features (head-shape and body-$hagech together yield the
first conjunct of the concept, allow&% accuracy to be achieved with just the jacket-

colour feature. On K, removing features allows naive Bayes to approach the Hefau
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| Domain [ C4.5 | CFS-UC-C4.5 CFS-MDL-C4.5 CFS-Relief-C4]5

M1 83.87+£6.2 | 75.00£0.0— 75.00£0.0— 75.00 £ 0.0—
M2 66.81£0.8 | 67.06£0.3+ 67.10£ 0.0+ 67.10 £ 0.0+
M3 97.54+1.8 | 96.42+1.6— 96.42+1.6— 95.26 £ 4.5—

+, — statistically significant improvement or degradation

Table 6.6: Comparison of C4.5 with and without feature seacn the Monk’s prob-
lems.

accuracy for the dataset—CFS-MDL achieves the best resitltemoves more features,
on average, than the other two variations. OB, @FS is unable to improve accuracy,
indicating that the holding feature and the first conjunctha$ concept is of no use to

naive Bayes.

CFS degrades the performance of IB1 on the first two Monk’'dleras. Unlike naive
Bayes, IB1 is able to make use of strongly interacting reief@atures; removing these
features results in worse performance. CFS degrades IBdigacy on M by less than

2%, however, 1B1’s performance without feature selectiorffiscied by the three totally
irrelevantfeatures in this concept; if these features are removedctilachieve close

to 100% accuracy. On M, the more features that are removed by CFS, the closer IB1’s
accuracy is to the default for the dataset. CFS improvesdbteracy of IB1 dramatically

on M3 (from 79.41% to 97.22%). This is due to the removal of the totally irrelevant
features. Accuracy can be improved further by approximgat# if the holding feature

(omitted by CFS) is included as well.

CFS degrades the performance of C4.5 on bothalkild M3. On M1, C4.5 is able to make
use of the two interacting relevant features. Removingetes features results 5%
accuracy (the maximum achievable with just the jacketwoleature). C4.5 is unable to
learn the M concept and achieves less than the default accura6y.of;. CFS-MDL

and CFS-Relief are able to increase C4.5's performance tamtlae default accuracy.

6.1.4 Discussion

From experiments with CFS on these artificial domains, itlmaconcluded that feature

selection based on correlation—specifically, the hypasheoposed in Chaptet that

106



good feature subsets contain features correlated witHalse and uncorrelated with each
other—can indeed select relevant features, and furtherman do so under conditions of
moderate feature interaction, thatis, as long as releeatdfes arendividually predictive
of the class at least some of the time. As expected, CFS éadlslect relevant features in
cases where there are strong feature interactions (fsatdrese predictive ability is only
apparent in the context of other features). While strongufeainteraction is certainly
possible in natural domains, the results presented in tkieseetion and in appendix F

suggest that it is not common—at least for datasets sinaldrdse in the UCI collection.

The results show that CFS handles irrelevant and redundatuirgs, noise, and avoids
attributes with more values—traits that are likely to impgdhe performance of learning

algorithms that are sensitive to such conditions.

Of the three correlation measures tested with CFS, symeaéuincertainty and MDL
are superior toelief. In some caseselief underestimates the worth of relevant attributes
relative to others—a situation that can lead to relevartifea being omitted from subsets
selected by CFS. In other cases, attribute estimatiaelsf causes CFS to include more

noise and redundancy in feature subsets.

The next section presents experiments designed to shovas@erformance on artificial

domains carries over to natural domains.

6.2 Natural Domains

This section describes the results of testing CFS on twedweral domains. Since the
relevant features are often not known in advance for theseadw, the performance of
learning algorithms with and without feature selectioraisein as an indication of CFS’s

success in selecting useful features.

As with the experiments on artificial domains, stratifiedd@am subsampling is used to
create training and test sets and the results reported areeaage of 50 trials with each

algorithm on each dataset.
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Figure 6.20: Number of natural domains for which CFS imptbaecuracy (left) and
degraded accuracy (right) for naive Bayes (a), IB1 (b), aadb ).

For each machine learning algorithm, Figure 6.20 shows enrhany natural domains
accuracy was improved and degraded (significantly) by theetkiariations of CFS. The
graphs show that CFS-UC and CFS-MDL perform better than Relg&f. CFS-MDL

improves accuracy on the most datasets, followed by CFS+#CC&S-Relief. CFS-UC

degrades accuracy on fewer datasets than either CFS-MDE $fR&lief.

When the accuracies of the three variations of CFS are cadp&FS-UC is better (on
average) than CFS-Relief f8r6 datasets and worse (on average)Xordatasets. When
compared to CFS-MDL, CFS-UC is better (on average)3fafatasets and worse (on

average) for.3 datasets.

As was the case with the artificial domains, CFS-UC and CFS:-MBarly outperform
CFS-Relief. While the performance of CFS-UC and CFS-MDL wexy similar on the

108



artificial domains, CFS-UC is slightly better than CFS-MDb.the natural domains. The
datasets for which CFS-MDL does not do as well as CFS-UC w@bé those with fewer

training instances.

These results suggest that CFS-UC should be the prefemsthradard, version of CFS.
For the remainder of this section, the results for CFS-UCaaralyzed and discussed
in detail. Full tabulated results comparing all three \#izs of CFS can be found in

appendix C.

Table 6.7 shows the performance of naive Bayes, 1B1, and Wih5and without feature
selection by CFS-UC. Results using the Zev test recomended by Dietterich [Die88]
can be found in appendix D. CFS maintains or improves theracgof naive Bayes for
nine datasets and degrades its accuracy for three. For IBT4rb, CFS maintains or
improves accuracy for eight datasets and degrades for Fogure 6.21 shows that CFS

reduces the size of the trees induced by C4.5 on nine of tHedwlemains.

CFS appears to have difficulty on domains with the highestherrof classes (especially
au and sb). The worst performance is on audiology. CFS rediheeaccuracy of naive
Bayes on this dataset fro&.24% to 66.13%—the worst of the results. This domain has
24 classes and onl326 instances; however, CFS’s performance here is much woase th
on the primary tumour domain (pt), which has similar chaastics to audiology. This
indicates that there are possibly other factors, apart trmmumber of classes and dataset

size, affecting the performance of CFS.

Interestingly, CFS has resulted in worse performance bly &t and C4.5 on the chess
end-game domain (kr), in contrast to naive Bayes, for whidmproves performance.
A similar situation occurs on the mushroom domain (mu), bua tesser extent than on
chess end-game. The improvement to naive Bayes indicatethtre are some redundant
features in these domains. On the chess end-game domairfids$hree features (out
of 37) that give~ 90% accuracy regardless of learning algorithm. However, IB1.@A.5
are able to achiever 94% and~ 99% accuracy, respectively, without feature selection.
Unlike audiology, this domain has only two classes and alldne of the features is

binary. Furthermore, there are more tf3800 examples in this domain. This adds further
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Dom [| naive Bayes CFS-nbayes| IB1 CFS-IB1 | C45 CFS-C45 |

mu 94.75+ 0.7 98.49+0.1+ | 99.944+0.1 98.48+0.1— | 99.59+04 98.48+0.1—
VO 90.25+ 1.5 95.60£1.0+ | 92.18+1.3 95.60+ 1.0+ | 95.23+1.4 95.67+ 1.0+
vl 87.20£1.8 89.04 £ 1.7+ | 88.62+2.0 88.35£2.1 88.71£2.0 88.37+22
cr 78.21+15 85.60£1.0+ | 79.82+1.9 85.61+1.0+ | 83.69+1.5 85.61+1.0+
ly 82.12+4.8 82.16£6.1 79.89 £5.4 80.01+4.8 75.80£5.4 76.51+5.3
pt 46.87+3.1 4583+3.5— | 39.63+3.4 40.40+2.8 40.99+4.4 41.51+3.5
bc 72.16+2.7 71.86+ 3.6 71.09+3.8 70.67+3.8 71.77+3.3 70.97+3.2
dna || 89.21+5.0 90.53+4.5 80.31+6.4 86.94+4.7+ | 7458 £6.5 77.20+6.3+
au 80.24 £4.0 66.13£3.2— | 75.284+3.2 67.60£3.6— | 7848+ 3.8 72.56+2.8—
sb 91.30£ 1.7 87.63£25— |9049+1.6 84.24+2.6— | 89.16+1.6 81.2842.9—
hc 83.13+£3.2 87.35£3.7+ | 80.60+ 3.2 86.89+2.6+ | 84.02+3.0 86.05+ 3.5+
kr 87.33+1.2 90.40+£0.6+ | 94.64+0.8 90.41+0.7— | 99.16+0.3 90.41+0.7—
+, — statistically significant improvement or degradation

Table 6.7: Naive Bayes, IB1, and C4.5 with and without feagelection on 12 natural
domains.
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Figure 6.21: Effect of feature selection on the size of teedrinduced by C4.5 on the
natural domains. Bars below the zero line indicate featelection has reduced tree size.
Dots show statistically significant results.

110



support to the notion that there is some factor other thaaseéasize and number of classes

affecting CFS’s performance.

One possibility is that the best first search is getting teabip a local maximum on the
chess end-game domain and, perhaps, on the other domains @R8 has degraded
accuracy. To see if thisis the case, CFS was re-run on aggficdoybean, and chess end-
game using a best first search with the stopping conditioh@htuumber of consecutive
non-improving subsets increased fréro 500. Results show no significant improvement
on any of the datasets, indicating that it is unlikely that @tgorithm is getting trapped in

local maxima.

A second possibility is that there are interacting featae$he chess end-game domain.
Examination of CFS-MDL's output on this domain show onel twaere a fourth feature
was included, resulting irz94% accuracy for all three learning algorithamgluding
naive BayesWhile there may still be some interacting features, thetfzat naive Bayes

is able make use of it, shows that this fourth feature is mohgly interacting.

A third possibility is that CFS’s heuristic merit functiogioo heavily biased in favour of
small feature subsets, resulting in feature selectionishaterly aggressive for the chess
end-game domain and the other domains where CFS has degrexiedcy. Figure 6.22
shows the number of features in the original datasets anduimer of features selected
by CFS. On all but the primary tumour dataset (pt), CFS hasaed the number of
features by more than half. In the case of audiology and obredggame, the number of
features has been reduced by more th@fii—a strong indication that feature selection

has been too aggressive on these datasets.

To explore the bias of CFS’s merit function, and to get an iofdaow merit corresponds
with actual accuracy of a learning algorithm, merit versosuaacy was plotted for ran-
domly selected feature subsets on the natural domainsubsets ofl, 2, 5, 10, 15, etc.
features were randomly selected from a single trainind spkach dataset (if there were
fewer than50 subsets possible for a given size, all were generated). &&br gubset, the
heuristic merit was measured by CFS, using the training daththe actual accuracy was

estimated by first training a learning algorithm using thetdees in the subset, and then
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evaluating its performance on the test*sdfigure 6.23 shows plots of CFS-UC’s merit
versus naive Bayes’ accuracy on a selection of datasetsq@mel-game, horse colic, au-
diology, and soybean). Plots for the remaining datasets-Hamwhen IB1 and C4.5 are

used to measure accuracy—can be found in appendix E.

The first thing that is apparent from Figure 6.23 is that aespondence between merit
and actual accuracy does exist—even for domains on whictrteaelection by CFS de-
grades accuracy (audiology and soybean). Another thirtgstzgoparent is that there are
indeed a number of feature subsets for naive Bayes that iastlbse t095% accuracy
on the chess end-game domain (Figure 6.23a). Examiningzb®f&the feature subsets
represented by the points on these graphs reveals CFS®hiasds subsets with fewer
features. For example, on the horse colic dataset (Fig@Bbpthis bias is effective—the
rightmost (highest merit) point on the graph for horse caaresents a subset containing
2 features which together give an accuracp®f8% on the test set. There are three sub-
sets that have close to this accuracy, two of which cont@iieatures and ongfeatures;
both are assigned a much lower merit than 2Heature subset. On the other hand, for
audiology (Figure 6.23c) and soybean (Figure 6.23d) CF8uia/smaller, moderately
accurate subsets over larger subsets with higher accu¥emy the graphs for audiology
and soybean, it is clear that there are many subsets withadgltracy that have merit

close to the rightmost (highest merit) points.

From the above analysis it can be concluded that CFS’s podorpgance on some
datasets can be traced to the merit formulation rather th@sedarch. Its aggressive bias

favouring small feature subsets may result in some lossaifracy.

To see if performance could be improved on the datasets thetecCFS difficulty, a

method of merging subsets was introduced, with the aim otaging feature set size by
incorporating those subsets whose merit is close to thesbbset. The method works as
follows: instead of simply returning the best subset at the @f the search, the top 50

subsets (sorted in order of merit) discovered during theckesre recorded. At the end of

4Averaging runs on multiple training and testing splits wbgive more reliable estimates of merit
and accuracy for feature subsets, but is time consumingagusisingle training and test set provides a
rough idea of the merit and accuracy, but may generate aattieat is, feature subsets that, by chance, are
predictive of the test set, or have high merit with respethéotraining set.
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Figure 6.22: The original number of features in the natuoahdins (left), and the average
number of features selected by CFS (right).

the search the second best subset is merged with the best anbdghe merit of this new
composite subset is recalculated. If the merit is within I&f%he merit of the best subset,
the composite is accepted. The third best subset is theresh&rgh the composite from
the previous step, and so forth. This continues as long aséni of the new composite

is within 10% of the best subset.

Table 6.8 shows the accuracy of naive Bayes, IB1, and C45 avitl without feature
selection by CFS-UC using this subset-merging scheme. &wve Bayes there are now
eleven datasets for which accuracy is maintained or sigmifig improved and only one
dataset for which accuracy is significantly degraded. Meydeature subsets has made
the result for lymphography better (where before there weesignificant difference) and
the results for soybean and primary tumour no different ¢(etiefore both worse). For
IB1, merging feature subsets has changed the result on thelegy domain—there is
now no significant difference in accuracy on this domain (veheefore it was worse).
For C4.5, merging subsets has degraded performance. Thediff@rence is on the
horse colic domain, which has gone from being improved toatéed. This is surprising,

as merging subsets improves CFS’s performance for naivedBary this dataset.
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Figure 6.23: Heuristic merit (CFS-UC) vs actual accuracgi@ Bayes) of randomly
selected feature subsets on chess end-game (a), horsgogadiadiology (c), and soybean
(d). Each point represents a single feature subset.

It turns out that C4.5’s attribute selection heuristic ispensible for the degraded perfor-
mance. C4.5 chooses an attribute to split on by selectimy ftmong those attributes with
an average-or-better information gain, the attribute thaximises the gain ratio. When
presented with the full feature set, C4.5 chooses the at&ritsurgery” to split on at the
root of the tree as this attribute has above average gairharfdghest gain ratio (informa-
tion gain normalised by the entropy of the attribute). CF8odes this attribute and one
other (“type of lesion 1”) which also has a high gain ratio. riylag subsets often adds
“HospitallD” which has a large number of distinct values an@asonably high gain ratio
but in actuality is a poor predictor. This last attribute bgdar the highest information
gain due to its many values. When all features are presengvérage information gain

is low enough (due to there being many poor attributes with dain) for “surgery” to
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have above average information gain and thus be preferedidestpitallD”. In the case
of the reduced subset provided by merging, the averagennafioon gain is much higher,
making “HostpitallD” theonly attribute with above average information gain. Conse-

quently, “HostpitallD” is chosen for the root of the tree amtbw accuracy results.

Dom [| naive Bayes CFS-nbayes| IB1 CFS-IB1 | C45 CFS-C45 ]

mu 94.75+0.7 97.53+0.84+ | 99.94+0.1 99.68+0.3— | 99.59 +£0.4 99.37+0.6—
Vo 90.25+£1.5 92.93+2.0+ | 92.18+1.3 94.34+ 1.6+ | 95.23+£1.4 95.58 + 1.0+
vl 87.20£1.8 87.71+1.9+ | 88.62+2.0 88.51+2.0 88.71£2.0 88.71+2.0
cr 7821 +£15 85.59+£1.0+ | 79.824+19 85.60+£1.0+ | 83.69+1.5 85.61+1.0+
ly 82.12+£4.8 8494451+ | 79.89+54 80.40+4.5 75.80£5.4 76.90+5.5
pt 46.87+3.1 46.87+3.1 39.63+34 39.63+34 40.99+4.4 40.99+44
bc 7216 £2.7 71.94+28 71.09+ 3.8 70.57+4.2 71.77+3.3 7190+ 3.3
dna 89.21£5.0 89.47+5.0 80.31£6.4 83.93+5.54+ | 7458 £6.5 76.05+ 6.4+
au 80.24 £4.0 T75.55+3.7— | 75.28+3.2 7T4.37+4.1 78.48 £3.8 77.14 4+ 3.8—
sb 91.30£ 1.7 91.184+1.5 90.49+1.6 8791+1.5— | 89.16££1.6 86.80+ 1.8—
hc 83.13+3.2 88.76+2.5+ | 80.60+3.2 8545+ 2.6+ | 84.02+3.0 78.79+10.9—
kr 87.33+£1.2 90.20+2.0+ | 94.64+0.8 94.10+0.5— | 99.16 £0.3 94.13+0.5—
+, — statistically significant improvement or degradation

Table 6.8: Comparison of three learning algorithms with aitthout feature selection
using merged subsets.

Figure 6.24 shows the difference in accuracy betweenWiiBnerged subsets and CFS
withoutmerged subsets for the three learning algorithms. Largeawgments in accu-
racy can clearly be seen on the lymphography, audiologyesy, and chess end-game
datasets. However, it is also apparent that merging featusets degraded results on
some datasets as well (most notably on vote, Mai@a, and horse colic). This is most
apparent for naive Bayes, which has the most significaniadizgions (mushroom, vote,
and voté shown in Figure 6.24). These results suggest that, whileeraseful features
are being included through merging subsets, some harnduhdancy is also being in-
cluded.

One question that immediately springs to mind is: why is nmgrdeature subsets neces-
sary? If other subsets contain features that are usefulcamdncrease the accuracy of
the best subset found during the search, then why are thateds not included in the

best subset? To shed some light on this question, the chdsgaeme dataset is exam-

ined. Recall that there are three features selected by GE§itle~ 90% accuracy for all

SAlthough significantly degraded by merging subsets, theselts are still significantly better than naive
Bayes without feature selection (see Table 6.8)
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Figure 6.24: Absolute difference in accuracy between CIESaith merged subsets and
CFS-UC for naive Bayes (left), IB1 (middle), and C4.5 (righDots show statistically
significant results.

three learning algorithms, and there was one trial od0ah which CFS-MDL included

a fourth feature that gives 94% accuracy. This indicates that this fourth feature may be
very close to the borderline for acceptance into the bestesudnd, in fact, it is included
on all trials by CFS-UC and CFS-MDL using merged subsets.

CFSs-UC CFS-MDL
symmetrical
attribute  uncertainty| attribute  MDL
22 0.2354 22 0.2396
11 0.1146 11 0.1132
34 0.1008 34 0.0991
33 0.0475 33 0.0630
9 0.0454 30 0.0619
16 0.0380 9 0.0445
17 0.0303 17 0.0399
30 0.0286 16 0.0351

Table 6.9: Top eight feature-class correlations assiglye@k5-UC and CFS-MDL on
the chess end-game dataset.

Table 6.9 shows the top eight feature-class correlatiolusilesied by symmetrical uncer-
tainty and MDL on the entire chess end-game dataset. Thehnet features2@, 11,
and34) are consistently selected by CFS. They have the highestlabon with the class
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and have very low inter-correlation.007, 0.001, and0.01 between feature®2 and11,

22 and 34, and11 and 34 respectively). Featurd3 is the feature that, when added to
11, 22, and34, gives94% accuracy. As can be seen from the table, CFS-MDL assigns a
higher correlation (comparative to the other featureshi®fieature than CFS-UC, which
might explain why this feature was actually included in onal by CFS-MDL and not

by CFS-UC. Using 1R to produce a rule for attrib@8eon the full dataset gives:

Rule for attribute-33:
class(NoWin) :- attribute-33(t). (covers 155 out of 175rexdes)
class(Won) :- attribute-33(f). (covers 1649 out of 3021regkes)

The first clause of this rule is highly predictive of a smalimer of examples—it achieves
88.5% accuracy ovell 75 examples. Thd55 examples it gets correct account fo8%

of the dataset. It is possible that the first clause of this-ralvhen attribut&3 has value
“true”—is responsible for thé% improvement in the learning schemes’ accuracy on this
dataset. To see if this is indeed the case, the predictionaie¢ Bayes using the feature
subsef{11, 22,34} and feature subsét 1, 22, 33, 34} are compared using a random train-
ing and testing split of the dataset. Results showlé&; improvement that corresponds
entirelyto the instances where attributg has the value “true”. Furthermore, there are no
new errors introduced through the inclusion of attribk&e The correlations between at-
tribute33 and attributeg 1, 22, and34 are very low, indicating that very little redundancy

is introduced with this feature.

Analyzing attribute30 reveals a similar pattern. The 1R rule for this feature shihas

it has one value that covet§ out of 47 examples—again a very small percentage of the
instance space. Examining the predictions of naive Bay#s avid without this feature
included (in the same manner as above) showsl% improvement in accuracy that is
solely attributable to this single value of the attributgaism, no new errors are introduced
and the correlations between attrib@teand11, 22, and34 are very low. Attribute is a
different story. Including this attribute results in acacy degrading%. Analyzing this
feature in the same manner as the previous two shows that d@rieavalue that coveds6

out of 696 examples. This value is responsible forl % of the test set that was originally
misclassified to be classified correctly, but, unfortunatiticauses~ 5% of the test set

to be misclassified. The correlations between attribOtasd11, 22, and34 are much
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higher than those of attribut&8 and 30, indicating that too much redundancy has been

introduced, which in turn affects the accuracy of naive Baye

The above analysis indicates that some datasets may céemaimes that have a few val-
ues that are strongly predictive locally (in a small areahefinstance space), while their
remaining values may have low predictive power, or be ivahe, or partially correlated
with other features. Since CFS measures a feature’s mehatly (over the entire train-
ing instance space), its bias toward small feature subssynevent these features from
being included—especially if they are overshadowed byrathreng, globally predictive
features. A number of features such as this could cumulgtiverer a significant propor-
tion of a datasét CFS'’s large improvement on the audiology dataset throbghuse of
merged feature sets supports this conjecture. InspectithredR rules produced for the
audiology dataset reveals a number of features with vahatsare highly predictive of a
small number of instances. While not all of these featureg beauseful, it is likely that

some of them cover instances not covered by the strongerésat

The experiments presented in this section show that CF8itydb select useful features
does carry over from artificial to natural domains. Out of tiwee learning algorithms,
CFS improves naive Bayes the most. This is most likely dudedfact that CFS deals
effectively with redundant attributes, and, like naive Baytreats features as independent

of one another given the class.

Analysis of the results on the natural domains has reveal@dakness with CFS. At-
tributes that are locally predictive in small areas of thetamce space may not be
selected—especially if they are overshadowed by othenglygredictive features. From
this it can be concluded that subsets selected by CFS shoulrireated as definitive—

instead, they represent a good indication of the most impofeatures in a dataset.

Appendix F presents results for CFS-UC applied to the sditd@ domains used for
evaluation as part of the WEKA (Waikato Environment for Knnedge Analysis) work-
bench [HDW94]. These results show a similar pattern as tfasthe smaller set of

domains analyzed here.

6Because C4.5 subdivides the training instance space asstraots a decision tree, it has a greater
chance of identifying these features, which explains ipesior performance on the chess end-game dataset.
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6.3 Chapter Summary

This chapter presents experiments which test the claim@k& is a method by which
redundant and irrelevant features can be removed fromitepdata, and that CFS can be

of use to common machine learning algorithms.

Experiments on artificial domains show CFS to be effectivecatening both irrelevant
and redundant features and, as long as there are no extratnesfeteractions, CFS is
able to quickly identify relevant features. Furthermoles tesults of section 6.1.2 show
CFS to prefer relevant features with fewer values and lesend.earning curves show
how ML algorithms that increase in accuracy slowly on theséi@al domains, in the

presence of irrelevant and redundant information, can kia@e accuracy dramatically

improved by using CFS to select features.

Experiments on a selection of natural domains show that Gir%e of use to ML algo-
rithms in terms of improving accuracy and, in the case of Ci#mproving the compre-
hensibility of the induced model. Since the dimensionalftthe data is reduced, all three
learning algorithms execute noticeably faster. Examamatif cases where using CFS to
select features results in worse performance reveals &shang in the the approach.
Because correlations are estimated globally (over alhitngi instances), CFS tends to
select a “core” subset of features that is highly predict¥e¢he class, but may fail to
include subsidiary features that are locally predictiva small area of the instance space.
Experiments show that a version of CFS that merges subsetgltale features from
subsets with merit close to the best subset is able to incaigsome of these subsidiary
features. However, merging feature subsets may also athave srarmful redundancy to

be included.

Of the three versions of CFS tested, the versions using tmenggrical uncertainty co-
efficient and the MDL measure perform the best overall. Bedeig fewer features,
CFS-MDL tends to be more cautious than CFS-UC when theresaré&rining instances.
This is why CFS-UC performs slightly better than CFS-MDLr Farger datasets CFS-
MDL performs as well, if not slightly better, than CFS-UC.
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Chapter 7
Comparing CFS to the Wrapper

This chapter compares CFS’s performance with that of thgmeraapproach to feature
selection. The wrapper is one of the simplest feature seecbnceptually (though not
computationally) and has been found to generally out-perfiiter methods [JKP94,
CF94, AB94]. Comparing CFS to the wrapper is a challengisgltecause the wrapper
is driven by the estimated performance of a target learniggrithm and is tuned to its

inductive bias.

7.1 Wrapper Feature Selection

The rationale behind wrapper feature selectors is thatithecition method that will ulti-
mately use the feature subset should provide a better d@stwhaccuracy than a separate
measure that has a different inductive bias. It is posshaethe “optimal” feature subset
for a given induction algorithm does not contain all the valet feature’s and advocates
of the wrapper approach claim that using the target learaliggrithm as the feature eval-
uation function is the easiest way to discover this [Koh3a16]. It is undoubtedly true
that, short of designing a feature evaluation measure tiatas the behaviour of a par-
ticular induction algorithm, using the induction algonthtself as the measure stands the
best chance of identifying the “optimal” feature subsetwdwer, wrapper feature selec-
tors are not without fault—cross-validation accuracyraates are highly variable when
the number of instances is small (indicative of overfittif{yh95b], and cross-validation

is prohibitively slow on large datasets [CF94, ML94].

IKohavi [Koh95b] gives an example where withholding a retenaitribute from naive Bayes onra-
of-n concept results in better performance than including it.
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The MLC++ machine learning library [KJL94] was used to provide results for the
wrapper, as this library was used in Kohavi’'s feature selactxperiments reported in
the literature. The version o1 LC++ utilities used has an implementation of the naive
Bayes learnérbuilt in and provides support for C4.5 through scripts. Unfoately, the
built in version of IB1 does not support nominal featuresjoiimakes it unsuitable for
use on the datasets chosen for evaluating CFS, nor is theyesapport for calling an
external learning algorithm (apart from C4.5). For thatsmeg IB1 was not used in the
experiments described in this chapter. Nevertheless, &t5aive Bayes represent two
diverse approaches to learning, and results with theseitdgw provide an indication as

to how the feature selection methods will generalize torodgtgorithms.

In order to allow a fair comparison between CFS and the wnapipe same training and
testing splits used to generate the results shown in in eh@jire presented td1LC++.

Furthermore, the same search strategy and stopping aomdite used. Accuracy esti-
mation for the wrapper is achieved thougi+fold cross validation of the training set.

Figure 7.1 shows the stages of the wrapper feature selector.

Testing data

I r>
T
Training data Training data Dimensionality
I:> I:> Reduction
feature set
feature set estimated Training d
accuracy @ raining data

[ Feature evaluation: ]

cross validation ML algorithm

feature set hypothesis @
+CV fold
[

ML algorithm

)
/ @ Estimated

accuracy

Wrapper

Figure 7.1: The wrapper feature selector.

2The version of naive Bayes iMLC++ is the implementation that is used in all the experimests d
scribed in Chaptes

122



7.2 Comparison

Table 7.1 shows the accuracy of naive Bayes without fealexton and naive Bayes
with feature selection by the wrapper and CFS-UC on all themadns. Training set
sizes for the artificial datasets, with added irrelevant esdtindant features (A-A3i
and Alr-A3r respectively), were chosen by examining the learningesiim Chaptes.
For concepts A and A2, the point at which both all the relevant and none of the exrel
vant/redundant features are selected by CFS was notedanuhdy sets of this size are
used (00, 300, 300, and400 instances for Ai, A2i, Alr, and Ar respectively). As CFS
is unable to select the relevant features an the training set size for 2 and A3r is set

to 500 (exactly half of the dataset).

From the table it can be seen that the wrapper improves naye$Bon thirteen datasets
and degrades on six. CFS improves naive Bayes on fourteasedatand degrades on

three.

It is clear that the wrapper has difficulty on those datasétis f@wer training instances
(lymphography, primary tumour, breast cancer, dna-premaind Ali). This is espe-
cially noticeable on the artificial domains with added ierglnt features where it actually
degrades naive Bayes performance. On the equivalent deméih added redundant
attributes its performance is much better. On these dataideatures are relevant, sug-
gesting that the combination of few training instances aredlavant features is to blame
for the wrapper’s performance onlfand A2i. The wrapper tends to outperform CFS on
datasets with more training examples (mushroom, soybeactzess end-game) and on
those domains with features that are locally predictivenalbareas of the instance space
(chess end-game and audiology). Where the wrapper does liettways selects more
features than CFS. The features in common between CFS amddpeer are fairly sta-
ble between trials on these datasets. This also suggesth¢harapper is able to detect

additional locally predictive features where CFS can not.

Unlike the wrapper, CFS does not need to reserve part ofdimarig data for evaluation

purposes and, in general, tends to do better on the smatkesata than the wrapper.
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Figure 7.2 shows the difference in accuracy between CFSwnarapper. Bars above the
zero line show where naive Baye’s average accuracy usitgyéesubsets selected by CFS

is higher than its average accuracy using feature subdetsexd by the wrapper. CFS is
better than the wrapper for eight domains and is worse fogrseomains. The wrapper
outperforms CFS on the 3domain because it discovers that the best performance for

naive Bayes is given by eliminating all the features. Chap®howed that CFS with the

MDL measure (CFS-MDL) achieves this result also.

| Dom || naive Bayes| wrapper CFS

mu 94.75 £ 0.7 | 98.86 + 0.4+ 98.49 £ 0.1+
\'e} 90.25+1.5 | 95.24 + 1.2+ 95.60 £+ 1.0+
vl 87.20 £ 1.8 | 88.95+ 2.2+ 89.04 £ 1.7+
cr 78.21+1.5 | 85.16 = 1.2+ 85.60 £ 1.0+
ly 82.12+4.8 | 76.00 &+ 5.0— 82.16 £6.1

pt 46.87 £ 3.1 | 42.31 + 3.9— 45.83 £ 3.5—
bc 72.16 = 2.7 | 70.96 &+ 3.4— 71.86 £+ 3.6
dna 89.21 £5.0 | 82.05+8.1— 90.53 £4.5
au 80.24 £4.0 | 79.33 £+ 3.4 66.13 £ 3.2—
sb 91.30 £ 1.7 | 92.99 + 1.5+ 87.63 £ 2.5—
hc 83.13£3.2 | 87.70 + 2.5+ 87.35 £ 3.7+
kr 87.33+1.2 | 94.36 + 0.5+ 90.40 £ 0.6+
Ali 91.95+0.9 | 87.44 +0.0— 99.49 + 1.8+
A2i 94.96 £1.8 | 88.31 £12.8— 100.00 £ 0.0+
A3i 71.50+ 1.5 | 72.97+ 0.2+ 72.04 + 1.3+
Alr 84.31 £3.0 | 100.00 £ 0.0+ 100.00 £ 0.0+
A2r 73.74+£1.0 | 99.89 £ 0.8+ 100.00 £+ 0.0+
A3r 68.68 £3.1 | 74.67 + 1.5+ 72.28 + 1.6+
M1 72.55+2.0 | 74.27 £ 1.8+ 75.00 £+ 0.0+
M2 62.75 £ 2.7 | 67.02 + 0.6+ 64.93 £+ 2.0+
M3 97.17+0.4 | 97.26 + 0.4 9717+ 0.4

+, — statistically significant improvement or degradation

Table 7.1: Comparison between naive Bayes without featlexton and naive Bayes
with feature selection by the wrapper and CFS.

Table 7.2 shows the CPU time taken (as measured on a Spasr 4600) to complete
onetrial on each dataset by the wrapper and €7 can be seen, CFS is much faster

than the wrapper.

Figure 7.3 shows the number of features selected by the wrama CFS. CFS generally
selects a similar sized feature set as the wrapper. In maggsthe number of features is

reduced by more than half by both methods.

3CPU times reported for CFS are for a non-optimized versidraffferd suggests some simple methods
of optimization).
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Figure 7.2: Comparing CFS with the wrapper using naive Bayegsrage accuracy of
naive Bayes using feature subsets selected by CFS minusdlega accuracy of naive
Bayes using feature subsets selected by the wrapper. Dwois ghtistically significant

results.

|
mu vo vl cr ly pt bc dna au sb hc kr Ali A2i A3i Alr A2r A3r M1 M2 M3
dataset

| Domain || wrapper  CFS|
mu 2154.0 1.0
VO 193.0 < 1.0
vl 397.0 < 1.0
cr 411.0 < 1.0
ly 187.1 <1.0
pt 3036.0 < 1.0
bc 123 < 1.0
dna 1145.0 < 1.0
au 5362.0 1.0
sb 8904.0 1.0
hc 1460.0 1.0
kr 9427.0 8.0
Ali 83.0 < 1.0
A2i 598.0 1.0
A3i 357.0 1.0
Alr 328.0 < 1.0
A2r 237.0 < 1.0
A3r 562.0 < 1.0
M1 22.0 < 1.0
M2 26.0 < 1.0
M3 26.0 < 1.0

Table 7.2: Time taken (CPU units) by the wrapper and CFS fanglestrial on each

dataset.
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Figure 7.3: Number of features selected by the wrapper usng Bayes (left) and CFS
(right). Dots show the number of features in the originabdat.

Table 7.3 shows the accuracy of C4.5 without feature seleand C4.5 with feature
selection by the wrapper and CFS-UC. The wrapper improveS @4 six datasets and

degrades on seven. CFS improves C4.5 on five datasets aratldegm seven.

The wrapper is more successful than CFS on those artificiabdts that have interacting
features. It is able to improve C4.5’s performance air And Ml, where CFS cannot.
It is interesting to note that, while the wrapper does bdtian CFS on the chess end-
game dataset, it still degrades C4.5’'s performance. Onsiljesexplanation for this
is that there are high order—perhaps higher than pairwisatafe interactions in this
dataset. While the wrapper using a forward best first searoids a good chance of
discovering pairwise interactions, backward searchesieeeed to discover higher than

pairwise feature interactions [LS94b].

Figure 7.4 shows the difference in accuracy between CFShenditapper. Bars above
the zero line show where C4.5’s average accuracy usingréeatibsets selected by CFS
is higher than its average accuracy using feature subdetsexd by the wrapper. CFS is
better than the wrapper for six domains and is worse for @lghtains. As was the case

with naive Bayes, CFS is superior to the wrapper on thosgcatidomains with added
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| Dom || C4.5 | wrapper CFS

mu 99.59+ 0.4 99.03 £ 0.6— 98.48 £ 0.1—
VO 95.23+ 1.4 95.33+ 1.1 95.67 + 1.0+
vl 88.71 £ 2.0 87.82 £ 2.7— 88.37T £ 2.2

cr 83.69 £ 1.5 84.75 + 1.3+ 85.61 + 1.0+
ly 75.80 £ 5.4 80.86 £+ 9.4+ 76.51 £5.3

pt 40.99+4.4 39.53 + 3.4— 41.51£3.5

bc 71.77+ 3.3 71.11+£2.7 70.97+ 3.2

dna 74.58 + 6.5 74.21 £5.0 77.20 £ 6.3+
au 78.48 £ 3.8 75.50 £ 3.6— 72.56 £ 2.8—
sb 89.16 £ 1.6 89.65 £ 2.2 81.28 £ 2.9—
hc 84.02 + 3.0 85.56 + 3.1+ 86.05 + 3.5+
kr 99.16 £ 0.3 97.19+1.2— 90.41 £ 0.7—
Ali 100.00 £0.0 | 87.40 & 0.0— 100.00 £ 0.0
A2i 100.00 £0.0 | 94.87 +10.4— 100.00 4+ 0.0
A3i 75.64+9.4 73.00 £ 0.0 74.70 £ 6.5

Alr 100.00£0.0 | 99.17+ 3.3 100.00 £ 0.0
A2r 100.00 £0.0 | 99.40 £ 4.2 100.00 £ 0.0
A3r 95.74 £ 5.0 100.00 £ 0.0+ 75.16 =3.4—
M1 83.87T+£6.2 91.71 £ 7.0+ 75.00 £ 0.0—
M2 66.81 £+ 0.8 67.10 £+ 0.0+ 67.06 + 0.3+
M3 97.54+ 1.8 97.71+1.9 96.42 + 1.6—

+, — statistically significant improvement or degradation

Table 7.3: Comparison between C4.5 without feature seleand C4.5 with feature
selection by the wrapper and CFS.

irrelevant features. The wrapper consistently identiffesthree interacting features in
the A3r domain and the two interacting features in thé Nbmain most of the time—
resulting in superior performance over CFS on these domditwmvever, the wrapper
still fails on A3i because of the small sample size combined with the presanoany

irrelevant features.

CPU times for the wrapper with C4.5 are similar to those favex&ayes. The soybean
dataset took the longest at just over four hours to compleéetival; M2 took the least
amount of CPU time at around one and half minutes. As CFS igpeddent of the

learning algorithm, its execution time remains the same.

Figure 7.5 shows how feature selection by the wrapper and &fests the size of the
trees induced by C4.5. Bars below the zero line indicatefdztire selection hasduced

the size of the trees. The graph shows that both featuretseaeduce the size of the
trees induced by C4.5 more often than not. CFS affords simelductions in tree size

as the wrapper. The wrapper was particularly successfli®tymphography domain—
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Figure 7.4: Comparing CFS with the wrapper using C4.5: Agewccuracy of C4.5 using
feature subsets selected by CFS minus the average accti@dybaising feature subsets
selected by the wrapper. Dots show statistically signifcasults

not only did it increase C4.5’s accuracy and outperform stgoshosen by CFS, but it
also resulted in the smallest average tree size (integhgtithe wrapper was the poorest

performer on this dataset for naive Bayes).

The wrapper tends to select slightly smaller feature sgbsben used with C4.5 than

CFS (CFS’s subsets are, of course, the same for C4.5 as théyraraive Bayes).

7.3 Chapter Summary

This chapter compares CFS with the wrapper feature seleétithough CFS and the
implementation of the wrapper used herein share the samehssiategy, they repre-
sent two completely different paradigms for feature s@@et-wrappers evaluate feature
subsets by statistical estimation of their accuracy wipeet to a learning algorithm,
while CFS (a filter) evaluates feature subsets by a heurrgg@sure based on correlation.
Wrappers are generally considered to be superior to filsetisey are tuned to the specific

interaction between a learning algorithm and its trainiatacand stand the best chance of

128



60

©

@
M

|
) = N5 5 It % TRESE It T=mas Teo oS Do R S

M=y gy s N MR 5% °

i o LN ISR e N BN i

5 so QLo LU N B H

< e o 09 I i

L &
i ©
<
<&

-20 |

tree size difference

40 + 4

©

60 | ]

3

'80 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il \Q Il Il Il
mu vo vl cr ly pt bc dna au sb hc kr Ali A2i A3i Alr A2r A3r M1 M2 M3
dataset

Figure 7.5: Average change in the size of the trees induce@4y when features are
selected by the wrapper (left) and CFS (right). Dots shotissizally significant results.

finding the “optimal” feature subset.

Experiments in this chapter show CFS to be competitive withpwer in many cases. The
cases for which the wrapper out-performs CFS are genetailsetfor which CFS’s as-
sumption of attribute independence given the class is yrogdated, or contain features
that are locally predictive in small areas of the instanacsp(as shown in Chaptéy.
Because CFS makes use of all the training data at once, iticametter results than the
wrapper on small datasets—especially if there are mankeuaat features present. Re-
sults show that both methods select similar sized featuseets and both reduce C4.5’s

trees in a similar manner.

Some might argue that using a backward search would giverlresults for the wrap-
per. While this could be true, backward searchesvay slow for wrappers. Ko-
havi [Koh95b, KJ96] discusses the use of “compound” seapeltes operators that pro-
pel the search more quickly toward the relevant featuresnaakke backward searches
possible—however, his experiments show little improvenuser forward searches ex-
cept for artificial domains with high order feature interans. Although compound op-

erators do reduce the execution time of the wrapper, CF8limany times faster.

129



130



Chapter 8
Extending CFS: Higher Order

Dependencies

The experiments on artificial domains in Chapteshowed that CFS is able to detect
relevant features under moderate levels of interactioratih when the relevant features
areindividually predictive of the class at least some of the time. Howevatufes whose
ability to predict the class is always dependent on othelisappear irrelevant to CFS

because it assumes feature independence given the class.

Detecting high order feature dependencies is difficult beeahe probabilities in ques-
tion are apt to be very small. There is also a risk of overfithecause these probabilities
may not be reliably represented when data is limited. Fumbee, research in the area of
Bayesian networks has shown that inducing an optimal Bagyedassifier is NP-hard—
even when each feature (node in the network) is constraoedde dependent on at most
two other features [Sah96]. For these reasons, a limiteldwse” approach to detecting
feature interactions is one method explored in this chapdsra second approach, the
instance based attribute estimation method RELIEF (se@t€hg is used as a replace-
ment for the entropy-based feature-class correlation areassed in CFS-UC. RELIEF

has the potential (given sufficient data) to detect highan ghairwise feature interactions.

8.1 Related Work

The feature selection method of Koller and Sahami [KS96bgdily eliminates features

one by one so as to least disrupt the original conditionasctiistribution. Because it
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is not reliable to estimate high order probability disttibns from limited data, their
approach assumes that features involved in high order deperes will also exhibit some

pairwise dependency (see Chapidor details).

Like CFS, the naive Bayesian classifier assumes featuresdependent given the class.
This assumption makes it a very efficient and simple learaiggrithm. Furthermore,

naive Bayes classification performance has been found tefyscompetitive with more

sophisticated learning schemes [DP96]. These qualities ppompted a number of at-
tempts to reduce the “naivety” of the algorithm to furthempnove performance on do-
mains with class conditional feature dependencies. Fotinads (described below) for
improving naive Bayes have taken a pairwise approach (forpedational reasons) to

detecting and incorporating feature dependencies.

Pazzani [Paz95] combines dependence detection and fesiéeion in a wrapper ap-
proach for improving naive Bayes. Forward and backward dlifthbing searches are
used—at each stage the search considers adding/sulgradgature or joining a pair of
features. In this manner, the algorithm can join more thamfeatures but has to do so in
multiple steps. Joining more than two features will not aamiess the first two result in

an increase in accuracy.

Instead of joining whole attributes—that is, where everggble combination of values
for two attributes is considered jointly—Kononenko [Koh@tgues that allowing just
some combinations of attributes’ values to be considenadydwhile others remain in-
dependent) is more flexible. His semi-naive Bayesian diassises an exhaustive search
to determine which pairs of attribute values are worth adersng jointly (a probabilistic
reliability measure is used to screen joined values); agaire than two values can be

joined by this algorithm, but doing so requires multipleatigons.

KDB [Sah96, KS97] is an algorithm for constructing limitedysian networks that al-
lows k-order feature dependencies. The dependencies are speacifiee network in a
greedy fashion: for each featuré, network arcs are added to té other features that
X is most dependent on, where dependency is measured in aggfaghion using a

metric of class conditional mutual informatidf.X ; Y |C'). KDB requires that all features
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be binary; best results are had when KDB is used with a mutiiafmation threshold

which prevents “spurious” dependencies from being inaudehe network.

The TAN (Tree Augmented Naive Bayes) algorithm [FG96] alenstructs a Bayesian
network but restricts each node (feature) in the networkawehat most one additional
parent (other than the class). This allows an optimal dias4d be found in quadratic
time. Like KDB, TAN uses class conditional mutual infornmatito measure dependency

between attributes.

8.2 Joining Features

A straightforward and computationally feasible extensiorCFS for detecting higher
order dependencies is to consider pairs of features. dpinia featuresX andY results
in a derived attribute with one possible value correspogtbreach combination of values
of X andY. For example, if attributé’ has valueq«, b, ¢} and attributeY” has values
{y, z} then the joined attribut& Y will have values{ay, az, by, bz, cy, cz}. An algorithm
that considers all possible pairwise combinations of fiegtun this manner is quadratic

in the original number of features.

Once new attributes are created, corresponding to eaclibf@ogsirwise combination
of features, the feature-class correlations can be caéxliia the normal fashion using
any of the measures described in ChagteA derived feature is aandidatefor feature
selection if its correlation with the class is higher tharhbof its constituent features,
otherwise it is discarded. After all the derived featuregehi@zeen screened in this fashion,
the feature-feature inter-correlations are calculatedHe new feature space and feature
selection proceeds as in the original algorithm. It is inb@or to note that this extension
to CFS does not perform constructive induction—that ispgginot alter the input space
for a machine learning algorithm in any fashion other thastaliding some number of
the original features. If the best feature subset found b €éntains derived features,
then what is passed on to a learning algorithm are the ing@titeatures that comprise

the derived features.
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Initial experiments with this enhancement to CFS (dubbe&-€f showed that more
derived features became candidates for feature selecti@mwhe number of training
instances was small, often leading to larger final featubsets with inferior performance
compared with those chosen by standard CFS. Experimentbaptér4 showed how
correlation measures tended to increase as the numberrohgr@&xamples decreased—
more so for attributes with with a greater number of valuesitthose with fewer values.
In this situation, probability estimates are less relidbtattributes with more values, and
they may appear more useful than would be warranted by theiainod available data.
To counter this trend toward overfitting small training setseliability constraint often
applied to chi-square tests for independence is used. Bquatl shows a statistic based
on the chi-square distribution:

eory gl e

J

whereQ;; is the observed number of training instances from aladsaving thej-th value
of the given attribute, and;; is the expected number of instances if the null hypothesis

(of no association between the two attributes) is true:

In Equation 8.2 ; is the number of training instances with ti¢h value of the given
attribute,n; is the number of training instances of cla&ss andn is the total number of

training instances.

Equation 8.1 is unreliable and becomes over-optimisticateding association when
expected frequencies are small. It is recommended thathikegaare test not be used if
more thar20% of the expected frequencies are less thdBie56, WW77]. For CFS, a
derived feature is screened by subjecting the expecteddraenes for each of its values
in each of the possible classes to this constraint—if maaa 20% are less thas, then
the derived feature does not become a candidate for seidiicause its association with

the class (with respect to a particular correlation meassilikely to be overestimated.
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8.3 Incorporating RELIEF into CFS

One drawback to considering pairs of features is that theifegubset space can be en-
larged considerably and, in turn, can take longer to explecond approach to detect-
ing feature interactions—one that does not expand therieatibset space (but of course
does incur further computational expense)—is to incorjedtee RELIEF [KR92, Kon94]
algorithm for estimating feature relevance. The featutienedes provided by RELIEF are
used to replace the feature-class correlations in CFS-€Hyfe-feature inter-correlations
are still calculated as normal using the symmetrical uagast coefficient. This version
of CFS is called CFS-RELIEF (as opposed to GR&8iefwhich used a contextsensitive
simplification of RELIEF to calculate feature correlatipas described in Chaptetsand

5).

RELIEF is an instance-based algorithm that imposes a rgriinfeatures by assigning
each a weight. The weight for a particular feature reflestsdatlevance in distinguishing
the classes. RELIEF can be used for feature selection imitgright, but, because it does
not explicitly select a subset, a relevance threshold meisieth (on a domain by domain
basis) by which some number of the features can be discafei@dhermore, RELIEF

makes no attempt to deal with redundant features.

One advantage of RELIEF is that it is sensitive to featurerattions and can detect
higher than pairwise interactions, given enough data. Ken&o [Kon94] notes than
RELIEF assigns a weight to a featuie by approximating the following difference of

probabilities

Wy = P(different value ofX | nearest instance of different class (8.3)

— P(different value ofX| nearest instance of same class

RELIEF incrementally updates the weights for features Ipgatedly sampling instances
from the training data. Instance-based similarity meteaos used to find the “nearest”
instances to the one sampled, and, because these meteadlttie features into account,

the weight for a given feature is estimated in context of tteofeatures. The following
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is the original RELIEF algorithm [KR92], which operates evotclass domains.

RELIEF:

set all feature weightd/[X] = 0
fori=1tom

randomly select an instance

find R’s nearest hit{ (same class) and nearest migg(different class)

for each attributeX do

WI[X] = W[X]—diff(X, R, H)/m+ diff(X, R, M)/m

The function diff calculates the difference between theigalof attributeX for two in-
stances. For nominal attributes the difference is eithine attribute has the same value
in both instances) or (the value of the attribute differs between the two instahcEor
continuous attributes the difference is the squared adtlodifference normalized to the
interval[0, 1]. Diff is also used to calculate the difference between msta when finding
nearest hits and misses. The difference between two iregaasimply the sum of the

attribute differences.

The version of RELIEF incorporated into CFS is an extendedion (RELIEF-F) de-
scribed by Kononenko [Kon94], which generalizes RELIEF tdtiple classes and han-
dles noise. To increase the reliability of RELIEF’s weigstieation, RELIEF-F finds the
k nearest hits and misses for a given instaice ( is used here). For multiple class prob-
lems, RELIEF-F finds nearest misses from each differensdlaih respect to the given
instance) and averages their contribution for updatingX]. The average is weighted
by the prior probability of each class. The version of RELIERIsed herein runs the
outer loop of the RELIEF algorithm over all the availableriag instances rather than
randomly sampling some number of them. This results in less variation in RELIEF’s

estimation of feature weights at the cost of increased caatipn.

8.4 Evaluation

This section evaluates the performance of the two extenoedsf of CFS (CFS-P and
CFS-RELIEF) described above. Of particular interest igguarance on those artificial

domains with strong feature interactions, that i8, M1, and M2. The results of feature
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selection for IB1 are presented first as this algorithm is#ie to interacting features
and can achieve higher accuracy on the artificial domaingiigihe correct feature set)

than either naive Bayes or C4.5.

Table 8.1 compares the performance of enhanced CFS (CF8-ER®-RELIEF) with
standard CFS-UC on atrtificial domains using IB1 as the indoalgorithm. The results
show that CFS-P consistently identifies all three releveatures in Ai and A3r, selects
the three relevant features for thelMomain, and averages4 out of the6 relevant
features for the M domain. Incorporating derived features into CFS has natltes
in worse performance on any of the artificial domains. ForAleA3 domains with
added redundant features, CFS-P selects, on averageh&ssne redundant feature.
Examination of the subsets selected by CFS-P show that iesomes selects a joined
feature that correctly captures one of the dependenciesien converted back to its
constituent features, results in the inclusion of a redohd@ature. For example, the
feature setd B,BC,C'E) correctly captures the pairwise dependencies in tiredataset,
but resolves to the feature get, B, C, F') where featurer is a copy of featured. The
difficulty is that the derived featurd(C' is equivalent toC' E—both represent the same
dependency but the algorithm cannot tell that one is moreogpiate than the other (only
that one of the two is necessary). However, the inclusiorhefdccasional redundant
feature on these domains has no affect on the accuracy oAlBiough CFS-P selects the
correct subsets for domaind AA3i, it often accepts more derived features as candidates
for selection than are necessary. Chaptarowed how symmetrical uncertainty aetief
correlation favour non-informative attributes with moedues over those with few values.
A derived attribute comprised of two non-informative dttries therefore appears more
predictive to symmetrical uncertainty anelief than either of its constituent attributes.
This does not happen if the MDL measure is used becausegnasssivalue less than zero

to non-informative attributes (given sufficient data).

The results for CFS-RELIEF show it to be less effective th&&. Although it im-
proves over standard CFS-UC on the same datasets as CFS;Htdisgrades on two
datasets, while CFS-P does not degrade on any. Some imefeedures are included by
CFS-RELIEF on the Ai domain, resulting lower accuracy than either CFS-P ordsiesh
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IB1
Domain || CFS-UC | CFS-P CFS-RELIEF
Al 10000 £0.0 {3.1} | 100.00£0.0 {3.1}] 9438+4.9— {8.1}
A2i 100.004+1.4 {3.0} | 100.00+0.0  {3.0} 100.00+0.0  {3.0}
A3i A7.07+16.4 {4.8} | 100.00£0.0+ {3.0} 100.00+ 0.0+ {3.0}
Alr 100.004+0.0  {3.0} | 100.00+0.0  {3.9} 100.00+0.0  {3.3}
A2r 100.004+0.0  {3.0} | 100.00+£0.0  {3.3} 76.09+1.2—  {2.0}
A3r 53.44+17.0 {3.0} | 100.00+£0.0+ {3.7} 75.96+12+ {2.0}
M1 7500400  {1.0} | 99.33+1.2+  {3.0} 98.22+4.8+ {2.9}
M2 66.944+0.6 {2.9} | 74.67+59+ {54} 69.12+41+ {4.0}
M3 97.22+0.0 {2.0} | 97.22+0.0 {2.0} 97.22+0.0 {2.0}

+, — statistically significant improvement or degradation

Table 8.1: Performance of enhanced CFS (CFS-P and CFS-RE:ttnpared with stan-
dard CFS-UC on artificial domains when IB1 is used as the idini@lgorithm. Figures
in braces show the average number of features selected.

CFS-UC. On M and M2, CFS-RELIEF selects fewer relevant features on average tha
CFS-P, resulting in lower accuracy on these domains. Ittex@sting, given RELIEF's
ability to detect high order interactions, that CFS-RELHges not do as well as CFS-P—
especially on N which has the most feature interaction. Kira and Rendell9ERote
that as the amount of feature interaction increases, theianod training data must also
increase in order for RELIEF to reliably estimate featutevance. This was tested with
CFS-RELIEF by increasing the number of instances in tRalstaset. After quadrupling

the size of the dataset CFS-RELIEF was able to reliably sale6 relevant features.

CFS-RELIEF is effective on i, but fails to select all three relevant features oBr A
and Ar. The problem lies with the RELIEF algorithm—examinatiohtbe feature
relevances assigned by RELIEF on these datasets show #Hitatdel (and its exact
copies in each domain) are consistently assigned relevancehe selection of near-
est neighbours is very important to RELIEF as it attemptsnid fiearest neighbours
with respect to “important” attributes. Averaging the admition of £ nearest neigh-
bours improves RELIEF's attribute estimates by helpingnteract the effect of irrele-
vant attributes, redundant attributes, and noise on nielaegghbour selection. However,
this has not helped in the case ofrAand A3r . To see why, consider the weight up-
date for attributed from the A2 domain((A A B) V (A A C) Vv (B A C)), given the
instance(A = 0,B = 0,C = 0). Furthermore, assume that there are at least two

copies of each instance in the dataset (as there would beyim@nvery small sam-
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ples). Table 8.2(a) shows all possible instances in thisadonalong with their distance
from instance(A = 0,B = 0,C = 0). The nearest neighbour of the same class as
(A =0,B =0,C = 0) is another copy of itself. Since the value dfis the same
here for both instances, there is no change to the weighti fofhere are three nearest
instances—each differing by two feature values—equatigeto(A = 0, B = 0,C = 0)
from the opposite class(A = 0,B = 1,C = 1),(A = 1,B = 0,C = 1), and
(A=1,B=1,C = 0). Out of the threeA’s value differs for the latter two, which results
in the weight forA being incremented (on average) two out of three times tharnis
(A=0,B=0,C =0)is sampled from the training data. If, however, there is atfou
featureD (see Table 8.2(b)), which is an exact copyAQfthen the nearest neighbour of
the opposite classttd = 0,B =0,C =0,D =0)is(A=0,B=1,C =1,D = 0).
This instance has the same value forwhich results in no change to the weight fér
This situation (the nearest instance of the opposite clagst) the same value for feature
A) occurs for every instance in domair2 &vhen there is a copy of featurepresent. The
result is that the weight fad (and its copyD) are never changed from the initial value of
0. In this examplé: = 1 has been used for simplicity. Increasing the valugé oén help,
but, in this casek would have to be increased in proportion to the number ohitngi
instances Another remedy would be to restrict an instance to appgannty once in the

list of nearest neighbours.

Tables 8.3 and 8.4 compare the performance of enhanced GFSR@nd CFS-RELIEF)
with standard CFS-UC on the artificial domains when C4.5 aaidenBayes are used as

the induction algorithms.

In the case of C4.5, CFS-P improves over standard CFS-UC3oand on M.. CFS-P
does not result in worse performance on any dataset whenareahpo CFS-UC. CFS-
RELIEF improves over standard CFS osiAand M1, but does not do as well as CFS-P

on A2r and A3r because it does not select all three relevant features.

In the case of naive Bayes, both enhancements to CFS ressdime degraded results

compared to standard CFS-UC, although the effect is lesaatra for CFS-P. The in-

There aret00 training instances for 2. Assuming instances are uniformly distributédyould have
to be set in excess dh0 +— 8 = 50 in order to start detecting the relevance of attrihdte
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Inst. || class| A B C | Dist. from1 Inst. || class| A B C D | Dist. from1l
1 0 0O 0 01O 1 0 0O 0 0O 010
2 0 0O 0 1|1 2 0 0O 0 1 0|1
3 0 0 1 0|1 3 0 0 1 0 0|1
4 1 0O 1 1|2 4 1 O 1 1 0|2
5 0 1 0 0|1 5 0 1 0 0 1 |2
6 1 1 0 1|2 6 1 1 0 1 1|3
7 1 1 1 02 7 1 1 1 0 1|3
8 1 1 1 1|3 8 1 1 1 1 1 |4
€Y (b)

Table 8.2: An example of the effect of a redundant attributdR&LIEF’s distance cal-
culation for domain A&. Table (a) shows instances in domai@ And Table (b) shows
instances in domain Awith an added redundant attribute. The column marked “Dist.
from 1” shows how far a particular instance is from instante #

clusion of the occasional redundant featureAlm and A2r is responsible for the slight
decrease in the performance of CFS-P on these domains.10th#&linclusion of the two
interacting features by CFS-P and CFS-RELIEF results gh#lf worse performace than

leaving them out.

C4.5

Domain || CFS-UC | CFSs-P CFS-RELIEF
Ali 100.00 £ 0.0 | 100.00 £ 0.0 99.50 £ 2.5
A2i 100.00 £ 0.0 | 100.00 £ 0.0 100.00 £ 0.0
A3i 74.70£6.5 | 100.00£ 0.0+ 100.00 £ 0.0+
Alr 100.00 £ 0.0 | 100.00 £ 0.0 100.00 £ 0.0
A2r 100.00 £ 0.0 | 100.00 £ 0.0 75.96 £ 1.4—
A3r 75.16 £3.4 | 100.00£ 0.0+ 75.64+1.1
M1 75.00£0.0 | 93.66 5.3+  93.32+5.9+
M2 67.06£0.3 | 67.06+£0.3 67.02+0.3
M3 96.42+1.6 | 96.03%+1.7 96.03+£ 1.7

+, — statistically significant improvement or degradation

Table 8.3: Performance of enhanced CFS (CFS-P and CFS-Rktinpared to stan-
dard CFS-UC on artificial doamins when C4.5 is used as thectrmlualgorithm.

CFS-P and CFS-RELIEF were also trialed on the natural dosnambles 8.5 through 8.7
compare the performance of CFS-P and CFS-RELIEF with stdr@BS-UC on the nat-

ural domains when IB1, C4.5 and naive Bayes are used as thetiod algorithms.

Subsets selected by CFS-P are practically identical toetbetected by standard CFS-

UC for all datasets with the exception of mushroom. As a tesiutre is no significant
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naive Bayes

Domain || CFS-UC | CFs-P CFS-RELIEH
Ali 99.49+1.8 | 99.49+ 1.8 95.63 + 3.2—
A2i 100.00+ 0.0 | 100.00 £ 0.0  100.00 £ 0.0
A3i 72.04+1.3 | 73.00+ 0.0+ 73.00+ 0.0+
Alr 100.00+ 0.0 | 99.76 £ 0.5— 100.00 £ 0.0
A2r 100.00+0.0 | 97.08 £ 7.5— 76.14+1.3—
A3r 72.28+£1.6 | 74.454+0.0+ 74.45+0.0+
M1 75.00£ 0.0 | 74.22+25— 73.00+6.4—
M2 64.93+2.0 | 64.30+2.0 65.52 + 1.8
M3 97.17+0.4 | 97.17+04 97.17+ 0.4

+, — statistically significant improvement or degradation

Table 8.4: Performance of enhanced CFS (CFS-P and CFS-RIktinpared to stan-
dard CFS-UC on artificial doamins when naive Bayes is usekdeamtuction algorithm.

accuracy difference on any but the mushroom dataset for &g anduction algorithms
when using subsets selected by CFS-P. Very few derivedriesatuere considered by
CFS-P on the natural domains, from which it can be conclutlatidither there is little
pairwise dependency in these datasets, or that, in mang,dasee is not enough training
data from which to make reliable estimations. The one exaepb this was the chess
end-game dataset, where over one hundred derived featarexansidered, on average.
However, many of these derived features were clearly iegi. The strongest pairwise
dependencies were between the three features selectednoyasl CFS on this dataset.
It is possible that these strong dependencies overshadow gt are useful in only a
small area of the instance space (the same problem thatestwith normal features for
standard CFS in chaptéy.

CFS-RELIEF is better than standard CFS and CFS-P on the owshdomain for IB1
and C4.5 but not for naive Bayes. This suggests that it hactet more feature inter-
action than CFS-P on this dataset. The result for audiolsdpetter than standard CFS
for IB1 and naive Bayes but not for C4.5. Using subsets pexvioy CFS-RELIEF has
resulted in worse performance than standard CFS on thrasatatfor C4.5 and on four
datasets for both naive Bayes and IB1. The datasets for VBHSIRELIEF has degraded
accuracy are among those with fewer instances. This sugjpedtRELIEF’s attribute es-

timation is less reliable for small datasets.

2In comparison, CFS-P using the MDL measure considered amgedess thafi0 derived attributes
on the chess end-game dataset.
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IB1

Domain || CFS-UC | CFS-P CFS-RELIER
mu 98.48£0.1 | 98.64 £ 0.3+ 99.72x0.2+
VO 95.60£1.0 | 95.60 £ 1.0 95.12+1.2—
vl 88.35+2.1 | 88.35 2.1 88.17+1.9
cr 85.61+£1.0 | 85.61£1.0 85.61+1.0
ly 80.01 £4.8 | 80.01 £4.8 79.38 £ 6.0
pt 40.40+2.8 | 40.40 £ 2.8 39.75 £ 2.8
bc 70.67+£3.8 | 70.89 £3.7 69.34 £ 3.5
dna 86.94+4.7 | 86.94 4.7 85.36 =4.9—
au 67.60£ 3.6 | 67.60 £ 3.6 69.23 £ 3.5+
sb 84.24+2.6 | 84.24+2.6 82.07+2.1—-
hc 86.89 £ 2.5 | 86.89 £ 2.5 86.14 £ 3.2—
kr 90.41+£0.7 | 90.41 £0.7 90.41 0.7

+, — statistically significant improvement or degradation

Table 8.5: Performance of enhanced CFS (CFS-P and CFS-Rktinpared to stan-
dard CFS-UC on natural domains when IB1 is used as the iratuatgorithm.

C4.5

Domain || CFS-UC | CFS-P CFS-RELIER
mu 98.48 £ 0.1 | 98.61 £0.3+ 99.44+ 0.6+
VO 95.67+1.0 | 95.67 1.0 95.25 £ 1.3—
vl 88.37+£2.2 | 88.37 2.2 87.90 £ 2.0—
cr 85.61+£1.0 | 85.61£1.0 85.61+1.0
ly 76.51+£5.3 | 76.51 £5.3 77.65+£5.8
pt 41.51+£3.5 | 41.51£3.5 41.27+ 3.5
bc 70.97+3.2 | 7T1.18 £3.2 70.38 £ 2.5
dna 77.20£6.3 | 77.20£6.3 77.68£6.3
au 72.56 £ 2.8 | 72.56 £2.8 69.91 + 3.0—
sb 81.28+2.9 | 81.28+2.9 81.17+2.0
hc 86.05 £ 3.5 | 86.05 £ 3.5 86.54 £ 3.2
kr 90.41+0.7 | 90.41 £0.7 90.41 0.7

+, — statistically significant improvement or degradation

Table 8.6: Performance of enhanced CFS (CFS-P and CFS-Rktinpared to stan-
dard CFS-UC on natural domains when C4.5 is used as the indwdgorithm.
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naive Bayes

Domain || CFS-UC | CFS-P CFS-RELIEH
mu 98.49+0.1 | 98.60 £ 0.2+ 97.714+0.2—
VO 95.60 £ 1.0 | 95.60 £ 1.0 95.61+ 1.0
vl 89.04 £1.7 | 89.04 +£ 1.7 88.85+ 1.7
cr 85.60 £ 1.0 | 85.60+ 1.0 85.60+ 1.0
ly 82.16 £ 6.1 | 82.16 6.1 79.45+5.4—
pt 45.83 £3.5 | 45.83 £3.5 45.58 + 3.7
bc 71.86+3.6 | 71.84 £3.5 70.49 + 2.9—
dna 90.53+4.5 | 90.53 £ 4.5 89.74+ 4.8
au 66.13+3.2 | 66.13+3.2 69.87 £ 3.0+
sb 87.63 £ 2.5 | 87.63 £ 2.5 84.82 +2.4—
hc 87.35+£3.7 | 87.35 £ 3.7 87.86 £ 3.5
kr 90.40 +£ 0.6 | 90.40 + 0.6 90.40 £ 0.6

+, — statistically significant improvement or degradation

Table 8.7: Performance of enhanced CFS (CFS-P and CFS-RItttipared with stan-
dard CFS-UC on natural doamins when naive Bayes is used asihetion algorithm.

8.5 Discussion

This chapter presents two methods of extending CFS to detattre interaction: CFS-P
considers pairs of features and CFS-RELIEF replaces sta€feS’s feature-class cor-
relation with attribute estimates provided by the RELIE§aaithm. From experiments

comparing these enhancements to standard CFS the foll@emgjusions can be drawn:

e Both CFS-P and CFS-RELIEF can improve accuracy over stdn@&S on do-

mains where there are pairwise feature interactions.
¢ In general, CFS-P does not degrade accuracy compared tiasta@FS.

e CFS-RELIEF does not perform as well as CFS-P. RELIEF's egemfor attributes
are less reliable when there are fewer training instancésrasome cases are af-
fected by the presence of redundant attributes. Both oétfae$ors have an impact

on the feature subsets selected by CFS-RELIEF.

Since considering pairs of features does not degrade tlierpemce of CFS, CFS-P is
preferred over CFS-RELIEF if it is suspected that a datasatiains feature interactions.
For larger datasets, the MDL measure is the preferred ediwal measure to use with

CFS-P, because its ability to clearly identify non-infotivaattributes will result in fewer
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“spurious” derived features being considered for selectio

It should be noted, however, that CFS-P will not detect axteon of a higher order than
pairwise. RELIEF, on the other hand, has been shown (onypasiicepts) to be able to

detect higher than pairwise interactions, given sufficieaihing data [KR92].

Both CFS-P and CFS-RELIEF are more computationally expertbian standard CFS.
In the worst case CFS-P may square the number features uodgideration if every
pairwise combination of original features is accepted aaradiclate for selection (this
is unlikely to happen in practice). Because it finds the rsareighbours of each train-
ing instance, the version of RELIEF used in CFS-RELIEF isdyatic in the number of
training instances. However, both enhanced versions of&€&Still much faster than the
wrapper. For example, a single trial on the mushroom datasé&t7 units of CPU time
for CFS-P 81 derived features were considered as candidates}andits of CPU time

for CFS-RELIEF; the same trial todki 54 units of cpu time for the wrapper.
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Chapter 9

Conclusions

9.1 Summary

The central claim of this thesis is that feature selectiarstgervised machine learning
can be accomplished on the basis of correlation betweenrésat A feature selection

algorithm has been implemented and empirically tested pp@u this claim.

Chapter4 outlined the rationale for a correlation-based approacfeaure selection,
with ideas and an evaluation formula adapted from test thebhne evaluation formula
awards high merit to feature subsets that contain featuesdigtive of the class (mea-
sured by the average of the correlations between the indiViéatures and the class),
and a low level of redundancy (as measured by the averagecmteslation between
features). An implementation of a correlation-based i@aselection algorithm (CFS)
incorporating this evaluation function was described.eBhmethods of measuring asso-
ciation between nominal features were reviewed as caredidat the feature correlations
required in the evaluation function. Experiments on aréfidata showed that all three
measures prefer predictive features with fewer values-asthiat is compatible with that
of decision tree algorithms such as C4.5 that prefer smattess over larger ones. Two
of the measuregdlief and symmetrical uncertainty) give optimistic estimated aray
over-estimate multi-valued attributes when data is lichifthe MDL measure gives pes-
simistic estimates when data is limited—a situation thay mesult in a preference for

smaller feature subsets when used in the evaluation functio

CFS was empirically tested using artificial and natural mmeehearning datasets. Exper-

iments on artificial datasets showed that CFS can effegtsaken irrelevant, redundant,
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and noisy features. CFS selects relevant features as lahgyaslo not strongly interact
with other features. Of the three correlation measuregvesd in Chaptet, symmetrical
uncertainty and the MDL measure were superiorettef, when used in CFS. In cases
where attributes divide training data into pure subget&fwas shown to be more sensi-
tive to the size of a pure subset than either symmetricalnteniogy or MDL—a situation
that can lead to the underestimation and omission of retdeatures. Experiments with
common machine learning algorithms on natural domains sbaWwat, in many cases,
CFS improves performance and reduces the size of induced&dge structures. Again,
the symmetrical uncertainty and MDL correlation measuresaviound to give better re-
sults tharrelief. Symmetrical uncertainty was chosen as the preferredlati;e measure
for CFS because it gave slightly better results, on smadisids, than the more cautious
MDL. Results on several datasets showed that CFS is sonsetineely aggressive in fea-
ture selection. In particular, CFS may fail to select feasuthat are locally predictive in
small areas of the instance space—especially if they areslbadowed by other strong,
globally predictive features. A method of merging top rathkeature subsets partially
mitigates this problem; the method is not completely satisfry, however, because it

allows redundant features to be re-included in the finalfeatet.

Further tests compared CFS with a wrapper approach to éesélection. In many cases,
CFS gives results comparable to the wrapper, and genenaihedorms the wrapper on
small datasets. Datasets on which the wrapper clearly datpes CFS are those that
contain strong feature interactions or have features tleatogally predictive for small
numbers of instances. CFS is faster than the wrapper—oftendre than2 orders of

magnitude.

Chaptem investigated two methods of extending CFS to detect featieeaction. Both
improved results on some datasets. The first method (CF84Hg¢h considers pair-
wise combinations of features, gives more reliable reshéia the second method (CFS-
RELIEF), which uses weights estimated by the RELIEF algarmitas correlations be-
tween features and classes. However, CFS-RELIEF has thatm@it(given enough data)

to detect higher than pairwise feature interactions.
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9.2 Conclusions

No single learning algorithm is superior to all others fdrpgbblems. Research in ma-
chine learning attempts to provide insight into the streagind limitations of different
algorithms. Armed with such insight, and background knalgkefor a particular prob-
lem, practitioners can choose which algorithms to applyhSs the case with CFS—in
many cases CFS can enhance (or not degrade) the performameelmine learning al-
gorithms, while at the same time achieving a reduction imilm@ber of features used in
learning. CFS may fail to select relevant features, howevieen data contains strongly

interacting features or features with values predictive sfinall area of the instance space.

CFS is a component of the WEKA workbench [HDW94], which itsepart of ongoing
research at the University of Waikato to produce a high ¢pptocess model for machine
learning. CFS has been applied to a number of problems, notably to select features

for a musical compression system [B198].

9.3 Future Work

The greatest limitation of CFS is its failure to select featuthat have locally predictive
values when they are overshadowed by strong, globally gtiedifeatures. While a single
feature such as this may account for only a very small propodf a dataset, a number
of such features may cumulatively cover a significant proporof the dataset. Merging
feature subsets allows redundancy to be re-introducedleMiédundancy is less likely to
affect algorithms such as C4.5 and IB1, it can have a dettiaheffect on naive Bayes.
An ideal solution (with naive Bayes in mind) would identifyase attributes that are both
locally predictive of instances not covered by already deke attributes, and have low
correlation with already selected attributes. Of coursibates such as these (locally
predictive and low correlation with others) are likely tovhkasomerrelevantvalues—a
number of such features are likely to degrade the performahmstance based learners.
Domingos [Dom97] addresses the problem (specifically fetance based learners) by

using a wrapper to select a different feature set for eadianes. For CFS (and global
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filters in general) it is a case of being able to “please sontkepeople some of the time,

but not all of the people all of the time”.

It would be interesting to apply a “boosting” technique te tiroblem of detecting locally
predictive features. Boosting methods [FS96, SFBL97, Ba¢@mnprove classification
performance by combining the predictions of knowledge aadlifrom multiple runs of
a learning algorithm. In each iteration, a learning aldomtis focused on those areas
of the training instance space that the learner from theigueviteration found difficult
to predict. Such an approach necessitates the use of aypartiearning algorithm and,
when combined with CFS, would result in a hybrid system (weapt filter). To begin
with, standard CFS would select an initial set of featureteakning algorithm (using the
selected features) could then be applied to predict andeh&aight the training instances.
CFS would then be applied to the weighted training instateeslect a secondary set of
features, and so forth. Any locally predictive featured #irv@ genuinely useful will help

in predicting instances that the learner from the previteraiion had difficulty with.

Features selected by CFS generally represent a good “colbsésof features. It would

be interesting to see how a wrapper feature selector woudd\idnen started using a
feature subset selected by CFS. In this case, a bidiretts&aach that considers both
additions and deletions of features would be more apprigpioa the wrapper than either
a forward or backward search. Since the search would batedtifrom an intelligent

start point, the computational expense of the wrapper shioellreduced because fewer
subsets would be evaluated. This approach may also impnewsrapper’s performance
on smaller datasets where less reliable accuracy estimatse it to become trapped in

local maxima.

Another area for future work is in trying (or developing) ettmeasures of correlation for
use with CFS. Measures of correlation that operate on ndmarables were explored
in this thesis. The justification for this was that (a) it isolable to treat different types
of features in a uniform manner in order to provide a commaiddar computing corre-

lation, and (b) discretization has been shown to improve{deast not significantly de-
grade) the performance of learning algorithms [DKS95].gTifin95] describes a method

of converting nominal attributes to numeric attributese-dipposite of discretization. The
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method replaces each nominal value of an attribute withstsnated prior probability
from the training data. When all attributes (including thass) are numeric, Pearson’s
linear correlation can be used with CFS. Future experimeiitsevaluate CFS on do-
mains where all attributes are numeric with learning alpons such as K* [CT95] and

M5’ [WW97] that are capable of predicting continuous classaldes.
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Appendix A
Graphs for Chapter 4

Figure A.1 shows the behaviour of symmetrical uncertanetief, and MDL as the num-

ber of training instances vary when there 2idasses.
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Figure A.1: The effect of varying the training set size on syatrical uncertainty (a & b),
symmetricakelief (c & d), and normalized symmetrical MDL (e & f) when attribatare
informative and non-informative. The number of classes murves are shown fdr, 10,

and20 valued attributes.
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Appendix B
Curves for Concept A3 with Added
Redundant Attributes

Figures B.1 through B.4 show curves for CFS-UC, CFS-MDL,@r&-Relief on concept
A3 with added redundant attributes.
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Figure B.1: Number of redundant attributes selected onagind3 by CFS-UC, CFS-
MDL, and CFS-Relief as a function of training set size.
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Figure B.2: Number of relevant attributes selected on coh&g by CFS-UC, CFS-MDL,
and CFS-Relief as a function of training set size.
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Figure B.3: Number of multi-valued attributes selected oncept A by CFS-UC, CFS-
MDL, and CFS-Relief as a function of training set size.
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Figure B.4: Number of noisy attributes selected on concephACFS-UC, CFS-MDL,
and CFS-Relief as a function of training set size.
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Appendix C
Results for CFS-UC, CFS-MDL, and
CFS-Relief on 12 Natural Domains

Domain || CFS-UC-nbayeg CFS-MDL-nbayes CFS-Relief-nbayé¢s

mu 98.49+0.1 98.49+0.1 98.45+0.9
VO 95.60 £ 1.0 95.32+1.3 95.55+1.2
vl 89.04 £ 1.7 88.94+ 1.7 89.49 £ 1.9+
cr 85.60 £ 1.0 85.60+ 1.0 85.60 £ 1.0
ly 82.16 £ 6.1 77.45+5.0— 77.22+5.5—
pt 45.83 £ 3.5 40.61 = 4.8— 38.59 £ 3.7—
bc 71.86 = 3.6 73.08 & 3.6+ 72.02 £ 3.8
dna 90.53£4.5 90.68 £ 3.9 88.84 £6.1—
au 66.13 £ 3.2 65.36 £ 1.9 72.40 £ 3.9+
sb 87.63 £ 2.5 89.26 £ 1.7+ 88.46 £ 3.4
hc 87.35 £ 3.7 88.25 £ 2.6 81.62 + 3.0—
kr 90.40 £ 0.6 90.13 £ 2.6 90.40 £ 0.6

Table C.1: Accuracy of naive Bayes with feature selectiorClBys-UC compared with

+, — statistically significant result—better or worse

feature selection by CFS-MDL and CFS-Relief.
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Table C.2: Accuracy of IB1 with feature selection by CFS-U@npared with feature

[ Domain || CFS-UC-IB1] CFS-MDL-IB1 _ CFS-Relief-IB1]
mu 98.48+0.1 | 9848£0.1  99.06 £ 0.4+
Vo 95.60+ 1.0 | 9549+1.3 956710
vl 88.35+2.1 |88.38+£21  88.75+18
cr 85.61+ 1.0 |85.61+£1.0  85.61+1.0
ly 80.01£4.8 | 77.18£5.0—~  76.51£6.8—
pt 40.40£2.8 | 36.37£4.7—  37.53£3.6—
be 70.67+£3.8 | 73.60£3.5+  7LT3E3.3+
dna 86.94+4.7 | 864T+48  84.99+59-
au 67.60+3.6 | 65.55+£2.6—  72.13+4.4+
sb 84.24£2.6 |87.27T+£1.6+ 851525+
he 86.89+2.5 | 86.34+£25-  81.62+3.0—
kr 90.41+0.7 | 90.13£2.6  90.41+0.7

+, — statistically significant result—better or worse

selection by CFS-MDL and CFS-Relief.

Domain [| CFS-UC-C4.5] CFS-MDL-C45 CFS-Relief-C4.%
mu 9848+ 0.1 | 9848+ 0.1 9884 £ 0.4+
Vo 95.67+ 1.0 | 95.67+ 1.0 95.67 + 1.0
vl 88.37+2.2 | 88.20+2.2 88.56 + 1.9
cr 85.61+ 1.0 | 85.61+1.0 85.61 + 1.0
ly 76.51£53 | 75.21£5.6—  75.34£6.3
pt 41.51+35 | 36.82+4.7—  38.85+3.9-
be 70.97+£3.2 | 73.39£3.3+  70.97£3.3
dna 77.20£6.3 | 77.10£6.4 T7.41+6.5
au 72.56+£2.8 | 65.36+£1.9—  69.47+3.6—
sb 8128429 | 86.11+£1.7+  84.03+3.0+
he 86.05+£3.5 |87.16£2.8+  81.62+3.0—
kr 90.41+0.7 | 90.13£2.6 90.41 0.7

Table C.3: Accuracy of C4.5 with feature selection by CFS-téthpared with feature

+, — statistically significant result—better or worse

selection by CFS-MDL and CFS-Relief.
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Appendix D

5x2cv Pairedt test Results

Dietterich [Die88] has shown that the common approach aigisi paired-differences
t-test based on random subsampling has an elevated chaigpef error—that is in-

correctly detecting a difference when no difference exidtte recommends using the
“5x2cv” test instead, although warns that this test has an asegk chance of type |l
error—that is failing to detect a difference when one adyuddes exist. This test, based
on 5 iterations of 2-fold cross validation, uses a modifisthtistic to overcome the Type

| problem. The X2cvt-statistic is

pt”
e (B.1)
5 2 i=1 Si

o+
I

wherepgl) is the difference in accuracy from the first fold of the firgtlreation of 2-fold

cross validation and? is the variance computed from th¢h replication.

Table D.1 shows results for naive Bayes, IB1 and C4.5 befoceadter feature selec-
tion by CFS-UC. The 52cv test has been applied. These results are similar inrpatte
to those presented in Chaptemn that CFS improves the performance of naive Bayes for
more datasets than it does for either IB1 or C4.5. It can be thedt there are fewer signif-
icant results than before indicating that CFS safely rerm@itibutes with out adversely

affecting the accuracy of learning algorithms.

Table D.2 shows the accuracy of naive Bayes without featelecgon and naive Bayes
with feature selection by the wrapper and CFS-UC on all thealns. The % 2cv test has

been applied. Similarly, Table D.3 shows the accuracy ob@#th and without feature
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| Dom || naive Bayes  CFS-nbayes | IB1 CFS-IB1 | C45 CFS-C4.5
mu 96.17£0.1 98.52 £ 0.0+ 100.0+ 0.0 98.52+0.0— | 100.0+0.0 98.52+0.0—
VO 90.26 £ 0.28 95.13+1.01 92.45+0.5 95.64+0.0 95.17+£0.8 95.64+0.0
vl 87.22+0.37 88.424+0.91 89.19+1.2 88.60+0.8 89.20£0.9 88.92+0.9
cr 78.00£0.53 85.51£0.00+ | 81.71£0.5 85.50+0.0 84.16 £ 1.0 85.50+0.0
ly 82.18£0.81 7796+1.95— | 77.054+4.1 77.85+£2.7 74.60 £ 3.5 73.924+2.0
pt 45.62+1.56 44.444+1.10 37.20+£1.6 39.46+0.7 39.04 £2.1 40.26+1.5
bc 71.04+1.04 T71.18+1.44 71.16+£1.9 7228+1.2 71.17+1.3 70.75+2.0
dna 86.27 £ 1.73 89.30£2.83+ | 78.304+2.3 87.54+£2.0 74.14 £ 3.1 74.52 4+ 2.84
au 77.11+£2.70 66.36 £1.97 71.24+£4.9 66.05+14 7490+ 1.5 70.544+0.8
sb 90.90£0.38 87.74+£0.41 89.97+0.8 83.36+1.5 87.18+0.5 79.61+1.8
hc 81.74+1.04 87.72+0.65 80.45+0.9 85.87+1.8 81.84+1.2 81.5+£0.0
kr 87.05£0.22 88.80+£ 3.26 93.08+0.4 88.80+3.3 98.87+0.1 88.80+3.3

+, — statistically significant improvement or degradation

Table D.1: Naive Bayes, IB1, and C4.5 with and without featselection on 12 natural

domains. A 52cv test for significance has been applied.

selection by the wrapper and CFS-UC. These results followateem similar to those

presented in Chaptérin that CFS does a better job for naive Bayes than the wrapper

does, and that the wrapper does a better job for C4.5 than G&S dror C4.5, three of

the four datasets that CFS degrades accuracy on have sttohgta interactions; worse

results than the wrapper are to be expected in such cases.
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| Dom || naive Bayes | wrapper CFS |
mu 96.17 £ 0.1 99.68 + 0.1+ 98.52 + 0.0+
/o] 90.26 0.3 94.80 & 0.8 95.13+1.0
vl 87.224+0.4 89.890 + 1.2+ 88.424+ 0.9
cr 78.00 &£ 0.53 | 85.51 +£ 0.4+ 85.51 + 0.0+
ly 82.18+0.81 | 7837+ 1.0— 77.96 &+ 2.0—
pt 45.62+ 1.6 41.29+1.1— 4444+ 1.1
bc 71.044+1.0 71.61+2.1 7118+ 1.4
dna 86.27 + 1.7 81.40 4+ 0.7 89.30 + 2.8+
au 77114+ 2.7 74.06 + 2.3 66.36 = 2.0
sb 90.90+ 0.4 92.18 £ 0.7 87.744+ 0.4
hc 81.74+ 1.0 85.60+ 1.4 87.724+ 0.7
kr 87.054+ 0.2 94.34 + 0.0+ 88.80 £+ 3.3
Ali 96.24 4+ 0.5 87.40 &+ 0.0— 100.0 £ 0.8+
A2i 98.34 + 1.2 92.00+10.9— 100.0 &= 0.0+
A3i 71.38 £ 0.3 72.78 0.4 71.744+ 0.6
Alr 84.79 4+ 0.7 99.94 + 0.1+ 100.0 £ 0.0+
A2r 73.90 4+ 0.0 100.0 £ 0.0+ 100.0 £ 0.0+
A3r 64.60 + 4.3 75.64+ 1.3 72.84 4+ 0.8
M1 72.55+ 2.0 74.31 £ 1.4+ 75.00 & 0.0+
M2 62.64 + 2.7 67.13+0.0 65.14 + 1.8
M3 97.23 £ 0.6 97.23 £ 0.6 97.23 £ 0.6

+, — statistically significant improvement or degradation

Table D.2: Comparison between naive Bayes without featelecson and naive Bayes
with feature selection by the wrapper and CFS. A28v test for significance has been
applied.

| Dom || C4.5 | wrapper CFS |
mu 100.0£0.0 | 99.91+0.1 98.52 4+ 0.0—
VO 95.174+0.8 | 95.724+0.3 95.64 4+ 0.0
vl 88.20+0.9 | 88.38+0.8 88.92+0.9
cr 84.16 £1.0 84.50 £0.7 85.5+0.0
ly 74.60 £ 3.5 74.86 £1.9 73.92£2.0
pt 39.04£2.1 39.51£1.8 40.26 £ 1.5
bc 71.17+1.3 71.74£19 70.75£2.0
dna 74.14£3.1 75.056 £ 1.8 74.52 £ 2.84
au 74.90 £ 1.5 70.96 £1.1 70.54 £0.8
sb 87.18+0.5 | 87.38+2.0 79.61 + 1.8
hc 81.84+1.2 83.38 £ 1.5 81.53£0.0
kr 98.87£0.14 | 97.21 £0.6— 88.80 £ 3.3
Ali 100.0 £ 0.0 | 100.0+0.0 100.00 + 0.0
A2i 100.0 0.0 92.01 £10.9— 100.00£ 0.0
A3i 83.90+5.2 | 73.00+0.0 78.58 £ 6.5
Alr || 100.0+£0.0 | 100.0+0.0 100.00+ 0.0
A2r || 100.0+£0.0 | 100.0+0.0 100.00+ 0.0
A3r 97.58 £2.2 100.00 £ 0.0 78.86 £5.4—
M1 91.11+5.7 | 100.0+ 0.0+  75.00+0.0—
M2 67.10+0.0 | 67.10+0.0 67.10+ 0.0
M3 098.67+ 1.8 | 98.67+ 1.7 96.73+ 1.0—
+, — statistically significant improvement or degradation

Table D.3: Comparison between C4.5 without feature selecnd C4.5 with feature
selection by the wrapper and CFS. A Bcv test for significance has been applied.
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Appendix E
CFS Merit Versus Accuracy
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Figure E.7: Breast cancer (bc).
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Appendix F
CFS Applied to 37 UCI Domains

Table F.1 shows results for three machine learning algostivith and without feature
selection by CFS-UC 087 UCI domains. These domains make up a test suite used for
experiments with the WEKA workbench [HDW94], and are repreative of those avail-
able from the UCI repository. Each accuracy in the tableesatrerage of0 train and test
trials using & /3 training andl /3 testing split of the data. Colic, colic.ORIG and hc are
all versions of the horse colic dataset. Colic and hc fz&@nd27 attributes respectively
and “surgical lesion” as the class. Colic.ORIG R&sttributes and “pathology cp data”

as the class. The version of naive Bayes used in these expusgns part of the WEKA

workbench.

Figure F.1 shows the average number of features selecte@8yULT on these domains.
Figure F.2 shows the effect of feature selection by CFS-U@emsize of the trees induced
by C4.5.
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| Domain | naive Bayes CFS-UQ IB1 CFS-UC| C45 CFS-UC]|

1 anneal 86.93 84.02— | 98.14  97.79 98.33  97.46—
2 audiology 76.85 67.57— | 7496 71.94— | 76.87  70.00—
3 autos 60.54 56.80— | 69.69  73.574+ | 70.48  71.66
4  balance-scale || 89.27 89.27 83.54  83.54 78.71  78.71
b) breast-cancer || 71.35 71.39 69.55  70.55 71.64  71.25
6  breast-w 95.73 95.76 95.55  95.58 94.43  94.44
7  colic 79.35 81.49+ | 79.86  81.38+ | 84.21  81.75—
8  colic.ORIG 77.49 81.75+ | 63.59  60.52— | 66.70  66.70
9 hc 83.38 87.44+ | 80.47  86.084 | 84.78  84.61
10 credit-a 81.20 86.00+ | 81.27  86.00+ | 84.89  86.00+
11 credit-g 75.05 72.49— | 70.11  69.056— | 70.73  72.27+
12 diabetes 74.98 76.15+ | 69.41  69.83 72.29 7292
13 glass 51.01 53.10+ | 70.49  72.52+ | 67.42 66.71
14 heart-c 82.98 82.31 76.31 7811+ | 73.11  76.10+
15 heart-h 84.12 84.00 78.56  80.60+ | 78.70  80.40+
16 heart-statlog 83.78 81.63— | 75.00 77.03+ | 75.48  78.80+
17  hepatitis 84.11 82.34— | 80.67  80.49 79.96  80.29
18  hypothyroid 95.52 94.24— | 90.81  86.06— | 99.50  96.38—
19 ionosphere 74.97 82.874+ | 86.59  89.124 | 89.88  89.92
20 iris 95.02 96.51+ | 95.49  96.314+ | 94.98 94.94
21 kr-vs-kp 87.66 90.334+ | 94.62  90.32— | 99.21  90.32—
22 letter 64.96 64.33— | 73.14  72.34— | 85.82  85.89
23 lymph 83.14 80.24— | 79.89  80.94 77.13  75.06—
24  mushroom 96.47 98.54+ | 100.00 98.54— | 100.00 98.54—
25  primary-tumor || 45.30 44.83 38.20  39.41+ | 3991  40.13
26 promoters 88.74 91.84+ | 82.36  88.89+ | 75.79  78.53+
27 segment 79.29 81.61+ | 96.33  96.48 95.71  95.66
28 sick 94.40 93.84— | 95.47  96.12+ | 98.56  96.08—
29 sonar 69.55 70.82 84.81  81.47— | 68.55  71.16+
30 soybean 93.19 90.94— | 90.64  83.74— | 89.55  81.02—
31 splice 95.18 93.58— | 75.22  89.70+ | 93.46  93.20—
32 vehicle 47.78 48.00 68.80  62.32— | 70.80  66.56—
33 vote 90.34 95.50+ | 92.60 95.61+ | 95.46  95.73+
34 votel 87.41 89.14+ | 88.87  89.28 89.51  89.22
35 vowel 56.99 54.25— | 97.32  65.96— | 75.03  60.15—
36 waveform5000 || 82.12 82.50+ | 73.33 7931+ | 7414  76.58+
37 zoo 93.09 87.71— | 95.53  95.01 93.71  92.34—
| Average: | 79.98 80.13 | 8155 81.39 |82.04 81.01 |

+, — statistically significant improvement or degradation

Table F.1: Comparison of three learning algorithms with aiitthout feature selection
using CFS-UC.
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