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Abstract

In the last years the public and often political discussion about eventually health hazard effects of
high-frequency electromagnetic fields (above all of mobile-phones) on human beings is increas-
ing. The further need of scientific studies to clear up possible effects becomes more and more
obvious.

Actually, no one knows for sure how everyday electromagnetic exposure affects the learning and
memory of insects, or other living organisms.

In recent years countless studies were initiated to examine the effect of high-frequency electro-
magnetic radiation on living organisms and cells. But — as far as we know - to this day there ex-
ists no adequate model of effect with specific relation to learning processes to explain the differ-
ent, especially non-thermal effects. In this context we only want to mention the resonant stimulus

of living organisms.
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Information-Theoretical Based Model

First of all we want to explain a specific model. It is based on an extended theory of supersigns,
which was developed in the context of Educational Informatics.

The classical theory of supersigns deals with the mathematical modelling of the well known phe-
nomenon of 'chunking'. Basically this theory assumes that the process of building supersigns, the
superation, modifies the subjective information of a presentation, because of change of repertoire.
According to the common basic assumption of a cybernetical based learning theory, learning is
defined as a construction of an internal model. If a learning subject has built up an internal model
of a fact means: The knowledge of that fact was built up.

On the other hand and following the same basic theory of information processing knowledge is
caused by a process of superation. Summing up, the theories of artificial neuronal networks (as a
model of brain) allow the idea of an internal representation of a structure of knowledge, reflected
in physiological facts of the brain.

What transformations occur between different processing stages when electromagnetic exposition
is influencing the learning processes?

What are the causes and consequences of these transformations?

To answer these questions with a computational perspective, we focus on the structure of know-
ledge instead of the 'hierarchy of knowledge' (see Stever, 2002), defined in the early theory of
supersigns. This theory must be extended to develop a theoretical framework for examining elec-
tromagnetic exposition as an influencing factor of learning processes. In this sense the possibility
of physical influences on the process of supersign development has to be taken into account.

In Stever & Kuhn (2003) we developed the cybernetical model of building supersigns based on a
repertoire defined as ‘structure of knowledge’ and modifying the subjective information of a
presentation while changing the repertoire.

A representation of knowledge, defined as a construction of an internal model of a fact, which
has to be learned, can be formally signified as a pair of data (W, M(W)). It can also be interpreted
as a graph of a structure of knowledge. According to that, M(W) symbolizes the union of the set
of all possible morphisms to the set of different elements of knowledge W:
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However this modelling neglects the possibility that physical influences of the outside world can
induce effects on the process of developing supersigns. The effects of high-frequency electro-
magnetic fields on human beings, especially on their brain, can be interpreted as a repertory
change in the construction of internal models. So the theory must be extended by the additional
hypothesis that physical influences can change the process of superation. Therefore it is neces-
sary to integrate additional parameters into the mathematical description of this process. The set
of all finite sequences of connection with elements of W must be replaced by a set of all finite

paths through the graph of the structure of knowledge
o) =Y, :N, > (L W.M)),

naN
in which IT represents the set of all possible physical influences. So it is necessary to determine
an optimal representation of the elements of knowledge and with that, an internal model of a fact
for every p € II. In particular it has to be examined whether the physical influences change the
process of superation itself. The way physical influences can act on this process is visualized
through the possible parameter p € I1.

In the following - after describing the physical facts of thermal and non-thermal effects - we want
to illustrate how honey bees can be resonantly stimulated, and therefore, influenced non-

thermally.

Physical Facts

Electromagnetic fields spread periodically in time and space. Hitting living organisms, they cause
effects on molecular levels because there are charged particles within cells and tissue. These par-
ticles take up the energy of the electromagnetic field and transform it into energy of motion. Be-
cause of their motion, the charged particles bump against other particles, which are placed in the
surrounding of the moving particles. By this transmitting of impulses the energy of motion is
transformed into energy of heat.

These processes depend on both the frequency f of the electromagnetic field and the properties of
the biological tissue, such as its electrical conductivity x and its dielectric constant &. The last two
parameters depend also on the frequency of the electromagnetic field. Whereas the dielectric con-

stant is decreasing when the frequency rises, the electrical conductivity of the biological tissue



increases. This relation between the frequency and the electrical conductivity of the tissue resp.
its dielectric constant is called relaxation. The phenomenon can be explained best with the ex-
change of energy between the electromagnetic field and polar molecules, such as dipoles. The
dipoles are rotated by the periodically changing direction and field strength of the electromag-
netic field (see Figure 1). The electromagnetic energy is transformed into energy of tension in the
dipoles if the field strength is maximal. When the electrical field is turned back into the opposite
direction, the dipoles are orientated into the opposite direction, too. So the energy of tension is
transformed into energy of motion. Because of the friction thermal energy emerges. The charac-

teristic time of this process is called time of relaxation 7.
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Figure 1: The process of relaxation: a) Dipole in different positions and b) the whole process in one picture

This transformation of electromagnetic energy into thermal energy is very efficient if the field is
turned in the opposite direction after the dipoles reached their maximal orientation. So the opti-

mal frequency of relaxation f; can be calculated with
1

fi==
T

The frequency of relaxation of hydrous soluble protein molecules amount between 1 MHz and
several GHz. When the frequency increases, the degree of the dipole-orientation decreases. This

relation is described by the Debye-Equations:



Thermal Effects:

Physically the clearest and most explainable effect of high-frequency electromagnetic fields is the
thermal effect. This effect describes the transformation of electromagnetic energy in thermal en-
ergy. This thermal energy is caused by the relaxation of rotation of the dipole-molecules. In this
case the field strength is large enough to produce a maximal dipole-orientation. The orientated
dipoles cause a frictional heat when they change their orientation. This effect depends on many
parameters, e.g. the frequency, the field strength, the body mass, the body structure and the time
of effect.

Non-Thermal Effects:

It is understood that high-frequency electromagnetic fields cause effects which can not be ex-
plained by thermal effects. So the discussion about non-thermal effects focuses on the question
whether and under which circumstances they are biological relevant.

From physical view it is obvious that only such high-frequency effects are discussed first which
are not covered by the thermal noise. The energy of this thermal noise amounts to 25 meV. So an
effect with a smaller energy is not noticed by the biological tissue. But this limiting energy ap-
plies only to such biological tissue which can not be resonantly stimulated and to such radiation
which frequency is not within the range of the frequency of resonance. If a biological tissue can
be resonantly stimulated and the frequency of the radiation corresponds to the frequency of reso-
nance of that tissue, biological effects can be caused by energies which are much smaller then 25
meV. So the resonance is one possible non-thermal effect, which will be explained in the follow-
ing.

If an oscillation-able object — e.g. a protein molecule — is stimulated once, it performs a free os-
cillation. The frequency of this oscillation depends only on the property of this resonator. This
frequency is called the self-frequency f, of the resonator. If an external energy source stimulates
the resonator, it performs enforced oscillations with the frequency of the external source, the ex-

citer. This frequency is called exciting frequency fg. If the exciting frequency is in the range of



the self-frequency of the resonator (fg = f;), the amplitude of the resonator-oscillation is maximal.
This phenomenon is called resonance. So the frequency of resonance fr corresponds with the ex-
citing frequency and the self-frequency fy of the resonator when resonance arises: fr = ft = fo.

A biological tissue absorbs maximal electromagnetic energy when the frequency of the radiation
corresponds with the self-frequency f, of the biological tissue. This self-frequency depends on the
proportions and the structure of the tissue. Every electromagnetic radiation with a strictly defined
frequency f possesses also a strictly defined wave-length 4, which can be calculated with the

equation
A= ? (c: speed of light; ¢ = 3-10° m/s). (i)
To simplify the facts, we want to explain the self-frequency f; of an one-dimensional dipole

molecule with the length / (see Figure 2). Its self-frequency f; depends on the length / of the di-

pole and can be calculated with equation (i):

f=5. (i)
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Figure 2: The wave-length / to stimulate an one-dimensional dipole resonantly.

So the phenomenon of resonance occurs when the wave-length of the electromagnetic radiation is
in the range of the properties of the biological tissue.

But because of the complexity of a biological tissue (multi-dimensional proportions, different
types of molecules etc.) the frequency of resonance resp. the corresponding wave-length can

hardly be calculated and often has to be estimated.



Honey Bees as Possible Bioindicator for Non-Thermal Effects

The function of the honey bee as a bioindicator for thermal effects was proved in details in Kuhn
(2002, 2003). In this paper we want to show that bees can also serve as a bioindicator for non-
thermal effects concerning their learning processes. With this knowledge it could be possible to
study non-thermal effects of high-frequency radiation on the learning process of honey bees and
transfer the results on human beings. This is possible because the brain structure of honey bees
concerning learning processes is similar to that of human beings (Giurfa, 2003; Stever & Kuhn,

2003).
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Figure 3: The resonant stimulation of an honey bee (a)), of a mushroom body' (b)) and of the honey comb” (c))

Honey bees can be influenced non-thermally in three ways:

First of all, the bee itself is a creature with a strictly defined shape. So this shape can be reso-
nantly stimulated, when the wave-length — and so the frequency — of the radiation is in the range
of the size of the bee (see Figure 3a)). As the honey bees’ size is circa two centimetres (/ = 0,02
m), the frequency of resonance fs has to be up to 15 GHz (see equation (ii)). But honey bees can
not only be resonantly stimulated by this strict frequency. Because their body is extensive, they
can be stimulated by a broadband of frequencies, which borders have to be discovered experi-

mentally.

! This picture of the honey bees’ brain was found at www.neurobiologie.fu-berlin.de/mulan.html.

% This picture of the stimulation of the honey comb by waggle-dances was found at bild der wissenschaft online,

Natur (03.12.2001).




In a second case, the mushroom bodies’ in the brain of honey bees have also a strictly defined
shape (see Figure 4). They are arranged symmetrically in the brain of the honey bee. Altogether
their area amounts to circa 250 — 300-10” m?. The longest distance between the two exterior lim-
iting points is circa 800 um. So they can also be resonantly stimulated (see Figure 3b)). Because
of their small size (/ = 800-10° m), the frequency of resonance fs is much higher (see equation
(i1)), up to 375 GHz. But this value is very critical, because of the multi-dimensional properties of
the mushroom bodies. The mushroom bodies are 3-dimensional objects, so the calculation is as
complex as in the case of an one-dimensional object. Furthermore we have to take into considera-
tion the properties of the mushroom bodies and of their surrounding, too. So the frequency of

resonance fs of these objects should be tested experimentally, too.
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Figure 4: Cross-section of a honey bees’ brain* (the bordered area marks the mushroom bodies).

* Neurobiological researches show that the change of the honey bees’ actions is combined with modifications in
certain areas of their brain, especially in such areas called mushroom bodies (Withers et al, 1993; Faber & Menzel,
2001). Therefore we want to consider these mushroom bodies as representations of internal models, which were the
results of honey bees’ learning processes. These internal models represent parts of the surrounding.

* This picture of the honey bees’ brain was found at www.neurobiologie.fu-berlin.de/mulan.html.



Because of their complexity we can not exclude that they can be resonantly stimulated by an
electromagnetic radiation with frequencies up to 2 GHz. So this frequency — the frequency of the
GSM- and UMTS-mobile phones — has also to be taken into account.

The third way which describes a possible, non-thermal, resonant stimulation of the honey bees is
outlined by the results of recent studies.

In addition to the well known theory of Karl von Frisch that honey bees communicate through
waggle dances on the honeycomb, Nieh and Tautz discovered that dancing makes the honey-
combs vibrate (Nieh & Tautz, 2000; Tautz et al, 2001). The frequencies of these vibrations are set
in between 200 Hz and 300 Hz. As the honeycombs vibrate the information can be transported to
honey bees which are located far away from the vibrating source. With the GSM-mobile-phones
sending their information with a pulsed signal, we must consider the pure sending frequencies of
900 MHz and 1800 MHz as well as the pulsing frequency of 217 Hz. The frequency of the pulse
corresponds to that of the waggle dance of the honey bee and so the dancing area could be reso-
nantly stimulated by this pulsed frequency (see Figure 3c¢)).

So, in a first step the frequencies of resonance fs of the honey bees’ body (first way of a possible,
non-thermal influence) and of the mushroom bodies (second way of a possible, non-thermal in-
fluence) have to be discovered experimentally. Then honey bees must irradiate with such fre-
quencies. If these frequencies cause change in the honey bees learning ability (e.g. they forget the
direction of the feed or they don’t know how to construct their honeycombs), it is possible that

our learning abilities can be influenced by these non-thermal stimulations, too.

Experimental Design and Results

Before testing the frequencies of resonance, we carry out a first explorative study to examine the
effects of non-thermal stimulation (step zero).

We use the basis station of a DECT-mobile-phone. These basis-stations send out continually
electromagnetic radiation with a sending-frequency fs = 1900 MHz. So they also irradiate when
the mobile-phone is out of order or is not in use. The average transmitting power Ps amounts to
10 mW, the peak power is 250 mW. The sending-signal is frequency modulated and it is pulsed
with a pulsing frequency f, of 100 Hz.



We have used only the basis station without the mobile-phone, so it has been in stand-by mode
all the time. In this state the average transmitting power Ps amounts to 2,5 mW. We put the sta-
tion at the bottom of a beehive, right under the honeycombs. So the station was placed within the
beehive the honey bees have been able to touch the sending aerial all the time.

The study started in march 2003. We have observed that the honey bees have touched the sending
aerial from the beginning, they did not avoid it. We haven’t also been able to recognize a chang-
ing behaviour of the bees.

These observations can be explained in several ways. Either the frequency of resonance of the
honey bees’ body is not 2 GHz, and so the radiation of the DECT-basis-station doesn’t stimulate
them resonantly. Or the resonant stimulation does not change the behaviour of the honey bees.
Furthermore the sending power has been very small. But it was too difficult to set the DECT-
telephone in active process, because the mobile-phone had to be turned on all the time. Moreover
we are exposed to this sending power in real life, so it is not necessary to use a higher sending
power because it is unreal.

But this aspect should be taken into consideration in further research activities.

Conclusion, Outlook

Observations about the non-thermal effects of high-frequency electromagnetic fields are neces-
sary because they have not been understood yet. So it is necessary to use a bioindicator which
allows to examine such effects and to transfer the results on human beings. In this view honey
bees can be useful because they can be stimulate non-thermally, namely resonant.

A first explorative study has not indicated a changing behaviour when the bees have been irradi-
ated. But this fact can not assure that non-thermal effects do not influence honey bees. Rather in
further studies the resonance frequencies of the honey bees’ body and of their mushroom bodies

have to be tested. Then the studies should differently use only these tested frequencies.
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