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MULTIPLIER HOPF ALGEBRAS

A. VAN DAELE

Abstract. In this paper we generalize the notion of Hopf algebra. We consider

an algebra A , with or without identity, and a homomorphism A from A to

the multiplier algebra M(A ® A) of A ® A . We impose certain conditions on

A (such as coassociativity). Then we call the pair {A, A) a multiplier Hopf

algebra. The motivating example is the case where A is the algebra of complex,

finitely supported functions on a group G and where (Af)(s, t) = f(st) with

s, t £ G and f € A . We prove the existence of a counit and an antipode.

If A has an identity, we have a usual Hopf algebra. We also consider the case

where A is a *-algebra. Then we show that (a large enough) subspace of the

dual space can also be made into a *-algebra.

1. Introduction

If G is a finite group and A is the algebra of functions from G to C with

pointwise operations, then A can be made into a Hopf algebra if we define

comultiplication, counit, and antipode by

(Af)(s, t) = f(st),       e(f) = f(e),       (Sf)(t) = f(rx),

where f £ A and s, t £ G and where e is the identity in G. We have

A(A) C A® A if we identify A® A with functions on G x G.
This is no longer possible if G is infinite. However, if then we take for

A the algebra of finitely supported complex functions and if we cut down one

variable, we get functions in A® A . Indeed, for all / and g in A we have

that (A/)(l ® g) and (Af)(g ®l) are in A® A.
On the other hand, we have the following result. If A is any Hopf algebra

with comultiplication A, then the maps Tx, T2: A® A^> A® A, defined by

Tx(a ®b)= A(a)(l ® b),        T2(a ®b) = (a® l)A(b)

are bijections. Moreover, if A is an algebra with identity and a comultiplication

A such that the above maps are bijective, then A is a Hopf algebra. (We give

a proof of these results in §§2 and 4.) This implies that not only A but also S

and e are determined by the two maps Tx and £2 . And, in principle, one can

translate the axioms in terms of these maps.
If then we drop the requirement that A has an identity, we get a generalized

notion of Hopf algebra such that also the above example, with an infinite group,

Received by the editors September 25, 1992.

1991 Mathematics Subject Classification. Primary 16W30; Secondary 17B37.

©1994 American Mathematical Society

0002-9947/94 $1.00+ $.25 per page

917



918 A. VAN DAELE

fits into the scheme. We will introduce this notion in §2. We will use the ter-

minology of multipliers (see appendix). And therefore we call these generalized

Hopf algebras multiplier Hopf algebras.
In §3 we will prove the existence of a counit and in §4 the existence of an

antipode. We formulate conditions to have that the antipode is a bijection. Such

multiplier Hopf algebras are called regular. If A is abelian, it is automatically

regular. We also consider ^-algebras. Also for these algebras, regularity is

automatic. We consider these cases in §5.
If A has an identity, we get a usual Hopf algebra. With our approach we

see that the existence of (the unique) counit and antipode can be proved from

certain necessary and sufficient conditions on the comultiplication A.

In §6 we consider the dual space A'. It is not possible to make A' into an

algebra as for usual Hopf algebras. We have to take a suitable subspace A* of

A'. If A is a *-algebra, then also A* is a *-algebra.

If A is a finite-dimensional Hopf algebra, then A' is again a Hopf algebra.

If A is any Hopf algebra, this is no longer true because the obvious candidate

for the comultiplication A on A' will not map into A' ® A' but into a larger

space. In many cases, one can find a large enough subalgebra A0 of A' such

that A(^4°) ç A0 ® A0. The same problem arises for our generalized Hopf

algebras. To solve this problem there is a need for a topological theory. Only

in that case one can hope that the dual is again a Hopf algebra of the same

kind. There are attempts in this direction (see, e.g., [2, 6]) but they are not

(yet) completely satisfactory.
We believe that this paper, although it is purely algebraic, contains ideas

that could be helpful in developing the topological theory. In a recent paper

[6], we also showed that multiplier Hopf algebras, as introduced here, provide a

natural framework to study discrete quantum groups. They also give interesting,

nontrivial examples of multiplier Hopf algebras.
For the theory of Hopf algebras we refer to the standard books of Abe [ 1 ]

and Sweedler [3]. See also [4]. We will, also in the generalized case, always use

A, e, S for the comultiplication, the counit and the antipode. We will use A'

for the opposite comultiplication, i.e., A'(a) = oA(a) where o is the flip from

A® A to A® A defined by o(b ® c) = c®b .
We will only consider algebras A with a nondegenerate product, i.e., if a £ A

and ab = 0 for all b £ A , then a = 0, and similarly if ba = 0 for all b £ A,
then a = 0. Then we can consider the multiplier algebra M(A) and A will

be a subalgebra of M(A) (see appendix). Also we will only consider algebras

over C. By a *-algebra we mean an algebra with an involution a -* a* which

is conjugate linear and an antihomomorphism.

We will consider tensor products of algebras and of linear maps on these

algebras. We will identify C ® A and A ® C with A . We will use i to denote

the identity map. If, e.g., we have /: A -> C then f ® i: A ® A -> A with
(f® i)(a ®b) = f(a)b . Finally, we will use m to denote the multiplication as

a linear map from A® A to A defined by m(a® b) = ab .

2. Definitions and examples

The following result is the motivation for our definitions in this section.

2.1 Proposition. If A is a Hopf algebra, then the linear maps Tx, T2: A® A ->

A® A, defined by
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Tx(a®b)= A(a)( 1 ®b),        T2(a®b) = (a® l)A(b)

are bijective.

Proof. Define linear maps Rx, i?2 : A ® A -» A ® A by

R{(a®b) = ((i®S)A(a))(l®b),

R2(a ®b) = (a® l)((S ® i)A(b)).

By a straightforward application of the properties of S and A one can show

that i?i is the inverse of Tx and that i?2 is the inverse of £2 : if we use the

usual symbolic notations (see [1] and [3]), we get, e.g.,

(TxRx)(a ®b) = TxJ2 «(i) ® S(ai2))b = ^ a[x) ® a(2)S(a{3))b
(a) (a)

-^2a^®e(a^2))b-a®b.   D

(Generalizations of these formulas are obtained in §4.)

If the antipode has an inverse, then also the other linear maps, defined by

a ® b-> A(a)(b ® I),       a ®b -> (1 ®a)A(b)

are bijections. This follows, e.g., from the fact that S~x will be the antipode if

we replace A by the opposite comultiplication A'.

We will show in the next sections that, if A is an algebra over C with identity

and a comultiplication such that the maps Tx and T2 are bijections, then A

is actually a Hopf algebra (see Theorem 4.7). This is the motivation for the

notion of generalized Hopf algebras that we will introduce now.

So, in what follows, let A be an algebra over C, with a nondegenerate

product. A may or may not have an identity. We refer to the appendix for

results on multipliers.

2.2 Definition. A comultiplication on A is a homomorphism A: A —>

M(A ® A) such that

(i)   A(a)(l ® b) £ A ®A and (a® l)A(b) £A®A for all a, b £ A,
(ii)   A is coassociative in the following sense:

(a® I® l)(A®i)(A(b)(l ®c)) = (i®A)((a® l)A(b))(l ®l®c)

for all a, b, c in A .

Remark that condition (i) makes sense because we have A ® A ç M(A) ®

M(A)CM(A®A).
We now define our generalized Hopf algebras.

2.3 Definition. Let A be an algebra over C, with or without identity and let

A be a comultiplication on A. We call A a multiplier Hopf algebra if the linear

maps Tx, T2: A ® A —> A ® A , defined by

Tx (a®b)= A(a)( 1 ®b),        T2(a®b) = (a®l )A(b)

are bijective. We call A regular if ctA , where o is the flip, is again a comulti-

plication such that (A, o A) is also a multiplier Hopf algebra.
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These conditions in fact imply that A is a nondegenerate homomorphism.

Then by Proposition A. 5 of the appendix, the homomorphisms i ® A and A ® i

have unique extensions to M (A ® A). Condition (ii) of Definition 2.2 then

means nothing else but (A®i)A = (i®A)A. But we will always use coassociativity

as formulated in Definition 2.2.

If A has an identity this new notion of multiplier Hopf algebra coincides

with the old one (see §4). In that case o A is automatically a comultiplication.

The algebra will be regular iff S has an inverse. In general, if A is abelian,

regularity is automatic (see §5).
We are also interested in the case of a *-algebra.

2.4 Definition. If A is a *-algebra, we call A a comultiplication if it is also a

*-homomorphism. A multiplier Hopf *-algebra is a *-algebra with a comulti-

plication, making it into a multiplier Hopf algebra.

Also for a multiplier Hopf *-algebra, the regularity is automatic.

We now come back to our motivating example.

2.5 Example. Let G be any group and let A be the *-algebra of complex,

finitely supported functions on G. In this case M (A) consists of all complex
functions on G. Moreover A ® A can be naturally identified with finitely

supported complex functions on G x G so that M (A ® A) is the space of all

complex functions on G x G. If we define A: A —> M (A ® A) by

(Af)(s,t) = f(st)

we will clearly get a *-homomorphism. If /, g e A then (s, t) -> f(st)g(t)
and (s, t) —> g(s)f(st) will have finite support and so belong to A® A. This

gives condition (i) of Definition 2.2. The coassociativity condition (ii) is an

immediate consequence of the associativity of the multiplication on G. So A

is a comultiplication.

The map Tx is bijective and its inverse i?i is given by (Rxf)(s, t) =
f(st~x, t) when f £ A® A and s, t £ G. Similarly, the map T2 is bijec-
tive and its inverse i?2 is given by (R2f)(s, t) = f(s, s~xt).

This is a very simple example. And it can be combined with usual Hopf

algebra examples to obtain more complicated ones. To give less straightforward
examples is not so easy. In [5], we showed that multiplier Hopf algebras give

a natural framework to study discrete quantum groups. Therefore, interesting

examples of multiplier Hopf algebras are found among the discrete quantum

groups (and so the duals of compact quantum groups).

3. Construction of the counit

In this section we assume that (A, A) is a multiplier Hopf algebra. We will

construct a homomorphism e : A —► C that has the properties of a counit in

usual Hopf algebra theory.

3.1 Definition. Define a map E: A —> L(A), the left multiplier algebra of A,
by

E(a)b = mT~x(a ® b)

where m denotes multiplication, considered as a linear map from A® A to A

and where Tx is defined as before by Tx(a ® b) = A(a)(l ® b).
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Because Tx(x(l ® c)) = Tx(x)(l ® c) for all x in A ® A and c £ A, the

same result holds for Tx~x. And since m(x(\ ® c)) = m(x)c we get that E(a)

is indeed a left multiplier on A for all a £ A.
We will show that E(A) CCI and this will give us the map e. We need a

lemma before we can do this.

3.2 Lemma. For all a, b £ A we have

(i ® E)((a ®l)A(b)) = ab®l.

Proof. Assume a, b £ A and let

n

a®b = ^2A(ai)(l ®b¡).
1=1

If we apply A <g> i, multiply with c ® 1 ® 1 on the left and use coassociativity,

we obtain

((c® l)A(a))®b = £(c® 1 ® l)(A®i)(A(ai)(l®bi))

= 53(i®A)((c®l)A(ai))(l®l®ôi)-

Now let cp be any linear functional on A and apply (p ® i ® i to the above

equation. We get

((p®i)((c® l)A(a))®b= ^A((tp®i)((c® l)A(a¡)))(l ® b¡)

= Tx (J2(<P ® i)((c ® l)A(a¡)) ® b¡) .

By the definition of E we get

E((<p ® i)((c ® l)A(a)))b = ^2(<p ® i)((c ® l)A(ai))bi.

So

(<p ® /)((/ ® E)((c ® l)A(a))(l ® b)) = (<p®i) ((c ® 1) 53 A(fl,-)(1 ® b¡))

= (<p®i)((c® l)(a®b)).

Because this hold for all <p we get

(i ® E)((c ® l)A(a))(l ® b) = (ca ® 1)(1 ® b).

This gives the required formula in the multiplier algebra.   D

3.3 Lemma. E(A) CCI.

Proof. By the surjectivity of the map T2, defined by ^(a ® b) — (a ® l)A(b),
we see that a® E(b) £ A® I for all a and b in A. This gives the result.   D

The we can define the counit.

3.4 Definition. Define e: A -► C by e(a)l = E(a).

We will show that e satisfies the usual properties of the counit in Hopf

algebra theory.
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3.5 Lemma, e is a homomorphism.

Proof. By Lemma 3.2 we have

(i ® e)((a ® l)A(bc)) = abc

for all a, b, c £ A . Then

(i ® e)((a ® l)A(b)A(c)) = (ab)c = (i® e)((a ® l)A(b))c.

By the surjectivity of T2 we get

(/ ® e)((a ® b)A(c)) = (i® e)(a ® b)c = ae(b)c = e(b)ac

= e(b)(i ® e)((a ® l)A(c))

for all a, b, c £ A . Again by the surjectivity of T2 we get

(1 ® e)(a ® be) - e(b)(i ® e)(a ® c).

This means
ae(bc) = ae(b)e(c).   G

Remark that we have used the bijectivity of Tx to define E and the surjectivity

of T2 to obtain that E(A) C Cl and that E is a homomorphism. If, e.g., A
is an algebra with 1 and if A : A —» A ® A is defined by A(a) = a ® 1, then A is
a comultiplication such that Tx = 1. Then E would be defined and E(a) = a

for all a £ A . Of course, here T2 is not surjective anymore.

The formula in Lemma 3.2 can be rewritten as

(i®e)((a® l)A(b)) = ab.

By the definition of e we also get

(e ® i)(a ®b) = mTl~x(a ® b)

and hence
(e®/)(A(a)(l ®b)) = ab.

These formulas just mean

(1 ®e)A = (e® i)A = 1,

where now / ® e and e ® 1 are the unique extensions to M (A ® A).

So, all together we obtain the following result.

3.6 Theorem. Let A be a multiplier Hopf algebra. Then there is a homomor-

phism e : A -» C such that

(1 ® e)((a ® l)A(b)) = ab,        (e® i)(A(a)(l ® b)) = ab

for all a, b.

It is clear that the above formulas determine e because of the surjectivity of

the maps Tx and T2 . If A has an identity, then e is a counit in the usual sense.

In §5, on regular multiplier Hopf algebras, we will also consider *-algebras. We

will show that e is a *-homomorphism.

Let us finish this section by looking at our example. We see that, when

f,g£A and t£G,

e(f)g(t) = (mT~x(f®g))(t) = (T-\f®g))(t, t) = (f®g)(trl, t) = f(e)g(t).

Hence (of course) e(f) — f(e).
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4. Construction of the antipode

In this section we will construct an antihomomorphism S: A -» M (A) that

has the properties of the antipode in the usual Hopf algebra theory.

4.1 Definition. Define a map S: A —> L(A) by

S(a)b = (e®i)T~x(a®b).

As before, also here S (a) is indeed a left multiplier for all a £ A.

4.2 Lemma.

(j ® S)((c ® 1)A(a))(1 ® b) = (c ® l)T~\a ® b).

Proof. As in the proof of Lemma 3.2, we have that, for (p £ A' and a, b, c £

A,

(<p ® i)((c ® l)A(a)) ®b = Tx (53(^ ® 0((c ® l)A(a,)) ® ¿>,)

if a ® è = J] A(a,)(l ® ô,). Then, by the definition of S we get

S((9 ® i)((c ® l)A(a)))è = (e ® i) (53(^ ® 0((c ® l)A(fli)) ® */)

= (Ç» ® 0 (53(' ® £)((c ® 1)A(fl«)) ® */)

= (ç»®i) (53cu¿®¿/) = (í»®/)((c® l)ri_1(a®è)).

Hence

(ç» ® /)((' ® 5)((c ® l)A(a))(l ® b)) = ((p® i)((c ® l)T~x(a ® ¿)).

This is true for all <p £ A' and hence proves the result.   D

4.3 Lemma. For all a, b, c £ A we have

m((i ® S)((c ® 1)A(a))(1 ® b)) = ce(a)b.

Proof. We get this formula if we apply m on the equation in Lemma 4.2

because
m((c® l)T~x(a®b)) = cmT~x(a®b) = ce(a)b.   D

4.4 Lemma.  S(ab) = S(b)S(a) for all a,b£A.

Proof. We have

m((i ® S)((c ® l)A(fl)A(ô))(l ® d)) = ce(ab)d = ce(a)ds(b)

= m((i ® S)((c ® l)A(o))(l ® d))e(b)

for all a, b,c,d £ A. By the surjectivity of T2 we get

m((i ® S)((c ® a)A(b))(l ® d)) = m((i ® S)(c®a)(l® d))e(b)

= cS(a)de(b) = ce(b)S(a)d

= m((i ® S)((c ® l)A(b))(l ® S(a)d))

for all a, b, c, d e A. Again by the surjectivity of T2 we get

m((i ® S)(c ® ab)(l ® d)) = m((i ® S)(c ® b)(\ ® S(a)d))

or cS(ab)d = cS(b)S(a)d.   D
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4.5 Lemma.  S (a) is also a right multiplier for all a £ A and we have

m((c ®l)(S® i)(A(a)(l ® b))) = ce(a)b.

Proof. Define 5": A -> R(A), the right multiplier algebra, by

aS'(b) = (i®e)T2~x(a®b).

Because T2((a ® l)x) = (a ® l)T2(x) for all a £ A and x £ A® A we get

indeed a right multiplier. Completely similar as in Lemma 4.2 we get here that

(c ® 1)(5" ® i)(A(fl)(l ® b)) = (T2x(c ® a))(l ® b).

And if we apply m we get the formula in the statement of the lemma with 5"

instead of S because

m(T2x(c® a)) = ce(a).

We now show that S - S'. Indeed, we have, by definition,

aS'(b) = Ytaie(bi)

if a ® b = Yl(ai ® 1)A(Z>,-). If we apply i ® S and multiply with 1 ® c we get

a ® S(b)c = 53(* ® S)((a¡ ® l)A(b¡))(l ® c).

And if we apply m we obtain, using 4.3 that

aS(b)c = 53fl/e(*/)c = aS'(b)c.

This shows that S(b) = S'(b). This proves the lemma; the formula was already

proven for S'.   G

In the proof we have also shown that

(c ®l)(S® i)(A(a)(l ® b)) = (T2x(c ® a))(l ® b)

for all a, b, c in A. This is similar to the formula in Lemma 4.2. We will

need these two formulas in the next section. Remark also that these formulas

give the counterpart of the result in Proposition 2.1.

The main result can again be summarized as follows.

4.6 Theorem. If A is a multiplier Hopf algebra then there exists an antihomo-
morphism S: A -» M (A) such that

m((i ® S)((c ® l)A(fl))(l ® b)) = ce(a)b,

m((c ®l)(S® i)(A(a)(l ® b))) = ce(a)b

for all a, b, c £ A.

It is not so hard to show that the above formulas determine 51, just as in the
case of the counit. If A has an identity, then S is an antihomomorphism of

A and we have the usual formulas

m(i®S)A(a) = e(a)l,        m(S®i)A(a) = e(a)l.

If we combine this with the results on e we obtain
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4.7   Theorem. If A is a multiplier Hopf algebra with an identity, then A is a

Hopf algebra.

In the next section we will also consider the case of a *-algebra. We will have

that, in that case 5 is a map from A Xo A, and that S(S(a)*)* = a for all

a£ A.
Again we finish this section by looking at our example. We have, when

f,g£A and t£G,

(S(f)g)(t) = ((e®i)Tl-\f®g))(t) = T~x(f®g)(e,t)

= (f®g)(rl,t) = f(rl)g(t).

Hence S(f)(t) = f(rx).

5. Regular multiplier Hopf algebras

In this section (A, A) will be a regular multiplier Hopf algebra. Denote

by A' the opposite comultiplication. Then (A, A') is again a multiplier Hopf

algebra. Let e' and S' be the associated counit and antipode.

5.1 Lemma e = e'.

Proof. If we rewrite the first formula in Theorem 3.6 for e' we find that

(e'®i)((l®a)A(b)) = ab.

On the other hand,

(e ® 0((1 ® a)A(b))c = a(e ® i)(A(b)(l ® c)) = abc.

Therefore also
(e®i)((l ®a)A(b)) = ab.

The surjectivity of the map a ® b -> (1 ® a)A(b) shows that e — e'.   D

So in the case of a regular algebra we get

(e ® 0((1 ® a)A(b)) = ab,       (e® i)(A(a)(l ® b)) = ab,

(i ® e)((a ® l)A(b)) = ab,        (i ® e)(A(a)(b ® 1)) = ab

for all a, b £ A .
The situation with the antipode is more difficult.

5.2 Proposition.  S(A) ç A and S'(A) ç A and S and S' are each other's

inverses.

Proof. If a ® b = £ A(a,-)(1 ® b¡) we have S(a)b = Yls(ai)bi by definition.
Then

b®a = ^A'(ai)(bi® 1)

and
b®ac = 53 A'(a,)(èi ® c).

If we apply 5" ® i and multiply with d ® 1 we get

dS'(b) ®ac = 53^ ® 1)(5' ® /)(A'(fl¿)(o,- ® c))
i

= 53(rf ® l)(S'(bi) ® l)(S' ® i)(A'(fl,-)(l ® c)).
i
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If we now multiply and use Lemma 4.5 for A' we obtain

dS'(b)ac = ̂ 2dS'(bi)e(ai)c = dS' (53 «(fl/)*»/) c = dS'(S(a)b)c.
i

This shows that
S'(b)a = S'(S(a)b).

From Definition 4.1 we see that elements of the form S(a)b span A. Then
the above formula implies that S'(A) ç A . Similarly also S (A) ç A and the
above formula gives

S'(b)a = S'(b)S'(S(a)).

If we multiply with c to the left and use that also elements of the form cS'(b)

span A , we get a = S'(S(a)). Similarly also S(S'(a)) = a.   D

If A is cocommutative, i.e., if A = A', then it is clear that A is automat-
ically regular and that S = S' so that S2 = 1. This is also true when A is
commutative.

5.3 Proposition. If A is an abelian multiplier Hopf algebra, then A is regular
and S2 = 1.

Proof. It is easy to see that regularity also here is automatic. We prove now
that S = S'. Consider the second formula of Theorem 4.6 for A'. We get,

using that A is abelian,

ce(a)b = m((c ® l)(S' ® i)(A'(a)(l ® b)))

= m((S' ® i)((l ® b)A'(a))(c ® 1))

= mo((i ® S')((b ® 1)A(a))(1 ® c))

= m((i®S')((b®l)A(a))(l®c)).

On the other hand, using the first formula in 4.6 for A and the fact that A is
abelian, we get

m((i ® S)((b ® l)A(a))(l ® c)) = be(a)c = ce(a)b.

These two expressions are the same, and if we replace (b® l)A(a) by b®a we

get
m((i ® S')(b ®a)(l® c)) = m((i ® S)(b ®a)(l® c)),

and hence bS'(a)c = bS(a)c. This proves that S = S'.   D

Now we will prove that the formula A(S(a)) — o(S ® S)A(a), which is true

for usual Hopf algebras, is still true for regular multiplier Hopf algebras under

an appropriate form. We need two lemmas to prove this. The first one is a

reformulation of the formulas in Lemma 4.2 and the remark after Lemma 4.5.

5.4 Lemma. Suppose that a, b, a¡, b¡ are elements of A. Then

a®SZ> = 53A(a,)(l®¿>,')   iff   (1 ® b)A(a) = 53^ ® S-1^

and
Sb®a = ̂ 2(b¡®l)A(ai)   iff  A(a)(b ® 1) = 535"'è'' ® a<-

Proof. Assume that a®Sb = £) A(a,-)(1 ® h) ■ By Lemma 4.2 we have for all

c £ A that

53 ca¡ ® bi = (i® S)((c ® l)A(a))(l ® Sb) = (i ® S)((c ® b)A(a)).
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If we apply i ® S~x and cancel c we get the required formula in the first

statement. Now assume that Sb ®a = J2(b¡ ® l)A(a,-). By the formula after
Lemma 4.5 we get, for all c £ A,

53b¡ ® a¡c = (Sb ®l)(S® i)(A(a)(l ® c)) = (S® i)(A(a)(b ® c)).

If we apply S~x ® i and cancel c we get the second formula.   D

5.5 Lemma. Suppose that a, b, a¡, b¡ are elements of A. Then the following
are equivalent:

(i)  A(a)(l®b) = ¿ZHai)(bi®l),
(ii)  a®S-xb = Z(ai®l)Hbi),
(iii)   (l®a)A(b) = J2Sbi®ai.

Proof. Assume that A(a)(l ®b) = £ A(a,-)(6/ ® 1). Let c £ A and write

bi®Sc = ^2A(pik)(l®qik)
k

for all i. Then

A(a)(l ® bSc) = 53 A(«iP/*)(l ® to)
¡,fc

and by the injectivity of the map Tx we get

a®bSc = ^2aiPik®qik.
i,k

On the other hand, by Lemma 5.4 we get also

(l®c)A(bj) = Y,Pik®S-lqik.
k

Therefore

a ® gS-16 = 53 flfPi* ® s'~19/fc = £(fll' ® C)A(*/)-

If we cancel c we get the second formula.

Now assume that A(a)(b ® 1) = £A(a,-)(l ® 6,-). If we apply the first
equivalence for A' and reverse the order in the tensor product, we obtain

Sb ® A — Yj(1 ® a¡)A(bi). But this is, up to a different summation, essentially

the equivalence of (i) and (iii).   D

We now prove the announced result.

5.6 Proposition. For all a, b £ A we get

(1 ®Sb)A(Sa) = (S®S)(A'(a)(l®b)).

Proof. Write
A(Sb)(l®Sa) = 53A(a,-)(6i ® 1).

By Lemma 5.5 we find that

Sb ® a = 53(«i ® l)A(é¿),    ( 1 ® Sb)A(Sa) = 53 Sb¡ ® a,.

If we apply the second equivalence of Lemma 5.4 to the first formula above, we

get

A(a)(è® l) = 535-1fli®ô/.
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If we combine all this we get

( 1 ® Sb)(A(Sa)) = (S<s>S) (53 bi ® -S"-1^-)

= (S ® S)o(A(a)(b ® 1)) = (5 ® 5)(A'(a)(l ® b)).   D

Let us now consider the case of a *-algebra. Also in this case regularity is
automatic. Here we have the following results for the behaviour of the counit

and the antipode with respect to the involution.

5.7 Proposition. If A is a multiplier Hopf *-algebra, then e  is a ^homo-

morphism.

Proof. Define 1(a) - e(a*)~ . Then

(ë® i)((l ® a)A(b)) = ((e ® i)(A(b*)(l ® a*)))* = (b*a*)* = ab

= (e®i)((l®a)A(b)).

This gives £ = e .   D

5.8 Proposition. If A is a multiplier Hopf *-algebra, then S(A) ç A and
S(S(a)*)* = a for all a.

Proof. If a ® b = £A(a,)(l ® b¡) we have S(a)b — Yle(ai)bi.  If we take
adjoints and apply the flip we will get

¿>*®a* = 53(Z>;®l)A'(a*)-

We now apply (i ® S') and multiply with 1 ® c* on the right. Using Lemma

4.3 for A' we find

b*S'(a*)c* = Y^b*e(a*)c*.

Taking adjoints we find

cS'(a*)*b = cS(a)b.

This gives S'(a*) = S (a)*.  And because S' is the inverse of S we get the

desired formula.   D

6. The dual algebra

If A is a usual Hopf *-algebra, the space A' of all linear functional on A

can be made into a *-algebra. This is no longer possible for multiplier algebras

because (/® g)(A(a)) need not be defined for all f, g £ A'. We have to

restrict the dual space.

6.1 Definition. Let A* be the vector space of linear functional on A spanned

by elements of the form a —> f(bac) where b, c £ A and / e A'.

We show that A* is an algebra.

6.2 Proposition.  We can define a product on A* by (fg)(a) = (f® g)(A(a)),

making A* into an associative algebra.

Proof. Let us first show that this product is well defined.   Assume f(a) =

f'(bac) and g (a) = g'(dae) with a, b, c, d, e £ A and f, g' £ A'. Then

(b ® d)A(a)(c ®e) £A®A
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and we can apply f'®g'. We get

(f'®g')((b®d)A(a)(c®e)) = f(x)

where x = (i ® g')((l ® d)A(a)(l ® e)) and x £ A. This shows that the
above expression extends by linearity to all f, g £ A*. The result is a linear

functional on A . We denote it by fg.

Now we show that fg £ A* when f, g £ A*. Again assume f(a) = f'(bac)

and g(a) = g'(dae) so that

(fg)(a) = (/' ® g')((b ® d)A(a)(c ® e)).

We know that elements of the form (p ® l)A(q) span A® A. If we write

b ® d as a linear combination of such elements we find that fg is a linear

combination of maps

a -* (f ® g')((p ® l)A(qa)(c ® e)).

Similarly, we can replace c®e by A(r)(l ®s) and we have that fg is a linear

combination of maps

a -» (/' ® g')((p ® l)A(qar)(l ® s)).

If we let

h(a)^(f'®g')((p®l)A(a)(l®s))

we see that fg is spanned by functions of the form a -> h(qar) with Ae^'

and q, r £ A. Hence fg £ A*.
We now prove that this product is associative. Let f, g, h £ A*. Assume

f(a) = f'(bac), g(a) = g'(dae), and h(a) = h'(paq). Then

((/#)A)(a) = (fg ® A')((l ®P)A(a)(l ® <?))

= (f'®g'®h')((b®d® l)(A®i)((l ®p)A(a)(l ®q))(c®e® 1))

= (/'®^'®A')((ô®i/®p)(A®i)(A(a)(l ®q))(c®e® 1))

= (f ®g' ® A')((l ®d®p)(i® A)((b® l)A(a))(c ® e ® q))

= (f ®g' ® h')((l ®d®p)(i® A)((b® l)A(a)(c® 1))(1 ®e®q))

= (f'®gh)((b®l)A(a)(c®l))

= (f(gh))(a).

We, of course, used to coassociativity of A here, as formulated in Definition

2.2.   D

If f(a) = f'(bac) and if e is the counit of A we get

(e ® f')((l ® b)A(a)(l ® c)) = f'(b(e ® i)(A(a)(l ® c))) = /(foie) = /(a).

This shows that (e ® /)A(a) = f(a). Similarly (/ ® e)A(a) = f(a). So e
corresponds to the identity in the multiplier algebra of A*.

If A is a regular multiplier Hopf algebra we can define the adjoint of 5 on

A':

6.3 Definition. If A is a regular multiplier Hopf algebra and S is the an-

tipode, define (Sf)(a) = f(S(a)) for / e A' and a £ A. Then Sf £ A' for
all / £ A'.
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6.4 Lemma.  Sf£A* if f £ A*.

Proof. Let f(a) = f'(bac) with /' e A' and b,c £ A. Choose d £ A such
that e(d) = 1 . Then, using Lemma 4.3, we get

(Sf)(a) = f(S(a)) = f'(bS(a)c) = f'(be(d)S(a)c)

= f'(m((i ® S)((b ® l)A(d))(l ® S(a)c))).

Now we have (A®l)A(d") £A®A. So Sf is a linear combination of functionals

of the form

a -+ f'(m((i ® S)(b ®d)(l® S(a)c))) = f'(bS(d)S(a)c) = f'(bS(ad)c).

A similar argument gives us combinations of functions a —► f'(bS(ead)c). This

proves the lemma.   D

Now we want to show that S is an antihomomorphism on A*. We will of

course use Proposition 5.6.

6.5 Proposition. If A is a regular multiplier Hopf algebra then S is an anti-

homomorphism of A*.

Proof. Let f, g £ A* and write g(a) — g'(S(b)a) for some g' and b . Then

(S(fg))(a) = (fg)(S(a)) = (f®g')(l®S(b))A(S(a))
= (f®g')((S®S)(A'(a)(l®b)))

= (Sg'®Sf)(A(a)(b®l)).

Of course

(Sg')(ab) = g'(S(b)S(a)) = g(S(a)) = (Sg)(a).

Hence (S(fg))(a) = ((Sg)(Sf))(a) ■   □

For a *-algebra A we get that A* is a *-algebra.

6.6 Proposition. If we define f* £ A' by f*(a) = f(S(a)*)~ then f* £ A*
when f £ A* and A* becomes a *-algebra.

Proof. If f £ A' define f by f(a) = f(a*)~. If_/(a) = f'(bac) then
f(a*)~ = f'(ba*c)~ = f'((c*ab*)*)- . It follows that f £ A*. Now f*(a) =
f(S(a)). So also /* £ A*. Because S(S(a)*)* = a for all a we clearly have

f** = f for all /. Furthermore

(fg)(a) = (fg)(aT = (f®j>)(A(a*))~ = (f®g)(A(a)*)-

= (f®g)(A(a)) = (f.g)(a).

So (fg)* = S(Jg) = S(fg) = (Sg)(Sf) = g*f*.   D

Acknowledgment

The results in this paper were obtained during our visit at the University of
Trondheim. We are very grateful to M. Landstad and C. Skau, whose warm

hospitality made our visit very enjoyable and mathematically fruitful.



MULTIPLIER HOPF ALGEBRAS 931

Appendix. Multipliers

Let A be an algebra over C, with or without identity.

A.l Definition. A left multiplier of A is a linear map p: A —» A such that

p(ab) = p(a)b for all a, b £ A. A right multiplier of A is a linear map

p: A -> A such that p(ab) = ap(b) for all a, b £ A. A multiplier of A is a
pair (px, P2) of a left and a right multiplier such that P2(d)b = apx(b) for all
a, b £ A .

We denote by L(A), R(A), and M (A) the left, right, and multipliers of A .
It is clear that the composition of maps makes these vector spaces into algebras.

If the product in A is nondegenerate, i.e., if ab = 0 for all b implies

a = 0 and ab = 0 for all a implies b = 0, then it is clear that left and right

multiplication give a natural imbedding from A into L(A), R(A), and M (A).

Of course, if A has an identity, the product is automatically nondegenerate and
L(A) = R(A) = M (A) = A . If the product is nondegenerate, we will write ab

for a(b) when a £ L(A), b £ A, ab forb(a) when b £ R(A), a £ A, and
ab for ax(b) and ba for a2(A) when a = (ax, ü2) is an element of M (A)

and b £ A.
\f A is a *-algebra, we define ab* = (ba*)* for a e ^4 and a left multiplier

b. It is clear that b* is a right multiplier. If b is a multiplier, we use the
same formula to define the adjoint b*. It will again be a multiplier. It is

straightforward to check that M (A) isa *-algebra and that A isa *-subalgebra.

Now, let A and B be two algebras, with a nondegenerate product. Consider

the tensor product A® B with the usual tensor product algebra structure.

A. 2   Lemma. The product in A® B is again nondegenerate.

Proof. Consider x = £ a¡ ® b¡ in A ® B and assume that (c ® d)x — 0 for all

c £ A and d £ B. Then, for every linear functional tp £ B' we get

c^2a¡ip(db¡) = 0

for all c. Because the product in A is nondegenerate we must have

5>$!>(a7>,) = 0.

Since this is true for all tp we have

53 ai ® ¿a,- = 0.

By a similar argument, using the nondegeneracy of the product in B, we get

x = 0. Similarly for right multiplication.   D

A.3 Proposition. We have natural imbeddings L(A) ® L(B) <-* L(A ® B),
R(A) ® R(B) <-» R(A ® B), M (A) ® M(B) <-> M(yl ® 5).

Proof. We show this for the left multipliers. If c £ L(A) and d £ L(B) we
define

<p(c ® d)(a ®b) = ca® db.

It is clear that <p(c ® d) gives a left multiplier and that tp extends to a linear

map from L(A)®L(B) to L(a®B). The injectivity of <p is essentially proved

by the same technique as in Lemma A.2.   □

Consider a homomorphism q> : A -> M(B).
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A.4   Definition. We call tp nondegenerate if B is spanned by vectors <p(a)b
and spanned by vectors btp(a).

Such homomorphisms have unique extensions.

A.5   Proposition. If (p is a nondegenerate homomorphism from A to M(B),
then <p has a unique extension to a homomorphism M (A) —► M(B).

Proof. If <px is such an extension, we must have

cp(ca)b = cpx(c)<p(a)b

when c £ M (A), a £ A, and b £ B. Because the elements <p(a)b span B , we

get uniqueness of tpx.

Now we want to define <px by the above formula. We first have to show that

53 (p{ai)bi = 0^5] 9(cai)b¡ = °

for all c £ M(A). So suppose 5Z0>(a,)A,- = 0. Then for all c £ M(A) and
d £ A, e £ B we get

e<p(d) 53 <P(ca¡)bi = e^2 <p(dca¡)bi = e<p(dc) 53 <p(ai)bi = 0.

Because also e<p(d) span B we get

53(Kca¡)A, = 0.

Then we can define <px on M (A) by

tpx(c)tp(a)b - (p(ca)b.

It is easy to show that <px is still a homomorphism, and that it extends tp .   □

We consider the situation of *-algebras.

A.6   Proposition. If tp is a nondegenerate ^-homomorphism from A-* M(B).

Then it extends uniquely to a ^-homomorphism from M(A) to M(B).

Proof. Let <px be the unique extension to a homomorphism. We have

rp(ca)b = <px(c)<p(a)b

when c £ M(A) and a £ A and b £ B.  Take adjoints and multiply with
q>(a*)b* where ax £ A, bx £ B to obtain

b*<p(a*)<px(c)*<p(a*)b¡ = b*tp(a*c*)<p(a¡)b* = b*<p(a*c*a*)b¡

= b*<p(a*)<px(c*)<p(a*x)b*x.

This implies that (px(c)* = (px(c*).   U
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