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ABsTRACT. This paper presents new algorithms for the maximum flow problem, the Hitcheock
transportation problem, and the general minimum-cost flow problem. Upper bhounds on the
numbers of steps in these algorithms are derived, and are shown to compare favorably with
upper bounds on the numbers of steps required by eariier algorithms.

First, the paperstates the maximum flow problem, gives the Ford-Fulkerson labeling method
for its solution, and points out that an improper choice of flow augmenting paths can lead to
severe computational difficulties. Then rules of choice that avoid these dificultics are given.
We show that, if each flow augmentation is made along an angmenting path having a minimum
nutnber of ares, then a maximum flow in an n-node network will be obtained after no more than
L(n* — n) augmentations; and then we show that if cach flow change is chosen to producc a
maximum increase in the flow value then, provided the capacities are integral, a maximum flow
will be determined within at most 1 4+ logw; o 1y F*(¢, ) augmentations, where f*(¢, ¢) is the
value of Lthe maximum flow and M is the maximum number of arcs across a cut.

Next a new algorithm is given for the minimum-cost flow problem, in which all shortest-path
computations are performed on networks with all weights nonnegative. In particular, this
algorithm solves the n X n assignment problem in O(n®) steps. Following that we explore a
“sealing’’ technique for solving a minimum-cost low problem by treating a sequence of derived
problems with “scaled down’’ capacities. It is shown that, using this technique, the solution of
a Hitcheoek transportation problem with m soureces and n sinks, i < =, and maximum flow B,
requires sl most (n 4+ 2) logy (B/n) flow augmentations. Similar resulls arve also given for the
general minimum-cost fiow problem.
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1. The Maximum Flow Problem

1.1. Tue LaBevinGg METHOD. A nelwork N isa liniteset {u, v, - - - | called the nodes
and a subset of the ordered pairs (u, v), v # v, called the arcs. Network N has a
special relurn arc (¢, s). Node s is called the source in N and node ! is called the
sink in N. Thesetof all arcs of N, except (¢, &), wo denote by A, For each (u, v) € 4
there is given a number ¢(u, v) > 0 called the capacity of are (u, v).

A nonnegative funetion f(u, v), ranging over all ares (u, v) of ¥, is called a flow
in ¥ if

(i) forevery (w,v) € A4, J{u,v) < ¢(u, v); and

(ii) for every node u,

2 flu ) = L iw) =0,

where cach sum is over every ¢ for which the summand is defined.

For cach are (u, v) of N, f(u,v) represents the amount of flow in are (u, #), and
also represents the net amount of flow from v to u in the rest of the network
“N — (u,»).”

The maximum network flow problem is to find a flow fin & such that f(¢, s}, the
net amount of flow in N — {¢, s) from s to ¢, is maximum.

Let 4y, 42, -+, iy be a sequence of distinet nodes such that, for each ¢ = 1, 2,
<o, p — 1, cither (u,, 1) or (i, %;) is an arc. Singling out, for each 7, one of
these possibilities, we eall the resulting sequence of ares a path from w; to w, . Ares
{14;, 4sr1) that belong to the path arc called forivard ares of the path; the other ares
of the path are ealled reverse aves.

Relative to any given flow fin NV, a (flow) augmenting path 1s a path from s to ¢
such that:

Case (a): I (u;,u:0) € 4 and (w0, u;) ¢ A, then
€ = (U, Uip1) — S, ) > 0;
Case (b): TF (u,, 4e1) € A and (4,4, %) £ A, then
€ = J(thir1, u:) > 0;
Case (¢}: If (ue, ui) € A and (uepr, u;) € A, then

€ = C(ui, ui+1) - f(uv'; ui’—{»l) + f(ui+1 » 'u"i) > 0.

For a given augmenting path P, let ¢ = min ¢ > 0. Call each are (i;, %) or
(wiz1, #;) in P such that €, = € a bolileneck arve relative to P and the flow f.

Now alter the flow f as [ollows': increase f by € on the return are (¢, s); in Case
(a), increase the flow on are (u,, w:;1) by €; in Case (b), decrease the flow on are
(i1, ui) by € in Case (c), increase the flow on are (u;, wia) by
min (¢, ¢(u:, ) — f{u:, wipr)) and decrease the flow on are (ugq, %) by
mux (0, € — e, wip) + flwi, wn)). It is easily checked that the /' thus defined
is & low in N. Thus, since /' (f, s) = f(¢, 8) + ¢ the flow f i3 not maximum. It can
1" The method of augmentation presented herc differs (in Case (¢)] from the method originally

given by Ford and Fulkerson (ef. [51). The results of this paper apply, with minor changes, Lo
the Ford-Fulkerson method as well.
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250 J. EDMONDS AND R. M. KARP

be shown that, conversely, a flow f in N is not maximum only if there is an
augmenting path with respect to f.

The labeling method constructs a sequence F = f°, f, %, - - - of flows in N, starting
with, say, the zero flow, by finding an augmenting path with respect to f* if one exists,
and then augmenting to obtain f**'. The sequence terminates only when a maximum
flow has been obtained,

Assuming that all the capacities ¢(u, v} are integers, then clearly for any aug-
menting path P relative to any integer-valued flow f, e is a positive integer. Thus,
since f° is integer-valued, all the later flows f* in the sequence F are integer-valued.
It follows that the sequence terminates after a number of labelings not greater than
the final value of f(3, s).

The following example illustrates that this upper bound on the number of label-
ings can actually occur,

v

Suppose that the are (u, v) has eapacity 1, and the capacity of each of the other ares
in A is M, a positive integer. Then the maximum value of f(¢, s) is 2, and 2M
labelings will be required if the labeling process alternates between sclecting
(s, u)(u, ) (v, t) and (s, ») (v, u) (4, ) as an augmenting path. For, in each case,
either (u, v) or (y, ) is 2 bottleneck are, and ¢ = 1.

Assuming that all the capacities are mutually commensurable, we ean obtain an
equivalent integer-valued problem by multiplying all the capacities by a large con-
stant. Thus, in this case also, the sequence F is finite,

Ford and Fulkerson show by an example that if the capacities are not com-
mensurable then the sequence F need not terminate, and in fact, may converge to a
nonmaximum flow.

Since numerical computation is always, in praectice, performed on numbers ox-
pressed to a finite precision, this nonfiniteness is not from a practical viewpoint a
very serious matter. It does serve as another indication of the tendency of the
number of augmentations to grow as the precision to which the capaecities are cx-
pressed increases.

We will show that these theoretical difficulties, which could conecivably be a
practically serious matter, can be avoided. In particular, by making a certain re-
finement of the labeling method which is so simple that it is likely to be incorporated
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innocently into a computer implementation, we get a bound of at most 1 (n® — n)
terms in the sequence F (regardless of commensurability ), where # is the number of
nodes. In addition, a second refinement of the labeling method is shown to yield a
bound on the length of F, applicable only in the case of integer capacities, of 1 +
loga,u—ny §* (£, £), where f*(t, 3) is the value of a maximum flow, and M < »’/2,

1.2. A REFINEMENT. The labeling method requires as a subroutine a labeling
process for finding, if one exists, an augmenting path P relative to a given flow fin
N. This is essentially a method for finding, in & certain network N’ having the same
nodes as IV, a directed path from s to £. A direcled path irom s to £ is a path such
that all ares are forward ares. The ordered pair (u, ¢) is an arc of N if and only if
either

(u,2) € A and ecu,v) — flu,v) > 0
or
(w,u) € A and flv,u) > 0.

The ares of any directed path P’ from s to ¢ in N are in one-one correspondence with
the arcs of an augmenting path P in N relative to f. The arc of P* corresponding to a
bottleneck arc of P is also referred to as a bottleneck are.

The labeling process for finding a directed path in N7 from s to ¢ is as follows:
First s gets “‘labeled.”” Then at each successive step of the process some labeled but
“unscanned” node gets scanned. To scan a labeled node w means to label every node
v not already labeled and such that the are (u, »)isin N7, If » gets labeled when u is
scanned, then u is the predecessor of v in the labeling.

As soon as the sink ¢ gets labeled, then ¢, the predecessor of ¢, the predecessor of
that predecessor, and so on back to s, is the reverse sequence of a directed path in
N from s to t. On the other hand, if every labeled node gets scanned without ¢ get-
ting labeled, then there is evidently no directed path in N7 from s to t. Clearly the
labeling process terminates in one or the other of these two situations.

The refinement treated here, which gives an upper bound of 1w — ) on the
number of applications of the labeling process before obtaining a maximum flow,
is the following: In the labeling process, scan on a “first-labeled first-scanned”
basis. That is, before scanning a labeled node u, scan the nodes that got labeled
before .

It can be shown that a directed path in N7 from s to t, obtained by this version of
the labeling process, is one which contains a minimum number of ares. Thus, the
upper bound can be stated as follows:

TrHEOREM L. [f, in the labeling method for finding a mazimuim flow in o network on
n nodes, each flow augmentation is done along an augmeniing poth having fewest arcs,
then o maximum flow will be obtained after no more thar + (0’ — n) augmentations.

For present purposes, we will regard the number of arcs in a path as its length. The
“distance’ from a node u to a node v in N7 is the minimum length of & directed path
from % to v in N/, or else = if there is no such path.

Let # = f° /', 1%, - - be any sequence of flows in IV such that ™ is obtained from
f* by an augmentation corresponding to a shortest directed path P* in N7 ‘. Lel N*
denote N7 k, and let 8 (u, v) denote the distance from w to v in N*.

Lemya 1. If k< mand (u, v} is a boltleneck arc relative to P and fk, and also rela-
tive to P™ and f™, then, for some L such that & < | < m, (v, u) € P'.

Lemnma 2. Ifk <1, (u,v) € P* and (v, u) € Pl, then 8'(s, 1) = 8(s, 1) + 2.
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252 J. EDMONDS AND K. M. KARP

Given these lemmas, the proof of Theorem 1 is at hand. Let {w, »f be any pair of
nodes such that (u, ) € 4 or (z, ) € 4. Let the sequenee {k;} consist of all indices
k. such that either {u, #) or (v, u)is a bottleneck are relative to P and /%, By Lemma
1, one can find a sequence {I,}, containing {%;} as a subsequence, such thatl

(w,v) € PY, 7 odd and (v, u) £ P 7 even
or
(w,v) € PY%,  jeven and (o,u) ¢ PY,  jodd

By Lemma 2, 6%+ (s, ) > 8% (s,¢) + 2, 5 = 1,2, -+ . Thus, §'(s, ) > 2(; — 1).
But the length of any dirceted path in N¥ is at most n — 1 so that 8% (s, £) < n — 1
for all 5. The length of the sequence {i;} is therefore al most 3{n — 1) + 1 =
1(n + 1), and thus the number of oceurrences of {u, v) or (v, u) as a bottleneck are
throughout the entire labeling method is at most (7 -4 1). The number of oc-
currences of bottleneck ares altogether is therefore bounded by

n+1/n _na—n
2 2/ 4

And, since every augmentation determines a bottleneck are, the number of aug-
meniations is also bounded by 1 (n® — n).

The proof of Lemma 1 ecmploys two simple propositions.

Praorosition 1. If (u, v) is a boitleneck arc relative lo PP and ¥, then (u,v) ¢ N**.

Proor. The augmentation from f* to /" is such that, if (u,v) € A then 757 (u, »)
= ¢(u,v), and if (v, ) € A then /*' (v, #) = 0; henee, (u, v) § N7 ||

Propositiox 2. If (u, ) € N*" then (u, v) € N¥or (v, u) € P

Proor. Suppose (u,0) € N and (u,0) € N%; then, either £ (u, v) # f* (u, v)
or T (v, w) # (v, u). Incither ease, (u,v) or (v, w) must be in P*. But (u, v) § P¥,
since (u, v) ¢ N®; thus, (o, u} € P

We can now prove Lemma 1. By Proposition 1, (u, v) € N sinee (w,0) ¢ P™,
(w, ) € N". Tet Il 4+ 1 = min {¢ | ¢ > kand (u,v) € N Then (u, v) € N7,
(,v) ¢ N';hence, by Proposition 2, (», ) € P’ This completes the proof of Lemma
Lo

The proof of Lemma 2 will make use of the following proposition,

Propositioxn 3. Fork = 0,1,2, -+, and jor all u,
& (s, u) <87 (s w) (1)
and
§ G, 1) < & (u, ). 2}

Proor. We prove (1), the proof of (2) being similar. Tf 87 (s, u) = =, the re-

sult is cvident. Assuming 8 (s, w) = 7 is finite, let 8 = uy, wy, -+, wp = u be
the node sequence of u shortest directed path from s to u. Then 8% (s, ug) = 0 and
we claim that

(s, wn) <1+ 8(s,u), (=0, ,h—1 )

: rk41 " . -~ ATk
For, sinee (u;, u:1) € N*7, Proposition 2 tells us that (u;, #ms1) € N° or (s,

wi) € P*. In the former easc, 85 (s, i) < 1 4 & (s, w), since the urc (wi, wip)
enables us to get a directed path from s 10 #%;4 in N* having no more thun 1 +
8" (s, u:) arcs. In the latter ease, 8 (s, ) = 1 + § (s, ui1), s0 8 (s, i) =
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—1+4 6 (s, u) < 1 4 & (s, u;). Summing the inequalities given in (3),
(s, u) < h+ 8, wo) = h = 8 (s, w),

and (1) is proved. ||

To prove Lemma 2 note that, since (u, v} € P*, 8 (s, 1) = 8 (s, u) + 1 + 8 (v, 1).
Also, 8 (s,0) = 1+ 6°(s, ) and 6 (u, &) = 1 + 8* (v, ¢). Since (o, u) € P, 8 (s, t) =
8'(s,v) + 1 + &' (u, t). But, by Proposition 3, §'(s, ¢) > & (s, v) and & (x, 1) >
8y, 1), s0 that 8°(s, 1) > " (s,0) + 1+ &, 1) = L+ &G, u)) +1 4+ 1 +
8, 1)) = 2 + 8°(s, 1). Thus, Lemma 2 is proved, and we are done. I

The proofl of Theorem 1 can be modified quite simply to supply bounds on the
numbers of augmeniations required in certain other refinements of the Ford-
Fulkerson labeling method. Let a{u, v) be a real-valued function defined whenever
(u,p) € Aor (v,u) € A, such that b (u,v) = a(u,v) + ale, u) > 0. Let the weight,
of a path P in ;¥ having the node sequence uy, 42, -+, 4, be Mt atus, wi).
Consider & variant of the labeling method in which each augmentation is along a
flow-augmenting path of minimum weight. Then the number of augmentations ean-
not exceed (S:z(u,!.\e,; L/1b(x, 2}]) + | 4 |, where S is the maximum weight of a path
from source to sink. Theorem 1 corresponds to the case where afu, v) = 1 for all
pairs (i, »}. Another case, corresponding to the rule: “select a flow-augmenting
path with as few reverse arcs as possible,” has a{u, v) = 1 if {», u) € A, and
af{u, v} = 0otherwise. A bound on the number of iterations in this casc is 1w — ).

1.3. A Smcoxp REFINEMENT. In this seetion wo consider the following refine-
ment of the labeling method: at each iteration choose a flow-augmenting path
which gives the largest possible augmentation.

Let & be a network In which every capacity is an integer. Lot A > 1 be a positive
integer such that, for any partition of the nodes of N into two sets, X and X, with
s € Xand{ ¢ X, the number of arcs with one end in X and the other in X is less
than or equal to M. Tet f*(¢ ) denote the value of a maximum Aow.

TaEOREM 2. If, in the labeling method for finding o mazimun flow in N, a nel-
work with all capacities nlegral, each qugmentation is done olong an augmenfing
path yiving the mazimum possible augmentation, then a moximum fow wil be
obtained afler no more than 1 -+ logasory I, $) augmentations.

Before proving Theorem 2, we show how the rule under consideration can be
implemented. Suppose we are seeking a flow-augmenting path in ¥ relative to a
flow f. Associate with each are (w, v) € N7 a number e(u, 2) equal (o the value of e
that would result if (i, ») were a bottleneck are in a flow-augmenting path relative
to & and f. Specifically,

) if (u, ) €A and (v, u) ¢ A, then ew, v) = clu, v) — flu, v),

() if (,0)d A and (v, u) € A, then elu, v) = fu, v),

(i) if (u,e) € A and (v, u) € 4, then e(u,v) = clu, v) — flu, v) +
S, ).

Then the labeling method sceks a directed path from s to ¢ in A7 in which the
mallest value of e(u, #) is as large as possible. This is a bottlencek problem of the
vpe studied in [4]. One method of finding such a path is to label s, and then to repeat
he following step until ¢ is labeled: find an are {«, ») € N” such that u’ is laboled,
" is not labeled, and for any arc (u, ©) from a labeled node to an unlabeled node,
', v") > e(u, v). Label v’ and record «' as the predecessor of »'. When ¢ is labeled,
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254 J. EDMONDS AND R. M. KARP

tracing the sequence of predecessors back from ¢ gives a maximum-¢ flow-augmenting
path. If, at some step, there is no arc from a labeled node to an unlabeled one, then
no flow-augmenting path exists.
Proor or THEOREM 2. Consider a partition of the nodes of N into two sets, X
and X, such that s € X and ¢t € X. Define
(X, X) = 2, elu0), (X, X) = 2 flu,v)

wEX ueX

rEX re X
(up) €A (up)eA
and
f(XyX) = - .f(uy v)'
weX
veX
(u,pig 4

Then, for any flow f,
(X, X) > (X, X) — (X, X) = 7(t, 5).

Suppose the labeling method using maximum augmentations produces the sequence
of flows f°, ', -+, J%, - . Let €€ = /' (¢, ¢) — /* (¢, s). Consider the augmentation
from f* to f*™. Let the set X consist of s together with all nodes which can be reached
from ¢ by a directed path in N* consisting o_f ares (u, v) such that e(u, v) > &,
let X denote the remaining nodes. Then ¢ € X and every are (u, ¢) in N¥ such that
u € X and v € X satisfies e(x, v) < €.
(X, X) — [/"(X, X} - f1(X, X)) .

< € (u, v)|u cX,v¢é X, (uv)€ Ador (v,u) ¢ A} ‘ < &M,
Now (4, s) < ¢(X, X)and /* (¢, 8) = f*(X, X) = fF(X, X), %0

A o8) = 8 € €My e M s) = L s) < [T 8) — FR )M
Equivalently,
sy =M s) <P s) = i) — M.
Thus, by induction,
Fls) =/ s <M ) — s
Now, since all the capacities arc integers, cach flow is integral. Thus, if f* is not a
maximum flow, then

INRENI (RIS
S0

a0 - 21
and

k< —logiyu f (t, s) = logam—y ST (U, s ),

so the total number of augmentations eannot cxceed

1 A+ Togaroy [ (& 8).

Let & denote the average capacity of an arcin 4. Then f* (i, s) < én®and M < 4",

S0
In v’

In(142/(n* —2))°

logM/(M—l) f*(t, S) < 10g1+z/(nz—z)(n25) =
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2 2y, 2 _1/2Y
: ~ < “ _ =
]n(1+n2_2>_1n<1+n2)2n2 z(nﬂ)

Using these estimates we find that the number of augmentations cannot excced

But

2Inn + Iné .
1+ e = _n _
+2(1/ﬂ2— l/n‘l) 1 +2n2 — 2(21[171“‘1[16)

=n'Inn43inIng+ 0@ Inn 4+ #°Iné).

Thus, although the present bound depends on the capacities and requires their
integrality, it is superior to the bound of Section 1.2 in approximately the range
D<é< e

2. The Minimum-Cost Flow Problem

21. A Lasgring METHOD. In this section we turn to the problem of finding a
maximum flow of minimum ecost. Given a network N, associate with each arc
(u,») € A a nonnegative cost d(u, v) as well as the usual positive capacity c(u, v).
Let the cost of a flow f be Zcu,w; e 4 A, v)f(u, v) and let its vafue be f{¢, s). We seek
a flow of minimum cost among those with value f*(¢, s).

Call a flow f extreme if it is of minimum cost among flows with value (¢, 2). We
mention some well-known characterizations of extreme flows. In doing so, we make
use of the network N’ associated with 7. We recall that a network, by definition, has
at most one arc from one given node to another. For convenience we also assume that
lu,2) € A = (v, w) ¢ A. Obvious devices using “fictitious nodes’ can be used to
enforce this restriction if it does not criginally hold. Associale with any arc (u, v)
of N7 a weight A (u, v) as follows:

_ fdu, ), {u,v) € A,

A2 = g w),  u)c A

Define the weight of a subgraph of N/ as the sum of the weights of its ares. Define a
labelvng function as a function from the nodes to the real numbers.
TreorEM 3.° Let f be a flow. Then the following are equivalent:
(i) fis extreme,
(ii) every directed cyele in N/ has nonnegative weight,
(iii) there exists a labeling function = such that, for cvery are (u, #) of N,
ru) + Alw, ») — xl0) > 0,
A restalement of (i1} in terms of the network N is: for {u, ») € A,

a{u) — 7@) + dlu,v) > 0= f(u,v) =0, @)
r(w) — wlw) + du, ) < 0=[f{u,v) = clu ).

If the Aow f and the labeling function = together satisfy (4), then f and 7 are
called compatible.
Another basic result is the following.

2 The equivalence of (i) and (iii), stated in & somewhat different form, can be found in [5,
pp. 114-115],
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TurorEm 4. (5, p. 121]).  If [ 1s extreme and P is a path of minimum weight in
N from s to t, then a flow | oblained by augmenting along P is extreme.

For brevity call a path of minimum weight a “shortest path.” Theorem 4 sug-
gests the following method of solving the minimum-cost flow problem: starting with
an extreme flow §°, compute a sequence of extreme fAows /°, /1, -, /5 £ ...
obtaining ' from f* by augmenting along u shortest path from ¢ to ¢ in N*OA
shortest path ean be determined using the following algorithm.

ALGORITHM A: Shortest-Path Algorithm

Let N7 have the set of arcs AF, and let A{u, ») be the weight of are (u, ¢) € A%,

(1) Seto(s) =0andseto(u) = 4+, u = s.

(2) Set 8§ = {s}.

(3) If 8 = ¢, halt; otherwise choose uw* such that w* € 8 and o (u*) = miny cg o (u).
(4) For each v such that (u*, 2) € A% get

olv) = min (¢(v), e{u*) + Alu*, ).

If this process decreases o(v), adjoin » to the set S.
(5) Delete «* from 8 and go to (3).

Algorithm A has the following properties:

(1} Upon its termination, o («) gives the weight of a shortest path from s to u;

(2) Tf A{u, v) = 0for every are {u, v), then cach vertex aceessible from s enters
the set S exactly once, so that the total amount of computation is proportional to
the number of ares;

(3) If no eyele is of negative weight, then cach vertex aceessible from s enters the
set & at most » — 1 times, so that the total amount of computation has a bound
proportional to % — 1 times the number of ares;

(4) If there is u negative-weight evele accessible from s, then the algorithm is
nonterminating. One way to detect this is to keep a subgraph T of tentative shortest
paths, T contains arc (u, ¢) if » last entered S during an applieation of Step (4) with
w® = w. Any cycle in 7" has negative weight; if a negative-weight eyele is aceessible
from s, then such 4 cyele will oceur in T by the time any vertex enters S for the sth
time,

The diseussion of the shortest-path algorithm shows the efficiency to be gained
in cases when all weights are nonnegative. Too little attention has been paid to this
essentinl point in the development of algorithms for minimum-cost flows. We
present in this section an algorithm designed so that all shortest-path caleulations are
done on networks with all weights nonnegative.

Let [ be a flow and let 7 be a labeling function. Assign each arc (u, ) of N7 a
weight A, v) = w(u) + A, v) ~ 7).

Then clearly

(i) if €' is a directed cycle, then

2 Aoy = 2 A, e);

(e [ R

i) if P s a directed path from w* to ¥, then

2. Alw,e) = 7)) — 7v0™) + ( 2 A, ).

fw,p)e P uWIER

Thus, ¥/ has a cyele of negative weight with respeet lo the weights A (u, v) if
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and only if N/ has a eyele of negative weight with respeet to the weights A (u, »).
Also, P is a shortest path from s to ¢ with respeet to the weights A (x, 2) if and only
if P is a shortest path from s to ¢ with respeet to the weights A (u, ). Consider the
implications of these facts when f and 7 are compatible. Then Afu, v) > 0, and a
minimum-weight flow-augmenting path (relative to the weights A(u, »}) can be
found by a shortest-path ealeulation using the nonncgative weights A (u, »).

A variant of the algorithm suggested by Theorem 4 is now apparent which per-
forms all shortest-path caleulations on networks with all weights nonnegative.

aLcoritEM H:  Minimum-Cost Flow Algorithm

(1) Set f® cqual to the zero flow, and set #® equal to the identically zero labeling function;
{2) Given f* and «*, determine f**1 by augmenting along a minimum-weight path from s to ¢
in N7* with respect 1o the (nonnegative} weights

ARy, v) = 75(u) + Ay, v) — #5(v).

If several minimum-weight paths exist, choose one with the fewest ares.

(3) If o*(u) denotes the weight of a shortest path from s to u with respect to the weights
AF set a¥lW(u) = aF(u) + oF(u); take o*(u) = ¥ (u) = + o if u is inaccessible from s in
N7,

(1) IIalt when, for some %, no flow-augmenting path exists with respect to f*.

Some properties of the algorithm are given in the following theorem.

TueoreM 5. For each k, /¥ and 7° are compatible. For each k and u, 7° (w) gives
the weight of a shortest path from s lo w in N T with respect to the weights A(u, v) and
M) > 7t ().

We present two bounds on the number of flow augmentations required by the
minimum-cost flow algorithm.

TaroreM 6. If all the capacilies are inlegers, then the compulation terminates after
at most f*(t, ) fow augmentations.

Proor. Each flow j* is integral, and each sugmentation increases the flow by a
positive integer. ||

Turorey 7. Suppose the costs d (u, v) are integers less than or equal to an integer D.
Then the compuiation terminates after at most 1 + 1’ — n)(n — 1D fluw augmenta-
tions.

Proor. We show that the overall computation can be regarded as a sequence of
at most (n — 1)D + 1 phases, each consisting of a maximum flow computation.
Each phase corresponds to a period during which 7 () remains constant. Suppose
7 (t) is constant for ky < k < k.. Then the low augmentations involved in passing
from f*' to f* are along directed paths in the subnetwork N’ containing those ares
(u,v)in N such that ' (u) + Alu,v) — 7 () = 0. Hence, these augmentations
are part of a maximum-flow computation in N'. The bound of Section 1.2 is appli-
cable, sinee the algorithm selects, at each step, u path with fewest ares among those
of minimum weight. Henee, the number of augmentations per phase is at most
1 (n* — n). Now, except at the last step, when ¢ is inaceessible by a flow-augmenting
asath and #°4) = =, =*(#) is the weight of some path in NV from s to ¢, and hence is
an intoger between 0 and (n — 1)5. Thus, noting that () is nondecreasing with
b, we see that the number of phases, excluding the last step, is at most (n — 1)}D,
and the theorem follows, ||

Corornary 1, Algorithm B solves any mintmuni-cost flow problem in a finite nym-
ver of steps (even when netther the capacities nor the costs are commensurable ).
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Proor. The first half of the proof of Theorem 7 is applicable in this case, and
shows that there is a finite bound on the number of suceessive flow augmentations
without an inerease in o (t). But, for any k, =" (¢) is the weight of some directed
path from s to ¢ in N/ *, corresponding to some path without repeated vertices in N.
Since the number of such paths is finite 7 (t) increases only a finite number of times,
so that the entire process must be finite. ||

Although it is comforting to know that the minimum-cost flow algorithm ter-
minates, the bounds on the number of augmentations arc most unfavorable. The
scaling method of the next two sections is a variant of this algorithm in which the
bound depends logarithmically, rather than linearly, on the capacities, A challeng-
ing open problem s to emulate the results of Section 1.2 for the maximum-flow prob-
lem by giving a method for the minimum-cost flow problem having a bound on
computation which is a polynomial in the number of nedes, and is independent of
both costs and capacities.

2.2. A Scarine METHOD FOR THE HITcHCOCK TRANSPORTATION PROBLEM. In
this section and the following one, we present a technique for solving a minimum-
cost flow problem by treating a sequence of problems with the same cost as the
given problem, but with “scaled down” capacities which approximate those of the
given problem to suceessively more digits of precision. The efficiency of this scaling
method is based on the following two features:

(1) the capacities, and hence the flow augmentations, in the approximate prob-
lems are on a coarser scale than in the original problem;

(2) the final solution of each approximate problem yields a good initial Aow for
the next approximate problem.

‘We prove that the number of computation steps required by the scaling method
is proportional not to the capacities (as in the method of Section 2.1) but to the
numbers of digits in the binary representations of the capacities. Roughly speaking,
the scaling method is related to the original method as binary arithmetic is to
unary arithmetic (i.e. counting).

First we consider a special case in which the scaling technique is particularly
simple. The Hilchcock transportation problem asks for a maximum flow of minimum
cost through a network of the type shown in Figure 1.

The costs and capacities are as follows:

are (s, s;) has cost 0 and capacity a;, 1 = 1,2, - -+, m;
arce (t;,¢) has cost 0 and capaecity b,, j = 1,2, - -+, n;
are (s:, t;) has cost d;; and eapacity e, i = 1,2, ---,m, 7 = 1,2, -+, n;

the return are (¢, s) has cost 0 and eapacity + .

It is assumed that ) reja; = 2 sb;. The value of a maximum flow is clearly

LY TR

The standard interpretation of this problem is well known. Each vertex s; cor-
responds to a “sourcc” at which a; units of a commodity are available; each vertex
{; corresponds to a ‘‘destination’ which demands &; units of the commodity. The
cost per unit of shipping from s; to ¢, is d;;, and a shipping pattern is sought which
minimizes the cost of meeting the demands at the destinations from the supplies
at the sources.

In the following specialization of the criteria for an extreme flow given in eq.
(4}, u; denotes 7 (s;) and v; denotes 7 (§;); also, f;; denotes f{s;, ¢;) when 7 > 1
and j 2> 1; f: denotes f(s, ;) and f;, denotes f(i;, ¢).
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Fig, 1
TrEOREM 8. The flow f is extreme among maxtmum flows for the network of Figure
L, if and only if there exist o, Ur, -+, Um ARA Vo, Wy, -+, Um SUch that
U — U4 + di]’ 2 03 l = !1 21 T Tn;j = ly 21 R (P (53')
w; — ¥ -+ di}' >0 ':}fi:f = 0) = 13 2: ,T?I;j = 11 2: T, W, (Sb)

wy > u; = Jor = 0, (5¢)
uy < U = Jor = a;, (5d)
v; > vo=Jn = 0, (5e)
v; < ve=Jp = b; (5f)

Call a flow f for the Hitcheock problem pseudo-extreme if there exist 4, and v;
satisfying (ha) and (5b). A pscudo-extreme maximum flow is cxtreme; for a maxi-
mum flow has fo; = a;, ¢ = 1,2, -« ,mand f,o = b;,j =1, ---, n. Thus, if (5a)
and (5b) arc satisfied, we may satisfy (5c¢)-(5f) by setting 4y = min— .. .. i
and # = Max,—1s,...,.v;. llor a problem of the Hitcheock type with 2 a, = 3 b;,
a pseudo-extreme maximum flow is not, in general, extreme.

Algorithm B can, of course, be used to solve the Hitehcock problem, An alternate
metlhod is based on the fact that a maximum pseudo-extreme flow is exireme. A
sequence of pairs (f°, 7, (', @), ---, (f*, #*) is computed where, for each k,
(ff #*) satisfies (5u) and (5b), so that f* is pseudo-extreme. The determination
of (Y, 7Y from (/*, #*) differs from the corresponding step in the previous
algorithm in only one respect: il fi: < a: then are (s, s,) in N7 s assigned cost
Als, s:) = 0, regardless of 7°; similarly A(t;, 1) = 0if fn < b;. It is easily checked
that, if (j'k, ) satislies (5a) and (5b), then so does (f*"", #*'); thus, ' Is pseudo-
extreme if f* is. If the capacities a; and b, are integers then an upper bound on the
number of flow augmentations is doia.

Now we are preparcd to present the scaling method. For any nonnegative integer
p, define Problem p to have the same nodes, ares, and costs as the given problem,
but with the capacities changed as follows: the capaeity of (s, s;) is [a:/2”| and the
capacity of (¢, t) is [6;/2°].7 Thus, the original problemn is Problem 0 and, in general,
the capacitics in Problem p are obtained by deleting the p low-order digits in the
binary representations of the original capacities.

¢ 2] means ‘‘ greatest integer less than or equal to z.””
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Levmyma 3. If f is o pseudo-exireme flow in Problem p, then 2f is a pseudo-extreme
flow in Problem p — 1.

Choose [ such that every {inite capacity has at most [ digits in its binary expan-
sion;ie.a; < 2, ¢ =1,2 -, m, and b; < 2% i =12, ---,n Then the scaling
method computes maximum pseudo-extreme flows suecessively for Problems ( — 1,
{ — 2, ---,0.If fis the maximum pseudo-extreme flow computed in Problem p,
and 7 is the associated labeling function, then 2f is taken as the initial pseudo-
extreme flow in Problem p — 1, with 7 as its associated labeling function.

The following theorem bounds the number of flow augmentations in the solution
of a (ransportation problem by the scaling method.

THEOREM 9.  The number of flow augmentations in applying the scaling method to
a lransportation problem with integral “supplies” a1, a», - -, a. and inlegral “de-
mands” by, by, -+ by, is less than or equal to

"

Z a;
=1

maxr (m, nI\2 4+ | logg ————
max (m, n)

Proor. Let f,,* denote the value of a maximum flow in Problem p. The initial
flow in Problem [ — 1is 0 and, for p < [, the initial flow in Problem p — 1 is 2,7,
Reecalling that each augmentation gives a positive integral increase in the flow, the
total number of augmentations is bounded above by

—1 -1
Sia+ ,ZT (fr1 = 20,%) = fo* — ;f,,*. (6)

.k : - 124 . b;
w-mn(lE] 520

We can write a; = 2pla;/2"] + 7y, where 0 < 7, < 2% — 1, Henee,

Now

v
=t

1 EuT e 2w
@
Z I: l] _ i=1 - i=1 > =1

=1

7
— 2, —m

m
~ | 95

Similarly,

> [bj] > ;b .

i 2e 2°

Let B denote the eommon value of D fya; and 2.j—1 b, and let I, denote
log: (B/max (m, n))]. Then

fp*’,/z max (O,TZB; — max (i, n))

i

and

i L B
IR AR-DY (2—p — max [m, n))‘

»=1 p=1
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Applying this inequality to (8), and noting that ¥ = B, we find that an upper
bound on the total number of flow augmentations is

B/ 4+ Lmax (m,n) < (I + 2) max {m, n).

This eompletes the proof. ||

We remark that this bound on the number of flow gugmentations is approxi-
mately equal to the number of binary digits required to cncode the data of the
transportation problem. Fach augmentation requires O(m, #n) computation steps,
so that the number of computation steps in the entire proeess is bounded by a low-
degree polynomial in the size of the problem, as measured by the length of the input
text. Tn this sense the sealing method is a “good” algorithm.*

23. A Scarmwe METHOD ToR THE MintMUuM-CosT I'now ProRLEM.  References
[6]and [7] give a simple method of converting any minimum-cost flow problem having
| A | ares and n nodes into an “equivalent” Hitcheoek transportation problem with
'A I sourees, n destinations, and a maximum flow of Zuu,mu e{u,»). By Theorem 9,
the application of the sealing method to such a derived transportation problem
requires at most

(L +2)4]

flow augmentations where L = log (Zgw, clu, v)/| A f). Thus, the approach of
gonverting to an equivalent transportation problem which is solved by the sealing
method vields a good algorithm for the minimum-cost flow problem.

In this seetion, we eonsider the direct application of the sealing method to the
minimum-eost flow problem. The general approach is clear. Given a minimum-
cost flow Problem on a network & with costs o (%, #) and capacities ¢ (u, #), define
Problem pr as a problem identical with the given one exeept that the eapacity of are
(u, v) is given by [e{u, v)/2%]. Choose [ as the least integer such that 2" > ¢{u, v)
for all (u, ) € A. Then the plan is to solve Problems { — 1,1 — 2, - -+, 0 succes-
sively using Algorithm B, taking twice the final flow in Problem p as the initial
flow in Problem  — 1. There is a major difficulty, however. If £,* is a minimum-cost
maximum flow in Problem p, then 2f,% is a flow in Problem 2 — 1, but not, in general,
an extreme flow. In the ease of the transportation problem this diffieulty was not
seripus, since it was possible to work with pscudo-extreme flows instead of extreme
flows. For general minimum-cost flow problems the remedy for this diffieulty is
somewhat more complex.

We begin by showing that if f is extreme in Problem p, then 2f is “almost extreme”
in Problem p — 1. Since f is extreme in Problem p, there is a labeling function =

such that
0, (u, 2) € A,

7lu) + du,v) — 7@) > 0= flu, )
) + dlu, ) — 7)) < 0= [y, v) = [elu, v)/27, {u,v) € A.

Using the inequalities

2 [”'—W“f,; ”)] < [C—(‘f‘p’_f’)] <2 [‘"“ﬁ”} + 1

* The concept of 4 ‘“good algorithm™’ is discussed in detail in |2].
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we have
m(u) +d@,v) — alp) > 0=2f(u,v) =0, )
7
w(u) + du, ) — 7)) <0=2f(u,v) < o, v)/2" ] < 2f(w,v) + 1.

But compatibility of f and 7 in Problem p — 1 requires
w(w) + dlu,v) — w@) <0=2f(u, ) = [elu,v)/2"].

Thus, 2f and 7 fail to be compatible in Problem p — 1 by at most one unit of flow
on any arc. We give an efficient method of transforming 2f to a flow which has the
same value and is extreme in Problem p — 1. The method can be rcgarded as a
variant of the Fulkerson out-of-kilter algorithm [5] in which the “flow change”
and “‘potential change’ phases are combined into a single computation.

We state the method as it applies to an arbitrary integral feasible flow ¢ in Prob-
lem # — 1, and an arbitrary labeling funetion . Define d(u, ») = 0u) +
d{u,v) — (). Define K, 4 (u,v), the kilter number of are (u,v) relative to g and 6, us

glu, v), if d{u, ) > 0,
0, if du,v) =0,

[C(s::lf):l — g{u, v), i d{u,v) <O0.

Thus, ¢ and 8 are compatible if and only if each are has kilter number zero. Also,
relative to 2f and 6, the kilter number of each are is 0 or 1.

The following algorithm derives, from an incompatible pair (g, 8), a new pair
(4, 8", in such & way that

(1) Kpou,v) < Kiplu, v), (u, ) € A4,

and

(i) Damea Koo (y 2) € D pumca Kpolu, v) — L.

sLGoRITHM ¢: Kilter Number Reduction

(1) Form the augmentation network N’, having A” as its set of arcs. For each arc (u, »} € A%

define

Eu, v) = d(u, v), il (u, v) € A and g(u, ) < [eu, ©)/20Y,
” —d(u, v), if (w,u) €A and g, u) > 0.

Label each are (u, v) £ A’ with the weight
B{u, v} = max (Aln, v), 0).
(2) Chaoose an arc (u*, v*) of N7 such that

() (u* v*) € 4, dlu, v) < 0 and g¢lu, v) < [cli, v)/277,
or
() (*, u*) € 4, d(u, ») > 0 and g(u, v) > 0.

(3) Let N* = {x \ o = v* or N* has a directed path from »* to z}. Forz € N*, set (z) equal
to the minimum weight of a directed path from ¢* to 2. Forz § N* set

i(x) = max [6G) ~ a(z, wl.
e, u) CAR|[vEN® uwEN*}
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For each node z, let 6'(z) = 8(zx) + 8(z).

@) Ifu* ¢ N* theng = g.
If u* € N*, choose & cycle C of N consisting of (u*, v*) together with 2 minimum-weight
path from #* to «*. Cbtain ¢’ from ¢ by performing a flow augmentation around the eycle
C.

We make the following assertions {omitting proofs):

(i) For eaeh are {u, v), K, o (2, 0) < K, 0{n, v);
() if (¥, 0*) € 4,

Kpp @w®, 0%) < Kpol®, 0%) — 1
(i) if @ w*) ¢ A4,
Ky (0 2*) < K, o0%, u™) — 1.

By iteration of Algorithm C, the pair (2f, r) can be converted to an extreme flow
for Problem p — 1 having the same value as 2f. Since each iteration reduces the
sum of the kilter numbers by an integer, the number of iterations will not exceed
> wmea Koy ((u, ). But, since Kay . (w, v) € {0, 1}, the number of iterations is
bounded by | A |.

We are now in a position to give a complete statement of the scaling algorithm,

ALGORITHM D: Secaling Algarithm for Minimum-Cost Flows

(1) Set f = 0and r = 0. Choose { such that, for all (u,») € A, c(u,v) < 2. Setp=1{—1.

(2) Solve Problem z by the algorithm of Section 2.1, using f as the initial flow and = as the
initial labeling function. After this step f is a maximum flow of minimum cost in Problem
p, and r is compatible with f in Problem ».

(3} If p = 0, halt. Otherwise replace p by p — 1 and replace f by 2f.

{4) Apply Algorithm C repeatedly, starting with the pair (f, x}, until a compatible pair (g, 8)
is obtained. Set f = gand v = 4. Go to 2.

The number of steps required in applying this algorithm can easily be bounded.
The number of executions of Algorithm C in Step (4) is at most |4 |(l — 1).

The number of flow augmentations {each requiring an application of Algorithm
A to a network with nonnegative weights) is bounded above by

flat I fia =" =57~ T4" ®)

The number of applications of Algorithm A to networks with nonnegative weights
to verify that a maximum flow has been reached is /.

To put an upper bound on (8) we establish a lower bound on f,*. Let 7 be an
upper bound on the number of ares in a cut-set separating ¢ from ¢; i.c. if the nodes
are partitioned into sets X and X such that s € S and ¢ € X, then the number of
ares directed from a node in X to a node in X is less than or equal to 7. According to
the max-flow min-cut theorem ([5])

* . elu, ) | elu, )
e ‘m‘“%[ 2 ]‘ze:[ 27 ]
rEX vEY

for some partition (¥, ¥). Now

[c(z;;v):l > c(g,pv) ~1
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S0

o | 1 .«

I» Zgéc(u;ﬂ) - TZ'Q—pfO - T
velr—'

Substituting this inequality in (8) gives, as an upper bound on the number of flow

augmentations,

i—1
Fo — ;1(%)"0* - T) =2_th* + (- 1T <IT.
The following theorem sums up our conclusions,

Treorexn 10, Let N be a network with n nodes, | A [ arcs, and al most T arcs in a
cul-set separating s from £ Let [ be the number of binary digits needed to represent the
largest arc capacity. Then the scaling method solves the minimwn-cost flow problem
Jor N using not more than I A | (I — 1) applications of Algorithm C and not more than
! — 1 + IT applications of Algorithm A te nebworks with nonnegative weights. Each
network considered in the algortithm has n nodes and at most ‘ A [ arcs.
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