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1. INTRODUCTION

A time scale is an arbitrary nonempty closed subset of the real numbers. The

calculus of time scales was initiated by B. Aulbach and S. Hilger [4, 9] in order to

create a theory that can unify discrete and continuous analysis. For a treatment of

the single variable calculus of time scales see [5,6,11] and the references given therein.

The present paper deals with the differential calculus for multivariable functions

on time scales and intends to prepare an instrument for introducing and investigating

partial dynamic equations on time scales. Note that already two papers related to

this subject appeared [2, 10]. An integral calculus of multivariable functions on time

scales will be given in forthcoming papers of the authors.

There are a number of differences between the calculus of one and of two variables.

The calculus of functions of three or more variables differs only slightly from that of

two variables. The study in this paper will be therefore limited largely to functions

of two variables. Also we mainly consider partial delta derivatives. Partial nabla

derivatives and combinations of partial delta and nabla derivatives can be investigated

in a similar manner.

The paper is organized as follows. In Section 2 we introduce partial delta and

nabla derivatives for multivariable functions on time scales and offer several new

concepts related to differentiability. Section 3 deals with a geometric interpretation

of delta differentiability. Section 4 contains several useful mean value theorems for

derivatives. In Section 5 sufficient conditions to ensure differentiability of functions
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are provided. In Section 6 we present sufficient conditions for equality of mixed partial

delta derivatives. Section 7 is devoted to the chain rule for multivariable functions on

time scales, while Section 8 treats the concept of the directional derivative. Finally,

in Section 9, we study implicit functions on time scales.

2. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

Let n ∈ N be fixed. Further, for each i ∈ {1, . . . , n} let Ti denote a time scale,

that is, Ti is a nonempty closed subset of the real numbers R. Let us set

Λn = T1 × . . .× Tn = {t = (t1, . . . , tn) : ti ∈ Ti for all i ∈ {1, . . . , n}} .

We call Λn an n-dimensional time scale. The set Λn is a complete metric space with

the metric d defined by

d(t, s) =

(
n∑
i=1

|ti − si|2
)1/2

for t, s ∈ Λn.

Consequently, according to the well-known theory of general metric spaces, we have

for Λn the fundamental concepts such as open balls, neighbourhoods of points, open

sets, closed sets, compact sets, and so on. In particular, for a given number δ > 0,

the δ-neigbourhood Uδ(t
0) of a given point t0 ∈ Λn is the set of all points t ∈ Λn such

that d(t0, t) < δ. By a neigbourhood of a point t0 ∈ Λn is meant an arbitrary set in Λn

containing a δ-neighbourhood of the point t0. Also we have for functions f : Λn → R

the concepts of the limit, continuity, and properties of continuous functions on general

complete metric spaces.

Our main task in this section is to introduce and investigate partial derivatives

for functions f : Λn → R. This proves to be possible due to the special structure of

the metric space Λn.

Let σi and ρi denote, respectively, the forward and backward jump operators in

Ti. Remember that for u ∈ Ti the forward jump operator σi : Ti → Ti is defined by

σi(u) = inf {v ∈ Ti : v > u}

and the backward jump operator ρi : Ti → Ti is defined by

ρi(u) = sup {v ∈ Ti : v < u} .

In this definition we put σi(maxTi) = maxTi if Ti has a finite maximum, and

ρi(minTi) = minTi if Ti has a finite minimum. If σi(u) > u, then we say that

u is right-scattered (in Ti), while any u with ρi(u) < u is called left-scattered (in

Ti). Also, if u < maxTi and σi(u) = u, then u is called right-dense (in Ti), and

if u > minTi and ρi(u) = u, then u is called left-dense (in Ti). If Ti has a left-

scattered maximum M , then we define Tκi = Ti \ {M}, otherwise Tκi = Ti. If Ti has

a right-scattered minimum m, then we define (Ti)κ = Ti \{m}, otherwise (Ti)κ = Ti.
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Let f : Λn → R be a function. The partial delta derivative of f with respect to

ti ∈ Tκi is defined as the limit

lim
si→ti

si 6=σi(ti)

f(t1, . . . , ti−1, σi(ti), ti+1, . . . , tn)− f(t1, . . . , ti−1, si, ti+1, . . . , tn)

σi(ti)− si

provided that this limit exists as a finite number, and is denoted by any of the

following symbols:

∂f(t1, . . . , tn)

∆iti
,

∂f(t)

∆iti
,

∂f

∆iti
(t), f∆i

ti (t).

If f has partial derivatives ∂f(t)
∆1t1

, . . . , ∂f(t)
∆ntn

, then we can also consider their partial delta

derivatives. These are called second order partial delta derivatives. We write

∂2f(t)

∆it2i
and

∂2f(t)

∆jtj∆iti

[
or f∆i∆i

titi (t) and f
∆i∆j

titj (t)
]

for the partial delta derivatives of ∂f(t)
∆iti

with respect to ti and with respect to tj,

respectively. Thus

∂2f(t)

∆it2i
=

∂

∆iti

(
∂f(t)

∆iti

)
and

∂2f(t)

∆jtj∆iti
=

∂

∆jtj

(
∂f(t)

∆iti

)
.

Higher order partial delta derivatives are similarly defined. The partial nabla deriva-

tive of f with respect to ti ∈ (Ti)κ is defined as the limit

lim
si→ti

si 6=ρi(ti)

f(t1, . . . , ti−1, ρi(ti), ti+1, . . . , tn)− f(t1, . . . , ti−1, si, ti+1, . . . , tn)

ρi(ti)− si

and denoted by ∂f(t)
∇iti , provided that this limit exists as a finite number. In an obvious

way we can define higher order partial nabla derivatives and also mixed derivatives

obtained by combining both delta and nabla differentiations such as, for instance,

∂2f(t)

∆iti∇jtj
or

∂3f(t)

∆it2i∇jtj
.

Definition 2.1. We say that a function f : Λn → R is completely delta differentiable

at a point t0 = (t01, . . . , t
0
n) ∈ Tκ1 × . . . × Tκn if there exist numbers A1, . . . , An inde-

pendent of t = (t1, . . . , tn) ∈ Λn (but, in general, dependent on t0) such that for all

t ∈ Uδ(t0),

(2.1) f(t01, . . . , t
0
n)− f(t1, . . . , tn) =

n∑
i=1

Ai(t
0
i − ti) +

n∑
i=1

αi(t
0
i − ti)

and, for each j ∈ {1, . . . , n} and all t ∈ Uδ(t0),

(2.2) f(t01, . . . , t
0
j−1, σj(t

0
j), t

0
j+1, . . . , t

0
n)− f(t1, . . . , tj−1, tj, tj+1, . . . , tn)

= Aj
[
σj(t

0
j)− tj

]
+

n∑
i=1
i6=j

Ai(t
0
i − ti) + βjj

[
σj(t

0
j)− tj

]
+

n∑
i=1
i6=j

βij(t
0
i − ti),
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where δ is a sufficiently small positive number, Uδ(t
0) is the δ-neighbourhood of t0 in

Λn, αi = αi(t
0, t) and βij = βij(t

0, t) are defined on Uδ(t
0) such that they are equal

to zero at t = t0 and such that

lim
t→t0

αi(t
0, t) = 0 and lim

t→t0
βij(t

0, t) = 0 for all i, j ∈ {1, . . . , n}.

In the case T1 = . . . = Tn = R, this definition coincides with the classical (total)

differentiability of functions of n real variables (see, for example, [3, 12]).

In the one-variable case, Definition 2.1 becomes the following: A function f :

T → R is called completely delta differentiable at a point t0 ∈ Tκ if there exists a

number A such that

(2.3) f(t0)− f(t) = A(t0 − t) + α(t0 − t) for all t ∈ Uδ(t0)

and

(2.4) f(σ(t0))− f(t) = A
[
σ(t0)− t

]
+ β

[
σ(t0)− t

]
for all t ∈ Uδ(t0),

where α = α(t0, t) and β = β(t0, t) are equal to zero at t = t0 and

lim
t→t0

α(t0, t) = 0 and lim
t→t0

β(t0, t) = 0.

If t0 is right-dense, then the conditions (2.3) and (2.4) coincide and are equivalent to

the existence of a usual derivative of f at t0, being equal to A. If t0 is right-scattered

and left-dense, then (2.3) and (2.4) mean, respectively, that the function f has at t0

a usual left-sided derivative and a delta derivative and that these derivatives coincide

and are equal to A. In this place we see a difference between the completely delta dif-

ferentiability and delta differentiability, where the latter means, simply, the existence

of a delta derivative. This is why we use the term “completely delta differentiable”

rather than “delta differentiable”. Finally, if t0 is right-scattered and left-scattered

at the same time (i.e., an “isolated” point), then the condition (2.3) disappears be-

cause both of its sides are zero independent of A and α (for sufficiently small δ, the

neighbourhood Uδ(t
0) consists of the single point t0), and (2.4) means the existence

(which holds, in this case) of a delta derivative of f at t0, being equal to A.

In the two-variable case, Definition 2.1 becomes the following: A function f :

T1 × T2 → R is completely delta differentiable at a point (t0, s0) ∈ Tκ1 × Tκ2 if there

exist numbers A1 and A2 such that

(2.5) f(t0, s0)− f(t, s) = A1(t0 − t) + A2(s0 − s) + α1(t0 − t) + α2(s0 − s)

and

(2.6) f(σ1(t0), s0)− f(t, s) = A1

[
σ1(t0)− t

]
+ A2(s0 − s)

+ β11

[
σ1(t0)− t

]
+ β12(s0 − s),
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(2.7) f(t0, σ2(s0))− f(t, s) = A1(t0 − t) + A2

[
σ2(s0)− s

]
+ β21(t0 − t) + β22

[
σ2(s0)− s

]
for all (t, s) ∈ Uδ(t0, s0), where αi = αi(t

0, s0; t, s) and βij = βij(t
0, s0; t, s) are equal

to zero at (t, s) = (t0, s0) and

lim
(t,s)→(t0,s0)

αi(t
0, s0; t, s) = 0 and lim

(t,s)→(t0,s0)
βij(t

0, s0; t, s) = 0

for i, j ∈ {1, 2}.

Note that in the case T1 = T2 = Z, the neighbourhood Uδ(t
0, s0) contains the

single point (t0, s0) for δ < 1. Therefore in this case the condition (2.5) disappears

while the conditions (2.6) and (2.7) hold with βij = 0 and with

A1 = f(t0 + 1, s0)− f(t0, s0) =
∂f(t0, s0)

∆1t

and

A2 = f(t0, s0 + 1)− f(t0, s0) =
∂f(t0, s0)

∆2s
.

This shows that each function f : Z × Z → R is completely delta differentiable at

every point.

It follows from Definition 2.1 that if the function f : Λn → R is completely delta

differentiable at the point t0 ∈ Tκ1 × . . .× Tκn, then it is continuous at that point and

has at t0 the first order partial delta derivatives equal, respectively, to A1, . . . , An:

∂f(t0)

∆1t1
= A1, . . . ,

∂f(t0)

∆ntn
= An.

The continuity of f at t0 follows, in fact, from any one of (2.1) and (2.2) for some

j ∈ {1, . . . , n}. Indeed, (2.1) obviously yields the continuity of f at t0. Let now (2.2)

hold for some j ∈ {1, . . . , n}. In the case σj(t
0
j) = t0j , (2.2) immediately gives the

continuity of f at t0. Consider the case σj(t
0
j) > t0j . Except of f(t), each term in (2.2)

has a limit as t → t0. Therefore f(t) also has a limit as t → t0, and passing to the

limit we get

f(t01, . . . , t
0
j−1, σj(t

0
j), t

0
j+1, . . . , t

0
n)− lim

t→t0
f(t) = Aj

[
σj(t

0
j)− t0j

]
.

Further, letting t = t0 in (2.2), we obtain

f(t01, . . . , t
0
j−1, σj(t

0
j), t

0
j+1, . . . , t

0
n)− f(t0) = Aj

[
σj(t

0
j)− t0j

]
.

Comparing the last two relations gives

lim
t→t0

f(t) = f(t0)

so that the continuity of f at t0 is shown. Next, setting in (2.2) ti = t0i for all i 6= j

and then dividing both sides by σj(t
0
j) − tj and passing to the limit as tj → t0j , we

arrive at ∂f(t0)
∆jtj

= Aj. This also shows the uniqueness of the numbers A1, . . . , An
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presented in (2.1), (2.2). Note also that due to the continuity of f at t0 we get from

(2.2) in the case σj(t
0
j) > t0j the formula

∂f(t0)

∆jtj
=
f(t01, . . . , t

0
j−1, σj(t

0
j), t

0
j+1, . . . , t

0
n)− f(t0)

σj(t0j)− t0j
.

Remark 2.2. The conditions of the form (2.6) and (2.7) can be considered as natural

in order to be able to prove the formulas A1 = ∂f(t0,s0)
∆1t

and A2 = ∂f(t0,s0)
∆2s

. If we

assume f to be not dependent on t or on s, then we can see from (2.6) and (2.7)

that the condition (2.3) for one-variable functions is necessary along with condition

(2.4). Similarly we can see the necessity of condition (2.5) for two-variable functions

by considering analogues of the conditions (2.6) and (2.7) for three variable functions.

Definition 2.3. We say that a function f : T1 × T2 → R is σ1-completely delta

differentiable at a point (t0, s0) ∈ Tκ1×Tκ2 if it is completely delta differentiable at that

point in the sense of conditions (2.5) – (2.7) and moreover, along with the numbers

A1 and A2 presented in (2.5) – (2.7) there exists also a number B independent of

(t, s) ∈ T1 × T2 (but, generally, dependent on (t0, s0)) such that

(2.8) f(σ1(t0), σ2(s0))− f(t, s) = A1

[
σ1(t0)− t

]
+B

[
σ2(s0)− s

]
+ γ1

[
σ1(t0)− t

]
+ γ2

[
σ2(s0)− s

]
for all (t, s) ∈ V σ1(t0, s0), where V σ1(t0, s0) is a union of some neighbourhoods of

the points (t0, s0) and (σ1(t0), s0), and the functions γ1 = γ1(t0, s0; t, s) and γ2 =

γ2(t0, s0; s) are equal to zero for (t, s) = (t0, s0) and

lim
(t,s)→(t0,s0)

γ1(t0, s0; t, s) = 0 and lim
s→s0

γ2(t0, s0; s) = 0.

Note that in (2.8) the function γ2 depends only on the variable s. Setting t =

σ1(t0) in (2.8) yields (here it is essential that γ2 does not depend on t)

B =
∂f(σ1(t0), s0)

∆2s
.

Definition 2.4. We say that a function f : T1 × T2 → R is σ2-completely delta

differentiable at a point (t0, s0) ∈ Tκ1×Tκ2 if it is completely delta differentiable at that

point in the sense of conditions (2.5) – (2.7) and moreover, along with the numbers

A1 and A2 presented in (2.5) – (2.7) there exists also a number D independent of

(t, s) ∈ T1 × T2 (but, generally, dependent on (t0, s0)) such that

(2.9) f(σ1(t0), σ2(s0))− f(t, s) = D
[
σ1(t0)− t

]
+ A2

[
σ2(s0)− s

]
+ η1

[
σ1(t0)− t

]
+ η2

[
σ2(s0)− s

]
for all (t, s) ∈ V σ2(t0, s0), where V σ2(t0, s0) is a union of some neighbourhoods of

the points (t0, s0) and (t0, σ2(s0)), and the functions η1 = η1(t0, s0; t) and η2 =



PARTIAL DIFFERENTIATION ON TIME SCALES 357

η2(t0, s0; t, s) are equal to zero for (t, s) = (t0, s0) and

lim
t→t0

η1(t0, s0; t) = 0 and lim
(t,s)→(t0,s0)

η2(t0, s0; t, s) = 0.

Note that in (2.9) the function η1 depends only on the variable t. Setting s =

σ2(s0) in (2.9) yields

D =
∂f(t0, σ2(s0))

∆1t
.

Concluding this section, let us give two simple examples.

Example 2.5. Let T = [0, 1] ∪ {2}, where [0, 1] is the real number interval. Define

the function f : T→ R by f(t) = t2 for t ∈ [0, 1] and f(2) = 2. Then f∆(t) = 2t for

t ∈ [0, 1) and f∆(1) = 1. We see that f∆(1−) = 2 6= 1 = f∆(1), and therefore the

function f is not completely delta differentiable at the point t = 1. However, if we

set f(2) = 3, then we have f∆(1) = 2 and f becomes completely delta differentiable

at t = 1.

Example 2.6. Let T1 = [0, 1] ∪ {2} and T2 = [0, 1], where [0, 1] is the real number

interval. Define the function f : T1×T2 → R by f(t, s) = t2+s2 for (t, s) ∈ [0, 1]×[0, 1]

and f(2, s) = 3 +
√
s for s ∈ [0, 1]. Then we have

∂f(t, s)

∆1t
= 2t for (t, s) ∈ [0, 1)× [0, 1],

∂f(1, s)

∆1t
= 2 +

√
s− s2 for s ∈ [0, 1]

and

∂f(t, s)

∆2s
= 2s for (t, s) ∈ [0, 1]× [0, 1),

∂f(2, s)

∆2s
=

1

2
√
s

for s ∈ (0, 1).

This function f is completely delta differentiable at the point (1, 0), but it is not

σ1-completely delta differentiable at that point. However, if we set f(2, s) = 3 + s for

s ∈ [0, 1], say, then f becomes σ1-completely delta differentiable at the point (1, 0).

3. GEOMETRIC SENSE OF DIFFERENTIABILITY

First we consider the geometric sense of complete delta differentiability in the

case of single variable functions on time scales (see also [8]). Let T be a time scale

with the forward jump operator σ and the delta differentiation operator ∆. Consider

a real-valued continuous function

(3.1) u = f(t) for t ∈ T.

Let Γ be the “curve” represented by the function (3.1), that is, the set of points

{(t, f(t)) : t ∈ T} in the xy-plane. Let t0 be a fixed point in Tκ. Then P0 = (t0, f(t0))

is a point on Γ.

Definition 3.1. A line L0 passing through the point P0 is called the delta tangent

line to the curve Γ at the point P0 if
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(i) L0 passes also through the point P σ
0 = (σ(t0), f(σ(t0)));

(ii) if P0 is not an isolated point of the curve Γ, then

(3.2) lim
P→P0
P 6=P0

d(P,L0)

d(P, P0)
= 0,

where P is the moving point of the curve Γ, d(P,L0) is the distance from the

point P to the line L0, and d(P, P σ
0 ) is the distance from the point P to the

point P σ
0 .

Figure 3.1. T consists of two separate real number intervals. Accord-

ingly, the (time scale) curve Γ consists of two arcs of usual curves. In

order the curve Γ to have a delta tangent line L0 at the point P0, there

must exist the usual left-sided tangent line to Γ at P0 and, moreover,

that line must pass through the point P σ
0 .

6u
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Theorem 3.2. If the function f is completely delta differentiable at the point t0, then

the curve represented by this function has the uniquely determined delta tangent line

at the point P0 = (t0, f(t0)) specified by the equation

(3.3) y − f(t0) = f∆(t0)(x− t0),

where (x, y) is the current point of the line.

Proof. Let f be a completely delta differentiable function at a point t0 ∈ Tκ, Γ be the

curve represented by this function, and L0 be the line described by equation (3.3).

Let us show that L0 passes also through the point P σ
0 . Indeed, if σ(t0) = t0, then
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P σ
0 = P0 and the statement is true. Let now σ(t0) > t0. Substituting the coordinates

(σ(t0), f(σ(t0))) of the point P σ
0 into equation (3.3), we get

f(σ(t0))− f(t0) = f∆(t0)
[
σ(t0)− t0

]
,

which is obviously true by virtue of the continuity of f at t0. Now we check condition

(3.2). Assume that P0 is not an isolated point of the curve Γ (note that if P0 is an

isolated point of Γ, then from P → P0 we get P = P0 and the left-hand side of (3.2)

becomes meaningless). The variable point P ∈ Γ has the coordinates (t, f(t)). As

is known from analytic geometry, the distance of the point P from the line L0 with

equation (3.3) is expressed by the formula

d(P,L0) =
1

M

∣∣f(t)− f(t0)− f∆(t0)
(
t− t0

)∣∣ ,
where

M =

√
1 + [f∆(t0)]2.

Hence, by the differentiability condition (2.3) in which we have A = f∆(t0) due to

the other differentiability condition (2.4),

d(P,L0) =
1

M

∣∣α(t− t0)
∣∣ =

1

M
|α|
∣∣t− t0∣∣ .

Next,

d(P, P0) =

√
(t− t0)2 + [f(t)− f(t0)]2 ≥

∣∣t− t0∣∣ .
Therefore

d(P,L0)

d(P, P0)
≤ 1

M
|α| → 0 as P → P0.

Thus we have proved that the line specified by equation (3.3) is the delta tangent line

to Γ at the point P0.

Now we must show that there are no other delta tangent lines to Γ at the point

P0 distinct from L0. If P0 6= P σ
0 , then the delta tangent line (provided it exists) is

unique as it passes through the distinct points P0 and P σ
0 . Let now P0 = P σ

0 so that

P0 is nonisolated. Suppose that there is a delta tangent line L to Γ at the point P0

described by an equation

(3.4) a(x− t0)− b
[
y − f(t0)

]
= 0 with a2 + b2 = 1.

Let P = (t, f(t)) be a variable point on Γ. Using equation (3.4), we have

d(P,L) =
∣∣a (t− t0)− b [f(t)− f(t0)

]∣∣ .
Hence, by the differentiability condition (2.3) with A = f∆(t0), the latter being a

result of the condition (2.4),

d(P,L) =
∣∣a− b [f∆(t0) + α

]∣∣ ∣∣t− t0∣∣ .
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Next, by the same differentiability condition,

d(P, P0) =

√
(t− t0)2 + [f(t)− f(t0)]2

=

√
(t− t0)2 + [f∆(t0) + α]2 (t− t0)2

=

√
1 + [f∆(t0) + α]2

∣∣t− t0∣∣ .
So we have

d(P,L)

d(P, P0)
=

∣∣a− b [f∆(t0) + α
]∣∣√

1 + [f∆(t0) + α]2
.

Passing here to the limit as t → t0 and taking into account that the left-hand side

(by the definition of delta tangent line) and α tend to zero, we obtain

a− bf∆(t0) = 0.

We now see that b 6= 0 for if otherwise, we would have a = b = 0. Hence the line L
is described by equation (3.3).

Remark 3.3. If P0 is an isolated point of the curve Γ (hence P0 6= P σ
0 ), then there

exists a delta tangent line at the point P0 to the curve Γ that coincides with the

unique line through the points P0 and P σ
0 .

Remark 3.4. If P0 is not an isolated point of the curve Γ and if Γ has a delta tangent

line at the point P0, then the line PP0, where P ∈ Γ (and P 6= P0), approaches this

tangent line as P → P0. Conversely, if the line PP0 approaches as P → P0 some line

L0 passing through the point P σ
0 , then this limiting line is a delta tangent line at P0.

For the proof it is sufficient to note that if ϕ is the angle between the lines L0 and

PP0, then (see Figure 3.1)
d(P,L0)

d(P, P0)
= sinϕ.

Passing now to the two-variable case, let us consider the “surface” S represented

by a real-valued continuous function u = f(t, s) defined on T1×T2, that is, the set of

points {(t, s, f(t, s)) : (t, s) ∈ T1 × T2} in the xyz-space. Let (t0, s0) be a fixed point

in Tκ1 × Tκ2 .

Definition 3.5. A plane Ω0 passing through the point P0 = (t0, s0, f(t0, s0)) is called

the delta tangent plane to the surface S at the point P0 if

(i) Ω0 passes also through the points P σ1
0 = (σ1(t0), s0, f(σ1(t0), s0)) and P σ2

0 =

(t0, σ2(s0), f(t0, σ2(s0)));

(ii) if P0 is not an isolated point of the surface S, then

(3.5) lim
P→P0
P 6=P0

d(P,Ω0)

d(P, P0)
= 0,
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where P is the moving point of the surface S, d(P,Ω0) is the distance from the

point P to the plane Ω0, and d(P, P0) is the distance of the point P from the

point P0.

Figure 3.2. Each of T1 and T2 consists of a real number interval and

a separate point. Accordingly, the (time scale) surface S consists of

one piece of a usual surface, two arcs of usual curves and one separate

point. In order the surface S to have a delta tangent plane Ω0 at the

point P0, there must exist the usual “left-sided” tangent plane to S at

P0 and, moreover, that plane must pass through both points P σ1
0 and

P σ2
0 .
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Theorem 3.6. If the function f is completely delta differentiable at the point (t0, s0),

then the surface represented by this function has the uniquely determined delta tangent

plane at the point P0 = (t0, s0, f(t0, s0)) specified by the equation

(3.6) z − f(t0, s0) =
∂f(t0, s0)

∆1t
(x− t0) +

∂f(t0, s0)

∆2s
(y − s0),

where (x, y, z) is the current point of the plane.
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Proof. Let f be a completely delta differentiable function at a point (t0, s0) ∈ Tκ1×Tκ2 ,

S be the surface represented by this function, and Ω0 be the plane described by

equation (3.6). Let us show that Ω0 passes also through the point P σ1
0 . Indeed,

if σ1(t0) = t0, then P σ1
0 = P0 and the statement is true. Let now σ1(t0) > t0.

Substituting the coordinates (σ1(t0), s0, f(σ1(t0), s0)) of the point P σ1
0 into equation

(3.6), we get

f(σ1(t0), s0)− f(t0, s0) =
∂f(t0, s0)

∆1t

[
σ1(t0)− t0

]
,

which is obviously true due to the continuity of f at (t0, s0). Similarly we can see

that Ω0 passes also through the point P σ2
0 . Now we check (3.5). Assume that P0 is

not an isolated point of the surface S. The variable point P ∈ S has the coordinates

(t, s, f(t, s)). As is known from analytic geometry, the distance between P and Ω0

with equation (3.6) is expressed by the formula

d(P,Ω0) =
1

N

∣∣∣∣f(t, s)− f(t0, s0)− ∂f(t0, s0)

∆1t
(t− t0)− ∂f(t0, s0)

∆2s
(s− s0)

∣∣∣∣ ,
where

N =

√
1 +

[
∂f(t0, s0)

∆1t

]2

+

[
∂f(t0, s0)

∆2s

]2

.

Hence, by the differentiability condition (2.5) in which A1 = ∂f(t0,s0)
∆1t

and A2 = ∂f(t0,s0)
∆2s

due to the other differentiability conditions (2.6) and (2.7),

d(P,Ω0) =
1

N

∣∣α1(t− t0) + α2(s− s0)
∣∣

≤ 1

N

√
α2

1 + α2
2

√
(t− t0)2 + (s− s0)2.

Next,

d(P, P0) =

√
(t− t0)2 + (s− s0)2 + [f(t, s)− f(t0, s0)]2

≥
√

(t− t0)2 + (s− s0)2.

Therefore
d(P,Ω0)

d(P, P0)
≤ 1

N

√
α2

1 + α2
2 → 0 as P → P0.

Thus we have proved that the plane specified by equation (3.6) is the delta tangent

plane to S at the point P0.

Now we must show that there are no other delta tangent planes to S at the point

P0 distinct from Ω0. If σ1(t0) > t0 and σ2(s0) > s0 at the same time, the points P0,

P σ1
0 , and P σ2

0 are pairwise distinct. In this case the delta tangent plane (provided

it exists) is unique as it passes through the three distinct points P0, P σ1
0 , and P σ2

0 .

Further we have to consider the remaining possible cases. Suppose that there is a

delta tangent plane Ω to S at the point P0 described by an equation

(3.7) a(x− t0) + b(y − s0)− c
[
z − f(t0, s0)

]
= 0 with a2 + b2 + c2 = 1.
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Let P = (t, s, f(t, s)) be a variable point on S. Using equation (3.7), we have

d(P,Ω) =
∣∣a (t− t0)+ b(s− s0)− c

[
f(t, s)− f(t0, s0)

]∣∣ .
Hence, by the differentiability condition (2.6) in which A1 = ∂f(t0,s0)

∆1t
and A2 = ∂f(t0,s0)

∆2s
,

the latter being a result of the conditions (2.6) and (2.7),

d(P,Ω) =
∣∣[a− c(A1 + α1)] (t− t0) + [b− c(A2 + α2)] (s− s0)

∣∣ .
Next, by the same differentiability condition,

d(P, P0) =

√
(t− t0)2 + (s− s0)2 + [f(t, s)− f(t0, s0)]2

=

√
(t− t0)2 + (s− s0)2 + [(A1 + α1)(t− t0) + (A2 + α2)(s− s0)]2.

So we have

(3.8)
d(P,Ω)

d(P, P0)
=

|[a− c(A1 + α1)] (t− t0) + [b− c(A2 + α2)] (s− s0)|√
(t− t0)2 + (s− s0)2 + [(A1 + α1)(t− t0) + (A2 + α2)(s− s0)]2

.

Now we discuss the remaining possible cases.

(a) Let σ1(t0) = t0 and σ2(s0) = s0. By our assumption, the left-hand side of

(3.8) tends to zero as (t, s) → (t0, s0), that is, as P → P0. On putting s = s0 in

(3.8), dividing in the right-hand side the numerator and denominator by |t− t0|, and

passing then to the limit as t→ t0, we get

(3.9) a− cA1 = 0, that is, a− c∂f(t0, s0)

∆1t
= 0.

Similarly, putting t = t0 in (3.8), cancelling |s− s0|, and passing then to the limit as

s→ s0, we obtain

(3.10) b− cA2 = 0, that is, b− c∂f(t0, s0)

∆2s
= 0.

We see that c 6= 0 because, if otherwise, we would have a = b = c = 0. Hence the

plane Ω is described by equation (3.6).

(b) Let now σ1(t0) = t0 and σ2(s0) > s0. In this case we obtain (3.9) from (3.8)

as in case (a). However, now we can, in general, not get (3.10) from (3.8) as in case

(a) because the point s0 may be isolated in T2, and therefore for all points (t, s) in a

sufficiently small neighbourhood of (t0, s0) we may have s = s0 (and hence we cannot

divide by |s−s0| in order to pass then to the limit as s→ s0). We proceed as follows.

Since by definition of the delta tangent plane, the plane Ω must also pass through

the point P σ2
0 , we also have the equation

a(x− t0) + b
[
y − σ2(s0)

]
− c

[
z − f(t0, σ2(s0))

]
= 0

for the same plane Ω. Using this equation, we obtain

d(P,Ω) =
∣∣a(t− t0) + b

[
s− σ2(s0)

]
− c

[
f(t, s)− f(t0, σ2(s0))

]∣∣ .
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Hence, by the differentiability condition (2.7), we get

d(P,Ω) =
∣∣[a− c(A1 + β21)] (t− t0) + [b− c(A2 + β22)]

[
σ2(s0)− s

]∣∣ .
Therefore

d(P,Ω)

d(P, P0)
=

|[a− c(A1 + β21)] (t− t0) + [b− c(A2 + β22)] [σ2(s0)− s]|√
(t− t0)2 + (s− s0)2 + [(A1 + α1)(t− t0) + (A2 + α2)(s− s0)]2

.

Setting here s = s0 and taking into account (3.9) proved in the considered case, we

obtain

d(P,Ω)

d(P, P0)

∣∣∣∣
s=s0

=
|−cβ21(t− t0) + [b− c(A2 + β22)] [σ2(s0)− s0]|

|t− t0|
√

1 + (A1 + α1)2
.

Passing here to the limit as t→ t0, we see that

b− cA2 = 0, that is, b− c∂f(t0, s0)

∆2s
= 0

because, if otherwise, the right-hand side would tend to infinity. Further, the proof

is completed as in case (a).

(c) Finally, suppose σ1(t0) > t0 and σ2(s0) = s0. In this case the proof is

analogous to that in case (b) and uses the equation (Ω also passes through P σ1
0 )

a
[
x− σ1(t0)

]
+ b(y − s0)− c

[
z − f(σ1(t0), s0)

]
= 0

and the differentiability condition (2.6).

Remark 3.7. If P σ1
0 6= P0 and P σ2

0 6= P0 (hence also P σ1
0 6= P σ2

0 ) at the same time

and if there is a delta tangent plane at the point P0 to the surface S, then it coincides

with the unique plane through the three points P0, P σ1
0 , and P σ2

0 .

4. MEAN VALUE THEOREMS

First we present mean value results in the single variable case (see [7] or [6,

Chapter 1]) that will be used to obtain mean value results in the multivariable case.

They will also be used below in Sections 5, 6, and 9.

Let T be a time scale and a, b ∈ T with a < b. Further, let f : T → R be a

function. Below all intervals are time scales intervals.

Theorem 4.1. Suppose that f is continuous on [a, b] and has a delta derivative at

each point of [a, b). If f(a) = f(b), then there exist points ξ, ξ′ ∈ [a, b) such that

f∆(ξ′) ≤ 0 ≤ f∆(ξ).

Proof. Since the function f is continuous on the compact set [a, b], f assumes its

minimum m and its maximum M . Therefore there exist ξ, ξ′ ∈ [a, b] such that

m = f(ξ) and M = f(ξ′). Since f(a) = f(b), we may assume that ξ, ξ′ ∈ [a, b). It is

not difficult to see that f∆(ξ′) ≤ 0 and f∆(ξ) ≥ 0.
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Theorem 4.2 (Mean Value Theorem). Suppose that f is a continuous function on

[a, b] and has a delta derivative at each point of [a, b). Then there exist ξ, ξ′ ∈ [a, b)

such that

(4.1) f∆(ξ′)(b− a) ≤ f(b)− f(a) ≤ f∆(ξ)(b− a).

Proof. Consider the function ϕ defined on [a, b] by

ϕ(t) = f(t)− f(a)− f(b)− f(a)

b− a
(t− a).

Clearly ϕ is continuous on [a, b] and has a delta derivative at each point of [a, b). Also

ϕ(a) = ϕ(b) = 0. Therefore by Theorem 4.1 there exist ξ, ξ′ ∈ [a, b) such that

ϕ∆(ξ′) ≤ 0 ≤ ϕ∆(ξ).

Hence, taking into account that

ϕ∆(t) = f∆(t)− f(b)− f(a)

b− a
,

we arrive at the statement of the theorem.

Corollary 4.3. Let f be a continuous function on [a, b] that has a delta derivative

at each point of [a, b). If f∆(t) = 0 for all t ∈ [a, b), then f is a constant function on

[a, b].

Corollary 4.4. Let f be a continuous function on [a, b] that has a delta derivative

at each point of [a, b). Then f is increasing, decreasing, nondecreasing, and nonin-

creasing on [a, b] if f∆(t) > 0, f∆(t) < 0, f∆(t) ≥ 0, and f∆(t) ≤ 0 for all t ∈ [a, b),

respectively.

Above in Theorem 4.2 we assumed that a < b. We can remove that restriction

as follows. If a = b, then we may assume that (4.1) is true as all three parts of the

inequalities (4.1) become zero in this case independent of ξ and ξ′. Further, we always

can rewrite (4.1), multiplying it by −1, in the form

f∆(ξ)(a− b) ≤ f(a)− f(b) ≤ f∆(ξ′)(a− b).

These considerations allow us to state the following result.

Theorem 4.5. Let a and b be two arbitrary points in T and let us set α = min{a, b}
and β = max{a, b}. Let, further, f be a continuous function on [α, β] that has a delta

derivative at each point of [α, β). Then there exist ξ, ξ′ ∈ [α, β) such that

f∆(ξ′)(a− b) ≤ f(a)− f(b) ≤ f∆(ξ)(a− b).

Passing now to the two-variable case, we consider functions f : T1 × T2 → R of

the variables (t, s) ∈ T1 × T2.
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Theorem 4.6 (Mean Value Theorem). Let (a1, a2) and (b1, b2) be any two points in

T1 × T2 and let us set

αi = min{ai, bi} and βi = max{ai, bi} for i ∈ {1, 2}.

Let, further, f be a continuous function on [α1, β1] × [α2, β2] ⊂ T1 × T2 that has

first order partial delta derivatives ∂f(t,a2)
∆1t

for each t ∈ [α1, β1) and ∂f(b1,s)
∆2s

for each

s ∈ [α2, β2). Then there exist ξ, ξ′ ∈ [α1, β1) and η, η′ ∈ [α2, β2) such that

(4.2)
∂f(ξ′, a2)

∆1t
(a1 − b1) +

∂f(b1, η
′)

∆2s
(a2 − b2) ≤ f(a1, a2)− f(b1, b2)

≤ ∂f(ξ, a2)

∆1t
(a1 − b1) +

∂f(b1, η)

∆2s
(a2 − b2).

Also, if f has first order partial derivatives ∂f(t,b2)
∆1t

for each t ∈ [α1, β1) and ∂f(a1,s)
∆2s

for each s ∈ [α2, β2), then there exist τ, τ ′ ∈ [α1, β1) and θ, θ′ ∈ [α2, β2) such that

(4.3)
∂f(τ ′, b2)

∆1t
(a1 − b1) +

∂f(b1, θ
′)

∆2s
(a2 − b2) ≤ f(a1, a2)− f(b1, b2)

≤ ∂f(τ, b2)

∆1t
(a1 − b1) +

∂f(a1, θ)

∆2s
(a2 − b2).

Proof. To prove (4.2) we consider the difference

(4.4) f(a1, a2)− f(b1, b2) = [f(a1, a2)− f(b1, a2)] + [f(b1, a2)− f(b1, b2)] .

By Theorem 4.5 there exist ξ, ξ′ ∈ [α1, β1) and η, η′ ∈ [α2, β2) such that

∂f(ξ′, a2)

∆1t
(a1 − b1) ≤ f(a1, a2)− f(b1, a2) ≤ ∂f(ξ, a2)

∆1t
(a1 − b1)

and
∂f(b1, η

′)

∆2s
(a2 − b2) ≤ f(b1, a2)− f(b1, b2) ≤ ∂f(b1, η)

∆2s
(a2 − b2).

Adding these inequalities side by side and taking into account (4.4), we obtain (4.2).

Using the relation

f(a1, a2)− f(b1, b2) = [f(a1, b2)− f(b1, b2)] + [f(a1, a2)− f(a1, b2)] ,

the inequalities (4.3) can be proved similarly.

From Theorem 4.6 we get the following corollary.

Corollary 4.7. Let f be a continuous function on T1×T2 that has first order partial

derivatives ∂f(t,s)
∆1t

and ∂f(t,s)
∆2s

for (t, s) ∈ Tκ1 × T2 and (t, s) ∈ T1 × Tκ2 , respectively. If

these derivatives are identically zero, then f is a constant function on T1 × T2.

Note that the statement of Corollary 4.7 can be obtained also from Corollary 4.3.
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5. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

The existence of all partial delta derivatives (even in the single variable time

scales case) is in general not sufficient for the completely delta differentiability. The

next theorem gives sufficient conditions for the completely delta differentiability.

Theorem 5.1. Let a function f : T1 × T2 → R be continuous and have first order

partial delta derivatives ∂f(t,s)
∆1t

and ∂f(t,s)
∆2s

in some δ-neighbourhood Uδ(t
0, s0) of the

point (t0, s0) ∈ Tκ1 × Tκ2 . If these derivatives are continuous at the point (t0, s0), then

f is completely delta differentiable at (t0, s0).

Proof. For better clearness of the proof we first consider the single variable case. So,

let f : T→ R be a function that has a delta derivative f∆(t) in some δ-neighbourhood

Uδ(t
0) of the point t0 ∈ Tκ (note that, in contrast to the multivariable case, in the

single variable case existence of the derivative at a point implies continuity of the

function at that point). The relation (2.4) with A = f∆(t0) follows immediately from

the definition of the delta derivative

(5.1) f(σ(t0))− f(t) = f∆(t0)
[
σ(t0)− t

]
+ β

[
σ(t0)− t

]
,

where β = β(t0, t) and β → 0 as t → t0. In order to prove (2.3), we consider all

possible cases separately.

(i) If the point t0 is isolated in T, then (2.3) is satisfied independent of A and α, since

in this case Uδ(t
0) consists of the single point t0 for sufficiently small δ > 0.

(ii) Let t0 be right-dense. Regardless whether t0 is left-scattered or left-dense, we

have in this case σ(t0) = t0 and (5.1) coincides with (2.3).

(iii) Finally, let t0 be left-dense and right-scattered. Then for sufficiently small δ > 0,

any point t ∈ Uδ(t0) \ {t0} must satisfy t < t0. Applying Theorem 4.5, we obtain

f∆(ξ′)(t0 − t) ≤ f(t0)− f(t) ≤ f∆(ξ)(t0 − t),

where ξ, ξ′ ∈ [t, t0). Since ξ → t0 and ξ′ → t0 as t → t0, we get from the latter

inequalities by the assumed continuity of the delta derivative

lim
t→t0

f(t0)− f(t)

t0 − t
= f∆(t0).

Therefore

f(t0)− f(t)

t0 − t
= f∆(t0) + α,

where α = α(t0, t) and α → 0 as t → t0. Consequently, in the considered case we

obtain (2.3) with A = f∆(t0) as well.
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Now we consider the two-variable case as it is stated in the theorem. To prove

(2.5), we take the difference

(5.2) f(t0, s0)− f(t, s) =
[
f(t0, s0)− f(t, s0)

]
+
[
f(t, s0)− f(t, s)

]
.

By the one-variable case considered above, we have

(5.3) f(t0, s0)− f(t, s0) =
∂f(t0, s0)

∆1t
(t0 − t) + α1(t0 − t) for (t, s0) ∈ Uδ(t0, s0),

where α1 = α1(t0, s0; t) and α1 → 0 as t → t0. Further, applying the one-variable

mean value result, Theorem 4.5, for fixed t and variable s, we have

(5.4)
∂f(t, ξ′)

∆2s
(s0 − s) ≤ f(t, s0)− f(t, s) ≤ ∂f(t, ξ)

∆2s
(s0 − s),

where ξ, ξ′ ∈ [α, β) and α = min{s0, s}, β = max{s0, s}. Since ξ → s0 and ξ′ → s0 as

s→ s0, by the assumed continuity of the partial delta derivatives at (t0, s0) we have

lim
(t,s)→(t0,s0)

∂f(t, ξ′)

∆2s
= lim

(t,s)→(t0,s0)

∂f(t, ξ)

∆2s
=
∂f(t0, s0)

∆2s
.

Therefore from (5.4) we obtain

(5.5) f(t, s0)− f(t, s) =
∂f(t0, s0)

∆2s
(s0 − s) + α2(s0 − s),

where α2 = α2(t0, s0; t, s) and α2 → 0 as (t, s)→ (t0, s0). Substituting (5.3) and (5.5)

in (5.2), we get a relation of the form (2.5) with A1 = ∂f(t0,s0)
∆1t

and A2 = ∂f(t0,s0)
∆2s

. To

prove (2.6) we take the difference

(5.6) f(σ1(t0), s0)− f(t, s) =
[
f(σ1(t0), s0)− f(t, s0)

]
+
[
f(t, s0)− f(t, s)

]
.

By the definition of the partial delta derivative we have

(5.7) f(σ1(t0), s0)− f(t, s0) =
∂f(t0, s0)

∆1t

[
σ1(t0)− t

]
+ β11

[
σ1(t0)− t

]
,

where β11 = β11(t0, s0; t) and β11 → 0 as t → t0. Now substituting (5.7) and (5.5)

into (5.6), we obtain a relation of the form (2.6) with A1 = ∂f(t0,s0)
∆1t

and A2 = ∂f(t0,s0)
∆2s

.

The equality (2.7) can be proved similarly by considering the difference

f(t0, σ2(s0))− f(t, s) =
[
f(t0, s)− f(t, s)

]
+
[
f(t0, σ2(s0))− f(t0, s)

]
.

The proof is complete.

The next theorem presents sufficient conditions for σ1-completely delta differen-

tiability.

Theorem 5.2. Let f : T1 × T2 → R be a continuous function that has the par-

tial derivatives ∂f(t,s)
∆1t

and ∂f(t,s)
∆2s

in a union of some neighbourhoods of the points

(t0, s0) ∈ Tκ1 × Tκ2 and (σ1(t0), s0). If these derivatives are continuous at the point

(t0, s0) and, moreover, ∂f(σ1(t0),s)
∆2s

is continuous at s = s0, then f is σ1-completely delta

differentiable at (t0, s0).
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Proof. It follows from Theorem 5.1 that f is completely delta differentiable at (t0, s0).

It remains to prove (2.8). To this end consider the difference

(5.8) f(σ1(t0), σ2(s0))− f(t, s) =
[
f(σ1(t0), s)− f(t, s)

]
+
[
f(σ1(t0), σ2(s0))− f(σ1(t0), s)

]
.

Applying the one-variable mean value theorem, Theorem 4.5, for fixed s and variable

t, we have

∂f(ξ′, s)

∆1t

[
σ1(t0)− t

]
≤ f(σ1(t0), s)− f(t, s) ≤ ∂f(ξ, s)

∆1t

[
σ1(t0)− t

]
,

where ξ, ξ′ ∈ [α, β) and α = min{σ1(t0), t}, β = max{σ1(t0), t}. Hence, since ξ → t0

and ξ′ → t0 as t→ t0, by the assumed continuity of the partial delta derivative ∂f(t,s)
∆1t

at (t0, s0), we obtain

(5.9) f(σ1(t0), s)− f(t, s) =
∂f(t0, s0)

∆1t

[
σ1(t0)− t

]
+ γ1

[
σ1(t0)− t

]
,

where γ1 = γ1(t0, s0; t, s) and γ1 → 0 as (t, s)→ (t0, s0). Further, by the definition of

the partial delta derivative, we have

(5.10) f(σ1(t0), σ2(s0))− f(σ1(t0), s) =
∂f(σ1(t0), s)

∆2s

[
σ2(s0)− s

]
+ γ2

[
σ2(s0)− s

]
,

where γ2 = γ2(t0, s0; s) and γ2 → 0 as s→ s0. Now substituting (5.9) and (5.10) into

(5.8) and taking into account the continuity of ∂f(σ1(t0),s)
∆2s

at s = s0, we get a relation

of the form (2.8) with A1 = ∂f(t0,s0)
∆1t

and B = ∂f(σ1(t0),s0)
∆2s

.

The next theorem can be proved similarly as Theorem 5.2 by considering the

difference

f(σ1(t0), σ2(s0))−f(t, s) =
[
f(σ1(t0), σ2(s0))− f(t, σ2(s0))

]
+
[
f(t, σ2(s0))− f(t, s)

]
.

Theorem 5.3. Let f : T1 × T2 → R be a continuous function that has the partial

derivatives ∂f(t,s)
∆1t

and ∂f(t,s)
∆2s

in a union of some neighbourhoods of the points (t0, s0) ∈
T
κ
1 ×Tκ2 and (t0, σ2(s0)). If these derivatives are continuous at the point (t0, s0), and,

moreover, ∂f(t,σ2(s0))
∆1t

is continuous at t = t0, then f is σ2-completely delta differentiable

at (t0, s0).

6. EQUALITY OF MIXED PARTIAL DERIVATIVES

The next theorem gives us a sufficient condition for the independence of mixed

partial delta derivatives of the order of differentiation.
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Theorem 6.1. Let a function f : T1×T2 → R have the mixed partial delta derivatives
∂2f(t,s)
∆1t∆2s

and ∂2f(t,s)
∆2s∆1t

in some neighbourhood of the point (t0, s0) ∈ Tκ1 × Tκ2 . If these

derivatives are continuous at the point (t0, s0), then

∂2f(t0, s0)

∆1t∆2s
=
∂2f(t0, s0)

∆2s∆1t
.

Proof. Consider the function

Φ(t, s) = f(σ1(t0), σ2(s0))− f(σ1(t0), s)− f(t, σ2(s0)) + f(t, s),

where (t, s) ∈ T1 × T2. Setting

ϕ(t) = f(t, σ2(s0))− f(t, s),

we can write

Φ(t, s) = ϕ(σ1(t0))− ϕ(t).

Therefore, applying the mean value theorem, Theorem 4.5, we have

ϕ∆1(ξ′)
[
σ1(t0)− t

]
≤ Φ(t, s) ≤ ϕ∆1(ξ)

[
σ1(t0)− t

]
,

where ξ, ξ′ ∈ [α, β) and α = min{t, σ1(t0)}, β = max{t, σ1(t0)}. That is,[
∂f(ξ′, σ2(s0))

∆1t
− ∂f(ξ′, s)

∆1t

] [
σ1(t0)− t

]
≤ Φ(t, s)

≤
[
∂f(ξ, σ2(s0))

∆1t
− ∂f(ξ, s)

∆1t

] [
σ1(t0)− t

]
.

Hence

∂f(ξ′, σ2(s0))

∆1t
− ∂f(ξ′, s)

∆1t
≤ Φ(t, s)

σ1(t0)− t
≤ ∂f(ξ, σ2(s0))

∆1t
− ∂f(ξ, s)

∆1t
if t < σ1(t0)

and

∂f(ξ, σ2(s0))

∆1t
− ∂f(ξ, s)

∆1t
≤ Φ(t, s)

σ1(t0)− t
≤ ∂f(ξ′, σ2(s0))

∆1t
− ∂f(ξ′, s)

∆1t
if t > σ1(t0).

Further, again by the same mean value result, Theorem 4.5, there exist η, η′ and θ, θ′

in the interval [γ, δ), where γ = min{s, σ2(s0)}, δ = max{s, σ2(s0)}, such that

∂2f(ξ, η′)

∆2s∆1t

[
σ2(s0)− s

]
≤ ∂f(ξ, σ2(s0))

∆1t
− ∂f(ξ, s)

∆1t
≤ ∂2f(ξ, η)

∆2s∆1t

[
σ2(s0)− s

]
and

∂2f(ξ′, θ′)

∆2s∆1t

[
σ2(s0)− s

]
≤ ∂f(ξ′, σ2(s0))

∆1t
− ∂f(ξ′, s)

∆1t
≤ ∂2f(ξ′, θ)

∆2s∆1t

[
σ2(s0)− s

]
.

From the above four inequalities, by the assumed continuity of ∂2f(t,s)
∆2s∆1t

, we conclude

that

(6.1) lim
(t,s)→(t0,s0)

t6=σ1(t0), s 6=σ2(s0)

Φ(t, s)

[σ1(t0)− t] [σ2(s0)− s]
=
∂2f(t0, s0)

∆2s∆1t
.
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Similarly, using the expression of Φ(t, s) in the form

Φ(t, s) = ψ(σ2(s0))− ψ(s), where ψ(s) = f(σ1(t0), s)− f(t, s),

and the continuity of ∂2f(t,s)
∆1t∆2s

, we can prove the equality

(6.2) lim
(t,s)→(t0,s0)

t6=σ1(t0), s 6=σ2(s0)

Φ(t, s)

[σ1(t0)− t] [σ2(s0)− s]
=
∂2f(t0, s0)

∆1t∆2s
.

Now, the left-hand sides of (6.1) and (6.2) are the same. Consequently, their right-

hand sides must be equal to each other. This completes the proof.

7. THE CHAIN RULE

The chain rule for one-variable functions on time scales has been presented in [1]

and [5, Chapter 1]. To get an extension to two-variable functions on time scales

we start with a time scale T. Denote its forward jump operator by σ and its delta

differentiation operator by ∆. Let, further, two functions

ϕ : T→ R and ψ : T→ R

be given. Let us set

ϕ(T) = T1 and ψ(T) = T2.

We will assume that T1 and T2 are time scales. Denote by σ1, ∆1 and σ2, ∆2 the

forward jump operators and delta operators for T1 and T2, respectively. Take a point

ξ0 ∈ Tκ and put

t0 = ϕ(ξ0) and s0 = ψ(ξ0).

We will also assume that

(7.1) ϕ(σ(ξ0)) = σ1(ϕ(ξ0)) and ψ(σ(ξ0)) = σ2(ψ(ξ0)).

Under the above assumptions let a function f : T1 × T2 → R be given.

Theorem 7.1. Let the function f be σ1-completely delta differentiable at the point

(t0, s0). If the functions ϕ and ψ have delta derivatives at the point ξ0, then the

composite function

(7.2) F (ξ) = f(ϕ(ξ), ψ(ξ)) for ξ ∈ T

has a delta derivative at that point which is expressed by the formula

(7.3) F∆(ξ0) =
∂f(t0, s0)

∆1t
ϕ∆(ξ0) +

∂f(σ1(t0), s0)

∆2s
ψ∆(ξ0).



372 MARTIN BOHNER AND GUSEIN SH. GUSEINOV

Proof. Using (7.1) and (2.8) with A1 = ∂f(t0,s0)
∆1t

and B = ∂f(σ1(t0),s0)
∆2s

, we have

F (σ(ξ0))− F (ξ) = f(ϕ(σ(ξ0)), ψ(σ(ξ0)))− f(ϕ(ξ), ψ(ξ))

= f(σ1(ϕ(ξ0)), σ2(ψ(ξ0)))− f(ϕ(ξ), ψ(ξ))

=
∂f(ϕ(ξ0), ψ(ξ0))

∆1t

[
σ1(ϕ(ξ0))− ϕ(ξ)

]
+
∂f(σ1(ϕ(ξ0)), ψ(ξ0))

∆2s

[
σ2(ψ(ξ0))− ψ(ξ)

]
+γ1

[
σ1(ϕ(ξ0))− ϕ(ξ)

]
+ γ2

[
σ2(ψ(ξ0))− ψ(ξ)

]
=

∂f(t0, s0)

∆1t

[
ϕ(σ(ξ0))− ϕ(ξ)

]
+
∂f(σ1(t0), s0)

∆2s

[
ψ(σ(ξ0))− ψ(ξ)

]
+γ1

[
ϕ(σ(ξ0))− ϕ(ξ)

]
+ γ2

[
ψ(σ(ξ0))− ψ(ξ)

]
.

Dividing both sides of this equality by σ(ξ0) − ξ and passing then to the limit as

ξ → ξ0, we get the formula (7.3) because ξ → ξ0 implies γ1 → 0 and γ2 → 0.

The next theorem can be proved similarly to Theorem 7.1 by using (2.9).

Theorem 7.2. Let the function f be σ2-completely delta differentiable at the point

(t0, s0). If the functions ϕ and ψ have delta derivatives at the point ξ0, then the com-

posite function F defined by (7.2) has the delta derivative F∆(ξ0) which is expressed

by the formula

F∆(ξ0) =
∂f(t0, σ2(s0))

∆1t
ϕ∆(ξ0) +

∂f(t0, s0)

∆2s
ψ∆(ξ0).

Remark 7.3. One or both of the functions ϕ and ψ may be constant. In that case

one or both of T1 and T2 will be a single point time scale. For a single point time

scale T1 = {t1} we assume that σ1(t1) = t1 and for each function g : T1 → R we

assume that g∆1(t1) = 0.

Let now two time scales T(1) and T(2) be given. Denote their forward jump

operators and delta differentiation operators by σ(1), ∆(1) and σ(2), ∆(2), respectively.

Let, further, two functions

ϕ : T(1) × T(2) → R and ψ : T(1) × T(2) → R

of two variables (ξ, η) ∈ T(1) × T(2), and a fixed point (ξ0, η0) ∈ Tκ(1) × Tκ(2) be given.

Let us set

T1 = T1(η0) = ϕ(T(1), η
0) and T2 = T2(ξ0) = ψ(ξ0,T(2))

and

t0 = ϕ(ξ0, η0) and s0 = ψ(ξ0, η0).

We will assume that T1 and T2 are time scales. Denote their forward jump operators

and delta differentiation operators by σ1, ∆1 and σ2, ∆2, respectively. We will also

assume

(7.4) ϕ(σ(1)(ξ
0), η0) = σ1(ϕ(ξ0, η0)), ψ(σ(1)(ξ

0), η0) = σ2(ψ(ξ0, η0))
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and

(7.5) ϕ(ξ0, σ(2)(η
0)) = σ1(ϕ(ξ0, η0)), ψ(ξ0, σ(2)(η

0)) = σ2(ψ(ξ0, η0)).

Under the above conditions let a function f : T1 × T2 → R of two variables (t, s) ∈
T1 × T2 be given.

Theorem 7.4. Let the function f be σ1-completely delta differentiable at the point

(t0, s0). If the functions ϕ and ψ have first order partial delta derivatives at the point

(ξ0, η0), then the composite function

(7.6) F (ξ, η) = f(ϕ(ξ, η), ψ(ξ, η)) for (ξ, η) ∈ T(1) × T(2)

has first order partial delta derivatives at (ξ0, η0) which are expressed by the formulas

(7.7)
∂F (ξ0, η0)

∆(1)ξ
=
∂f(t0, s0)

∆1t

∂ϕ(ξ0, η0)

∆(1)ξ
+
∂f(σ1(t0), s0)

∆2s

∂ψ(ξ0, η0)

∆(1)ξ

and

(7.8)
∂F (ξ0, η0)

∆(2)η
=
∂f(t0, s0)

∆1t

∂ϕ(ξ0, η0)

∆(2)η
+
∂f(σ1(t0), s0)

∆2s

∂ψ(ξ0, η0)

∆(2)η
.

Proof. Using (7.4) and (2.8) with A1 = ∂f(t0,s0)
∆1t

and B = ∂f(σ1(t0),s0)
∆2s

, we have

F (σ(1)(ξ
0), η0)− F (ξ, η0) = f(ϕ(σ(1)(ξ

0), η0), ψ(σ(1)(ξ
0), η0))− f(ϕ(ξ, η0), ψ(ξ, η0))

= f(σ1(ϕ(ξ0, η0)), σ2(ψ(ξ0, η0)))− f(ϕ(ξ, η0), ψ(ξ, η0))

=
∂f(ϕ(ξ0, η0), ψ(ξ0, η0))

∆1t

[
σ1(ϕ(ξ0, η0))− ϕ(ξ, η0)

]
+
∂f(σ1(ϕ(ξ0, η0)), ψ(ξ0, η0))

∆2s

[
σ2(ψ(ξ0, η0))− ψ(ξ, η0)

]
+γ1

[
σ1(ϕ(ξ0, η0))− ϕ(ξ, η0)

]
+ γ2

[
σ2(ψ(ξ0, η0))− ψ(ξ, η0)

]
=

∂f(t0, s0)

∆1t

[
ϕ(σ(1)(ξ

0), η0)− ϕ(ξ, η0)
]

+
∂f(σ1(t0), s0)

∆2s

[
ψ(σ(1)(ξ

0), η0)− ψ(ξ, η0)
]

+γ1

[
ϕ(σ(1)(ξ

0), η0)− ϕ(ξ, η0)
]

+ γ2

[
ψ(σ(1)(ξ

0), η0)− ψ(ξ, η0)
]
.

On dividing both sides of this equality by σ(1)(ξ
0) − ξ and passing to the limit as

ξ → ξ0, we get the formula (7.7) because ξ → ξ0 implies γ1 → 0 and γ2 → 0.
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Similarly, using (7.5) and (2.8), we obtain

F (ξ0, σ(2)(η
0))− F (ξ0, η)

= f(ϕ(ξ0, σ(2)(η
0)), ψ(ξ0, σ(2)(η

0)))− f(ϕ(ξ0, η), ψ(ξ0, η))

= f(σ1(ϕ(ξ0, η0)), σ2(ψ(ξ0, η0)))− f(ϕ(ξ0, η), ψ(ξ0, η))

=
∂f(ϕ(ξ0, η0), ψ(ξ0, η0))

∆1t

[
σ1(ϕ(ξ0, η0))− ϕ(ξ0, η)

]
+
∂f(σ1(ϕ(ξ0, η0)), ψ(ξ0, η0))

∆2s

[
σ2(ψ(ξ0, η0))− ψ(ξ0, η)

]
+γ1

[
σ1(ϕ(ξ0, η0))− ϕ(ξ0, η)

]
+ γ2

[
σ2(ψ(ξ0, η0))− ψ(ξ0, η)

]
=

∂f(t0, s0)

∆1t

[
ϕ(ξ0, σ(2)(η

0))− ϕ(ξ0, η)
]

+
∂f(σ1(t0), s0)

∆2s

[
ψ(ξ0, σ(2)(η

0))− ψ(ξ0, η)
]

+γ1

[
ϕ(ξ0, σ(2)(η

0))− ϕ(ξ0, η)
]

+ γ2

[
ψ(ξ0, σ(2)(η

0))− ψ(ξ0, η)
]
.

On dividing both sides of this equality by σ(2)(η
0) − η and passing to the limit as

η → η0, we get the formula (7.8) because η → η0 implies γ1 → 0 and γ2 → 0. The

theorem is proved.

The next theorem can be proved in a similar way by using (7.4), (7.5), and (2.9).

Theorem 7.5. Let the function f be σ2-completely delta differentiable at the point

(t0, s0). If the functions ϕ and ψ have first order partial delta derivatives at the point

(ξ0, η0), then the composite function F (ξ, η) defined by (7.6) has first order partial

delta derivatives at (ξ0, η0) which are expressed by the formulas

∂F (ξ0, η0)

∆(1)ξ
=
∂f(t0, σ2(s0))

∆1t

∂ϕ(ξ0, η0)

∆(1)ξ
+
∂f(t0, s0)

∆2s

∂ψ(ξ0, η0)

∆(1)ξ

and
∂F (ξ0, η0)

∆(2)η
=
∂f(t0, σ2(s0))

∆1t

∂ϕ(ξ0, η0)

∆(2)η
+
∂f(t0, s0)

∆2s

∂ψ(ξ0, η0)

∆(2)η
.

8. THE DIRECTIONAL DERIVATIVE

Let T be a time scale with the forward jump operator σ and the delta operator

∆. We will assume that 0 ∈ T. Further, let ω =
(
ω1

ω2

)
∈ R2 be a unit vector and let

(t0, s0) be a fixed point in R2. Let us set

T1 =
{
t = t0 + ξω1 : ξ ∈ T

}
and T2 =

{
s = s0 + ξω2 : ξ ∈ T

}
.

Then T1 and T2 are time scales and t0 ∈ T1, s0 ∈ T2. Denote the forward jump

operators of T1 and T2 by σ1 and σ2, the delta operators by ∆1 and ∆2, respectively.
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Definition 8.1. Let a function f : T1 × T2 → R be given. The directional delta

derivative of the function f at the point (t0, s0) in the direction of the vector ω (along

ω) is defined as the number

(8.1)
∂f(t0, s0)

∆ω
= F∆(0),

provided it exists, where

(8.2) F (ξ) = f(t0 + ξω1, s
0 + ξω2) for ξ ∈ T.

Theorem 8.2. Suppose that the function f is σ1-completely delta differentiable at

the point (t0, s0). Then the directional delta derivative of f at (t0, s0) in the direction

of the vector ω exists and is expressed by the formula

(8.3)
∂f(t0, s0)

∆ω
=
∂f(t0, s0)

∆1t
ω1 +

∂f(σ1(t0), s0)

∆2s
ω2.

Proof. The proof is obtained from the definitions (8.1) and (8.2) by applying Theorem

7.1.

The next theorem follows similarly by applying Theorem 7.2.

Theorem 8.3. Suppose that the function f is σ2-completely delta differentiable at

the point (t0, s0). Then the directional delta derivative of f at (t0, s0) in the direction

of the vector ω exists and is expressed by the formula

∂f(t0, s0)

∆ω
=
∂f(t0, σ2(s0))

∆1t
ω1 +

∂f(t0, s0)

∆2s
ω2.

Remark 8.4. For ω1 = 1 and ω2 = 0, (8.3) coincides with ∂f(t0,s0)
∆1t

, while for ω1 = 0

and ω2 = 1 it coincides with ∂f(t0,s0)
∆2s

because then T1 = {t0} and hence σ1(t0) = t0

(see Remark 7.3).

9. IMPLICIT FUNCTIONS

Let T be a time scale with the forward jump operator σ and the delta differenti-

ation ∆. Take an arbitrary real-valued function f defined on T×R and consider the

equation

(9.1) f(t, y) = 0 for (t, y) ∈ T× R.

Let M denote the set of all points (t, y) ∈ T× R for which equation (9.1) is fulfilled

and let (t0, y0) be a point belonging to this set, that is, f(t0, y0) = 0.

If no additional conditions are imposed on the function f , then the set M can

be of an arbitrary structure. We also often encounter the case when, at least in a

sufficiently small neighbourhood of (t0, y0), the set M is a “curve” described by a

continuous (single-valued) function

(9.2) y = ψ(t).
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The problem is to decide whether the equation (9.1) determines y as a function of t.

If so, we have (9.2) for some function ψ. We say that ψ is defined “implicitly” by

(9.1). The implicit function theorems give a description of conditions under which

there exists the function ψ as well as some conclusions about this function.

Theorem 9.1. Let an equation (9.1) satisfy the following conditions:

(i) The function f is defined in a neigbourhood U of the point (t0, y0) ∈ Tκ×R and

is continuous in U together with its partial derivatives ∂f(t,y)
∆t

and ∂f(t,y)
∂y

;

(ii) f(t0, y0) = 0;

(iii) ∂f(t0,y0)
∂y

6= 0.

Then the following statements are true:

(a) There is a “rectangle” (a neighbourhood of the point (t0, y0) in T× R)

(9.3) N =
{

(t, y) ∈ T× R : |t− t0| < δ, |y − y0| < δ′
}

belonging to U such that the set M∩N is described by a (uniquely determined)

single-valued function

(9.4) y = ψ(t) for t ∈ N 0,

where

M = {(t, y) ∈ T× R : f(t, y) = 0} and N 0 =
{
t ∈ T : |t− t0| < δ

}
;

(b) y0 = ψ(t0);

(c) the function ψ(t) is continuous in N 0;

(d) the function ψ(t) has a delta derivative ψ∆(t) on N 0.

Proof. Without loss of generality we can suppose that U is an open rectangle of the

form

U =
{

(t, y) ∈ T× R : |t− t0| < a, |y − y0| < b
}
,

and also for the definiteness we can suppose that ∂f(t0,y0)
∂y

> 0. From the continuity

of ∂f(t,y)
∂y

on U we then also have

(9.5)
∂f(t, y)

∂y
> 0

in a small neighbourhood U1 ⊂ U of the point (t0, y0) of the form

U1 =
{

(t, y) ∈ T× R : |t− t0| < a1, |y − y0| < b1

}
.

Then the function f(t0, y) of the single variable y is continuous on the closed interval

[y0−b1, y
0 +b1], is strictly increasing on that interval, and turns into zero at the point

y = y0 (f(t0, y0) = 0). It follows that

f(t0, y0 − b1) < 0 and f(t0, y0 + b1) > 0
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and, by the continuity of f , there is a sufficiently small number δ > 0 with δ < a1

such that

f(t, y0 − b1) < 0 and f(t, y0 + b1) > 0 for all t ∈ N 0 =
{
t ∈ T : |t− t0| < δ

}
.

Now we choose an arbitrary point t ∈ N 0, fix it temporarily, and consider the function

f(t, y) of one real variable y on the interval (y0 − b1, y
0 + b1) ⊂ R. By the properties

of f , this function is continuous, strictly increasing (by (9.5)), and assumes values of

opposite signs at the end points of the interval. Therefore there exists a single value

y ∈ (y0 − b1, y
0 + b1) which we denote by y = ψ(t) for which f(t, ψ(t)) = 0. Thus,

letting δ′ = b1, we see that in the neigbhourhood N of the point (t0, y0), defined by

(9.3), the equation (9.1) really determines y as a unique function of t: y = ψ(t). This

completes the proof of (a).

From condition (ii) and by the uniqueness of the function ψ, we obtain y0 = ψ(t0),

i.e., (b) is true.

Let us prove (c), i.e., that the function ψ is continuous (in the time scale topol-

ogy). To this end, it is sufficient to show that it is continuous at the point t = t0.

Indeed, the same proof can then be extended to any other point t′ of the interval N 0

because the point (t′, ψ(t′)) can be enclosed in a neighbourhood N ′ ⊂ N such that

all the conditions of the theorem are fulfilled for it if N , t0, and y0 are replaced by

N ′, t′, and y′ = ψ(t′), respectively. Let us now take an arbitrary positive number

ε′ ∈ (0, δ′). By what has been already proved, there is a positive number ε ∈ (0, δ)

such that if we define the rectangle

N∗ =
{

(t, y) ∈ T× R : |t− t0| < ε, |y − y0| < ε′
}
,

then there is a function y = ψ∗(t) for t ∈ N 0
∗ = {t ∈ T : |t− t0| < ε} which describes

the set M ∩ N∗. We have N∗ ⊂ N and therefore, obviously, ψ(t) = ψ∗(t) for

t ∈ N 0
∗ . This shows that for any sufficiently small ε′ > 0 there exists ε > 0 such that

|ψ(t) − ψ(t0)| < ε′ provided that |t − t0| < ε, which means that ψ is continuous at

the point t = t0.

Finally we show (d), i.e., that the function ψ(t) possesses the delta derivative

ψ∆(t) with respect to t. We take a fixed point t1 ∈ N 0 and show that the delta

derivative ψ∆(t1) exists. We consider the two possible cases separately.

First suppose that t1 is right-scattered, i.e., σ(t1) > t1. In this case it follows from

the continuity of ψ at t1 that it has the delta derivative ψ∆(t1) and

ψ∆(t1) =
ψ(σ(t1))− ψ(t1)

σ(t1)− t1
.
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Now suppose that t1 is right-dense. Let us take any variable point t2 ∈ N 0 such that

t2 6= t1. It is sufficient to show that there exists the finite limit

lim
t2→t1

ψ(t1)− ψ(t2)

t1 − t2
,

which then is obviously equal to ψ∆(t1) in the considered case. By the equations

f(t1, ψ(t1)) = 0 and f(t2, ψ(t2)) = 0 we can write

(9.6) f(t2, ψ(t1))− f(t1, ψ(t1)) = f(t2, ψ(t1))− f(t2, ψ(t2)).

On the other hand, by the usual mean value theorem we have

f(t2, ψ(t1))− f(t2, ψ(t2)) =
∂f(t2, θ)

∂y
[ψ(t1)− ψ(t2)] ,

where θ is a real number between ψ(t1) and ψ(t2) (hence θ → ψ(t1) as t2 → t1 by the

continuity of ψ). Further, by the mean value theorem for delta derivatives, Theorem

4.5, we have

∂f(ξ′, ψ(t1))

∆t
(t2 − t1) ≤ f(t2, ψ(t1))− f(t1, ψ(t1)) ≤ ∂f(ξ, ψ(t1))

∆t
(t2 − t1),

where ξ, ξ′ ∈ [α, β) and α = min{t1, t2}, β = max{t1, t2} (hence ξ → t1 and ξ′ → t1

as t2 → t1). Consequently, we obtain from (9.6)

(9.7)
∂f(ξ′, ψ(t1))

∆t
(t2 − t1) ≤ ∂f(t2, θ)

∂y
[ψ(t1)− ψ(t2)] ≤ ∂f(ξ, ψ(t1))

∆t
(t2 − t1).

Dividing (9.7) by ∂f(t2,θ)
∂y

(t1 − t2) and taking into account (9.5) and the continuity of

the partial derivatives ∂f(t,y)
∆t

and ∂f(t,y)
∂y

, we see that there exists the finite limit

ψ∆(t1) = lim
t2→t1

ψ(t1)− ψ(t2)

t1 − t2
= −

∂f(t1,ψ(t1))
∆t

∂f(t1,ψ(t1))
∂y

.

The theorem is proved.

Similarly to the equation (9.1) we can consider an equation with more variables.

Let us, for instance, consider the equation

(9.8) f(t, s, y) = 0 for (t, s, y) ∈ T1 × T2 × R,

where T1 and T2 are given time scales. The following theorem can be proved analo-

gously to Theorem 9.1.

Theorem 9.2. Let an equation (9.8) satisfy the following conditions:

(i) The function f is defined in a neigbourhood U of the point (t0, s0, y0) ∈ Tκ1×Tκ2×
R and is continuous in U together with its partial derivatives ∂f(t,s,y)

∆1t
, ∂f(t,s,y)

∆2s
,

and ∂f(t,s,y)
∂y

;

(ii) f(t0, s0, y0) = 0;

(iii) ∂f(t0,s0,y0)
∂y

6= 0.
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Then the following statements are true:

(a) There is a neighbourhood of the point (t0, s0, y0) in T1 × T2 × R

N =
{

(t, s, y) ∈ T1 × T2 × R : |t− t0| < δ, |s− s0| < δ′, |y − y0| < δ′′
}

belonging to U such that the set M∩N is described by a (uniquely determined)

single-valued function

y = ψ(t, s) for (t, s) ∈ N 0,

where

M = {(t, s, y) ∈ T1 × T2 × R : f(t, s, y) = 0}

and

N 0 =
{

(t, s) ∈ T1 × T2 : |t− t0| < δ, |s− s0| < δ′
}

;

(b) y0 = ψ(t0, s0);

(c) the function ψ(t, s) is continuous in N 0;

(d) the function ψ(t, s) has partial delta derivatives ∂ψ(t,s)
∆1t

and ∂ψ(t,s)
∆2s

on N 0.
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[11] B. Kaymakçalan, V. Lakshmikantham, and S. Sivasundaram. Dynamic Systems on Measure
Chains, volume 370 of Mathematics and its Applications. Kluwer Academic Publishers Group,
Dordrecht, 1996.

[12] S. M. Nikolsky. A Course of Mathematical Analysis, volume 1. Mir Publishers, Moscow, 1977.


