
Arithmetic Decision Procedures:
a simple introduction

Michael Norrish

Abstract

Fourier-Motzkin variable elimination is introduced as a complete method for
deciding linear arithmetic inequalities overR. It is then shown how this method
can be extended to also work overZ, giving the Omega Test [2].

1 Introduction

All of the techniques described in this note are examples of a technique known as
quantifier elimination. This technique assumes that the truth or falsity of formulas
with no quantifiers is easy to determine. For example, 2< 3× 4 is true, while2

3 <
1
4 ∧2+2 = 4 is false, and these facts are easy to check. If it is possible to transform a
formula with quantifiers (∀, ∃) into anequivalentformula containing fewer quantifiers,
then it is clear that this process can be repeated until there are no quantifiers left. The
result of this transformation will have an easily ascertained truth value, and this will
also be the truth value (i.e., whether or not it is valid) of the input formula.

All of the formulas to be discussed are of the form given in Figure 1. Note that
formulas can not include multiplication of a variable by another variable. Some of
this syntax is redundant and can be expressed in terms of other formulas. For exam-
ple, ≥ and> will always be replaced with equivalent formulas involving≤ and<
respectively. Similarly,x= y might be replaced withx≤ y∧y≤ z (sometimes it makes
more sense to leave equalities intact). Finally,∀x. P(x) will always be replaced by
¬∃x. ¬P(x).

The quantifier elimination procedures to be described here work by eliminating the
quantifier in a formula of the form∃x. P(x), whereP(x) does not include any other
quantifiers, but may include free variables. Thus, the procedure works by starting
with the innermost quantifiers and gradually working its way out and up through the
formula.

1



formula ::= formula∧ formula | formula∨ formula |
¬formula | ∃var. formula | ∀var. formula |
term relop term

term ::= numeral | term+ term | − term | numeral∗ term | var
relop ::= < | ≤ | = | ≥ | >
var ::= x | y | z. . .

Figure 1: Grammar defining decidable formulas. Valid values fornumeral will depend
on the domain. For formulas overR, allow any real number; for formulas overZ, allow
any integer.

2 Fourier-Motzkin Variable Elimination

Over the real numbersR, with a andb positive, non-zero coefficients, the following
are true:

(∃x. c≤ ax∧bx≤ d) ≡ bc≤ ad

(∃x. c < ax∧bx≤ d) ≡ bc< ad

(∃x. c≤ ax∧bx< d) ≡ bc< ad

(∃x. c < ax∧bx< d) ≡ bc< ad

Proof of the second equivalence (proofs of the other three equivalences are similar):
Left ⇒ Right: assume there is anx such thatc < ax∧ bx≤ d. Thencb < abx and
abx≤ ad. By transitivity,cb< ad. Right⇒ Left: assumebc< ad. Thenc< a(d

b) and
b(d

b)≤ d. So, d
b can be taken as thex that satisfies the LHS.

Next, extend the results above so that the bodies of the existential formulas need
not consist of only two constraints:

∃x. (
∧

hch ≤ ahx)∧ (
∧

i ci < aix)∧ (
∧

j b jx≤ d j)∧ (
∧

k bkx < dk)
≡

(
∧

h, j b jch ≤ ahd j)∧ (
∧

h,k bkch < ahdk) ∧
(
∧

i, j b jci < aid j)∧ (
∧

i,k bkci < aidk)

(1)

This is the process of taking all possible pairings of lower bounds (c < ax, c≤ ax)
with upper bounds and calculating their consequences according to the first set of four
equivalences. The proof of this equivalence is by induction. (The base case is a formula
with one inequality of each type. Successive inductions establish that it is possible to
have any finite number of constraints of a given type.) Note that if there are no upper
bounds, or no lower bounds, then the formula on the right simplifies to true.

This equivalence (1) is the basis of a quantifier elimination procedure overR:

1. For any formula∃x. P(x), whereP(x) is quantifier-free, convertP(x) to disjunc-
tive normal form.

2



2. Using the equivalence(∃x.P(x)∨Q(x)) ≡ (∃x. P(x))∨ (∃x. Q(x)) “push” the
quantifier down over all of the disjunctions.

3. Each quantifier now has scope over a set of conjunctions. If any of these con-
juncts doesn’t mention the bound variablex “move” it to the side by applying the
equivalence(∃x.P(x)∧Q)≡ (∃x.P(x))∧Q.

4. Convert all of the relational operators under each quantifier so that only< and
≤ remain.

5. Isolatex in each conjunct and ensure it has a positive coefficient.

6. Apply the elimination theorem above to each quantifier.

2.1 Efficiency

This procedure is not efficient. Having to convert to DNF introduces potentially ex-
ponential cost, and the presence of alternating quantifiers will require repeated conver-
sions. Consider,∀x.∃y.P(x,y). After eliminatingy, the formula will be∀x.P′(x), and
P′(x) will be in DNF. To then eliminatex, the formula will be converted to¬∃x.¬P′(x).
Converting¬P′(x) to DNF will exhibit worst case behaviour.

Ignoring the conversion to DNF (as is reasonable if the problem only involves one
sort of quantifier, and comes already converted to DNF), eliminating a quantifier can
turnn constraints inton2

4 constraints. For a problem ofmquantifiers, andn constraints,
the final number of constraints to be checked could be as many as

n2m

4m

2.2 Applications

The method as it stands is easy to adjust so that it returns a satisfying assignment (if
one exists) for a purely existential problem (i.e., an input of the form∃~x. P, where
P includes no other quantifiers). When the problem has been reduced to one of just
one variable, a satisfying value for this variable is anything between the greatest of its
lower bounds and the least of its upper bounds. This value can then be substituted back
into the formula that held at the previous stage of the process (when there were two
variables). After this substitution, the formula is of just one variable and a value can
be calculated for that variable also. In this way, all of the existentially bound variables
can have values found for them.

This much provides a simplistic constraint satisfaction solver for linear arithmetic
problems. Simple optimisation problems can be solved by using alternating quanti-
fiers. For example, if the problem is to find a satisfying assignment forP(~x,z) while
maximisingz, proceed as follows:

• Check∃~x, z. P(~x,z). If this is not valid, then there is no solution at all.

3



• Otherwise, check∃z. (∃~x.P(~x,z))∧ (∀z′.z′ ≤ z∨¬∃~x.P(~x,z′)). If this is invalid,
then there is no maximum value forz (it can be made as large as desired). If it
is valid, then the same process that finds satisfying assignments for variables in
purely existential goals will find one for the outermostz in this formula.

• With a maximal value forz found, substitute this into the orignal existential
formula, and solve for the remaining~x.

The use of alternating quantifiers ensures that this method will be extremely ineffi-
cient. This method is not recommended as a solution for optimisation problems. Rather
it is a demonstration of the expressive power of a language with alternating quantifiers.

3 Quantifier Elimination for Z
Over the integers, things are slightly simpler becausex < y is equivalent tox+1≤ y,
so one need only consider one type of relational operator. Unfortunately, the core
theorem (1) for eliminating existential quantifiers is not a theorem overZ. This arises
because of the discreteness of the integers. Consider

∃x : Z. 5≤ 2x < 6
≡ ∃x. 5≤ 2x∧2x+1≤ 6
≡ ∃x. 5≤ 2x≤ 5
6≡ 10≤ 10

The proofs of the elimination equivalences fail because the RHSes do not imply the
LHSes. The fact that the LHSes do still imply the RHSes (these arguments were a
consequence only of transitivity) can be used to implement an incomplete check for
unsatisfiability.

This procedure is for purely existential formulas: act as if the core quantifier elimi-
nation theorem were true, eliminating quantifiers and reducing the input formula to true
or false. If the final result is false, then the original formula must have been invalid.
(If the final result is true, then no conclusion can be drawn.) Because of the negations
introduced when converting universal quantifiers to existentials, this method can also
be used to show universal formulas valid.

This method is easy to implement and is used in a number of interactive theorem-
proving systems, such as ACL2, Coq, HOL and Isabelle. This method is also the first
phase of theOmega Test[2].

Phase 1 of the Omega Test exploits the theorem

(∃x : Z. c≤ ax∧bx≤ d)⇒ bc≤ ad

Phase 2 exploits the similar (imaginea or b equal to 1)

(a−1)(b−1)≤ ad−bc⇒ (∃x : Z. c≤ ax∧bx≤ d) (2)

This phase uses the theorem above to repeatedly “eliminate” quantifiers (extended, as
before, to handle multiple constraints at once). If the eventual result of the eliminations
is true, then the original formula is valid.

4



The proof of (2) is by contradiction. If the conclusion of the implication is false,
then there are no multiples ofab occurring betweenbc and ad. The antecedent of
the implication implies thatbc≤ ad (a andb are both positive). Letj be the greatest
integer such thatab j < bc. Then,ab j < bc≤ ad < ab( j +1).

Dividing a out of the top constraint leavesd < b( j + 1). This is the same as 1≤
b( j +1)−d. Multiplying through bya again, concludea≤ ab( j +1)−ad. Similarly,
b ≤ bc− ab j. Summing the constraints, obtaina+ b ≤ ab− ad+ bc, equivalently
ad−bc≤ ab−a−b. But this contradicts the antecedent,(a−1)(b−1)≤ ad−bc.

Phase 1 can show an existential formula to be false, and Phase 2 can show it to be
true. With both phases working in concert, many problems can be decided (Pugh [2]
claims most of his didn’t need more than these two phases). But the combination of the
two phases is not complete. It can’t handle alternating quantifier problems at all (both
phases rely on being able to eliminate quantifiers all the way to true or false), and even
purely existential formulas may slip through both phases.

In the worst case, the following theorem may need to be used:

Theorem 1 (Pugh, 1992)Let L(x) be a conjunction of lower bounds on x, indexed by
i, of the form ci ≤ aix, with ai positive. Similarly, let U(x) be a set of upper bounds on
x, indexed by j, of the form bjx≤ d j , with bj positive. Let m be the maximum of all the
b js. Then

(∃x. L(x)∧U(x)) ≡ (
∧

i, j(ai −1)(b j −1)≤ aid j −b jci)
∨∨

i
∨⌊

mai−ai−m
m

⌋
k=0 ∃x. (aix = ci +k)∧L(x)∧U(x)

To prove the equivalence, it suffices to show that:

• the first disjunct on the right implies the LHS (done above, as this is the same as
the formula used in Phase 2 of the test);

• the other disjuncts also imply the LHS (trivial, as anyx satisfying a disjunct on
the right will also satisfy the original formula); and that

• (∃x. L(x)∧U(x))∧¬(
∧

i, j(ai −1)(b j −1)≤ aid j −b jci) ⇒∨
i
∨⌊

mai−ai−m
m

⌋
k=0 ∃x. (aix = ai +k)∧L(x)∧U(x)

Let x be the witness to the first assumption. The second assumption means that
there exista, b, c andd such that

ad−bc≤ ab−b−a (3)

These values occur in constraints fromL andU , sobx≤ d andc≤ ax. Multiply-
ing the former through bya givesabx≤ ad, so in conjunction with (3)

abx ≤ cb+ab−b−a
⇒ b(ax−c) ≤ ab−b−a
⇒ ax−c ≤

⌊
ab−b−a

b

⌋
5



All of the b coefficients are≤m, so⌊
ab−b−a

b

⌋
≤

⌊
ma−a−m

m

⌋
There is now enough information to pick the appropriate disjunct from the RHS.
Theai is a andk is ax−a.

Though all except the first of the disjuncts on the RHS of Theorem 1 have an exis-
tential quantifier, this quantifier can be eliminated immediately, thanks to the presence
of the additional equality constraint (see [2] for details). Thus, Theorem 1 really does
represent a quantifier elimination result.

4 Final Remark

The decidability of linear arithmetic overZ was proved by Presburger in 1929. For-
mulas of the form given in Figure 1 constitute the language often called Presburger
Arithmetic. Presburger’s proof of decidability provides another procedure for deciding
problems of the sort discussed above. Cooper’s algorithm [1] is a version of his method
more suited to actual implementation (and one which does not require conversion to
DNF.)

References

[1] D. C. Cooper. Theorem proving in arithmetic without multiplication. InMachine
Intelligence, volume 7, pages 91–99, New York, 1972. American Elsevier.

[2] William Pugh. The Omega Test: a fast and practical integer programming al-
gorithm for dependence analysis.Communications of the ACM, 35(8):102–114,
August 1992.

6


