
NoSql Project – DjonDB

Dan Jiang and Mengjuan Liu

Department of Computer Science

Georgia State University

Atlanta, GA 30303

Email: djiang1@student.gsu.edu mliu9@student.gsu.edu

Abstract

 A document-oriented database is a computer program designed for storing,

retrieving, and managing document-oriented information, also known as semi-structured

data. DjonDB is one type of document DB. All the documents in djondb are stored in

files and organized by namespace in the data folder and stored in JSON format. The

project of my shopping receipts is implemented by DjonDB.

Introduction

 With massive advent of Internet, storing large amount of documents became a

must. Such documents range from images to more or less structured text, including large

chunks of information encoded in XML. However, relational technology was not natively

prepared to support such kind of data.

 What makes document databases really different is the fact that documents are

usually retrieved through dynamic and unpredictable queries. Thus document databases

can usually associate any number of fields of any length to a document. This way we can

store, together with a medical image, patient name and birth data. If you late decide to

add also sex and profession, you can do it even if it wasn't originally conceived.

Therefore, Document databases are usually schema-less; there is no predefined data

model.

 A document database is, at its core, a key/value store with one major exception.

mailto:djiang1@student.gsu.edu
mailto:mliu9@student.gsu.edu
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Semi-structured_model
http://en.wikipedia.org/wiki/Semi-structured_model

The format can be XML, JSON, Binary JSON or just about anything, as long as the

database can understand it. DjonDB is one type of document DB. In this project, the goal

of our work is to implement a application using DjonDB.

Related Works

A. JSON

 JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is

easy for humans to read and write. It is easy for machines to parse and generate. JSON is

a text format that is completely language independent but uses conventions that are

familiar to programmers of the C-family of languages, including C, C++, C#, Java,

JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-

interchange language.

 JSON is built on two structures: A collection of name/value pairs. In various

languages, this is realized as an object, record, struct, dictionary, hash table, keyed list, or

associative array. An ordered list of values: In most languages, this is realized as an array,

vector, list, or sequence.

 JSON object: An object is an unordered set of name/value pairs. An object begins

with { (left brace) and ends with } (right brace). Each name is followed by : (colon) and

the name/value pairs are separated by , (comma).

Figure 1: JSON Object

 JSON Array: An array is an ordered collection of values. An array begins

with [(left bracket) and ends with] (right bracket). Values are separated by , (comma).

 Figure 2: JSON Array

 JSON Value: A value can be a string in double quotes, or a number,

or true or false or null, or an object or an array. These structures can be nested.

 Figure 3: JSON Value

 JSON string: A string is a sequence of zero or more Unicode characters, wrapped

in double quotes, using backslash escapes. A character is represented as a single character

string. A string is very much like a C or Java string.

Figure 4: JSON string

 JSON number: A number is very much like a C or Java number, except that the

octal and hexadecimal formats are not used.

Figure 5: JSON number

JSON example:

{

 "firstName": "John",

 "lastName": "Smith",

 "age": 25,

 "address": {

 "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": 10021

 },

 "phoneNumbers": [

 {

 "type": "home",

 "number": "212 555-1234"

 },

 {

 "type": "fax",

 "number": "646 555-4567"

 }

]

}

 This example shows the JSON representation of an record that describes a person.

The object has string fields for first name and last name, a number field for age, contains

an object representing the person's address, and contains a list (an array) of phone number

objects.

B. BSON

BSON, “Binary JSON”, is a binary form for representing simple data structures

and associative arrays (often called objects or documents). BSON is a computer date

interchange format used mainly as data storage in the database.

BSON Data types: string, integer, double, date, binary data, boolean, null, BSON

object and regular expression.

C. DjonDB

 All the documents in djondb are stored in files and organized by namespace in the

data folder. Each database may contain one or several namespaces, and these namespaces

may contain several documents. Usually you would want to organize all the documents of

the same type in the same namespace, for example all the documents that represent

customers will be stored in a namespace named: "Customers".

 Database/Namespace/Documents is analog to Databases/Tables/Rows in the

RDBMS.

djonDB Relational DB

database Database

namespace Table

documents rows

 How to run djondb server? For windows users there's a convenient shortcut to

boot up the server, which you will find under the menu "djondb/djondbd". To shutdown

the server, just use ctrl+c command.

 Djondb is a document database, these documents are json documents that could

be stored directly to the database, example:

Figure 6: DjonDB example

 These JSON documents may have several "subdocuments" like this:

Figure 7: DjonDB example

 Djondb drivers supports two different ways to create new documents, using the

string representation or using BSONObj objects, these BSONObj classes were created to

handle JSON documents in an easier way.

 How to create documents using the shell? Djon-shell is a full javascript console

that it's very useful to learn how to use Djondb and what is capable of, take a look of the

following example:

Figure 8: DjonDB command

For updating documents, just use the “update” command.

 Figure 9: DjonDB command

 For removing documents, just use “remove” command.

 Figure 10: DjonDB command

 To retrieve all your documents in a given namespace you just specify the database

and the required namespace as follows:

 Figure 11: DjonDB command

 Filtering your results, use “find” command.

 Figure 12: DjonDB command

 DjonDB can limit the results to avoid retrieving all the database in a single find,

the default limit is 30 documents, but you can change this using the parameter

max_results in the /etc/djondb.conf like this:

 Figure 13: DjonDB command

 Using “print” command can read files in Djondb shell. This shell command

allows you to read a file from this into a variable; it will be readed as text. This command

can also show a message into the console, which has a nice feature.

 Figure 14: DjonDB command

 Overall Design of My Shopping Receipts System

A. System structure and development tool

 Based on B/S (Browsers/Servers) structure, which is a technology that no needs to

install any program on terminals. User can do inquiring, viewing and other kinds of

operations about their business only through a browser. It is easy to maintain and update

the system since it only has to do with the server. It also suffices the expansibility of

users’ needs, the system can communicate with other systems by merging JSP network

programming with java technology; especially realize connection with database. The

entire project is designed using MVC framework, which includes model, view and

controller.

B. Functions

 The goal of our project is to save our shopping receipts. The whole system

includes the following functions: adding receipts, adding merchant information, adding

item information, displaying the receipts and displaying the charts. Each part’s function

module serves as the business logic layer in MVC, presenting different operations based

on different information input. Among them, the access control module is the key of

system security, any access and operation from users except the administrator should

under its permission.

C. Development Platform

 We choose J2EE architecture as system platform, such as Windows, Tomcat,

DjonDB, JSP and Java. They are all open-source software and with advantages such as

less storage room, cross platforms, high performance, low cost, secure and stable.

 Design and Implement

 A. Function Implement of Modules

 The main function is using JSP to implement the user interface and using Java to

implement all the functions interacted to the database. We embedded the Java code into

the JSP pages and servlets, which can deal with data from DjonDB. Here, we use the

MVC framework to deal with these functions. The JSP files are responsible for the view

part, all the data in the DjonDB are the module part in the project.

 The following figure is the login menu of this system. After input the username

and password, we can access to the main UI of the system.

 The main UI shows in the following figure, which includes the merchant name,

total price for each receipts, card number and date.

 Expand each merchant name, the item information displayed, which includes the

item name, unit price, quantity, tax rate and sub total of each item. We can also add the

merchant information and item information into this system.

 The function “upload image” is used to upload the receipts image, which can help

us to save the receipts.

 From the main UI, the chart displayed when you click the “spending curve” and

“spending pie” tab. You can select the year to change the charts.

 The whole project implemented using the Model-View-Controller framework. All

the data in the model part are stored in DjonDB. For the view part, all the data are

displayed in the web page using JSP. For the controller part, we use some java files to

handle them. All functions have the same way to be implemented. For example, for the

adding receipts function, we use java bean, java DAO and handler to implement the

operations. In java bean file, we give the get() and set() methods for getting and setting

value of each field in the tables. In the java handler, all the operations, including add

receipts, add item, get cards, get history, get items, get merchants, get receipts image, get

record years, get spending curve, get state pie, upload file, are implemented. In the java

DAO file, all the methods are used to connect the database tables with the user interfaces

(JSP files).

B. Deploy the Modules in the Web Server

 In this project, we use the tomcat as the web server, which is used to display all

the functions in the browser. Using xml file to configure the index file and set path to

some files if needed. The url for the project is http://localhost:8080.

 Testing

 After the requirements have been defined and the coding process has been

completed, the testing process starts. The primary purpose of testing is to detect software

failure so that defects may be discovered and corrected. Basically we want to test if the

application does what it is supposed to do and does what it needs to do. We used both

static testing and dynamic testing including reviews, walkthroughs, inspection and a

given set of cases testing. In the static testing process we cross review the code and

walkthrough each functional module to inspect the functionality. In the dynamic testing

process we tried different users’ requirement as input and evaluate the output results. For

instance, as an administrator we are supposed to create a new user account. If the user

record is already in the database we should see an error message to alert us the user exists.

If not we should go back to check the related function module to make some

modifications. Also the relationship of data needs to be kept during the manipulation of

the database. For instance, if we modify a record under one user account we may not

want it affecting other records. By giving different set of inputs and checking the related

records we can assess the results as what we expected. In order to check the robotics of

the database application the large data input has been tested. The entire performance to

process the large input is acceptable. The waterfall testing model was utilized and the

logs of testing were kept for future project.

 Conclusion

 My shopping receipts system is well developed to simulate the database

management system (DBMS). We implement all the required function modules such as

adding receipts, adding items, displaying receipts and displaying charts. The testing was

conducted in multi rounds with both static and dynamic testing methods. Also as a team

we cross test the function models to make sure all functions behavior in the right way as

what they are supposed to do. The demonstration of the project was shown all the

functions of the application. Various design issues were solved during the process of the

implementation. With the Array, Array List and Collection data structures we implement

the application with optimized algorithm. The demonstration is presented in the class

with highly rewarded feedback.

