Response of the neuromuscular unit to spaceflight: what has been learned from the rat model

Exerc Sport Sci Rev. 1996:24:399-425.

Abstract

Despite the inherent limitations placed on spaceflight investigations, much has been learned about the adaptations of the neuromuscular system to weightlessness from studies of rats flown for relatively short periods (approximately 4-22 days). Below is a summary of the major effects of spaceflight observed in muscles of rats that are not in their rapid growth stage: 1. Skeletal muscles atrophy rapidly during spaceflight; significant atrophy is observed as early as after 4 days of flight. 2. The atrophic response appears to be related to the primary function of the muscle. In the hindlimb, the relative amount of atrophy can be characterized as slow extensors > fast extensors > fast flexors. This pattern of relative atrophy does not appear to be occurring in the forelimb; however, not enough data are available to draw any definitive conclusions at this time. 3. Both slow and fast fibers atrophy during spaceflight, with the largest fibers within an individual muscle generally showing the greatest atrophic response. Interestingly, the amount of fiber atrophy appears to reach a plateau after about 14 days of flight. 4. Adaptations have been observed in the concentration and content of all muscle proteins pools, with the protein pools in slow muscles the most affected. 5. Some slow and fast fibers in predominantly slow and fast muscles show shifts in their histochemical and biochemical properties, toward those observed in a "faster" phenotype. 6. Some fibers, presumably expressing slow MHC isoforms before flight, begin to express fast MHC isoforms during flight. 7. The oxidative capacity of the muscles or fibers is relatively unaffected by spaceflight, particularly in the slow muscles. Any change in whole-body fatigability associated with spaceflight most likely reflects the loss in muscle and fiber mass. 8. The glycolytic capacity of the muscles and muscle fibers is enhanced after spaceflight. This metabolic adaptation seems to be related to the shift in the contractile proteins towards "faster" isoforms. 9. The vascularity of muscles appears to be maintained after flight, based, at least, on histological observations of capillarity. 10. The force capabilities of the muscles and fibers appear to decrease in parallel with the decreases in size, i.e., the specific tension is not significantly affected after flight. 11. Changes in the speed-related properties of the slow muscles are consistent with the adaptations in the myosin molecule, i.e., the slow muscles and some fibers in the slow muscles become "faster." 12. Some muscle fiber and neuromuscular junction damage has been observed after flight, particularly in the slow muscles. The extent of damage may be related to the amount of time that the muscles are allowed to reload before removal, i.e., in general, shorter intervals result in less fiber damage. 13. Adaptations in the motor (ventral horn) and sensory (spinal ganglia) neurons have been quite variable, but this may be related to the amount of time that the muscles are allowed to reload before removal. Morphological adaptations after relatively short periods of reloading may reflect a decrease in the activation of the neural elements during flight.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Adaptation, Physiological
  • Afferent Pathways
  • Animals
  • Body Weight
  • Efferent Pathways
  • Energy Metabolism
  • Major Histocompatibility Complex / genetics
  • Muscle Contraction / physiology
  • Muscle Fibers, Skeletal / physiology
  • Muscle Proteins / physiology
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiology*
  • Neuromuscular Junction / physiology*
  • RNA, Messenger / analysis
  • Rats
  • Space Flight*

Substances

  • Muscle Proteins
  • RNA, Messenger