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Introduction. There are at least three different problems with which one is confronted in the
study of L­functions: the analytic continuation and functional equation; the location of the

zeroes; and in some cases, the determination of the values at special points. The first may be

the easiest. It is certainly the only one with which I have been closely involved.

There are two kinds ofL­functions, and theywill be described below: motivicL­functions

which generalize theArtinL­functions and are defined purely arithmetically, and automorphic

L­functions, defined by data which are largely transcendental. Within the automorphic L­

functions a special class can be singled out, the class of standard L­functions, which generalize

the Hecke L­functions and for which the analytic continuation and functional equation can be

proved directly.

For the other L­functions the analytic continuation is not so easily effected. However all

evidence indicates that there are fewerL­functions than the definitions suggest, and that every

L­function, motivic or automorphic, is equal to a standard L­function. Such equalities are

often deep, and are called reciprocity laws, for historical reasons. Once a reciprocity law can

be proved for anL­function, analytic continuation follows, and so, for those who believe in the

validity of the reciprocity laws, they and not analytic continuation are the focus of attention,

but very few such laws have been established.

The automorphicL­functions are defined representation­theoretically, and it should be no

surprise that harmonic analysis can be applied to some effect in the study of reciprocity laws.

One recent small success was the proof of a reciprocity law for the ArtinL­functions associated

to tetrahedral representations of a Galois group and to a few other representations of degree

two. It is the excuse for this lecture, but I do not want to overwhelm you with technique from

harmonic analysis. Those who care to will be able to learn it at leisure from [6], in which a

concerted effort was made to provide an introduction to automorphic representations, and so

I forego proofs, preferring instead to review the evolution of our notion of an L­function and

of a reciprocity law over the past five decades.

∗ First appeared in Proceedings of the International Congress ofMathematicians, Helsinki

(1978).



Talk at Helsinki ICM 2

Artin and Hecke L-functions. An L­function is, first of all, a function defined by a Dirichlet

serieswith anEuler product, and is therefore initially defined in a right half­plane. Iwill forbear

defining explicitly the best known L­functions, the zeta­functions of Riemann and Dedekind,

and the L­functions of Dirichlet, and begin with the more general functions introduced in this

century by Hecke [19] and by Artin [2]. Artin’s reciprocity law is the pattern to which all

others, born and unborn, are cut.

Although they overlap, the two kinds of L­functions are altogether different in their

origins. If F is a number field or, if one likes, a function field, although I prefer to leave

function fields in the background, for they will be discussed by Drinfeld [12], then a Hecke

L­function is an Euler product L(s, χ) attached to a character χ of F× \ IF . IF is the group of

idèles of F . If v is a place of F then F×

v imbeds in IF and χ defines a character χv of F
×

v . To

form the function L(s, χ)we take a product over all places of F :

L(s, χ) =
∏

v

L(s, χv).

If v archimedean the local factor L(s, χv) is formed from Γ­functions. Here the important

point is that whenever v is defined by a prime p and χv is trivial on the units, as it is for almost

all v, then

L(s, χv) =
1

1 − α(p)/NpS

with

α(p) = χv(̟p),

̟p being a uniformizing parameter at p. The function L(s, χ) can be analytically continued

and has a functional equation of the form

L(s, χ) = ε(s, χ)L(1− s, χ)−1,

ε(s, χ) being an elementary function [35].

An Artin L­function is associated to a finite­dimensional representation ̺ of a Galois

group Gal(K/F ), K being an extension of finite degree. It is defined arithmetically and its

analytic properties are extremely difficult to establish. Once again

L(s, ̺) =
∏

L(s, ̺v),
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̺v being the restriction of ̺ to the decomposition group. For our purposes it is enough to

define the local factor when v is defined by a prime p and p is unramified in K . Then the

Frobenius conjugacy class Φp in Gal(K/F ) is defined, and

L(s, ̺v) =
1

det(I − ̺(Φp)/Nps)
=

d
∏

i=1

1

1 − βi(p)/Nps
,

if β1(p), . . . , βd(p) are the eigenvalues of ̺(Φp).

Although the function L(s, ̺) attached to ̺ is known to be meromorphic in the whole

plane, Artin’s conjecture that it is entirewhen ̺ is irreducible and nontrivial is still outstanding.

Artin himself showed this for one dimensional ̺ [3], and it can now be proved that the

conjecture is valid for tetrahedral ̺, as well as a few octahedral ̺. Artin’s method is to

show that in spite of the differences in the definitions the function L(s, ̺) attached to a one­

dimensional ̺ is equal to a HeckeL­functionL(s, χ)where χ = χ(̺) is a character of F× \ IF .

He employed all the available resources of class field theory, and went beyond them, for the

equality of L(s, ̺) and L(s, χ(̺)) for all ̺ is pretty much tantamount to the Artin reciprocity

law, which asserts the existence of a homomorphism for IF onto the Galois group Gal(K/F )

of an abelian extension which is trivial on F× and takes̟p to Φp for almost all p.

The equality of L(s, ̺) and L(s, χ) implies that of χ(̟p) and ̺(Φp) for almost all p. On

close examination both these quantities are seen to be defined by elementary, albeit extremely

complicated, operations, and so the reciprocity laws for one­dimensional ̺, like the quadratic

and higher reciprocity laws implicit in them, are ultimately elementary, and can for any ̺ and

any given prime p be verified by computation. The reciprocity law for tetrahedral ̺ seems, on

the other hand, to be of a truly transcendental nature, and must be judged not by traditional

criteria but by its success with the Artin conjecture.

Motivic L-functions. If V is a nonsingular projective variety over a number field then, for

almost all p, V has a good reduction over the residue field Fp at p and we can speak of the

number N(n) of points with coordinates in the extension of F of degree n. Following Weil

[36], we define the zeta­function Zp(s, V ) by

log Zp(s, V ) =

∞
∑

n=1

1

n

N(n)

Npns
.

We owe to the efforts of Dwork, Grothendieck, Deligne, and others the proof that

Zp(s, V ) =
2d
∏

i=0

bi
∏

j=1

(

1 −
αij(p)

NpS

)(−1)i+1

=
2d
∏

i=0

Li
p(s, V )(−1)i.
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Here d is the dimension of V, bi its i
th Betti number, and

|αij(p)| = Np
i/2.

It seems to have been Hasse (cf. [18]) who first proposed, in the case of an elliptic curve, the

problem of proving that the L­function Li(s, V ) defined by the Euler product

∏

v

Li
v(s, V )

has analytic continuation and functional equation. Of course a solutionof the problem involves

a reasonable definition of the local factors at the infinite places and at the finite places at which

V does not have good reduction.

Since bi is generally greater than 1 and Li(s, V ) is an Euler product of degree bi, it

cannot, except in special circumstances, be equal to an L(s, χ). Sometimes, however, Li(s, V )

can be factored into a product of bi Euler products of degree 1, each of which is equal to a

Hecke L­function. The idea of factoring an L­function into Euler products of smaller degree

is very important. It led Artin from the zeta­function of K to the L­functions associated to

representations of Gal(K/F ). Allusions to the same idea can be found in the correspondence

of Dedekind with Frobenius [9], from which it appears that it was at the origin of the notion

of a group character. The factorization can be simply interpreted in the context of the l­adic

representations of Grothendieck.

The field K is the function field of an algebraic variety of dimension 0 over F and the

zeta­function of K is L0(s, V ). The variety VF obtained from V by extension of scalars to

the algebraic closure F̄ has [K : F ] points. The Galois group Gal(F̄ /F ) acts on these points

and hence on the l­adic étale cohomology group H0(VF ). The zeta­function may be defined

in the same way as the Artin L­function except that it is now associated to the representation

of Gal(F̄ /F ) on H0(VF ). The function field of VF is K ⊗F F̄ and the action of Gal(K/F )

we associate an operator T (σ) on H0(VF ). If some linear combination of the T (σ) is an

idempotent E, we can restrict the representation of Gal(F̄ /F ) to its range, and employing

Artin’s procedure attach an L­function L(s, E) to the restriction. Taking a family of such

idempotents, orthogonal and summing to the identity, we obtain a factorization of L0(s, V ) or

of the zeta­function ofK . Since the representation of Gal(K/F ) and Gal(F̄ /F ) is that between

the left and right regular representations, we obtain the factorization of Artin

L0(s, V ) = ζK(s) =
∏

̺

L(s, ̺)deg̺.

The product is taken over all irreducible representations of Gal(K/F ).



Talk at Helsinki ICM 5

For ageneral variety the functionLi(s, V ) is obtained from the representationofGal(F̄/F )

on the l­adic cohomologygroupHi(VF ). The algebraic correspondences of V with itselfwhich

are of degree 0 and defined over F will define operators on Hi(VF ) which commute with

Gal(F̄ \ F ). Once again, if some linear combination of these operators is an idempotentE we

may introduce L(s, E), hoping that it will have an analytic continuation, and that it will be

equal to Hecke L­function if the range of E has dimension one.

In particular, if we can write the identity as a sum of such idempotents which are orthogo­

nal and of rank one then we can hope to prove that Li(s, V ) is a product of Hecke L­functions,

and so has the analytic continuation and a functional equation. The major examples here are

abelian varieties of CM­type, the relevant endomorphisms being defined over F . The idem­

potents are constructed from these endomorphisms. The theorems were proved by Shimura,

Taniyama, Weil, and Deuring (cf. [33]).

The functions L(s, E) seem to be the correct, perhaps the ultimate, generalizations of the

Artin L­functions. There is no reason to expect that they can be further factored. On close

examination, it will be seen that the meaning of E has been left fuzzy. It should be a motive, a

problematical notion, whichGrothendieck hasmade precise ([23], [29]). But it cannot be shown

to have all the properties desired of it without invoking certain conjectures closely related to

the Hodge conjecture. Indeed, if the Hodge conjecture itself turns out to be false the notion

will lose much of its geometric appeal. Furthermore there are L­functions arising in the study

of Shimura varieties which we would be unwilling to jettison but which have not been shown

to be carried by a motive in the sense of Groethendieck. But the notion is indispensable, and if

the attendant problems will not yield to a vigorous assault then we have to prepare for a long

siege.

If the functionsL(s, E) cannot be factored further than the theorems ofArtin and Shimura­

Taniyama mark the limits of usefulness of the Hecke L­functions in the study of the motivic

L­functions. Fortunately the Hecke L­functions can be generalized.

Standard L-functions and the principle of reciprocity. If A is the adéle ring of F then IF

is GL(1, A), F× is GL(1, F ), and a character of F× \ IF is nothing but a representation

of GL(1, A) that occurs in the space of continuous functions on GL(1, F ) \ GL(1, A). It is

the simplest type of autmorphic representation. GL(n, A) acts on the factor space GL(n, F ) \

GL(n, A) andhence on the space of continuous functions on it. An automorphic representation

of GL(n, A) is basically an irreducible constituent π of the representation on the space of

continuous functions, but the topological groupGL(n, A) is not compact and π is, in general,

infinite­dimensional. So some care must be taken with the definitions [7]. One can attach to

an automorphic representation π ofGL(n, A) an L­function L(s, π) that will have an analytic

continuation and a functional equation [17]:

L(s, π) = ε(s, π)L(1− s, π̃),



Talk at Helsinki ICM 6

with π̃ contragredient to π. It is possible [14] to write π as a tensor product π = ⊗vπv , the

product being taken over all places of F , and L(s, π) is an Euler product
∏

v L(s, πv). At a

finite place v = p

L(s, πv) =

n
∏

i=1

1

1 − αi(p) \ Nps

is of degree n, and for almost all p the matrix

A(πv) =







α1(p) 0
. . .

0 αn(p)







is invertible.

Since these L­functions, called standard, come in all degrees, there is no patently in­

surmountable obstacle to showing that each L(s, E) is equal to some standard L­functions,

thereby demonstrating the analytic continuation of L(s, E). But the difficulties to overcome

before this general principle of reciprocity is established are enormous, new ideas are called

for, and little has yet been done.

If F = Q, an automorphic representation of GL(2, A) is an ordinary automorphic form,

analytic or nonanalytic, in disguise, and the L­functions L(s, π) have been with us for almost

half a century. They were introduced and studied by Hecke [20], and later defined for nonan­

alytic forms by Maaß [28]. Moving from n = 1 to n = 2 does not give us much more latitude,

but there are two obvious kinds of motivic L­functions of degree two.

If V is an elliptic curve then L1(s, V ) is of degree two and the possibility that it would be

equal to a standard L­function was first raised by Taniyama and later by Weil [37], during his

re­examination of Hecke’s theory. The numerical evidence is good, but no theoretical progress

has been made with the problem, except over function fields where it is solved [10].

If ̺ is a two­dimensional representation of Gal(K/F ) then the Artin L­functionL(s, ̺) is

of degree two. If ̺ is reducible or dihedral, Artin’s theorem can deal with L(s, ̺). Otherwise

the image of Gal(K/F ) in PGL(2, C) = SO(3, C) is tetrahedral, octahedral, or icosahedral.

One example of an icosahedral representation with a reciprocity law has been found [8] , but
no general theorems are available. I shall return to the tetrahedral and octahedral below, after

the principle of functoriality has been described.

The first successful applications of standard L­functions of degree two to the study of

zeta­functions of algebraic varieties were for curves V obtained by dividing the upper half­

plane by an arithmetic group, either a congruence subgroup of SL(2, Z) or a group defined by

an indefinite quaternion algebra ( [13], [32]). Here L1(s, V ) is a product of several L(s, π) and
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the situation is similar to that for curves whose Jacobian is of CM­type, except that standard L­

functions of degree two replace theHeckeL­functions,which are of degree one. Theprojections

underlying the factorizations are linear combinations of the Hecke correspondences

It is not surprising that these varieties were handled first, for they are defined by a group,

and themechanismwhich links their zeta­functionswith automorphicL­functions is relatively

simple, similar to that appearing in the study of cyclotomic extensions of the rationals. There

is a great deal to be learned from the study of these varieties and their generalizations, the

Shimura varieties, but there are no Shimura varieties attached to GL(n) when n > 2, and we

must pass to more general groups.

Automorphic L-functions and the principle of functoriality. If G is any connected, reductive

group over a global field an automorphic representation ofG(A) is defined as forGL(n). The

study of Eisenstein series led to a plethora of L­functions attached to automorphic representa­

tions. The Artin L­functions and the Hecke L­functions are fused in the class of automorphic

L­functions, which contains them both, but the general automorphic L­function is in fact a

kind of mongrel object, the true generalization of the Artin L­functions being the motivic L­

functions and the true generalization of the HeckeL­functions being the standardL­functions.

To define the automorphic L­functions one associates to each connected, reductive group

G over F an L­group LG = LGF ([5], [25]), itself an extension

1 → LG0 → LG → Gal(K/F ) → 1

withLG0 a connected, reductive, complex group. K is simply afinite but largeGalois extension

of F . To each continuous finite­dimensional representation ̺ of LGwhich is complex­analytic

on LG0 and each automorphic representation π ofG(A) one attaches an L­functionL(s, π, ̺),

which is an Euler product of degree equal to dimension of ̺. There is evidence to support

the hypothesis that each L(s, π, ̺) can be analytically continued to the whole plane as a

meromorphic function with few poles and a functional equation.

The representation π is again a tensor product π = ⊗vπv and

L(s, π, ̺) =
∏

v

L(s, πv, ̺)

For almost all finite v the theory of spherical functions, or, if one prefers, of Hecke operators,

attaches to πv a conjugacy class {gv} = {g(πv)} in
LG which reduces to the Frobenius class

when G = {1}. The local factor for these places is

L(s, π, ̺) =
1

det(1 − ̺(gv)/Nps)
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if v is defined by p. If G is GL(n) then LG is a direct product GL(n, C) × × Gal(K/F ) and

the projection of {gv} = {g(πv)} on the first factor is the class of A(πv). Consequently if ̺ is

the projection on the first factor then L(s, π, ̺) is the standard L­function L(s, π).

The automorphic L­functions once defined, their resemblance to the Artin L­functions

is manifest, and the possibility suggests itself of establishing their analytic continuation by

showing that whenG, π and ̺ are given there is a representation π′ ofGL(n, A)withn = deg ̺

such that {A(π′

v)} = {̺(g(πv))} for almost all v and

L(s, π, ̺) = L(s, π′).

ForG = {1} this would be the reciprocity law for Artin L­functions.

More generally, if H and G are two connected reductive groups over F and we have a

commutative diagram
LG

ց




y

ϕ Gal(K \ F )

ր
LH

with ϕ complex­analytic, then to every automorphic representation π of LG there should be

an automorphic representation π′ of H which is such that {g(π′

v)} = {ϕ(g(πv))} for almost

all v. There is evidence that this is so, although some subtleties must be taken into account. I

refer to the phenomenon as the principle of functoriality in the L­group.

Examples. SupposeE is finite extension of F . ThenG is also a group overE and the L­group

overE, LGE , is a subgroup of
LGF . It is the inverse image of Gal(K/E) in LGF . The principle

of functoriality implies the possibility of making a change of base from F toE and associating

to each automorphic representation π of G(AF ) an automorphic representation Π of G(AE),

sometimes called a lifting of π. For almost all places, w, of E the class {g(Πw)} must be

{g(πv)
f} if w divides the place v of F and f = [Ew : Fv].

Ideas of Saito [30] and Shintani [34] allow us to show that base change is always possible

when G = GL(2) and E is a cyclic extension of prime degree are enough, and for them it is

possible to characterize those Π which are liftings. The Galois group Gal(E/F ) acts on AE

and on GL(2, AE) and thus on the set of automorphic representations of GL(2, AE). Apart

from some trivial exceptions, Π is a lifting if and only if Π is fixed by Gal(E/F ).

Base change is a first step towards a proof of the principle of functoriality and Artin’s

conjecture for two­dimensional representations. Suppose, for example, that σ is a tetrahedral

representation of Gal(F̄ /F ). Then there is a cyclic extension E of F of degree three which

is such that the restriction Σ of σ to Gal(F̄ /E) is dihedral. Consequently the principle of
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functoriality applies to it and yields an automorphic representation Π = Π(Σ) of GL(2, AE).

The class of Σ is invariant under Gal(E/F ) and therefore Π is too, and is a lifting. There is

precisely one representation π which lifts to Π and has central character det σ. It should be

π(σ), the representation whose existence is demanded by the principle of functoriality. At first

sight this does not look difficult to show, for the eigenvalues of σ(Φp) and {A(πv)}, where v

is the place defined by p, differ only by cube roots of unity, but it should be a deeper matter.

However fortune smiles on us, for we can deduce some interesting theorems without pressing

for a full understanding.

There are two ways of proceeding. The one used in [26] has the disadvantage that it does

not work for all fields or all tetrahedral representations, but the advantage that it alsoworks for

some octahedral representations. It invokes a theorem of Deligne­Serre, characterizing some

of the automorphic representations attached to two­dimensional representations of the Galois

group. The other (cf. [15]) employs special cases of the principle of functoriality proved by

Piatetski­Shapiro and Gelbart­Jacquet.

One begins with Serre’s observation to me that composition of σ with the adjoint rep­

resentation ϕ of GL(2) on the Lie algebra of PGL(2) gives a three­dimensional monomial

representation ̺ to which, by a theorem of Piatetski­Shapiro [21], the principle functoriality

applies to yield an automorphic representation π(̺) ofGL(3, AF ). On the other hand, the L­

group ofGL(2) is a direct productGL(2, C)×Gal(K/F ) and that ofGL(3) is a direct product

GL(3, C)× Gal(K/F ). The principle of functoriality should attach to the homomorphism

ϕ × id : GL(2, C) × Gal(K/F ) → GL(3, C) × Gal(K/F )

a map ϕ∗ from automorphic representations of GL(2, AF ) to automorphic representations of

GL(3, AF ). The existence of ϕ∗ has been proven by Gelbart­Jacquet [16].

If the principle of functoriality is consistent and π is π(σ) then ϕ∗(π) must be π(̺).

Conversely, elementary considerations, which exploit the absence of an element of order six in

the tetrahedral group, show that if ϕ∗(π) equals π(̺) then π is π(σ). That ϕ∗(π) equals π(̺)

follows easily from an analytic criterion of Jacquet­Shalika [22].

Even for GL(2) base change for cyclic extensions is not proved without some effort,

the principal tools being the trace formula and the combinatorics of the Bruhat­Tits building.

These are being developed by Arthur [1] and by Kottwitz [23], but our knowledge of harmonic

analysis is still inadequate to a frontal attack on the problem of base change for a general group.

Nonetheless some progress can be expected, although it is not clear how close base change

will bring us to the Artin conjecture.

For number fields there has been no other recent progress with the principle of reciprocity.

But we could also try to show that a motivicL­function is equal to an automorphic L­function
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L(s, π, ̺) which is not standard or to a product of such functions. This may not imply the

analytic continuation of L(s, E) but can have concrete arithmetic consequences and the proof

may direct our attention to important features of the mechanism underlying the principles of

reciprocity and functoriality [31].

The immediate examples are the L­functions defined by Shimura varieties [27]. These

varieties are a rich source of ideas and problems, but once again we must advance slowly,

deepening our understanding of harmonic analysis and arithmetic as we proceed. For the va­

rieties associated to the group overQ obtained by restriction of scalars from a totally indefinite

quaternion algebra over a totally real field F , the problems are tractable. In [27] no motives

are mentioned, but the zeta­function is expressed as a quotient of products of automorphic

L­function of degree 2n, where n = [F : Q] is the dimension of the variety. For n = 2, the

analytic continuation and functional equation have been established by Asai [4], and we have

the first examples of analytic continuation for motivic L­functions which are of degree four

and, apparently, irreducible and not induced.
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