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We start to build ARIMA(p,d,q) models. The subjects include:

1 how to determine p, d , q for a given series (Chapter 6);

2 how to estimate the parameters (φ’s and θ’s) of a specific
ARIMA(p,d,q) model (Chapter 7);

3 how to evaluate the fitted model and improve it if needed
(Chapter 8).

A standard model building process go through the above three
procedures in order. We may iterate the process several times to
improve the model.
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6.1. Properties of the Sample ACF

Recall the sample autocorrelation function (sample ACF) for an
observed series {Yt}nt=1 is

rk =

∑n
t=k+1(Yt − Y )(Yt−k − Y )∑n

t=1(Yt − Y )2
, k = 1, 2, 3, · · ·

We use the sample ACF {rk} to estimate the ACF {ρk}, then use
the pattern of ACF to decide the model. There are three basic
questions about the sample ACF:

1 Is sample ACF a unbiased estimator of ACF (E (rk) = ρk)?

2 How precise is our estimation (Var (rk))?

3 What is the correlation Corr (rk, rj) of rk and rj?
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Theorem 1

Suppose {Yt} is a stationary ARMA process. For any fixed m, the
joint distribution of

√
n(r1 − ρ1),

√
n(r2 − ρ2), · · · ,

√
n(rm − ρm)

approaches, as n→∞, a joint normal distribution with zero means
and certain covariance matrix

[
cij
]
m×m (see (6.1.2) on pp110.)

In particular, for large n,

1 each rk ≈ N(ρk ,
ckk
n ) (so rk is an unbiased estimator of ρk

with the variance inversely proportional to n);

2 Corr (rk, rj) ≈
ckj√
ckkcjj

is approximately constant for large n.
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The sample ACF behaves much simpler for some special cases:

If {Yt} is white noise, then Var (rk) ≈ 1
n and Corr (rk, rj) ≈ 0 for

k 6= j .

If {Yt} ∼ AR(1), we get

Var (r1) ≈ 1− φ2

n
.

The closer φ is to ±1, the more precise our estimate of ρ1(= φ)
becomes.

Var (rk) ≈ 1

n

[
1 + φ2

1− φ2

]
for large k.

The closer φ is to ±1, the more variance our estimate of large
ρk ≈ φk is.

Corr (r1, r2) ≈ 2φ

√
1− φ2

1 + 2φ2 − 3φ4
.
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Exhibit 6.1 on pp111 gives approximate standard deviations and
correlations for several lags and a few values of φ in AR(1) models.
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For {Yt} ∼ MA(1), we have Var (rk) ≈ ckk/n and
Corr (rk, rj) ≈

ckj√
ckkcjj

where

c11 = 1−3ρ2
1+4ρ4

1, ckk = 1+2ρ2
1 for k > 1, c12 = 2ρ1(1−ρ2

1).

Exhibit 6.2 lists large-sample standard deviations and
correlations for the sample ACF for several lags and θ-values.

The sample ACF can be highly correlated and that the
standard deviation of rk is larger for k > 1 than for k = 1.
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For {Yt} ∼ MA(q), we get Erk = ρk = 0 for k > q,

Var (rk) =
1

n

1 + 2

q∑
j=1

ρ2j

 for k > q. (1)

Theorem 2

A test of the hypothesis that an observed series is MA(q) could be
done by comparing rk (k > q) to ±2 standard errors, where the
standard error is estimated by

√
Var (rk) using the above formula

and replacing ρ’s by r ’s. We would reject the null hypothesis iff rk
lies outside these bounds.
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The dashed horizontal lines plotted at ±2/
√

n are used to test whether

or not the ACFs are significantly different from 0. The limits are based

on the approximate large sample standard error that applies to a white

noise process, namely 1/
√

n. The sample ACF values exceed these rough

critical values at lags 1, 5, and 14.
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The same sample ACF with critical bounds calculated by (1). We replace

ρ’s by r ’s, let q equal 1, 2, 3, . . . successively, and take the square root.

The sample ACF at lag 5 is barely significant. This plot suggests us to

consider a MA(1) model.
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As the second example, Exhibit 6.7 displays the sample ACF for an

MA(1) Process ma1.2.s with θ = −0.9. The critical values based on the

approximately white noise limits point to a MA(1) model. However, the

lag 6 sample ACF looks really significant.
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If we use the new limits for the sample ACF of the dataset ma1.2.s, the

lag 6 sample ACF barely pass the line.
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For dataset ma2.s, the sample ACF displays significance at lags 1, 2, 5,

6, 7, 14 and 15 based on the simple standard error bounds.
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With the more sophisticated standard error bounds, the lag 7,14, 15

sample ACF of ma2.s is no longer significant. Later we will see that

MA(2) is the most appropriate model for these data.
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Ex. [HW6.12] From a time series of 100 observations, we calculate

r1 = −0.49, r2 = 0.31, r3 = −0.21, r4 = 0.11;

|rk | < 0.09 for k > 4.

On this basis alone, what ARIMA model would we tentatively
specify for the series?
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6.2. The Partial and Extended Autocorrelation
Functions

For MA(q) models, ρk = 0 for k > q. So the ACF/sample ACF is
a good indicator for the order of the process. However, the ACF of
AR(p) models does not cut off. We need new approaches./new
functions to determine the type and the order of AR(p) models.

Ex. Consider the AR(1) model Yt = φYt−1 + et , in which
γ2 = φ2γ0 6= 0 because Yt is dependent on Yt−2 through Yt−1.
Suppose we break this chain of dependence by removing (or partial
out) the effect of Yt−1. The least square regression of Yt on Yt−1

is ρ1Yt−1 = φYt−1. We have

Cov (Yt − φYt−1,Yt−2 − φYt−1) = Cov (et,Yt−2 − φYt−1) = 0.
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6.2.1. PACF

Def. The partial autocorrelation at lag k is the correlation
between Yt and Yt−k after removing the effect of the intervening
variables Yt−1,Yt−2, · · · ,Yt−k+1.

1 If {Yt t} is normally distributed, we can let

φkk = Corr (Yt,Yt−k | Yt−1,Yt−2, · · · ,Yt−k+1) .

2 If we predict Yt and Yt−k based on a least square estimation
of a linear function of Yt−1, · · · ,Yt−k+1, we get the predictors

Ŷt = β1Yt−1 + · · ·+ βk−1Yt−k+1,

Ŷt−k = β1Yt−k+1 + · · ·+ βk−1Yt−1,

(where the coefficients are coincide due to stationarity.) The
partial autocorrelation function (PACF) at lag k is then
defined to be the correlation between the prediction errors:

φkk = Corr(Yt − β1Yt−1 − · · · − βk−1Yt−k+1,

Yt−k − β1Yt−k+1 − · · · − βk−1Yt−1).
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We now study the PACF for AR(p) and MA(q) models:

(AR(p):) For k > p, the best linear predictor of Yt w.r.t.
Yt−1,Yt−2, · · · ,Yp, · · · ,Yt−k+1 is
φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p (Chapter 9). Let Ŷt−p be
the linear predictor of Yt−p w.r.t. Yt−1,Yt−2, · · · ,Yt−k+1.
Then

φkk = Corr
(
Yt − φ1Yt−1 − · · · − φpYt−p,Yt−p − Ŷt−p

)
= Corr

(
et,Yt−p − Ŷt−p

)
= 0.

Theorem 3

The PACF of an AR(p) model satisfies that φkk = 0 for k > p.
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(MA(1) & MA(q):) We will get

φkk = − θ
k(1− θ2)

1− θ2(k+1)
, for k ≥ 1.

The PACF of an MA(1) model decays to zero exponentially.
In general, the PACF of an MA(q) model behaves like the
ACF of an AR(q) model.
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Theorem 4

For any stationary process with given ACF {ρi}, the PACF {φkk} could
be solved by Yule-Walker equations:

ρj−1φk1 + ρj−2φk2 + ρj−3φk3 + · · ·+ ρj−kφkk = ρj for j = 1, 2, · · · , k.
(2)

Explicitly,

φk1+ ρ1φk2+ ρ2φk3+ · · · + ρk−1φkk = ρ1

ρ1φk1+ φk2+ ρ1φk3+ · · · + ρk−2φkk = ρ2

...

ρk−1φk1+ ρk−2φk2+ ρk−3φk3+ · · · + φkk = ρk

We solve φk1, φk2, · · · , φkk and discard all but φkk .

For AR(p) model and k = p, the parameters φ1, · · · , φp also satisfies the

Yule-Walker equations. We have φpp = φp 6= 0 and φkk = 0 for k > p.

Thus PACF effectively display the correct order of an AR(p) process.
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6.2.2 Sample PACF

Definition 5

In the Yule-Walker equations (2), we estimate the ACF ρ’s by the
sample ACF r ’s, and solve the resulting linear equations for
k = 1, 2, 3, . . . to get estimates of φkk . The estimated function is
called the sample partial autocorrelation function (sample
PACF), denoted by φ̂kk .

The Yule-Walker equations (2) can be solved recursively:

For an observed series, the sample PACF {φ̂kk} can be estimated
by replacing ρ’s by r ’s in the above formula.
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Under the hypothesis that an AR(p) model is correct, for k > p, φ̂kk is
approximately ∼ N(0, 1/n). Thus for k > p, ±2/

√
n can be used as

critical limits on φ̂kk .

The ACF shows strong positive correlations at lags 1, 2, 3, as seen early.

However, the sample ACF decreases more linearly than exponentially as

theory suggests. Also contrary to theory, the sample ACF goes negative

at lag 10 and remains so for many lags.
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The sample PACF gives a much clearer picture and strongly
suggests an AR(1) model.

Time Series Analysis Ch 6. Model Specification



The sample ACF looks like the damped wave. However, it does not
damp down nearly as quickly as theory predicts.
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The sample PACF gives a strong indication that we should
consider an AR(2) model for these data. The sample PACF at lag
9 exceeds critical line and it would need to be investigated further
during model diagnostics.

Time Series Analysis Ch 6. Model Specification



6.2.3 Mixed Models and the Extended ACF

The behavior of ACF and PACF are summarized in Exhibit 6.3.

The sample ACF and PACF provide effective tools for identifying
pure AR(p) or MA(q) models.
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For a mixed ARMA model, many graphical tools have been
proposed to effectively identify the ARMA orders: the corner
method (Becuin et al., 1980), the extended autocorrelation
(EACF) method (Tsay and Tiao, 1984), and the smallest canonical
correlation (SCAN) method (Tsay and Tiao, 1985), among others.
The EACF method seems to have good sampling properties for
moderately large sample sizes (W. S. Chan, 1999).

The EACF method uses the fact that if the AR part of a mixed
ARMA model is known, “filtering out”the autoregression from the
observed time series results in a pure MA process that enjoys the
cutoff property in its ACF. The AR coefficients may be estimated
by a finite sequence of regressions.
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Ex. Consider the ARMA(1,1) model: Yt = φYt−1 + et − θet−1. Recall

ρ1 =
(φ− θ)(1− φθ)

1− 2φθ + θ2
, ρ2 = φρ1.

1 Do a linear regression of Yt on Yt−1 gets ρ1Yt−1. The residual

R
(1)
t := Yt − ρ1Yt−1 = (φ− ρ1)Yt−1 + et − θet−1

is not a MA(1) process.

2 Do a second multiple regression of Yt on Yt−1 and on

R
(1)
t−1 = Yt−1 − ρ1Yt−2, the lag 1 of the residuals from the first

regression: Yt = φ̃Yt−1 + µ̃(Yt−1 − ρ1Yt−2). By least squares

property, the correlations of Yt − φ̃Yt−1 − µ̃(Yt−1 − ρ1Yt−2) with
Yt−1 and Yt−1 − ρ1Yt−2 (equivalently, with Yt−2) should be zero.
We solve that

φ̃ = φ, µ̃ =
ρ1 − φ
1− ρ2

1

.

The coefficient φ̃ of Yt−1 in the second regression is a consistent
estimator of φ.

3 The process Wt = Yt − φ̃Yt−1 is approximately an MA(1) process.
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Similarly, the AR coefficients of an ARMA(p,q) model can be
consistently estimated via a sequence of q regressions.

The AR and MA orders p and q can be determined by an iterative
procedure. Let

Wt,k,j = Yt − φ̃1Yt−1 − · · · − φ̃kYt−k

be the autoregressive residuals defined with the AR coefficients
estimated iteratively assuming the AR order is k and the MA order
is j. The sample autocorrelations of Wt,k,j for t are called the
sample EACFs. For k = p and j ≥ q, {Wt,k,j}t ≈ MA(q), so that
its autocorrelations of lag q + 1 or higher are equal to zero. For
k > p, an overfitting problem occurs, and this increases the MA
order for the W process by the minimum of k − p and j − q.
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We can summarize the information in a table to determine p and q.
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We simulate an series of mixed ARMA(1,1) model and analyze the
data.
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The sample ACF and the sample PACF seem to indicate that an
AR(1) model should be specified. However, the triangular region of
zeros shown in the sample EACF in Exhibit 6.17 indicates quite
clearly that a mixed model with q = 1 and with p = 1or2 would be
more appropriate.
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You may simulate and analyze a ARMA(1,1) series by yourself.
(See TS-ch6.R)
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6.3 Specification of Some Simulated Time Series

The exhibits have been illustrated in 6.1 and 6.2.

6.4 Nonstationarity

The definition of sample ACF implicitly assumes stationarity.
However, for nonstationary series, the sample ACF often fails to
die out rapidly as the lags increase, due to the tendency for
nonstationary series to drift slowly.
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The sample ACF values are “significantly far from zero” and they
decrease slowly. The sample ACF is unlike that of a stationary one.
Similar pattern happens for the series log(oil.price).

The PACF of oil.price seems strongly inclined to an AR(1) model.

However, the plot of oil.price has shown that it is nonstationary.
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The plot of diff(log(oil.price)) supports stationarity with possible

outliners. The ACF looks like a damping sine wave with significant lag 1

value. Therefore, an MA(1) model for diff(log(oil.price)) seems

appropriate. The EACF also supports an MA(1) model. Thus we may

assign diff (log(oil .price)) ∼ MA(1), log(oil .price) ∼ IMA(1, 1).
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In the difference approach, we difference the observed series until
the plot of resulting series and its sample ACF, PACF, or EACF
supports a stationary process. Usually we will achieve stationarity
after one or two differences, together with logarithm or some other
transforms.

6.4.1 Overdifferencing

The difference of a stationary series is also stationary. However,
overdifferencing introduces unnecessary correlations into a series.
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Ex. Suppose an observed series

{Yt} ∼ ARIMA(p, d , q).

Then
∇dYt ∼ ARMA(p, q).

If we overdifference the series and get

∇d+1Yt ∼ ARMA(p, q + 1)

then we will mistakenly model the original series as

{Yt} ∼ ARIMA(p, d + 1, q + 1).

Drawbacks:

1 Overdifferecing makes the model more complicated.

2 Overdifferecing creates a noninvertible model, which will create
serious problems when we attempt to estimate their parameters.
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If we overdifference the dataset rwalk, then we may model
∇2(rwalk) ∼ MA(1) and mistakenly model rwalk ∼ IMA(2, 1).
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The right difference suggests that ∇(rwalk) ∼ et and thus
rwalk ∼ ARIMA(0, 1, 0) (a random walk process).
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Remember the principle of parsimony:

models should be simple, but not too simple.
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6.5 Other Specification Methods

Some popular approaches to determine the ARMA orders p and q:

1 Akaike’s Information Criterion (AIC): to select the model
that minimizes

AIC = −2 log(maximal likelihood) + 2k

where k = p + q + 1 if the model contains an intercept or
constant term and k = p + q otherwise. The AIC is an
estimator of the average Kullback-Leibler divergence of the
estimated model from the true model.

2 The Schwarz Bayesian Information Criterion (BIC): to
select the model that minimizes

BIC = −2 log(maximal likelihood) + k log(n).
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A subset ARMA(p,q) model is an ARMA(p,q) model with a
subset of its coefficients known to be zero. For a subset
ARMA(12,12) model like

Yt = 0.8Yt−12 + et + 0.7et−12,

finding a subset ARMA model that adequately approximates the
underlying process is more important than simply determining the
ARMA orders. It is prudent to examine a few best subset ARMA
models (in terms of, for example, BIC) in order to arrive at some
helpful tentative models for further study.

We show an example of the above model in the next exhibit.
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Exhibit 6.22 Best Subset ARMA Selection Based on BIC

Each row in the exhibit corresponds to a

subset ARMA model where the cells of the

variables selected for the model are

shaded. The models are sorted according

to their BIC, with better models (lower

BIC) placed in higher rows and with

darker shades.

The best Subset ARMA selection only suggests some possible models.

These models need further examinations. In the above exhibit, if we use

set.seed(3399) or some other numbers, we may have different

outcomes.
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6.6 Specification of Some Actual Time Series

The Los Angeles Annual Rainfall Series larain

Taking logarithms significantly improves the normality. You may
also try shapiro.test to check.
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Based on the sample ACF, we could model the logarithm of annual
rainfall amount as independent, normal random variables with
mean 2.58 and standard deviation 0.478.
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The Chemical Process Color Property Series color

The ACF plot looks like an MA(1) model. However, there is a
damp sine wave pattern. Maybe an AR or ARMA model is more
appropriate.
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The PACF plot suggests an AR(1) model.
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The Annual Abundance of Canadian Hare Series hare

The confidence interval contains λ = 0.5. We will take square
roots on hare for further analysis.
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The damped sine wave pattern motivate us to look for PACF.
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The PACF plot suggests an AR(2) or AR(3) model.
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The Oil Price Series oil.price

This table suggests an ARMA model with p = 0 and q = 1, that
is, MA(1).
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For Yt := ∇ log(Oilt), the best model is in terms of Yt−1 and Yt−4

and no lags are needed in error terms. The second best model is
AR(1) (where log(Oilt) ∼ ARI (1, 1)).
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The plot suggests an MA(1) model for Yt := ∇ log(Oilt). The
sample ACF seems to have some damped sine wave pattern.
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The plot suggests an AR(2) model for Yt := ∇ log(Oilt).

We will investigate all the above models further.
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