
Chapter 19

Scapegoat Trees

Igal Galperin* Ronald L. Rive&*

Abstract
We present an algorithm for maintaining binary search trees.
The amortized complexity per INSERT or DELETE is O(log n)
while the worst-case cost of a SEARCH is O(log n).

Scapegoat trees, unlike most balanced-tree schemes, do
not require keeping extra data (e.g. “colors” or “weights”)
in the tree nodes. Each node in the tree contains only a key
value and pointers. to its two children. Associated with the
root of the whole tree are the only two extra values needed
by the scapegoat scheme: the number of nodes in the whole
tree, and the maximum number of nodes in the tree since
the tree was last completely rebuilt.

In a scapegoat tree a typical rebalancing operation
begins at a leaf, and successively examines higher ancestors
until a node (the “scapegoat”) is found that is so unbalanced
that the entire subtree rooted at the scapegoat can be rebuilt
at zero cost, in an amortized sense. Hence the name.

1 Introduction

There are a vast number of schemes available for im-
plementing a “dictionary’‘-supporting the operations
INSERT, DELETE, and SEAncrr-using balanced binary
search trees. Mehlhorn and Tsakalikis [9] survey the re-
cent literature on such data structures. In this paper
we propose a new method that achieves optimal amor-
tized costs for update operations (INSERT and DELETE)

and optimal worst-case cost for SEARCH, without re-
quiring the extra information (e.g. colors or weights)
normally required by many balanced-tree schemes. This
is the first method ever proposed that achieves a worst-
case search time of O(logn) without using such extra
information, while maintaining optimal amortized up-
date costs. In addition, the method is quite simple and
practical. (Indeed, we wonder why it wasn’t discovered
much earlier!)

Many balanced-tree schemes are height-balanced;
the extra information stored at each node helps to
enforce a bound on the overall height of the tree. Red-
black trees, invented by Bayer [2] and refined by by
Guibas and Sedgewick [7], are an elegant example of the

*Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139. Supported by NSF grant
CCR-8914428, AR0 grant N00014-89-J-1988, and the Siemens
Corporation. Email addresses: galperin@theory.lcs.mit.edu and
rivest@theory.lcs.mit.edu.

height-balanced approach. Red-black trees implement
the basic dictionary operations with a worst-case cost of
O(logn) per operation, at the cost of storing one extra
bit (the “color” of the node) at each node. AVL trees
[l] are another well-known example of height-balanced
trees.

Other schemes are weight-balanced in that the extra
information at each node records the size of the subtree
rooted at that node. By ensuring that the weights of sib-
lings are approximately equal, an overall bound on the
height of the tree is enforced. Nievergelt and Reingold
[lo] introduce such trees and present algorithms for im-
plementing the basic dictionary operations in O(logn)
worst-case time. Overmars and van Leeuwen in [11] use
such techniques too.

The scapegoat method is a modification of the
weight-balanced method of Varghese [5, Problem 18-
31, who presents an algorithm for maintaining weight-
balanced trees with amortized cost O(logn) per oper-
ation. Our scheme combines the notions of height-
balanced and weight-balanced to achieve an effective
algorithm, without storing either height information or
weight information at any node.

There have been previous binary tree schemes pro-
posed that do not store any extra information at each
node. Splay trees, due to Sleator and Tarjan [13], are
perhaps the best-known example; they achieve O(log n)
amortized complexity per operation. However, splay
trees do not guarantee a logarithmic worst-case bound
on the cost of a SEARCH, and require restructuring even
during searches (unlike scapegoat trees, which do have a
logarithmic worst-case cost of a SEARCH and do not re-
structure the tree during searches). Splay trees do have
other desirable properties that make them of consid-
erable practical and theoretical interest, however, such
as their near-optimality when handling an arbitrary se-
quence of operations.

Section 2 introduces the basic scapegoat data struc-
ture, and some notation. Section 4 describes the algo-
rithm for maintaining scapegoat trees and outlines the

165

166 GALPERIN AND RIVEST

proof of their features. Section 5 proves the complexity
claims. Section 6 describes an algorithm for rebuilding a
binary search tree in linear time and logarithmic space.
In Section 7 we show how our techniques can be used in
k - d trees, and state weak conditions that suffice to al-
low the application of our techniques to other tree-based
data structures. Section 8 reports the results of experi-
mental evaluation of scapegoat trees. We compare a few
variations of the scapegoat algorithm and also compare
it to other algorithms for maintenance of binary search
trees. Finally, Section 9 concludes with some discussion
and open problems.

2 Notations

In this section we describe the data structure of a
scapegoat tree. Basically, a scapegoat tree consists of
an ordinary binary search tree, with two extra values
stored at the root.

Each node z of a scapegoat tree maintains the
following attributes:

key[z] - The key stored at node z.

We call a tree o-weight-balanced if, for a given value
of cy, l/2 < a < 1, all the nodes in it are cu-weight-
balanced. Intuitively, a tree is o-weight-balanced if, for
any subtree, the sizes of its left and right subtree are
approximately equal.

left[z] - The left child of z. We denote

righl[z] - The right child of z.
We’ll also use the notations:
size(z) - the size of the sub-tree rooted at z (i.e.,
the number of keys stored in this sub-tree including
the key stored at z).

brother(z) - the brother of node z; the other child
of z’s parent or NIL.

h(z) and h(T) - height of a node and a tree
respectively. The height of a node is the length
of the longest path from that node to a leaf. The
height of a tree is the height of its root.

and say that a tree T is a-height-balanced if it
satisfies

(3.3) NT) L ha(n),

where n = site(T). Intuitively, a tree is a-height-
balanced if its height is not greater than that of the
heighest a-weight-balanced tree of the same size. The
following standard lemma justifies this interpretation.

LEMMA 3.1. If T is an cr-weight-balanced binary
search tree, then T is a-height-balanced.

d(x) - depth of node c. The depth of a node is the
length (number of edges) of the path from the root
to that node. (The root node is at depth 0.)
Note that values actually stored as fields in a

Although scapegoat trees are not guaranteed to
a-weight-balanced at all times, they are loosely
height-balanced, in that they satisfy the bound

node are used with brackets, whereas values that are
computed as functions of the node use parentheses;
each node only stores three values: key, left, and right.
Computing brother(x) requires knowledge of Z’S parent.
Most importantly, sire(z) is not stored at z, but can be
computed in time 0(&e(z)) as necessary.

The tree T as a whole has the following attributes:
l root[T] - A pointer to the root node of the tree.

(3-4 h(T) S ha(T) + 1,

where h,(T) is a shorthand for h,(site[g).
We assume from now on that a fixed (Y, l/2 < cy < 1,

has been chosen. For this given o, we call a node of
depth greater than h,(T) a deep node. In our scheme
the detection of a deep node triggers a restructuring
operation.

4 Operations on Scapegoat trees

4.1 Searching a scapegoat tree. In a scapegoat
tree, SEARCH operations proceed as in an ordinary
binary search tree. No restructuring is performed.

l siteM - The number of nodes in the tree. This
is the same as sire(root[Tl). In our complexity
analyses we also denote size[T”J by n.

l mat-sire[q - The maximal value of si.ze[q since
the last time the tree was completely rebuilt. If
DELETE operations are not performed, then the
max-size attribute is not necessary.

3 Preliminary discussion
SEARCH, INSERT and DELETE operations on scapegoat
trees are performed in the usual way for binary search
trees, except that, occasionally, after an update oper-
ation (INSERT or DELETE) the tree is restructured to
ensure that it contains no “deep” nodes.

A binary-tree node z is said to be cr-weight-
balanced, for some a, l/2 5 (Y < 1, if both

(3.1)

(34

sile(refi[x]) 5 (Y. size(z), and

site(right[x]) 5 (Y. site(x) .

be
CY-

SCAPEGOAT TREES 167

4.2 Inserting into a scapegoat tree. To insert
a node into a scapegoat tree, we insert it as we would
into an ordinary binary search tree, increment size[T],
and set mat-site[T] to be the maximum of site[T]
and maz_size[7’l. Then-if the newly inserted node is
deep-we rebalance the tree as follows.

Let xc be the newly inserted deep node, and in
general let xi+1 denote the parent of xi. We climb the
tree, examining x0, x1, 22, and so on, until we find a
node xi that is not o-weight-balanced. Since 2s is a leaf,
site(zs) = 0. We compute site(zj+r) using the formula

(4.5) size(tj+l) = sizc(zj) + sitc(brother(xj)) + 1

for j = 1,2,. . . , i, using additional recursive searches.
We call xi, the ancestor of x0 that was found

that is not a-weight-balanced, the scapegoat node. A
scapegoat node must exist, by Lemma 5.1 below.

Figure 1: The initial tree, T. For CY = 0.57, h,(17) =
h,(18) = 5, and T is loosely a-height-balanced (because
node 10 is at depth 6). Nodes 2, 5, 6, 12, 15 and 16 are
currently weight-unbalanced. Inserting 8 into this tree
triggers a rebuild. We chose node 6 to be the scapegoat
node.

Once the scapegoat node xi is found, we rebuild
the subtree rooted at xi. To rebuild a subtree is to
replace it with a l/a-weight-balanced subtree containing
the same nodes. This can be done easily in time
O(Si.%e(Xj)). S ec ion 6 describes how this can be done t
in space O(logn) as well.

we rebuild the whole tree, and reset mazAze[T] to
size[T].

4.4
b

l

b

Remarks.
Every time the whole tree is rebuilt maz-size[g is
set to sire[q.

An alternative way to find a scapegoat node.

As can be seen in Figure 1, 20 might have more
than one weight-unbalanced ancestor. Any weight-
unbalanced ancestor of xc may be chosen to be the
scapegoat. Here we show that another way of finding
a weight-unbalanced ancestor 2i of xc is to find the
deepest ancestor of X,-J satisfying the condition

Note that ha(T) is easily computed from the infor-
mation stored at the root. (Indeed, it could even
be stored there as an extra attribute.)

(4.6) i > h,(Si.ZC(Xj)).

Since this ancestor will often be higher in the tree
than the first weight-unbalanced ancestor, it may tend
to yield more balanced trees on the average. (In
our experiments this heuristic performed better than
choosing the first weight-unbalanced ancestor to be the
scapegoat.) Inequality (4.6) is satisfied when xi =
rool[7’l, hence this scheme will always find a scapegoat
node. The scapegoat node found is indeed weight-
unbalanced by Lemma 5.2.

We do not need explicit parent fields in the nodes to
find the scapegoat node, since we are just climbing
back up the path we came down to insert the new
node; the nodes z; on this path can be remembered
on the stack.

5 Correctness and Complexity

5.1 Correctness. The following two lemmas prove
that the algorithm is indeed correct.

The first lemma guarantees that a deep node has
an ancestor that in not o-weight-balanced.

LEMMA 5.1. If x is a node at depth greater than
h,(T) then there is an cY-weight-unbalanced ancestor of
2.

Note that applying condition (4.6) when searching
for the scapegoat in the example in Figure 1 indeed
results in node 6 being rebuilt, since it is the first
ancestor of node 8 that satisfies the inequality.

4.3 Deleting from a scapegoat tree. Deletions
are carried out by first deleting the node as we would
from an ordinary binary search tree, and decrementing
size[T]. Then, if

(4.7) size[Tj < a f max-site[Tj

Proof By negation according to equations (3.1) if
x is a child of y, then size(x) 5 cr. size(y). By induction
on the path from x to the root, size(z) 5 ad(Z) . site[fl.
Therefore, the depth d(x) of a node x is at most
log(,,,) sire[T], and the lemma follows,

The following lemma proves that a scapegoat node
found using inequality (4.6) is weight-unbalanced.

LEMMA 5.2. If a binary tree T contains a node x0
at depth greater than h,(n), then the deepest ancestor
xi of xo that is not a-height-balanced is not a-weight-
balanced either.

168 GALPERIN AND RIVEST

Proof. We chose xi so that the following inequalities Proof Denote by sh and sr the sizes of the heavy
are satisfied. and the light subtrees respectively. The root of the tree

i > h,(size(xi)) , is not o-weight-balanced, hence:

and
i - I 5 h,(Site(Xi-1)) . sh > ~2 * (sh + SI + 1)

Subtracting these two inequalities gives

1 > h,(Si%C(Xi)) - h,(size(zj-1)

= h31/, (2;E,) *

Therefore,
Si%e(Xi-1) > CX * Site(Zi).

5.2 Complexity of searching. Since a scapegoat
tree is loosely a-height-balanced and o is fixed, a
SEARCH operation takes worsl-case time

This yields:

sh > & ’ (81 + 1)

Since a > l/2 and Sh and SI are both whole numbers,
we get:

8h 2 sl + 2 .

A tree T is complete of height h if a node cannot
be added to T without making its height greater than
h. A complete tree of height h has 2h+’ - 1 nodes.

LEMMA 5.6. If T is not a-weight-balanced and T
contains only one node at depth h(T) then rebuilding T
decreases its height.

O(h,(n)) = O(logn) . Proof. Let x be the deepest node of T, and let TI

No restructuring or rebalancing operations are per-
be the light subtree of T. Let T/ be the tree we get by

formed during a SEARCH. Therefore, not only do scape-
removing x from Tr if z is a node of TI, or TJ itself if x

goat trees yield an O(logn) worst-case SEARCH time,
is not a node of Tl. By Lemma 5.5, T,’ is not a complete

but they should also be efficient in practice for SEARCH-
tree of height h(T)- 1. Therefore, Lemma 5.4 completes
the proof.

intensive applications since no balancing overhead is in- -
curred for searches.

THEOREM 5.1. Jf a scapegoat tree T was created
from a l/2-weight-balanced tree by a sequence of INSERT

5.3 Complexity of inserting. The following
operations, then T is a-height-balanced.

lemma is key to the complexity analysis. Proof. By induction on the number of insert oper-

LEMMA 5.3. The time to find the scapegoat node xi ations using Lemma 5.6.

iS O(Si%e(Xi)). Let us now consider a sequence of n INSERT opera-

Proof. The dominant part of the cost of finding the tions, beginning with an empty tree. We wish to show

scapegoat node xi is the cost of computing the values that the amortized complexity per INSERT is O(logn).

si.ze(xo), si%e(xi), . . . , sire(xi). Observe that with the
For an overview of amortized analysis, see Cormen

optimized size calculations described in equation (4.5),
et al. [5]. We begin by defining a nonnegative potential

each node in the subtree rooted at the scapegoat node
fvnction for the tree Let

A(x) = Isi%e(left[x]) - site(right[x])), xi is visited exactly once during these computations.
We now analyze the situation where no DELETE

operations are done; only INSERT and SEARCH opera-
tions are performed. The following lemmas yield The-
orem 5.1, which shows that a scapegoat tree is always
a-height-balanced if no deletions are performed. The
next lemma asserts that rebuilding a tree does not make
it deeper.

LEMMA 5.4. If T is a l/2-weight-balanced binary
search tree, then no tree of the same size has a smaller
height.

Proof. Straightforward.

LEMMA 5.5. If the root of T is not a-weight-
balanced then its heavy subtree contains at least 2 nodes
more than its light subtree.

and define the potential of node x to be 0 if A(x) < 2,
and A(x) otherwise. The potential of a l/2-weight-
balanced node is thus 0, and the potential of a node
x that is not o-weight-balanced is @(size(x)). (Note
that A(x) is not stored at x nor explicitly manipulated
during any update operations; it is just an accounting
fiction representing the amount of “prepaid work” avail-
able at node x.) The potential of the tree is the sum of
the potentials of its nodes.

It is easy to see that by increasing their cost by only
a constant factor, the insertion operations that build up
a scapegoat tree can pay for the increases in potential
at the nodes. That is, whenever we pass by a node x
to insert a new node as a descendant of x, we can pay

SCAPEGOAT TREES 169

for the increased potential in x that may be required by
the resulting increase in A(x).

The potential of the scapegoat node, like that of any
non-a-weight-balanced node, is O(site(zi)). Therefore,
this potential is sufficient to pay for finding the scape-
goat node and rebuilding its subtree. (Each of these
two operations has complexity Q(size(xi)).) Further-
more, the potential of the rebuilt subtree is 0, so the
entire initial potential may be used up to pay for these
operations. This completes the proof of the following
theorem.

by Lemma 5.7. Hence

max(h,(T’), h(P)) 5 max(h,(T’), h(T)) =

m=(UT), h(T)) .

The lemma follows by induction on the number of
operations in the sequence.

LEMMA 5.9. For T’ = INSERT(T, x), if T is loosely
cv-height-balanced but is not a-height-balanced, and
h,(T’) = h,(T) + 1, th en T’ is a-height-balanced.

THEOREM 5.2. A scapegoat tree can handle a se- Proof. We know that

quence of n INSERT and m SEARCH operations, begin-
ning with an empty tree, with O(logn) amortized cost h(T) = ha(T) + 1.

per INSERT and O(logk) worst-case time per SEARCH,
where k is the sire of the tree the SEARCH is performed

Hence

on. h(T) = h,(T’).

5.4 Complexity of deleting. The main lemma of
this section, Lemma 5.10, states that scapegoat trees
are loosely o-height-balanced (recall inequality (3.4)).
Since we perform Q(n) operations between two suc-
cessive rebuilds due to delete operations we can “pay”
for them in the amortized sense. Therefore, combining
Lemma 5.10 with the preceding results completes the
proof of the following theorem.

THEOREM 5.3. A scapegoat tree can handle a se-
quence of n INSERT and m SEARCH or DELETE opera-
tions, beginning with an empty tree, with O(logn) amor-
tized cost per INSERT or DELETE and O(logk) worst-
case time per SEARCH, where k is the size of the tree
the SEARCH is performed on.

The first lemma generalizes Theorem 5.1.

LEMMA 5.7. For any tree T let T’ = INSERT(T, x),
then

h(T’) 5 max(h,(T’), h(T)) .

Proof If the insertion of x did not trigger a rebuild,
then the depth of x is at most ha(T’) and we are done.

Otherwise, suppose z was initially inserted at depth
d in T, where d > hLI(thereby causing a rebuild. If
T already contained other nodes of depth d we are done,
since a rebuild does not make a tree deeper. Otherwise,
the arguments in section 5.1 and Lemma 5.6 apply.

LEMMA 5.8. If h,(T) does not change during
a sequence of INSERT and DELETE operations then

m=4UT), h(T)) is not increased by that sequence.

Combining this with Lemma 5.7 gives

h(T’) _< h,(T’) ,

i.e., T’ is height balanced.

Now we have the tools to prove the main lemma of
this section.

LEMMA 5.10. A scapegoat tree built by INSERT and
DELETE operations from an empty tree is always loosely
a-height-balanced.

Proof. Let 01,. . . , o,, be a sequence of update oper-
ations that is applied to a l/2-weight-balanced scape-
goat tree, up until (but not including) the first opera-
tion, if any, that causes the entire tree to be rebuilt.
To prove the lemma it suffices to show that during
this sequence of operations the tree is always loosely
o-height-balanced. During any sequence of update op-
erations that do not change h,(T), a loosely o-height-
balanced tree remains loosely o-height-balanced, and
an a-height-balanced tree remains a-height-balanced,
by Lemma 5.8. Therefore, let oil, . . . , oi* be the sub-
sequence (not necessarily successive) of operations that
change ha(T). An INSERT operation in this subsequence
leaves the tree o-height-balanced, by Lemma 5.9. The
usage of mat-size[T] in DELETE implies that there are
no two successive DELETE operations in this subse-
quence, since the entire tree would be rebuilt no later
than the second such DELETE operation. Therefore a
DELETE operation in this subsequence must operate on
an a-height-balanced tree. Since the DELETE operation
decreases h,(T) by just one, the result is a loosely IY-

Proof A DELETE operation can not increase height-balanced tree. The lemma follows from applying

max(h,(T), h(T)). For an INSERT we have the preceding lemmas in an induction on the number of
operations.

h(T’) I m=(L(T’), h(T)) This completes the proof of Theorem 5.3.

170 GALPERIN AND RIVEST

6 Rebuilding in place

A straightforward way of rebuilding a tree is to use a
stack of logarithmic size to traverse the tree in-order
in linear time and copy its nodes to an auxiliary array.
Then build the new l/2-weight-balanced tree using a
“divide and conquer” method. This yields O(n) time
and space complexity. Our methods improve the space
complexity to logarithmic.

6.1 A simple recursive method. The first
algorithm links the elements together into a list, rather

Figure 2: The tree INSERT(T, 8), where T is the tree of

than copying them into an array.
Figure 1.

The initial tree-walk is implemented by the fol-
lowing procedure, FLATTEN. A call of the form
FLATTEN(Z, NIL) returns a list of the nodes in the sub-
tree rooted at 2, sorted in nondecreasing order. In gen-
eral, a call of the form FLATTEN(Z, y) takes as input a
pointer x to the root of a subtree and a pointer y to
the first node in a list of nodes (linked using their right
pointer fields). The set of nodes in the subtree rooted
at x and the set of nodes in the list headed by y are
assumed to be disjoint. The procedure returns the list
resulting from turning the subtree rooted at x into a list
of nodes, linked by their right pointers, and appending
the list headed by y to the result.
FLATTEN(Z, y)

1 if z = NIL
2 then return y
3 right[x] + FLATTEN(r’ight[x], y)
4 return FLATTEN(reft[x], z)

The procedure runs in time proportional to the
number of nodes in the subtree, and in space propor-
tional to its height

The following procedure, BUILD-TREE, builds a
l/2-weight-balanced tree of n nodes from a list of nodes
headed by node x. It is assumed that the list of nodes
has length at least n + 1. The procedure returns the
n+ 1st node in the list, s, modified so that left[s] points
to the root r of the n-node tree created.
BUILD-TREE(~, x)

1 ifn=O
2 then lefi[z] c NIL
3 return z
4 P c BUILD-TREE([(n - 1)/2], Z)
5 s c BUILD-TREE([(~ - 1)/2J , right[r])
6 right[r] c left[s]
7 Ieft[s]+-r
8 return s

A call to BUILD-TREE(~, scapegoat) runs in time
O(n) and uses O(logn) space.

The following procedure, REBUILD-TREE, takes as

input a pointer scapegoat to the root of a subtree to be
rebuilt, and the size n of that subtree. It returns the
root of the rebuilt subtree. The rebuilt subtree is 1/2-
weight-balanced. The procedure utilizes the procedures
FLATTEN and BUILD-TREE defined above, and runs in
time O(n) and space proportional to the height of the
input subtree.
REBUILD-TREE(~, scapegoat)

1 create a dummy node w
2 % c FLATTEN(scapegoat, 20)
3 BUILD-TREE(~, Z)
4 return left[w]

Figures 1 and 2 illustrate this process.

6.2 A non-recursive method. This section sug-
gests a non-recursive method for rebuilding a tree in
logarithmic space, that proved to be faster in our ex-
periments than the previous version. We only sketch
the procedure here; details are given the full version of
this paper.

We traverse the old tree in-order. Since the number
of nodes in the tree is known, the new place of each node
we encounter can be uniquely determined. Every node
is “plugged into” the right place in the new tree upon
being visited, thereby creating the new tree in place.

We need to keep track of the “cutting edge” of the
two tree traversals as shown in Figure 3. Since the depth
of both trees is logarithmic, two logarithmic size stacks
suffice for this purpose.

7 More Applications of Scapegoat Techniques

The ideas underlying scapegoat trees are that of finding
and rebuilding a subtree whose root is not weight-
balanced when the tree gets too deep, and periodically
rebuilding the root after enough DELETES occurred.
This technique can be applied to other tree-like data
structures. To allow this, it should be possible to find
the scapegoat node and to rebuild the subtree rooted at
it. The time to find the scapegoat and the rebuilding

SCAPEGOAT TREES 171

V
The
cutting
edges

Figure 3: Non-recursive rebuilding in place. An inter-
mediate state during the execution of a rebuilding in
place of the tree INSERT(T, 8). Node 11 is the new root
of the subtree being rebuilt. (See T in Figure 1).

time does not have to be linear in the number of nodes
in the subtree being rebuilt, as was the case with binary
search trees (Theorem 5.3). It is also not necessary for
the rebuilding algorithm to yield a perfectly balanced
subtree. These generalizations of the main theorem,
allow us to apply scapegoat techniques to an array of
other tree-like data structures.

7.1 A stronger version of the main theorem.
Suppose for a class of trees, some fixed (Ybal 2 l/2 and a
function F, F(n) = Q(l), satisfying F(G) = O(F(n))
for any constant C, there exists an algorithm that when
given n nodes can in 0(&‘(n)) steps build a tree con-
taining those nodes that is aa,,-weight-balanced. We’ll
call such a rebuilding routine a arb,l-relaxed rebuilding
routine. Also suppose there exists an algorithm that
can find an ancestor of a given node that is not weight-
balanced in O(nF(n)) time, where n is the size of the
subtree rooted at the scapegoat node, provided such an
ancestor exists. Then we can use scapegoat techniques
to support dynamic updates to this class with amor-
tized logarithmic complexity. When F(n) is constant
and oba[= l/2, we have the previously handled situa-
tion of Theorem ??

To prove the amortized bound on the complexity
of updates we will define a potential function @ in an
inductive manner. Let the potential of the nodes in
a subtree that was just rebuilt and of newly inserted
nodes be 0. Every time a node is traversed by an update
operation, increase its potential by F(N), where N is
the size of the subtree rooted at that node. For any
update operation, the node whose potential is increased
the most is the root. Hence the total price of the update
operation is bounded by (F(N) + 1) logl,atrigper N =
W’W)log~/a,~;.,~r NJ = F(n) = Q(l).

If the root is otrigger- weight unbalanced, then CN
different update operations traversed it. since it was
inserted or last rebuilt. Now C 2 CO, where

&trigger - @bar co= 2a
triggerabal

For a fixed atrigger, atrigger > ffbal, an insertion
of a deep node with respect to atrigger would trigger
a rebuilding. Lemma 5.1 guarantees that such a node
ha an atrigger -weight-unbalanced ancestor. However,
for any constants cr, p, l/2 < cr < p and for n
large enough there exists a P-weight-unbalanced tree
of size n that can be rebuilt into a deeper o-weight-
balanced tree. Hence, we cannot choose any atrigger-
weight unbalanced ancestor of the deep node to be the

At each one of the last Co passes the potential of
the root was increased by at least F((1 - Co)N).
Hence, the total potential stored at the root is at least
CsNF((1 - Co)N) = O(NF(N), allowing it to pay for
the rebuilding operation.

7.2 Scapegoat k - d trees. Bentley introduced
k - d trees in [3]. He proved average-case bounds
of O(lgn) for a tree of size n for both updates and
searches. Bentley in [4] and Overmars and van Leeuwen
in [ll] propose a scheme for dynamic maintenance of
k-d trees that achieves a logarithmic worst-case bound

scapegoat. However, if we choose as a scapegoat an
ancestor x of the deep node that satisfies condition (4.6):

(7.8) h(x) > krt,i,,&i44),

we can prove the following theorem.
THEOREM 7.1. A related scapegoat tree can han-

dle a sequence ofn INSERT and m. SEARCH or DELETE
operations, beginning with an empty tree, with an
amortized cost of O(F(n) logl,c,,,ios,, 7~) per INSERT
or DELETE and O(logl,Qtriggcr k) worst-case time per
SEARCH, where k is the site of the tree the SEARCH is
performed on.

Proof. (sketch) The existence of an ancestor that
satisfies equation (7.8) is guaranteed as explained in
Section 5 (the root of the tree satisfies it). It follows
from the way the scapegoat was chosen that rebuilding
the subtree rooted at it decreases the depth of the
rebuilt subtree, allowing us to prove a result similar to
Lemma 5.7. The other lemmas leading to Theorem 5.3
can also be proven for relaxed rebuilding. Hence, we can
indeed support a tree of depth at most logl,acri9ser k+l,
where k is the size of the tree, thereby establishing the
bound on the worst-case search time.

172

for searches with an average-case bound of O((lgn)‘)
for updates. Both use an idea similar to ours of
rebuilding weight-unbalanced subtrees. Overmars and
van Leeuwen called their structure pseudo L - d trees.

Scapegoat k-d trees achieve logarithmic worst-case
bounds for searches and a log2 n amortized bound for
updates. (The analysis of updates in [ll] and [4] can
be improved to yield amortized rather than average-case
bounds.) However, scapegoat k - d trees do not require
maintaining extra data at the nodes. Also we believe
they might prove to be faster in practice as they do not
rebuild every weight-unbalanced node, thereby allowing
for it to become balanced by future updates.

Applying Theorem 7.1 we get:
THEOREM 7.2. A scapegoat k - d tree can handle

a sequence of n INSERT and m SEARCH or DELETE
operations, beginning with an empty tree, with O(log2 n)
amortized cost per INSERT or DELETE and O(log k)
worst-case time per SEARCH, where k is the size of the
tree the SEARCH is performed on.

Proof. To apply Theorem 7.1 we use the algorithm
Bentley proposes in [3] for building a perfectly balanced
k - d tree of N nodes in O(kN lg N), by taking as a
splitting point the median with respect to the splitting
coordinate. Finding the scapegoat is done in a manner
similar to that in binary search trees.

7.3 Scapegoat trees for orthogonal queries.
For keys which are d dimensional vectors one may wish
to specify a range for each component of the key and
ask how many keys have all components in the desired
range. Leuker in [8] proposed an algorithm that handles
range queries in O(logdn) worst-case time where n is
the size of the tree. Updates are handled in O(nlogdn)
amortized time.

Leuker’s paper proves that given a list of n keys a
l/3-balanced tree may be formed in O(nlogmin(‘~d-‘)n)
time.

Using this in Theorem 7.1 proves
THEOREM 7.3. A scapegoat orthogonal tree can

handle a sequence of n INSERT and m SEARCH or
DELETE operations, beginning with an empty tree, with
o(logmWW n) amortized cost per INSERT or DELETE
and O(logd k) worst-case time per range query, where k
is the size of the tree the range query is performed on.

Note that our algorithm improves Leuker’s amor-
tized bounds for updates, and does not require storage
of balancing data at the nodes of the tree.

7.4 Scapegoat quad trees. Quad trees were in-
troduced by Finkel and Bentley in [S]. They achieve
a worst-case bound of O(log2N) per search. (As in
a d dimensional quad tree every node has 2d children

GALPERIN AND RIVEST

naively one could expect a O(log2d N) worst-case search
time.) They do not address deletion, and give only ex-
perimental results for insertion times. Samet in [12]
proposed an algorithm for deletions. Overmars and van
Leeuwen in [ll] introduced pseudoquad trees - a dy-
namic version of quad trees. They suggest an algorithm
for achieving O((lg N)2) average insertion and deletion
times, where N is the number of insertions, while im-
proving the worst-case search time to logd+I-a n+O(l),
where d is the dimension of the tree, n the size of the
tree the search is performed on, and 6 an arbitrary con-
stant satisfying 1 < 6 < d.

Comparing scapegoat quad trees can be compared
to pseudo-quad trees we can point out that:

Scapegoat trees offer worst-case search time of
Clogd+, n for any constant C, or following the
original notations of Overmars and van Leeuwen
log,+,-, n for any positive constant 6 (note that
we do not require 1 < a).

The bounds on updates are improved from average-
case to amortized bounds. (Though careful analysis
of the algorithm in [ll] can yield amortized bounds
too.)

Scapegoat trees do not require maintenance of
extra data at the nodes regarding the weight of the
children of each node. This can be quite substantial
in this case, as ecah node has 2d children, where d
is the dimension of the tree.

Scapegoat trees might prove faster in practice, as
they do not require the rebuilding of every weight-
unbalanced node, thereby allowing some nodes to
be balanced by future updates. Also more compact
storage might result in greater speed.
We call a multi-way node, x, o-weight-balanced,

if the every child y of x, satisfies size(y) L osize(x).
Weight and height balanced trees are defined in a way
similar to that used for binary trees.

Theorem 2.2.3 in [ll] suggests how to build a
l/(d+l) weight balanced pseudo-quad tree in O(n log n)
time. Finding a scapegoat in a multiway tree can be
done by traversing a tree in a manner similar to that
described for binary trees, starting at the deep node
and going up. Plugging this into Theorem 7.1 proves:

THEOREM 7.4. A scapegoat quad tree can han-
dle a sequence of n INSERT and m SEARCH or
DELETE operations, beginning with an empty tree, with
O(log2n) amortized cost per INSERT or DELETE and
O(log,+,-, k) worst-case time per SEARCH, where k is
the size of the tree the SEARCH is performed on.

SCAPEGOAT TREES 173

8 Experimental Results

We compared scapegoat trees to two other schemes
for maintaining binary search trees - red-black trees
and splay trees. We also compare the performance of
scapegoat trees for different values of cr. We compare
the performance for each one of the three operations
INSERT, DELETE, and SEARCH separately. We consider
two types of workloads - uniformly distributed inputs
and sorted inputs. The results are summarized in
Tables 4 and 5. The tables list average time in seconds
per 128K (131,072) operations.

To compare the performance for uniformly dis-
tributed inputs, we inserted the nodes into a tree in a
random order, then searched for randomly chosen nodes
in the tree, and finally deleted all of the nodes in ran-
dom order. We tried trees of three sizes - lK, 8K and Figure 4: Results of comparative experiments for uni-

64K. The results appear in Table 4. formly distributed inputs. Execution time in seconds

Table 5 summarizes the results of the comparison per 128K (131,072) p o erations for splay trees, red-black

for sorted sequences. Here too we tried three tree sizes trees and scapegoat trees with cy varying between 0.55

- lK, 8K and 64K. First we inserted the nodes into a - 0.75 for tree sizes of lK, 8K and 64K.

tree in increasing order of keys, then we searched for all
of the keys that were inserted in increasing order, and
finally we deleted all of the nodes in increasing order of

possible positions, instead of spreading them evenly.
Th’

keys.
is simplified the code somewhat and yielded a 6%

- 9% percent speedup over the version described by the
For uniformly distributed sequences our experi- pseudo-code

ments show that one can choose an (I! so that scapegoat
trees outperform red-black trees and splay trees on all 9 Discussion and Conclusions
three operations. However, for the insertion of sorted se-
quences scapegoat trees are noticeably slower than the We leave as an open problem the average-case analysis

other two data structures. Hence, in practical applica- of scapegoat trees (say, assuming that all permutations

tions, it would be advisable to use scapegoat trees when of the input keys are equally likely).

the inserted keys are expected to be roughly randomly To summarize: scapegoat trees are the first “unen-

distributed, or when the application is search intensive. cumbered” tree structure (i.e., having no extra storage

Unsurprisingly, as the value of cr is increased the per tree node) that achieves a worst-case SEARCH time

SEARCH and DELETE operations perform faster, while of O(logn), with reasonable amortized update costs.

the INSERTS become slower. Therefore, in practical
applications the value of (Y should be chosen according
to the expected frequency in which these operations will
be performed.

For the splay trees we used top-down splaying
as suggested by Sleator and Tarjan in [13]. The
implementation of red-black trees follows Chapter 14
in Cormen, Leiserson and Rivest [5].

The non-recursive method of rebuilding subtrees
described in section 6.2 proved to work faster than
the method described in section 6.1 by 25% - 30%.
In section 4 we described two ways to choose the
scapegoat. Our experiments suggest that checking for
condition (4.6) yields a better overall performance.

In our experiments we used a variant of the non-
recursive rebuilding algorithm described by the pseudo-
code in section 6.2 which inserts all the nodes at the
deepest level of the newly-built subtree at the leftmost

Acknowledgments
We are greatful to Jon Bentley for suggesting the

applicability of our techniques to k - d trees. We thank
Charles Leiserson for some helpful discussions. We also
thank David Williamson and John Leo for allowing us
to use their software in our experiments.

References

[l] G. M. Adel’son-Vel’sW and E. M. Landis. An algo-
rithm for the organization of information. Soviet Math-
ematics Doklady, 3:1259-1263, 1962.

[2] R. Bayer. Symmetric binary B-trees: Data structure
and maintenance algorithms. Acta Informatica, 1:290-
306, 1972.

[3] Jon L. Bentley. Multidimensional binary search trees
used fro associative searching. Communications of the
ACM, 19:509-517, 1975.

[4] Jon L. Bentley. Multidimensional binary search trees
in database applications. IEEE Transactions on Soft-

174 GALPERIN AND RIVEST

Figure 5: Results of comparative experiments for mono-
tone inputs. Execution time in seconds per 128K
(131,072) operations for splay trees, red-black trees and
scapegoat trees with (Y varying between 0.55 - 0.75 for
tree sizes of lK, 8K and 64K.

ware Engineering, 5(4):333-340, 1979.
[5] Thomas H. Cormen, Charles E. Leiserson, and

Ronald L. Rivest. Introduction to Algorithms. MIT
Press/McGraw-Hill, 1990.

[6] R. A. Finkel and J. L. Bentley. Quad-trees; a data
structure for retrieval on composite keys. Acta Infor-
matica, 4:1-9, 1974.

[7] Leo J. Guibas and Robert Sedgewick. A diochromatic
framework for balanced trees. In Proceedings of the
19th Annual Symposium on Foundations of Computer
Science, pages 8-21. IEEE Computer Society, 1978.

[8] George S. Leuker. A data structure for orthogonal
range queries. In Proceedings of the 19th Annual Sym-
posium on Foundations of Computer Science, pages 28-
34. IEEE Computer Society, 1978.

[9] K. Mehlhorn and A. Tsakahdis. Data structures. In
J. van Leeuwen, editor, Algorithms and Complexity,
volume A, chapter 6, pages 301-341. Elsevier, 1990.

[lo] I. Nievergelt and E. M. Reingold. Binary search trees of
bounded balance. SIAM Journal on Computing, 2:33-
43, 1973.

[ll] Mark H. Overmars and Jan van Leeuwen. Dynamic
multi-dimentional data structures based on quad- and
k - d trees. Acta Informotica, 17:267-285, 1982.

[12] Hanan Samet. Deletion in two-dimentional quad trees.
Communications of the ACM, 23(12):703-710, 1980.

[13] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting
binary search trees. Journal of the ACM, 32(3):652-
686, 1985.

