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Scapegoat Trees 

Igal Galperin* Ronald L. Rive&* 

Abstract 
We present an algorithm for maintaining binary search trees. 
The amortized complexity per INSERT or DELETE is O(log n) 
while the worst-case cost of a SEARCH is O(log n). 

Scapegoat trees, unlike most balanced-tree schemes, do 
not require keeping extra data (e.g. “colors” or “weights”) 
in the tree nodes. Each node in the tree contains only a key 
value and pointers. to its two children. Associated with the 
root of the whole tree are the only two extra values needed 
by the scapegoat scheme: the number of nodes in the whole 
tree, and the maximum number of nodes in the tree since 
the tree was last completely rebuilt. 

In a scapegoat tree a typical rebalancing operation 
begins at a leaf, and successively examines higher ancestors 
until a node (the “scapegoat”) is found that is so unbalanced 
that the entire subtree rooted at the scapegoat can be rebuilt 
at zero cost, in an amortized sense. Hence the name. 

1 Introduction 

There are a vast number of schemes available for im- 
plementing a “dictionary’‘-supporting the operations 
INSERT, DELETE, and SEAncrr-using balanced binary 
search trees. Mehlhorn and Tsakalikis [9] survey the re- 
cent literature on such data structures. In this paper 
we propose a new method that achieves optimal amor- 
tized costs for update operations (INSERT and DELETE) 

and optimal worst-case cost for SEARCH, without re- 
quiring the extra information (e.g. colors or weights) 
normally required by many balanced-tree schemes. This 
is the first method ever proposed that achieves a worst- 
case search time of O(logn) without using such extra 
information, while maintaining optimal amortized up- 
date costs. In addition, the method is quite simple and 
practical. (Indeed, we wonder why it wasn’t discovered 
much earlier!) 

Many balanced-tree schemes are height-balanced; 
the extra information stored at each node helps to 
enforce a bound on the overall height of the tree. Red- 
black trees, invented by Bayer [2] and refined by by 
Guibas and Sedgewick [7], are an elegant example of the 
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height-balanced approach. Red-black trees implement 
the basic dictionary operations with a worst-case cost of 
O(logn) per operation, at the cost of storing one extra 
bit (the “color” of the node) at each node. AVL trees 
[l] are another well-known example of height-balanced 
trees. 

Other schemes are weight-balanced in that the extra 
information at each node records the size of the subtree 
rooted at that node. By ensuring that the weights of sib- 
lings are approximately equal, an overall bound on the 
height of the tree is enforced. Nievergelt and Reingold 
[lo] introduce such trees and present algorithms for im- 
plementing the basic dictionary operations in O(logn) 
worst-case time. Overmars and van Leeuwen in [11] use 
such techniques too. 

The scapegoat method is a modification of the 
weight-balanced method of Varghese [5, Problem 18- 
31, who presents an algorithm for maintaining weight- 
balanced trees with amortized cost O(logn) per oper- 
ation. Our scheme combines the notions of height- 
balanced and weight-balanced to achieve an effective 
algorithm, without storing either height information or 
weight information at any node. 

There have been previous binary tree schemes pro- 
posed that do not store any extra information at each 
node. Splay trees, due to Sleator and Tarjan [13], are 
perhaps the best-known example; they achieve O(log n) 
amortized complexity per operation. However, splay 
trees do not guarantee a logarithmic worst-case bound 
on the cost of a SEARCH, and require restructuring even 
during searches (unlike scapegoat trees, which do have a 
logarithmic worst-case cost of a SEARCH and do not re- 
structure the tree during searches). Splay trees do have 
other desirable properties that make them of consid- 
erable practical and theoretical interest, however, such 
as their near-optimality when handling an arbitrary se- 
quence of operations. 

Section 2 introduces the basic scapegoat data struc- 
ture, and some notation. Section 4 describes the algo- 
rithm for maintaining scapegoat trees and outlines the 
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proof of their features. Section 5 proves the complexity 
claims. Section 6 describes an algorithm for rebuilding a 
binary search tree in linear time and logarithmic space. 
In Section 7 we show how our techniques can be used in 
k - d trees, and state weak conditions that suffice to al- 
low the application of our techniques to other tree-based 
data structures. Section 8 reports the results of experi- 
mental evaluation of scapegoat trees. We compare a few 
variations of the scapegoat algorithm and also compare 
it to other algorithms for maintenance of binary search 
trees. Finally, Section 9 concludes with some discussion 
and open problems. 

2 Notations 

In this section we describe the data structure of a 
scapegoat tree. Basically, a scapegoat tree consists of 
an ordinary binary search tree, with two extra values 
stored at the root. 

Each node z of a scapegoat tree maintains the 
following attributes: 

key[z] - The key stored at node z. 

We call a tree o-weight-balanced if, for a given value 
of cy, l/2 < a < 1, all the nodes in it are cu-weight- 
balanced. Intuitively, a tree is o-weight-balanced if, for 
any subtree, the sizes of its left and right subtree are 
approximately equal. 

left[z] - The left child of z. We denote 

righl[z] - The right child of z. 
We’ll also use the notations: 
size(z) - the size of the sub-tree rooted at z (i.e., 
the number of keys stored in this sub-tree including 
the key stored at z). 

brother(z) - the brother of node z; the other child 
of z’s parent or NIL. 

h(z) and h(T) - height of a node and a tree 
respectively. The height of a node is the length 
of the longest path from that node to a leaf. The 
height of a tree is the height of its root. 

and say that a tree T is a-height-balanced if it 
satisfies 

(3.3) NT) L ha(n), 

where n = site(T). Intuitively, a tree is a-height- 
balanced if its height is not greater than that of the 
heighest a-weight-balanced tree of the same size. The 
following standard lemma justifies this interpretation. 

LEMMA 3.1. If T is an cr-weight-balanced binary 
search tree, then T is a-height-balanced. 

d(x) - depth of node c. The depth of a node is the 
length (number of edges) of the path from the root 
to that node. (The root node is at depth 0.) 
Note that values actually stored as fields in a 

Although scapegoat trees are not guaranteed to 
a-weight-balanced at all times, they are loosely 
height-balanced, in that they satisfy the bound 

node are used with brackets, whereas values that are 
computed as functions of the node use parentheses; 
each node only stores three values: key, left, and right. 
Computing brother(x) requires knowledge of Z’S parent. 
Most importantly, sire(z) is not stored at z, but can be 
computed in time 0(&e(z)) as necessary. 

The tree T as a whole has the following attributes: 
l root[T] - A pointer to the root node of the tree. 

(3-4 h(T) S ha(T) + 1, 

where h,(T) is a shorthand for h,(site[g). 
We assume from now on that a fixed (Y, l/2 < cy < 1, 

has been chosen. For this given o, we call a node of 
depth greater than h,(T) a deep node. In our scheme 
the detection of a deep node triggers a restructuring 
operation. 

4 Operations on Scapegoat trees 

4.1 Searching a scapegoat tree. In a scapegoat 
tree, SEARCH operations proceed as in an ordinary 
binary search tree. No restructuring is performed. 

l siteM - The number of nodes in the tree. This 
is the same as sire(root[Tl). In our complexity 
analyses we also denote size[T”J by n. 

l mat-sire[q - The maximal value of si.ze[q since 
the last time the tree was completely rebuilt. If 
DELETE operations are not performed, then the 
max-size attribute is not necessary. 

3 Preliminary discussion 
SEARCH, INSERT and DELETE operations on scapegoat 
trees are performed in the usual way for binary search 
trees, except that, occasionally, after an update oper- 
ation (INSERT or DELETE) the tree is restructured to 
ensure that it contains no “deep” nodes. 

A binary-tree node z is said to be cr-weight- 
balanced, for some a, l/2 5 (Y < 1, if both 

(3.1) 

(34 

sile(refi[x]) 5 (Y. size(z), and 

site(right[x]) 5 (Y. site(x) . 

be 
CY- 
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4.2 Inserting into a scapegoat tree. To insert 
a node into a scapegoat tree, we insert it as we would 
into an ordinary binary search tree, increment size[T], 
and set mat-site[T] to be the maximum of site[T] 
and maz_size[7’l. Then-if the newly inserted node is 
deep-we rebalance the tree as follows. 

Let xc be the newly inserted deep node, and in 
general let xi+1 denote the parent of xi. We climb the 
tree, examining x0, x1, 22, and so on, until we find a 
node xi that is not o-weight-balanced. Since 2s is a leaf, 
site(zs) = 0. We compute site(zj+r) using the formula 

(4.5) size(tj+l) = sizc(zj) + sitc( brother(xj)) + 1 

for j = 1,2,. . . , i, using additional recursive searches. 
We call xi, the ancestor of x0 that was found 

that is not a-weight-balanced, the scapegoat node. A 
scapegoat node must exist, by Lemma 5.1 below. 

Figure 1: The initial tree, T. For CY = 0.57, h,(17) = 
h,(18) = 5, and T is loosely a-height-balanced (because 
node 10 is at depth 6). Nodes 2, 5, 6, 12, 15 and 16 are 
currently weight-unbalanced. Inserting 8 into this tree 
triggers a rebuild. We chose node 6 to be the scapegoat 
node. 

Once the scapegoat node xi is found, we rebuild 
the subtree rooted at xi. To rebuild a subtree is to 
replace it with a l/a-weight-balanced subtree containing 
the same nodes. This can be done easily in time 
O(Si.%e(Xj)). S ec ion 6 describes how this can be done t 
in space O(logn) as well. 

we rebuild the whole tree, and reset mazAze[T] to 
size[T]. 

4.4 
b 

l 

b 

Remarks. 
Every time the whole tree is rebuilt maz-size[g is 
set to sire[q. 

An alternative way to find a scapegoat node. 

As can be seen in Figure 1, 20 might have more 
than one weight-unbalanced ancestor. Any weight- 
unbalanced ancestor of xc may be chosen to be the 
scapegoat. Here we show that another way of finding 
a weight-unbalanced ancestor 2i of xc is to find the 
deepest ancestor of X,-J satisfying the condition 

Note that ha(T) is easily computed from the infor- 
mation stored at the root. (Indeed, it could even 
be stored there as an extra attribute.) 

(4.6) i > h,(Si.ZC(Xj)). 

Since this ancestor will often be higher in the tree 
than the first weight-unbalanced ancestor, it may tend 
to yield more balanced trees on the average. (In 
our experiments this heuristic performed better than 
choosing the first weight-unbalanced ancestor to be the 
scapegoat.) Inequality (4.6) is satisfied when xi = 
rool[7’l, hence this scheme will always find a scapegoat 
node. The scapegoat node found is indeed weight- 
unbalanced by Lemma 5.2. 

We do not need explicit parent fields in the nodes to 
find the scapegoat node, since we are just climbing 
back up the path we came down to insert the new 
node; the nodes z; on this path can be remembered 
on the stack. 

5 Correctness and Complexity 

5.1 Correctness. The following two lemmas prove 
that the algorithm is indeed correct. 

The first lemma guarantees that a deep node has 
an ancestor that in not o-weight-balanced. 

LEMMA 5.1. If x is a node at depth greater than 
h,(T) then there is an cY-weight-unbalanced ancestor of 
2. 

Note that applying condition (4.6) when searching 
for the scapegoat in the example in Figure 1 indeed 
results in node 6 being rebuilt, since it is the first 
ancestor of node 8 that satisfies the inequality. 

4.3 Deleting from a scapegoat tree. Deletions 
are carried out by first deleting the node as we would 
from an ordinary binary search tree, and decrementing 
size[T]. Then, if 

(4.7) size[Tj < a f max-site[Tj 

Proof By negation according to equations (3.1) if 
x is a child of y, then size(x) 5 cr. size(y). By induction 
on the path from x to the root, size(z) 5 ad(Z) . site[fl. 
Therefore, the depth d(x) of a node x is at most 
log(,,,) sire[T], and the lemma follows, 

The following lemma proves that a scapegoat node 
found using inequality (4.6) is weight-unbalanced. 

LEMMA 5.2. If a binary tree T contains a node x0 
at depth greater than h,(n), then the deepest ancestor 
xi of xo that is not a-height-balanced is not a-weight- 
balanced either. 
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Proof. We chose xi so that the following inequalities Proof Denote by sh and sr the sizes of the heavy 
are satisfied. and the light subtrees respectively. The root of the tree 

i > h,(size(xi)) , is not o-weight-balanced, hence: 

and 
i - I 5 h,(Site(Xi-1)) . sh > ~2 * (sh + SI + 1) 

Subtracting these two inequalities gives 

1 > h,(Si%C(Xi)) - h,(size(zj-1) 

= h31/, (2;E,) * 

Therefore, 
Si%e(Xi-1) > CX * Site(Zi). 

5.2 Complexity of searching. Since a scapegoat 
tree is loosely a-height-balanced and o is fixed, a 
SEARCH operation takes worsl-case time 

This yields: 

sh > & ’ (81 + 1) 

Since a > l/2 and Sh and SI are both whole numbers, 
we get: 

8h 2 sl + 2 . 

A tree T is complete of height h if a node cannot 
be added to T without making its height greater than 
h. A complete tree of height h has 2h+’ - 1 nodes. 

LEMMA 5.6. If T is not a-weight-balanced and T 
contains only one node at depth h(T) then rebuilding T 
decreases its height. 

O(h,(n)) = O(logn) . Proof. Let x be the deepest node of T, and let TI 

No restructuring or rebalancing operations are per- 
be the light subtree of T. Let T/ be the tree we get by 

formed during a SEARCH. Therefore, not only do scape- 
removing x from Tr if z is a node of TI, or TJ itself if x 

goat trees yield an O(logn) worst-case SEARCH time, 
is not a node of Tl. By Lemma 5.5, T,’ is not a complete 

but they should also be efficient in practice for SEARCH- 
tree of height h(T)- 1. Therefore, Lemma 5.4 completes 
the proof. 

intensive applications since no balancing overhead is in- - 
curred for searches. 

THEOREM 5.1. Jf a scapegoat tree T was created 
from a l/2-weight-balanced tree by a sequence of INSERT 

5.3 Complexity of inserting. The following 
operations, then T is a-height-balanced. 

lemma is key to the complexity analysis. Proof. By induction on the number of insert oper- 

LEMMA 5.3. The time to find the scapegoat node xi ations using Lemma 5.6. 

iS O(Si%e(Xi)). Let us now consider a sequence of n INSERT opera- 

Proof. The dominant part of the cost of finding the tions, beginning with an empty tree. We wish to show 

scapegoat node xi is the cost of computing the values that the amortized complexity per INSERT is O(logn). 

si.ze(xo), si%e(xi), . . . , sire(xi). Observe that with the 
For an overview of amortized analysis, see Cormen 

optimized size calculations described in equation (4.5), 
et al. [5]. We begin by defining a nonnegative potential 

each node in the subtree rooted at the scapegoat node 
fvnction for the tree Let 

A(x) = Isi%e(left[x]) - site(right[x])), xi is visited exactly once during these computations. 
We now analyze the situation where no DELETE 

operations are done; only INSERT and SEARCH opera- 
tions are performed. The following lemmas yield The- 
orem 5.1, which shows that a scapegoat tree is always 
a-height-balanced if no deletions are performed. The 
next lemma asserts that rebuilding a tree does not make 
it deeper. 

LEMMA 5.4. If T is a l/2-weight-balanced binary 
search tree, then no tree of the same size has a smaller 
height. 

Proof. Straightforward. 

LEMMA 5.5. If the root of T is not a-weight- 
balanced then its heavy subtree contains at least 2 nodes 
more than its light subtree. 

and define the potential of node x to be 0 if A(x) < 2, 
and A(x) otherwise. The potential of a l/2-weight- 
balanced node is thus 0, and the potential of a node 
x that is not o-weight-balanced is @(size(x)). (Note 
that A(x) is not stored at x nor explicitly manipulated 
during any update operations; it is just an accounting 
fiction representing the amount of “prepaid work” avail- 
able at node x.) The potential of the tree is the sum of 
the potentials of its nodes. 

It is easy to see that by increasing their cost by only 
a constant factor, the insertion operations that build up 
a scapegoat tree can pay for the increases in potential 
at the nodes. That is, whenever we pass by a node x 
to insert a new node as a descendant of x, we can pay 
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for the increased potential in x that may be required by 
the resulting increase in A(x). 

The potential of the scapegoat node, like that of any 
non-a-weight-balanced node, is O(site(zi)). Therefore, 
this potential is sufficient to pay for finding the scape- 
goat node and rebuilding its subtree. (Each of these 
two operations has complexity Q( size( xi)).) Further- 
more, the potential of the rebuilt subtree is 0, so the 
entire initial potential may be used up to pay for these 
operations. This completes the proof of the following 
theorem. 

by Lemma 5.7. Hence 

max(h,(T’), h(P)) 5 max(h,(T’), h(T)) = 

m=(UT), h(T)) . 

The lemma follows by induction on the number of 
operations in the sequence. 

LEMMA 5.9. For T’ = INSERT(T, x), if T is loosely 
cv-height-balanced but is not a-height-balanced, and 
h,(T’) = h,(T) + 1, th en T’ is a-height-balanced. 

THEOREM 5.2. A scapegoat tree can handle a se- Proof. We know that 

quence of n INSERT and m SEARCH operations, begin- 
ning with an empty tree, with O(logn) amortized cost h(T) = ha(T) + 1. 

per INSERT and O(logk) worst-case time per SEARCH, 
where k is the sire of the tree the SEARCH is performed 

Hence 

on. h(T) = h,(T’). 

5.4 Complexity of deleting. The main lemma of 
this section, Lemma 5.10, states that scapegoat trees 
are loosely o-height-balanced (recall inequality (3.4)). 
Since we perform Q(n) operations between two suc- 
cessive rebuilds due to delete operations we can “pay” 
for them in the amortized sense. Therefore, combining 
Lemma 5.10 with the preceding results completes the 
proof of the following theorem. 

THEOREM 5.3. A scapegoat tree can handle a se- 
quence of n INSERT and m SEARCH or DELETE opera- 
tions, beginning with an empty tree, with O(logn) amor- 
tized cost per INSERT or DELETE and O(logk) worst- 
case time per SEARCH, where k is the size of the tree 
the SEARCH is performed on. 

The first lemma generalizes Theorem 5.1. 

LEMMA 5.7. For any tree T let T’ = INSERT(T, x), 
then 

h(T’) 5 max(h,(T’), h(T)) . 

Proof If the insertion of x did not trigger a rebuild, 
then the depth of x is at most ha(T’) and we are done. 

Otherwise, suppose z was initially inserted at depth 
d in T, where d > hLI( thereby causing a rebuild. If 
T already contained other nodes of depth d we are done, 
since a rebuild does not make a tree deeper. Otherwise, 
the arguments in section 5.1 and Lemma 5.6 apply. 

LEMMA 5.8. If h,(T) does not change during 
a sequence of INSERT and DELETE operations then 

m=4UT), h(T)) is not increased by that sequence. 

Combining this with Lemma 5.7 gives 

h(T’) _< h,(T’) , 

i.e., T’ is height balanced. 

Now we have the tools to prove the main lemma of 
this section. 

LEMMA 5.10. A scapegoat tree built by INSERT and 
DELETE operations from an empty tree is always loosely 
a-height-balanced. 

Proof. Let 01,. . . , o,, be a sequence of update oper- 
ations that is applied to a l/2-weight-balanced scape- 
goat tree, up until (but not including) the first opera- 
tion, if any, that causes the entire tree to be rebuilt. 
To prove the lemma it suffices to show that during 
this sequence of operations the tree is always loosely 
o-height-balanced. During any sequence of update op- 
erations that do not change h,(T), a loosely o-height- 
balanced tree remains loosely o-height-balanced, and 
an a-height-balanced tree remains a-height-balanced, 
by Lemma 5.8. Therefore, let oil, . . . , oi* be the sub- 
sequence (not necessarily successive) of operations that 
change ha(T). An INSERT operation in this subsequence 
leaves the tree o-height-balanced, by Lemma 5.9. The 
usage of mat-size[T] in DELETE implies that there are 
no two successive DELETE operations in this subse- 
quence, since the entire tree would be rebuilt no later 
than the second such DELETE operation. Therefore a 
DELETE operation in this subsequence must operate on 
an a-height-balanced tree. Since the DELETE operation 
decreases h,(T) by just one, the result is a loosely IY- 

Proof A DELETE operation can not increase height-balanced tree. The lemma follows from applying 

max(h,(T), h(T)). For an INSERT we have the preceding lemmas in an induction on the number of 
operations. 

h(T’) I m=(L(T’), h(T)) This completes the proof of Theorem 5.3. 
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6 Rebuilding in place 

A straightforward way of rebuilding a tree is to use a 
stack of logarithmic size to traverse the tree in-order 
in linear time and copy its nodes to an auxiliary array. 
Then build the new l/2-weight-balanced tree using a 
“divide and conquer” method. This yields O(n) time 
and space complexity. Our methods improve the space 
complexity to logarithmic. 

6.1 A simple recursive method. The first 
algorithm links the elements together into a list, rather 

Figure 2: The tree INSERT(T, 8), where T is the tree of 

than copying them into an array. 
Figure 1. 

The initial tree-walk is implemented by the fol- 
lowing procedure, FLATTEN. A call of the form 
FLATTEN(Z, NIL) returns a list of the nodes in the sub- 
tree rooted at 2, sorted in nondecreasing order. In gen- 
eral, a call of the form FLATTEN(Z, y) takes as input a 
pointer x to the root of a subtree and a pointer y to 
the first node in a list of nodes (linked using their right 
pointer fields). The set of nodes in the subtree rooted 
at x and the set of nodes in the list headed by y are 
assumed to be disjoint. The procedure returns the list 
resulting from turning the subtree rooted at x into a list 
of nodes, linked by their right pointers, and appending 
the list headed by y to the result. 
FLATTEN(Z, y) 

1 if z = NIL 
2 then return y 
3 right[x] + FLATTEN(r’ight[x], y) 
4 return FLATTEN( reft[x], z) 

The procedure runs in time proportional to the 
number of nodes in the subtree, and in space propor- 
tional to its height 

The following procedure, BUILD-TREE, builds a 
l/2-weight-balanced tree of n nodes from a list of nodes 
headed by node x. It is assumed that the list of nodes 
has length at least n + 1. The procedure returns the 
n+ 1st node in the list, s, modified so that left[s] points 
to the root r of the n-node tree created. 
BUILD-TREE(~, x) 

1 ifn=O 
2 then lefi[z] c NIL 
3 return z 
4 P c BUILD-TREE( [(n - 1)/2], Z) 
5 s c BUILD-TREE([(~ - 1)/2J , right[r]) 
6 right[r] c left[s] 
7 Ieft[s]+-r 
8 return s 

A call to BUILD-TREE(~, scapegoat) runs in time 
O(n) and uses O(logn) space. 

The following procedure, REBUILD-TREE, takes as 

input a pointer scapegoat to the root of a subtree to be 
rebuilt, and the size n of that subtree. It returns the 
root of the rebuilt subtree. The rebuilt subtree is 1/2- 
weight-balanced. The procedure utilizes the procedures 
FLATTEN and BUILD-TREE defined above, and runs in 
time O(n) and space proportional to the height of the 
input subtree. 
REBUILD-TREE(~, scapegoat) 

1 create a dummy node w 
2 % c FLATTEN(scapegoat, 20) 
3 BUILD-TREE(~, Z) 
4 return left[w] 

Figures 1 and 2 illustrate this process. 

6.2 A non-recursive method. This section sug- 
gests a non-recursive method for rebuilding a tree in 
logarithmic space, that proved to be faster in our ex- 
periments than the previous version. We only sketch 
the procedure here; details are given the full version of 
this paper. 

We traverse the old tree in-order. Since the number 
of nodes in the tree is known, the new place of each node 
we encounter can be uniquely determined. Every node 
is “plugged into” the right place in the new tree upon 
being visited, thereby creating the new tree in place. 

We need to keep track of the “cutting edge” of the 
two tree traversals as shown in Figure 3. Since the depth 
of both trees is logarithmic, two logarithmic size stacks 
suffice for this purpose. 

7 More Applications of Scapegoat Techniques 

The ideas underlying scapegoat trees are that of finding 
and rebuilding a subtree whose root is not weight- 
balanced when the tree gets too deep, and periodically 
rebuilding the root after enough DELETES occurred. 
This technique can be applied to other tree-like data 
structures. To allow this, it should be possible to find 
the scapegoat node and to rebuild the subtree rooted at 
it. The time to find the scapegoat and the rebuilding 
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V 
The 
cutting 
edges 

Figure 3: Non-recursive rebuilding in place. An inter- 
mediate state during the execution of a rebuilding in 
place of the tree INSERT(T, 8). Node 11 is the new root 
of the subtree being rebuilt. (See T in Figure 1). 

time does not have to be linear in the number of nodes 
in the subtree being rebuilt, as was the case with binary 
search trees (Theorem 5.3). It is also not necessary for 
the rebuilding algorithm to yield a perfectly balanced 
subtree. These generalizations of the main theorem, 
allow us to apply scapegoat techniques to an array of 
other tree-like data structures. 

7.1 A stronger version of the main theorem. 
Suppose for a class of trees, some fixed (Ybal 2 l/2 and a 
function F, F(n) = Q(l), satisfying F(G) = O(F(n)) 
for any constant C, there exists an algorithm that when 
given n nodes can in 0(&‘(n)) steps build a tree con- 
taining those nodes that is aa,,-weight-balanced. We’ll 
call such a rebuilding routine a arb,l-relaxed rebuilding 
routine. Also suppose there exists an algorithm that 
can find an ancestor of a given node that is not weight- 
balanced in O(nF(n)) time, where n is the size of the 
subtree rooted at the scapegoat node, provided such an 
ancestor exists. Then we can use scapegoat techniques 
to support dynamic updates to this class with amor- 
tized logarithmic complexity. When F(n) is constant 
and oba[ = l/2, we have the previously handled situa- 
tion of Theorem ?? 

To prove the amortized bound on the complexity 
of updates we will define a potential function @ in an 
inductive manner. Let the potential of the nodes in 
a subtree that was just rebuilt and of newly inserted 
nodes be 0. Every time a node is traversed by an update 
operation, increase its potential by F(N), where N is 
the size of the subtree rooted at that node. For any 
update operation, the node whose potential is increased 
the most is the root. Hence the total price of the update 
operation is bounded by (F(N) + 1) logl,atrigper N = 
W’W)log~/a,~;.,~r NJ = F(n) = Q(l). 

If the root is otrigger- weight unbalanced, then CN 
different update operations traversed it. since it was 
inserted or last rebuilt. Now C 2 CO, where 

&trigger - @bar co= 2a 
triggerabal 

For a fixed atrigger, atrigger > ffbal, an insertion 
of a deep node with respect to atrigger would trigger 
a rebuilding. Lemma 5.1 guarantees that such a node 
ha an atrigger -weight-unbalanced ancestor. However, 
for any constants cr, p, l/2 < cr < p and for n 
large enough there exists a P-weight-unbalanced tree 
of size n that can be rebuilt into a deeper o-weight- 
balanced tree. Hence, we cannot choose any atrigger- 
weight unbalanced ancestor of the deep node to be the 

At each one of the last Co passes the potential of 
the root was increased by at least F(( 1 - Co)N). 
Hence, the total potential stored at the root is at least 
CsNF((1 - Co)N) = O(NF(N), allowing it to pay for 
the rebuilding operation. 

7.2 Scapegoat k - d trees. Bentley introduced 
k - d trees in [3]. He proved average-case bounds 
of O(lgn) for a tree of size n for both updates and 
searches. Bentley in [4] and Overmars and van Leeuwen 
in [ll] propose a scheme for dynamic maintenance of 
k-d trees that achieves a logarithmic worst-case bound 

scapegoat. However, if we choose as a scapegoat an 
ancestor x of the deep node that satisfies condition (4.6): 

(7.8) h(x) > krt,i,,&i44), 

we can prove the following theorem. 
THEOREM 7.1. A related scapegoat tree can han- 

dle a sequence ofn INSERT and m. SEARCH or DELETE 
operations, beginning with an empty tree, with an 
amortized cost of O(F(n) logl,c,,,ios,, 7~) per INSERT 
or DELETE and O(logl,Qtriggcr k) worst-case time per 
SEARCH, where k is the site of the tree the SEARCH is 
performed on. 

Proof. (sketch) The existence of an ancestor that 
satisfies equation (7.8) is guaranteed as explained in 
Section 5 (the root of the tree satisfies it). It follows 
from the way the scapegoat was chosen that rebuilding 
the subtree rooted at it decreases the depth of the 
rebuilt subtree, allowing us to prove a result similar to 
Lemma 5.7. The other lemmas leading to Theorem 5.3 
can also be proven for relaxed rebuilding. Hence, we can 
indeed support a tree of depth at most logl,acri9ser k+l, 
where k is the size of the tree, thereby establishing the 
bound on the worst-case search time. 
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for searches with an average-case bound of O((lgn)‘) 
for updates. Both use an idea similar to ours of 
rebuilding weight-unbalanced subtrees. Overmars and 
van Leeuwen called their structure pseudo L - d trees. 

Scapegoat k-d trees achieve logarithmic worst-case 
bounds for searches and a log2 n amortized bound for 
updates. ( The analysis of updates in [ll] and [4] can 
be improved to yield amortized rather than average-case 
bounds.) However, scapegoat k - d trees do not require 
maintaining extra data at the nodes. Also we believe 
they might prove to be faster in practice as they do not 
rebuild every weight-unbalanced node, thereby allowing 
for it to become balanced by future updates. 

Applying Theorem 7.1 we get: 
THEOREM 7.2. A scapegoat k - d tree can handle 

a sequence of n INSERT and m SEARCH or DELETE 
operations, beginning with an empty tree, with O(log2 n) 
amortized cost per INSERT or DELETE and O(log k) 
worst-case time per SEARCH, where k is the size of the 
tree the SEARCH is performed on. 

Proof. To apply Theorem 7.1 we use the algorithm 
Bentley proposes in [3] for building a perfectly balanced 
k - d tree of N nodes in O(kN lg N), by taking as a 
splitting point the median with respect to the splitting 
coordinate. Finding the scapegoat is done in a manner 
similar to that in binary search trees. 

7.3 Scapegoat trees for orthogonal queries. 
For keys which are d dimensional vectors one may wish 
to specify a range for each component of the key and 
ask how many keys have all components in the desired 
range. Leuker in [8] proposed an algorithm that handles 
range queries in O(logdn) worst-case time where n is 
the size of the tree. Updates are handled in O(nlogdn) 
amortized time. 

Leuker’s paper proves that given a list of n keys a 
l/3-balanced tree may be formed in O(nlogmin(‘~d-‘)n) 
time. 

Using this in Theorem 7.1 proves 
THEOREM 7.3. A scapegoat orthogonal tree can 

handle a sequence of n INSERT and m SEARCH or 
DELETE operations, beginning with an empty tree, with 
o(logmWW n) amortized cost per INSERT or DELETE 
and O(logd k) worst-case time per range query, where k 
is the size of the tree the range query is performed on. 

Note that our algorithm improves Leuker’s amor- 
tized bounds for updates, and does not require storage 
of balancing data at the nodes of the tree. 

7.4 Scapegoat quad trees. Quad trees were in- 
troduced by Finkel and Bentley in [S]. They achieve 
a worst-case bound of O(log2N) per search. (As in 
a d dimensional quad tree every node has 2d children 
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naively one could expect a O(log2d N) worst-case search 
time.) They do not address deletion, and give only ex- 
perimental results for insertion times. Samet in [12] 
proposed an algorithm for deletions. Overmars and van 
Leeuwen in [ll] introduced pseudoquad trees - a dy- 
namic version of quad trees. They suggest an algorithm 
for achieving O((lg N)2) average insertion and deletion 
times, where N is the number of insertions, while im- 
proving the worst-case search time to logd+I-a n+O(l), 
where d is the dimension of the tree, n the size of the 
tree the search is performed on, and 6 an arbitrary con- 
stant satisfying 1 < 6 < d. 

Comparing scapegoat quad trees can be compared 
to pseudo-quad trees we can point out that: 

Scapegoat trees offer worst-case search time of 
Clogd+, n for any constant C, or following the 
original notations of Overmars and van Leeuwen 
log,+,-, n for any positive constant 6 (note that 
we do not require 1 < a). 

The bounds on updates are improved from average- 
case to amortized bounds. (Though careful analysis 
of the algorithm in [ll] can yield amortized bounds 
too.) 

Scapegoat trees do not require maintenance of 
extra data at the nodes regarding the weight of the 
children of each node. This can be quite substantial 
in this case, as ecah node has 2d children, where d 
is the dimension of the tree. 

Scapegoat trees might prove faster in practice, as 
they do not require the rebuilding of every weight- 
unbalanced node, thereby allowing some nodes to 
be balanced by future updates. Also more compact 
storage might result in greater speed. 
We call a multi-way node, x, o-weight-balanced, 

if the every child y of x, satisfies size(y) L osize(x). 
Weight and height balanced trees are defined in a way 
similar to that used for binary trees. 

Theorem 2.2.3 in [ll] suggests how to build a 
l/(d+l) weight balanced pseudo-quad tree in O(n log n) 
time. Finding a scapegoat in a multiway tree can be 
done by traversing a tree in a manner similar to that 
described for binary trees, starting at the deep node 
and going up. Plugging this into Theorem 7.1 proves: 

THEOREM 7.4. A scapegoat quad tree can han- 
dle a sequence of n INSERT and m SEARCH or 
DELETE operations, beginning with an empty tree, with 
O(log2n) amortized cost per INSERT or DELETE and 
O(log,+,-, k) worst-case time per SEARCH, where k is 
the size of the tree the SEARCH is performed on. 
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8 Experimental Results 

We compared scapegoat trees to two other schemes 
for maintaining binary search trees - red-black trees 
and splay trees. We also compare the performance of 
scapegoat trees for different values of cr. We compare 
the performance for each one of the three operations 
INSERT, DELETE, and SEARCH separately. We consider 
two types of workloads - uniformly distributed inputs 
and sorted inputs. The results are summarized in 
Tables 4 and 5. The tables list average time in seconds 
per 128K (131,072) operations. 

To compare the performance for uniformly dis- 
tributed inputs, we inserted the nodes into a tree in a 
random order, then searched for randomly chosen nodes 
in the tree, and finally deleted all of the nodes in ran- 
dom order. We tried trees of three sizes - lK, 8K and Figure 4: Results of comparative experiments for uni- 

64K. The results appear in Table 4. formly distributed inputs. Execution time in seconds 

Table 5 summarizes the results of the comparison per 128K (131,072) p o erations for splay trees, red-black 

for sorted sequences. Here too we tried three tree sizes trees and scapegoat trees with cy varying between 0.55 

- lK, 8K and 64K. First we inserted the nodes into a - 0.75 for tree sizes of lK, 8K and 64K. 

tree in increasing order of keys, then we searched for all 
of the keys that were inserted in increasing order, and 
finally we deleted all of the nodes in increasing order of 

possible positions, instead of spreading them evenly. 
Th’ 

keys. 
is simplified the code somewhat and yielded a 6% 

- 9% percent speedup over the version described by the 
For uniformly distributed sequences our experi- pseudo-code 

ments show that one can choose an (I! so that scapegoat 
trees outperform red-black trees and splay trees on all 9 Discussion and Conclusions 
three operations. However, for the insertion of sorted se- 
quences scapegoat trees are noticeably slower than the We leave as an open problem the average-case analysis 

other two data structures. Hence, in practical applica- of scapegoat trees (say, assuming that all permutations 

tions, it would be advisable to use scapegoat trees when of the input keys are equally likely). 

the inserted keys are expected to be roughly randomly To summarize: scapegoat trees are the first “unen- 

distributed, or when the application is search intensive. cumbered” tree structure (i.e., having no extra storage 

Unsurprisingly, as the value of cr is increased the per tree node) that achieves a worst-case SEARCH time 

SEARCH and DELETE operations perform faster, while of O(logn), with reasonable amortized update costs. 

the INSERTS become slower. Therefore, in practical 
applications the value of (Y should be chosen according 
to the expected frequency in which these operations will 
be performed. 

For the splay trees we used top-down splaying 
as suggested by Sleator and Tarjan in [13]. The 
implementation of red-black trees follows Chapter 14 
in Cormen, Leiserson and Rivest [5]. 

The non-recursive method of rebuilding subtrees 
described in section 6.2 proved to work faster than 
the method described in section 6.1 by 25% - 30%. 
In section 4 we described two ways to choose the 
scapegoat. Our experiments suggest that checking for 
condition (4.6) yields a better overall performance. 

In our experiments we used a variant of the non- 
recursive rebuilding algorithm described by the pseudo- 
code in section 6.2 which inserts all the nodes at the 
deepest level of the newly-built subtree at the leftmost 
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