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X-ray crystallography can provide detailed information about the structure of biological

molecules if the ‘phase problem’ can be solved for the molecule under study. The

phase problem arises because it is only possible to measure the amplitude of diffraction

spots: information on the phase of the diffracted radiation is missing. Techniques are

available to reconstruct this information.

The Phase Problem in X-ray
Crystallography

X-ray diffraction provides one of the most important tools
for examining the three-dimensional (3D) structure of
biological macromolecules. The physics of diffraction
requires that in order to resolve features of atomic
structure it is necessary to employ radiation with a
wavelength of the order of atomic spacing or smaller. X-
rays have suitable wavelength, and interact with the
electrons of the atoms. However, the interaction between
X-rays and electrons is weak, and such energetic radiation
causes ionization of the constituent atoms of the molecule,
damaging the molecule under study. Therefore it is
necessary to examine a vast number of molecules
simultaneously: This is achieved by using a crystal
containing many copies of a molecule in a regular lattice.
When a crystal is exposed to X-rays, the radiation is

scattered to form a diffraction pattern. The X-rays are
scattered from every point in the crystal, with a strength in
proportion to the concentration of electrons at that point.
All the X-rays scattered along any particular direction
interfere with each other, giving rise to detailed features in
the diffraction pattern that depend on the arrangement of
atoms in the crystal.Analysis of thediffractionpatternmay
therefore allow the arrangement of atoms to be deduced.
The intensity of the radiation scattered in any particular

direction from the crystal depends on whether X-rays
scattered along that direction interfere constructively or
destructively. This in turn depends on the position and
spacing of electron density features (in particular atoms)
within the crystal. Examples of constructive interference,
leading to strong scattering along a particular direction,
and of destructive interference, leading to weak scattering,
are shown in Figure 1.
The crystal, by its nature, contains a regular lattice of

identical molecules, and thus every feature of the electron
density will be repeated at regular intervals. The basic
repeating unit from which the crystal is constructed is

called the unit cell. It is convenient to define crystal axes a, b
and c defining the unit cell in three dimensions. Scattering
along directions reflecting the lattice repeat will be
reinforced by every repeat of the unit cell, and will be
strong; scattering along all other directions will be weak.
As a result, the full diffraction pattern of the crystal is a
pattern of spots, forming a three-dimensional lattice with
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Figure 1 The diffraction pattern from a crystal depends on the
arrangement of atoms in the crystal. In (a) the scattered waves from atoms
1 and 2 have opposite phases and cancel out, so the scattered beam is weak
along that direction. In (b) the scattered waves from atoms 3 and 4
combine to give a strong scattered beam.
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reciprocal directions and spacings from the real lattice. An
individual diffraction image, obtained from a single crystal
orientation, is a 2-D section through this pattern. This is
referred to as the reciprocal lattice. The diffraction spots
are labelled by three integer values called Miller indices
referring to their position in the diffraction pattern. A
simulated two dimensional crystal structure, and the
corresponding diffraction pattern, are shown in Figure 2.
The diffraction spots are of different intensities, depen-

dent on the spacings of features of the electron density
within each individual unit cell. The density within the cell
is related to the intensities of the diffraction spots by a
mathematical relationship known as a Fourier transform
(Bragg, 1915). As a result, if the contents of the unit cell are
known, the diffraction pattern may be predicted. Con-
versely, if the scattering from the crystal is known, it is
possible to reconstruct the contents of the unit cell.
It is only necessary to determine the electron density in a

single unit cell rather than the whole crystal; or equiva-
lently, through theFourier relationship, it is only necessary
to consider the diffraction spots, and not the space in
between. Each spot may then be represented by a single
wave representing the magnitude and relative phase
(Figure 3) of the X-rays scattered along that direction.
The mathematical representation of this wave is called a
structure factor.
Unfortunately, it is only possible to measure the

amplitude of the diffraction pattern spots by experimen-
tal means; the phase information is missing: this is the
‘phase problem’ of X-ray crystallography. Without phase

information it is impossible to reconstruct the electron
density in the unit cell.
The diffraction pattern has some other important

features. If there is symmetry within the unit cell, the
diffraction pattern will show a related symmetry, with
the addition that in the absence of anomalous scatter-
ing (see later) Friedel opposites (reflections related by
inversion through the origin, e.g. (1,3,2) and
(2 1,2 3,2 2)) are always equal in magnitude and
opposite in phase. Reflections that are scattered through
higher angles represent finer features in the electron
density. The smallest feature that can be resolved in the
electron density (if phases are available) depends on
the Bragg spacing of the highest-angle reflections that
can be measured, and is called the ‘resolution’ of the
data set.

Patterson Methods

The structure of small molecules may be solved even in the
absence of phase information. While the phases determine
the positions of the peaks of electrondensity across the unit
cell, and therefore the positions of the atoms, the presence
of a strong diffraction spot alone give a strong indication
that features must be present with the corresponding
spacing. Thus, the structure factor magnitudes alone
contain information about the spacing of atoms in the
structure.

Figure 2 A simulation of a two-dimensional crystal and its diffraction pattern. Note that the lattice repeat in the crystal gives rise to a pattern of spots in the
diffraction pattern, and that the lattice directions in the crystal are orthogonal to the lattice directions in the diffraction pattern.
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This information may be accessed by calculation of the
Patterson function (Patterson, 1934). The Patterson
function is obtained by calculating a map using the
squared structure factor magnitudes, and all the phases
set to zero. Instead of peaks at the atomic positions, the
Patterson map shows peaks at every position that
corresponds to an interatomic vector in the structure.
The Patterson function has been an effective tool for

solving small molecules; however, its usefulness falls
quickly as the number of atoms increases. For a structure
of N atoms, the Patterson function will contain N(N2 1)
interatomic vectors, many of them overlapped. This
approach becomes unusable for structures of more than
20–50 atoms, unless there is a subset of atoms with high
atomic number.

Direct Methods

For small and intermediate-sized molecules the atoms are
normallywell ordered, andas a result structure factorsmay
bemeasured to very highdiffraction angles. The high-angle
diffraction spots give information about finely spaced
features in the unit cell. In this case the missing phase
information may be reconstructed directly from mathe-
matical relationships between the structure factors. Since

the phases come directly from the observed diffraction
pattern, these methods are referred to as ‘direct methods’.
The phase relationships on which direct methods rely

dependonplacing constraints on the electrondensity in the
unit cell, for example that it is everywhere positive, or that
it is clumped into distinct atomic peaks. If one structure
factor is known inbothmagnitude andphase, then it canbe
inferred that atoms are more likely to be located in some
regions of the cell and less likely to be in other regions. This
places restrictions on the possible phases of other structure
factors, which must reinforce likely areas in order to
produce sharp peaks at atomic positions. The strongest
relationship of this form is the three phase invariant: in this
case, the constraints of positivity and atomicity imply that
when three reflections whoseMiller indices sum to zero are
strong, the phases of those reflections must sum to a value
near zero (Cochran, 1952).
A direct methods calculation might then proceed as

follows. Phases are chosen for a few strong reflections, then
phases for other reflections are generated using phase
relationships among strong reflections. Once enough
phases have been calculated, the electron density may be
calculated and can be interpreted in terms of atomic
positions.
Unfortunately, the phase relationships become weaker

as the number of atoms in the structure increases;
furthermore this approach only works when data can be
collected to high resolution. The use of multisolution
methods, by which a larger set of starting phases is chosen
at random, and the calculation is repeatedmany times until
a reasonable structure is obtained, has allowed direct
methods to solve structures of up to 2000 atoms. However,
most proteins cannot be solved by this approach because
structure factors cannot bemeasured to atomic resolution.

Multiple Isomorphous Replacement

Larger structures such as proteins are typically less
rigid than smaller molecules, and thus even in a crystal
there will be significant disorder between unit cells.
This limits the resolution of the diffraction pattern to
typically 2 or 3 Å. Since these molecules may also contain
many thousands of atoms, a different approach to phasing
must be adopted. The most common approach to this
problem has been multiple isomorphous replacement
(MIR) (Green et al., 1954).
Information about the unknown phases may be

obtained by making a known change to the contents of
the unit cell and measuring the effect on the diffraction
pattern. In practice, this involves introducing a reactive
group containing a heavy metal ion to the protein without
disturbing the structure of the protein: that is, the two
structures must be ‘isomorphous’. Since the heavy atom
scatters more strongly than the rest of the atoms in the

(a)

(b)

Figure 3 Each reflection in the diffraction pattern can be described as a
wave with a certain magnitude and phase. The magnitude determines the
size of the wave (a), and the phase determines where the peaks occur (b).
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structure, it is usually possible to locate the heavy atoms
alone by use of directmethods or Pattersonmethods. Once
the location of the heavy atoms is known, the scattering
from those atomsmaybe calculated both inmagnitude and
in phase.
Diffraction patterns are measured from both the native

and the heavy-atom crystals, and the structure factors
for the two crystals are compared. If a structure factor
from the heavy-atom crystal is significantly stronger than
the corresponding structure factor from the native
crystal, then the scattering from the heavy atoms must be
interfering constructively with the scattering from the
rest of the crystal (Figure 4a). In this case the (unknown)
phase of the native structure factor must be close to
the (known) phase of the scattering from the heavy atom
alone.
Similarly, if a structure factor from the heavy-atom

crystal is significantly weaker than the corresponding
structure factor from the native crystal, then the scattering
from the heavy atomsmust be interfering destructively and
the phasesmust be offset by nearly 1808 (Figure 4b). Inmost
cases, however, the scattering will lie between these

extremes. The magnitude of the combined scattering gives
an indicationof the size of the difference between the native
and heavy-atom phases, but it does not tell us whether the
native phase leads or lags the heavy-atomphase.To resolve
this ambiguity and reduce noise introduced owing to lack
of isomorphism between the crystals and to experimental
error, it is usually necessary to use multiple crystals with
different heavy atoms bonded to different sites on the
protein.

Multiwavelength Anomalous
Dispersion (MAD)

Multiwavelength anomalous dispersion has become a
popular alternative to multiple isomorphous replacement
experiments following the introduction of tunable X-ray
beam-lines at synchrotrons (Hendrickson and Ogata,
1997). The scattering from an atom is usually largely
independent of wavelength; however, each atomic type has
a few ‘absorption edges’ aroundwhich the scattering varies
rapidly (in amplitude and phase) with wavelength. By
varying the wavelength around the absorption edge for an
atomic type, the contribution from those atoms to the total
scattering can be varied. If the positions of the anom-
alously scattering atoms are known (for example, in the
case of a few heavy atoms in the structure), phase
information may be recovered by the same method as for
MIR data.
Anomalous scattering has a further important property:

near an absorption edge the scattering from an atom is
shifted in phase. Normally the Friedel opposite of a
reflection has the same magnitude with the negative of the
phase; however, when there is anomalous scattering both
phases are shifted in the samedirection.Once the scattering
from the rest of the nonanomalous atoms is included, the
magnitudes of the reflection and its Friedel opposite are no
longer equal.
Measurement of the difference betweenFriedel-opposite

reflections provides additional phasing information; thus
in theory it is possible to obtain an unambiguous phase
estimate for a structure factor using only a single crystal, by
measuring the scattering at the absorption edge and at a
wavelength distant from the absorption edge. In practice,
several wavelengths are used to provide better phase
estimates.
This approach has several advantages over MIR. Since

only a single crystal is required, the problems of growing
multiple crystals with bound reactive compounds is
avoided, as is the problem of nonisomorphism between
crystals. However, the experiment requires very careful
measurement of small differences in the diffraction pattern,
and therefore must be performed to very high precision.
Furthermore, locating all the atoms of a specific type in a
structure requires that the structure contain a small
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Figure 4 MIR allows estimation of phases when heavy atoms are
introduced in known positions. Fp represents the total scattering from the
native crystal, shifted to the origin of the crystal coordinates. Fh represents
the additional scattering from a heavy atom located at H. If the addition of
the heavy atom leads to stronger scattering along some direction, the
phase of Fp must match that of Fh (a). If the addition of the heavy atom leads
to weaker scattering, the phase of Fp must be opposite to that of Fh (b).
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number of heavier atoms that can be located by Patterson
or direct methods.
MADexperiments aremost commonly performed using

protein in which all methionine residues have been
modified to contain a selenium instead of a sulfur atom.
Selenium is amoderately effective anomalous scatterer but
has chemical properties very similar to sulfur.

Molecular Replacement

An alternative approach to the phase problemmay be used
when the molecule under study is similar to another
molecule whose structure is already known. In this case the
molecular replacement method (Rossmann, 1972) allows
phases to be obtained from the known structure.
The molecular replacement calculation involves the

solution of the rotation and translation functions: the
knownmolecule is first rotated in three dimensions, and for
each orientation structure factors are calculated from the
model. The agreement between the calculated structure
factors and the observed values from the diffraction
experiment is used to identify the orientation of the known
molecule that most closely matches that of the unknown
molecule in the crystal.
Next, the oriented model is placed at every possible

position in the unit cell, and again the agreement of the
structure factors used to identify the correct translation. If
the correct orientation and translation can be identified,
then the model may finally be used to calculate phases for
all the structure factors. Electron densitymapsmay thenbe
calculated using phases from the model structure and
weighted magnitudes from the unknown structure. The
resultingmapmay be examined to determine the unknown
structure.

Phase Improvement

Once phase estimates (or phase probability distributions)
are available from some experimental source, an initial
electron density map may be calculated. At this point is is
possible to apply chemical knowledge to improve the
electron density map, and therefore the phases.
Since proteinmolecules are irregular in shape, they pack

imperfectly in a crystal. The remaining voids are filled with
disordered solvent. The electron density in these regions
does not show identifiable features, so the electron density
map may be improved by flattening the solvent (Wang,
1995). Conversely, sharpening the features inside the
protein region adds further improvement.
Proteins frequently crystallize with more than one copy

of the molecule in the unit cell, or asymmetric unit in the

case of crystals with internal symmetry. Averaging the
density between these copies also reduces the noise level in
the map.
Once the map has been modified, it is used to calculate a

new set of structure factors and phases. After combination
with the observed magnitudes a new map may be
calculated. The calculation may be repeated over several
cycles.

Summary

X-ray crystallographyprovides a practical tool for imaging
the atomic structure of biological molecules, provided the
phases of the diffracted X-rays can be determined. For
small molecules, and a few proteins that form particularly
well-ordered crystals, Patterson and direct methods
provide a mathematical solution to this problem. For
larger biological molecules, MIR and MAD provide an
effective experimental approach to phasing provided
appropriate crystals can be grown. Once the structure of
one molecule in a family is known, others may often be
determined by molecular replacement using the known
structure.
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