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Abstract

Cloud Computing has taken commercial computing by
storm. However, adoption of cloud computing platforms
and services by the scientific community is in its infancy
as the performance and monetary cost-benefits for scien-
tific applications are not perfectly clear. This is especially
true for desktop grids (aka volunteer computing) applica-
tions. We compare and contrast the performance and mon-
etary cost-benefits of clouds for desktop grid applications,
ranging in computational size and storage. We address the
following questions: (i) What are the performance trade-
offs in using one platform over the other? (ii) What are the
specific resource requirements and monetary costs of cre-
ating and deploying applications on each platform? (iii)
In light of those monetary and performance cost-benefits,
how do these platforms compare? (iv) Can cloud comput-
ing platforms be used in combination with desktop grids to
improve cost-effectiveness even further? We examine those
questions using performance measurements and monetary
expenses of real desktop grids and the Amazon elastic com-
pute cloud.

1 Introduction

Computational platforms have traditionally included
clusters, and computational Grids. Recently, two cost-
efficient and powerful platforms have emerged, namely
cloud and volunteer computing (aka desktop grids).

Cloud Computing has taken commercial computing by
storm. Cloud computing platforms provide easy access to
a company’s high-performance computing and storage in-
frastructure through web services. With cloud computing,
the aim is to hide the complexity of IT infrastructure man-
agement from its users. At the same time, cloud computing
platforms provide massive scalability, 99.999% reliability,
high performance, and specifiable configurability. These
capabilities are provided at relatively low costs compared
to dedicated infrastructures.

Volunteer Computing (VC) platforms are another cost-
efficient and powerful platform that use volunteered re-
sources over the Internet. For over a decade, VC platforms
have been one of the largest and most powerful distributed
computing systems on the planet, offering a high return on
investment for applications from a wide range of scientific
domains (including computational biology, climate predic-
tion, and high-energy physics). Since 2000, over 100 sci-
entific publications (in the world’s most prestigious scien-
tific journals such as Science and Nature) [15, 5] have doc-
umented real scientific results achieved on this platform.

Adoption of cloud computing platforms and services by
the scientific community is in its infancy as the performance
and monetary cost-benefits for scientific applications are
not perfectly clear. This is especially true for volunteer
computing applications. In this paper, we compare and con-
trast the performance and monetary cost-benefits of clouds
for volunteer computing applications, ranging in size and
storage. We examine and answer the following questions:

• What are the performance trade-offs in using one plat-
form over the other in terms platform construction, ap-
plication deployment, compute rates, and completion
times?

• What are the specific resource requirements and mon-
etary costs of creating and deploying applications on
each platform?

• Given those performance and monetary cost-benefits,
how do VC platforms compare with cloud platforms?

• Can cloud computing platforms be used in combina-
tion with VC systems to improve cost-effectiveness
even further?

To help answer these questions, we use server mea-
surements and financial expenses collected from several
real VC projects, with emphasis on projects that use the
BOINC [1] VC middleware. With this data, we use back-
of-the-envelope calculations based on current VC storage



and computation requirements, and current cloud comput-
ing and storage pricing of Amazon’s Elastic Compute Cloud
(EC2) [4].

2 Related Work

In [23], the authors consider the Amazon data storage
service S3 for scientific data-intensive applications. They
conclude that monetary costs are high as the storage ser-
vice groups availability, durability, and access performance
together. By contrast, data-intensive applications often do
not always need all of these three features at once. In [28],
the authors determine the performance of MPI applications
over Amazon’s EC2. They find that the performance for
MPI distributed-memory parallel programs and OpenMP
shared-memory parallel programs over the cloud is signif-
icantly worse than in "out-of-cloud" clusters. In [17], the
author conducts a general cost-benefit analysis of clouds.
However, no specific type of scientific application is con-
sidered. In [9], the authors determine the cost of running a
scientific workflow over a cloud. They find that the com-
putational costs outweighed storage costs for their Mon-
tage application. By contrast, for comparison, we consider
a different type of application (namely batches of embar-
rassingly parallel and compute-intensive tasks) and cost-
effective platform consisting of volunteered resources.

It is well-known that ISP’s have always offered similar
services as clouds but at much lower rates [17]. However,
ISP’s resources are not as scalable (according to variable
workloads), configurable nor as reliable [17]. The ability
to adapt to workload changes is important as server work-
loads can change rapidly. Configurability is important to
suit project programming and application needs. Reliability
is important for project scientists to receive and access re-
sults, and also to project volunteers as they prefer to receive
credit for computation as soon as possible. Thus, we do not
consider ISP’s in our analysis.

3 Cloud versus Volunteer Computing

Both cloud and volunteer computing have similar princi-
ples, such as transparency. On both platforms, one submits
tasks without needing to know the exact resource on which
it will execute. For this reason, definitions of cloud comput-
ing have included VC systems [30]. However, in practice,
the cloud computing infrastructures differ from volunteer
computing platforms throughout the hardware and software
stack. From the perspective of the user, there are two main
differences, namely configurability (and thus homogeneity),
and quality-of-service.

Clouds present a configurable environment in terms of
the OS and software stack with the Xen virtual machine [3]

forming the basis of EC2. The use of VM’s in VC systems
is still an active research topic [7, 16]. So while clouds can
offer a homogeneous resource pool, the heterogeneity of
VC hardware (e.g. general purpose CPU’s, GPU’s, the Cell
Processor of the Sony PlayStation 3) and operating system
(90% are Windows) is not transparent to VC application de-
velopers.

Clouds also provide higher quality-of-service than VC
systems. Cloud resources appear dedicated, and there is
no risk of preemption. Many cloud computing platforms,
such as Amazon’s EC2, report several "nine’s" in terms of
reliability. Cloud infrastructures consist of large-scale cen-
tralized compute servers with network-attached storage at
several international locations. The infrastructures are ac-
cessed through services such as S3 also provide high-level
web services for data management. By contrast, guarantees
for data access or storage, or computation across volatile In-
ternet resources over low-bandwidth and high-latency links
is still an open and actively pursued research problem.

3.1 Apples to Apples

Given these dramatic differences between cloud and VC
computing, it begs the question of how to compare these
systems. We compare the cost-benefits of cloud versus
volunteer computing from the perspective of an embar-
rassingly parallel and compute-intensive application.

This is a useful for the following reasons. EC2 is popular
computing environment for task parallel batch jobs. This is
evident by the fact that Condor is used extensively on EC2,
and there are even corporations that specialize in Condor
deployments over EC2 [8]. An alternative platform (that is
perhaps cheaper and provides higher performance) for these
tasks could be a VC system. Conversely, VC scientists may
consider hosting servers or even task execution on EC2, de-
pending on the cost-benefits.

4 Platform Performance Trade-offs

Here we describe the performance costs for an applica-
tion executed over a VC system, and compare them to EC2
costs. Roughly the stages of a VC project and application
are the following:

• Platform construction. One must wait and gather
enough volunteers in the project.

• Application deployment. As VC systems have a client-
server pull architecture, an application will be de-
ployed only as fast as the rate of client requests.

• Execution. During execution, we must consider the
effective compute rate of the platform given resources’
volatility and task redundancy.



• Completion. The unavailability or slowness of vol-
unteer resources near the end of the computation can
stretch task completion times.

In the subsections below, we quantify the performance
costs of each of these stages.

4.1 Execution: Cloud Equivalence

We compute the cloud equivalence of a VC system. We
answer the following question: how many nodes in a VC
system are required to provide the same compute power in
FLOPS of a small dedicated EC2 instance? This is similar
to the notion of cluster equivalence in [20]. However, in
that study the equivalence was computed for an enterprise
(versus Internet) desktop grid, and limited to a few hundred
machines.

To compute this cloud equivalence ratio, we used the
statistics for SETI@home presented in [26]. We find that
the average FLOPS of SETI@home is about 514.798 Ter-
aFLOPS. We assume a replication factor of 3 (required
for result verification and time task completion), which is
quite conservative as projects such as World Community
Grid [29] use levels 50% lower. Thus, the effective FLOPS
is about 171.599 TeraFLOPS.

Moreover, there are about 318,380 hosts that were active
in the last 60 days. This means on average, each host con-
tributes 0.539 GigaFLOPS. We ran the Whetstone bench-
mark by means of the BOINC client on an EC2 small in-
stance, and the result was about about 1.528 GigaFLOPS
for the single core allocated on an AMD Opteron Processor
2218 HE. Thus, the cluster equivalence is about 2.83 active
volunteer hosts / 1 dedicated small EC2 instance.

4.2 Platform construction

We compute how long it takes on average for new hosts
to register with a project. We used a trace of registration
time of SETI@home between April 1, 20007 to January 31,
2009. We found the mean rate of registration to be about
351 volunteer hosts per day. We normalize this rate accord-
ing to the cloud equivalence (2.83), giving about 124 cloud
instances per day.

Figure 1 shows how much time it takes before a certain
number of cloud nodes and compute power is reached. For
example, we find that is takes about 7.8 days to achieve a
platform equivalent to 1,000 cloud nodes (1.5 TeraFLOPS),
2.7 months for 10,000 cloud nodes (15.3 TeraFLOPS), and
2.24 years for 100,000 cloud nodes (152.8 TeraFLOPS).

Note this is a best-case scenario as the rates were de-
termined from an extremely popular project, SETI@home.
While we used the mean rate to plot Figure 1, the rate varies
greatly over time. We computed the mean rate per day over

week, month, and quarter intervals. While the mean rate
was roughly the same, the coefficient of variation was as
high as 0.83.

In fact, the rate depends on several factors, such as the
level of publicity for the project. Clearly, the rate of regis-
tration can plateau for some projects. Also, the calculations
did not include the limited lifetimes of some of the nodes.

Figure 1. Time to form VC Platform

4.3 Application Deployment

Assuming a system in steady state, the time to send out
all tasks in a batch can be lengthy as clients use a pull
method for retrieving tasks, and clients only connect to the
server periodically.

Here we summarize the work of Heien et al. [18] where
the authors determined the time to deploy a batch of tasks.
In particular, the authors found that:

L =
TQ

P
(1)

L is the time frame during which tasks are distributed, P
is the number of clients, and Q is 1.2× the number of tasks.
T is the reconnection period, which is a parameter specified
by the project scientist to the client denoting the time that
must expire before it reconnects to the server. By default, in
the BOINC VC system, T is six hours.

Figure 2 shows the time required to assign all tasks in
a batch, assuming a replication factor of 3. We consider
three batch sizes of 100, 1000, and 10000 tasks (and with
replication, a total of 300, 3000, and 30000 tasks). For ex-
ample, deploying a batch with 100, 1000, and 10000 unique
tasks over a platform with 10,000 cloud nodes (or equiva-
lently 28300 volunteer nodes) would take 4.6, 45.8, or 458
minutes, respectively.



Figure 2. Time to deploy batch of tasks

4.4 Completion times

The volatility and heterogeneity in VC systems makes
timely completion of task batches challenging. BOINC
has a number of mechanisms for ensuring time completion.
For example, project scientists can soft deadlines for tasks.
When the soft deadline of a task approaches, the local client
scheduler will increase the task’s priority relative to oth-
ers. In addition, the server-side scheduler uses the deadline
for determining timeouts, i.e., when another task instance
should be sent out.

With these mechanisms, task completion is usually done
at a high success rate. For example, in the World Commu-
nity Grid project (a non-profit project for volunteer com-
puting), 96.1% of tasks met their deadline out of 227,485
tasks [24].

Nevertheless, VC users should expect a stretch (defined
by the amount of time spent by the job in the system and
its execution time) of at least 5 according to our simula-
tion results in [21]. This is because the task deadlines are
usually high relative to the amount of actual work. The
median project deadlines are around 9 days, where as the
execution time per task is about 3.67 hours on a dedicated
3GHz host [6]. Recently, there has been promising results
in using predictive models for achieving fast turnaround
time [2, 19, 14]

By contrast, on EC2, platform construction takes a few
minutes to deploy an image. This assumes that the platform
is not overloaded. As resources are dedicated, application
deployment is instantaneous, and task execution and com-
pletion are relatively constant and low.

Instance Type Cost/hour (USD)
Standard Small 0.10
Standard Large 0.40

High-CPU 0.20

Table 1. Pricing for EC2 Instances

Transfer Type Cost/GB-Month (USD)
Inbound transfer 0.10

first 10 TB 0.17
next 10-50TB 0.13
next 50-150TB 0.11

over 150 TB 0.10

Table 2. Pricing for EC2 Data Transfer

5 Cloud Computing Costs

We present an overview of Amazon’s cloud services and
pricing [13] to be used in our calculations. Amazon has two
relevant cloud computing services. First, Amazon offers the
Elastic Computing Cloud service.EC2 charges each hour an
instance is running, and it offers instances with different
compute power and memory. The pricing for EC2 is shown
in Tables 1 and 2.

Second, in conjunction with EC2, Amazon offers the
Elastic Block Store (EBS) service. This provides reliable
and persistent storage with high IO performance. EBS
charges per GB of storage and per million IO transac-
tions. The pricing for EBS is shown in Table 3. Ama-
zon also offers the Simple Storage Service (S3). This
service provides access through web services to persistent
data stored in buckets (one-level of directories) along with
meta-data (key/value pairs). S3 charges per GB of stor-
age and HTTP requests concerning it. PersistentFS offers
a POSIX-compliant file system using S3 and is arguably
cheaper than EBS for mainly read-only data. However, for
volunteer computing projects, the cost difference between
S3/PersistentFS and EBS is not significant and does not
change our conclusions. Thus we assume all storage oc-
curs on EBS. We do not consider costs of snapshots, i.e.,
EBS volume backups to Amazon’s S3.

Resource Rate (USD)
Storage 0.10 / GB-Month

IO request 0.10 / million

Table 3. Pricing for EBS



Project
Component SETI@home XtremLab
Salaries 10K for sys

admins
5K

Electricity 90 for 6
servers

15

Network 2K for 100
Mbit

covered by
university

Hardware 18K for
servers, 25K
for air condi-
tioner

4K

Total startup 43K 4K
Total monthly 12K 5k

Table 4. Project Costs (monthly)

6 Volunteer Computing Project Costs

We detail the costs of maintaining large and small vol-
unteer computing projects. The main costs are due staff
salaries for the installation and programming of server soft-
ware, hardware maintenance, and recruitment and main-
tenance of volunteers. There are also high start-up costs
for purchasing hardware. These costs could potentially be
subsumed or lowered by deploying a volunteer computing
project or service over a cloud. For example, the cost of
one full-time systems programmer could be amortized over
several VC project servers hosted on a cloud.

Listed below are the costs for a large project, namely
SETI@home, with about 318,380 active hosts. All costs
are in terms of USD.

The majority of SETI@home’s costs are for salaries for
system administrators and programmers, hardware, and net-
work bandwidth. SETI pays about 10K / month for 2 sys-
tem administration and programmers that spend about 50%
of time on work that would be subsumed by a cloud. (Note
that staffing costs tend to be variable across projects. For ex-
ample, EINSTEIN@home uses student programmers which
are significantly cheaper than full-time staff.)

SETI@home is unique in the sense that its network costs
are not supported by the University. Instead, it pays about
1K / month for a 1 Gbps connection with Hurricane elec-
tric. SETI also pays about 1K / month in university fees
and networking hardware. Its 6 servers use about 400 watts
each, for a total of 2400 watts. This equates to 24*2400 =
60 KWh per day. The University rate is about 5 cents per
kWh. The cost of the 6 servers is about 18K, although they
were actually donated. In addition, the project managers
purchased an air conditioner for 25K. Ultimately, the total
start-up costs were about 43K, and total monthly costs were
about 12K.

We also compute the costs for a relatively small project
called XtremLab [22] with about 3,000 active hosts. The
majority of costs are for a 50%-time system adminis-
trator/programmer. The total start-up cost was about
3K/month for a server with a RAID storage server. The
total monthly cost was about 5K/month.

While the total costs are relatively low, they are not neg-
ligible. This begs the question of when it is more cost-
efficient to host the entire platform over a cloud instead.

7 Platform Hosting on a Cloud

7.1 Number of volunteers needed before
VC is more effective than cloud
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Figure 3. Cost-effectiveness of Cloud versus
VC

We determine how many volunteers are required before
VC becomes more cost-effective than clouds. We also de-
termine the minimum project age need to achieve that num-
ber of volunteers. We assume volunteers register at the rate
of 124 cloud nodes per day as calculated in Section 4.2.
Figure 3 shows the cent per flop for an EC2 small instance,
and two VC systems, namely SETI@home (large project)
and XtremLab (small project). In the cost calculation, use
we include both startup and monthly costs for SETI@home
and XtremLab as shown in Table 4.

We find that for a relatively small project such as Xtrem-
Lab, one must have at least ∼1404 volunteer nodes (equiv-
alently ∼496 dedicated cloud nodes) and wait at least ∼4
days before the VC system becomes cheaper per FLOP than
EC2. For a large project, one must have at least ∼4562 vol-
unteer nodes (equivalently ∼1612 cloud nodes) and wait at
least ∼13 days.



7.2 VC versus cloud costs over time
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Figure 4. Total cost of Cloud versus VC over
time

We also computed the total cost of EC2 versus the cost
on a VC system over time (see Figure 4). We did so
with EC2 platforms with 100, 1000, and 10000 nodes,
and also XtremLab and SETI@home. As XtremLab and
SETI@home have high start-up costs, the EC2 platforms
start off cheaper with the exception of the 10000 node plat-
form and XtremLab.

After three days, the cost of 1000 and 10000 node plat-
forms becomes higher than that of the VC platform. The
100-node EC2 platform has lower month costs than both
VC platforms. Thus, it is always cheaper. Clearly, VC sys-
tems are advantageous as the cost remains constant with
number of number of nodes, though it takes time to get
enough volunteers, as shown in Section 4.2.

7.3 Months of VC supportable by x
months of cloud costs

We determined the cost of x months on an EC2 plat-
form and determined how many months y on a VC plat-
form could be supported with the same monetary amount
(see Figure 5). We did so with an EC2 platform of 1000
and 10000 small instances, and with SETI@home and
XtremLab monthly expenses. We find, for example, that
4 months on EC2 with 1000 nodes can support over a year
of SETI@home. Of course, this comparison is only appli-
cable assuming the cloud equivalence of the VC platform is
at least as high as the EC2 platform.

Figure 5. VC month costs versus EC2 month
costs

7.4 Cloud platform sustainable by VC
monthly costs

We also determined the size of a cloud platform that
would be supportable based on a VC project’s current costs
(see Figure 6). With 12K per month, SETI could purchase
a maximum of 2 TeraFLOPS sustained over a month with
High CPU instances (and no storage). Alternatively, SETI
could purchase 80 TeraBytes of storage (and no comput-
ing power) per month. By contrast, SETI@home provides
about 514.798 TeraFLOPS of compute power and 7740 Gi-
gaBytes of storage. These levels of computation and stor-
age are 2 orders of magnitude less than the levels currently
provided by project volunteers.

Similarly, the cloud resources purchasable using the cur-
rent budget of XtremLab (a project much smaller than
SETI@home) are still an order of magnitude lower than
what the cloud platform can provide. XtremLab provides
about 2.9 TeraFLOPS of compute power and 108 GigaBytes
of storage. For cloud computing to become more cost effec-
tive than volunteer computing, costs would have to decrease
by at least an order of magnitude.

8 Server Hosting on a Cloud

Cloud computing is advantageous for variable workloads
as the infrastructure can scale with rapid increases (or de-
creases). Moreover, costs are variable (and in total less than
the fixed costs). Cloud computing is effective for small to
medium sized applications.

For large projects, the costs are simply too high [25, 27]
to host on cloud. For example, with the FOLDING@home
project, the storage requirements are about 500 TeraBytes.



(a) SETI@home server (b) XtremLab server

Figure 6. Cloud resources obtainable given current project costs

If stored on Amazon’s S3, the 500TB of Folding@home’s
data would cost over 50K USD / month. Moreover, Fold-
ing@home data analysis requires data access and manipu-
lation so the potential costs of inbound and outbound data
transfers from S3 would make the estimate even higher.

In comparison to FOLDING@home, SETI@home and
XtremLab have less demands in terms of the computing in-
frastructure. In the sections below, we determine the cost of
hosting these projects on the cloud, and which server com-
ponents make up the majority of costs when moving to the
cloud.

We believe that server hosting on a cloud has potential
for several reasons. First, server workload has significant
variation. In Figure 7, we see that the number of active
hosts over time participating in various BOINC projects.
We find that the number of hosts varies greatly, and thus one
could expect fluctuations in server host load. For example,
in SETI@home, the number of hosts increased by almost
an order of magnitude within a one month period. Spikes in
load can be due to project publicity. In addition, there can be
significant decreases in load. For example, with the Predic-
tor@home project, the load decreased about 80% over a 1
month time period. Decreases in host load can be due to the
fact that most projects (with the exception of SETI@home)
have finite workloads in batches. Often, the server has no
work to distribute and servers are idle.

Moreover, most volunteer computing projects are rela-
tively small. We observe that more than half the projects
have less than ten thousand hosts. If a global volunteer
computing service over a cloud was offered, the project
programming and maintenance costs could be lowered by
amortizing over several projects and applications (in addi-
tion to amortizing the hardware maintenance costs).

8.1 Project Resource Usage

Here we characterize the resources used when hosting a
BOINC project server. BOINC project servers consist of
several components [1]. A server-side Scheduler is used to
receive client requests for workunits (aka tasks). Upon re-
quest, the Scheduler assigns workunits to the client, which
involves querying the BOINC database for workunit infor-
mation. After workunit assignment by the Scheduler, the
client downloads the workunits. Upon workunit comple-
tion, the client will upload the results to a (possible sepa-
rate) data server. A File Upload Handler on the data server
is used to receive results from clients and to store them on
a file system. Uploaded results are periodically moved to a
science database and file system.

The monthly resource usage of typical VC projects is
shown in Table 5. An upper bound on the number of IO
transactions was determined using /proc/diskstats [10]. We
determine the other statistics using standard Linux tools.

In general, the SETI@home server uses about 3 TB of
storage, 100Mbps of bandwidth, and has modest IO rates.
The server serves about 318,380 active clients. The sched-
uler and download outbound data transfer rate is much
greater than the inbound. The download throughput is con-
strained by a 100Mbit limit.

We also determine the resource usage for a smaller
BOINC project called XtremLab [22]. In general, the
XtremLab server uses about 65 GB of storage, 11Kbits/sec
of bandwidth, and very light IO rates. The server serves
about 3,000 active clients. As the XtremLab project ended
in 2007, these estimates were computed post-mortem using
the server logs and files.

8.2 Server Costs on Cloud

The mapping of the components of VC servers (as de-
scribed in Section 8) to Amazon’s cloud components (as



Figure 7. Number of hosts per project over time

Project
Component SETI@home XtremLab
Upload (result)
storage

200GB negligible

Download
(workunit)
storage

2,500GB .14GB

BOINC
database
storage

200GB 1GB

Science re-
sults/database
storage

1,000GB 64GB

Scheduler
throughput

6Mbits/sec
outbound

negligible

Upload
throughput
(peak)

10Mbits/sec
inbound

9.3Kbits/sec

Download
throughput
(peak)

92Mbits/sec
outbound

1.7Kbits/sec

IO transactions 141.9 million negligible

Table 5. Project Resource Usage

described in Section 5) is as follows. We assume the Sched-
uler and File Upload Handler execute over EC2. We assume
the BOINC database is hosted on EBS. We assume the stor-
age for uploads, downloads, and science results is stored on
S3.

Figure 8(a)shows the costs for SETI@home on Ama-
zon’s cloud. In total, it would cost about 7K USD / month
to host the SETI@home server on cloud. The majority of
costs (~60%) are due to bandwidth alone. About 25% of
costs are due to CPU time of the 6 instances. Nevertheless,
the cloud costs are less than 60% of SETI@home’s current
costs. So surprisingly, clouds may be cost-effective for even
a "large" project such as SETI@home. However, one has to
consider that staff costs for maintenance and etc. are vari-
able across projects, and that we assume these costs would
be subsumed by the cloud.

Figure 8(b)shows the costs for XtremLab. Monthly costs
amount to about 300 USD / month. 95% of costs are due to
the CPU time of the instance. The cloud costs are about 6%
of XtremLab’s standalone costs. Clearly, clouds are advan-
tageous for smaller, less-bandwidth intensive projects.

8.3 Server resources with given yearly
budget

We also determined the amount of server resources for
a given budget. In Figure 9, we show the amount of cloud
download bandwidth and storage for a yearly budget of 10K
and 15K USD. We assume a Large instance, and show to-
tal bandwidth and storage (over all instances when multiple
exist). Clearly, as the number instances increases, one has
to pay more for their CPU time, and the total amount of pur-
chasable bandwidth and storage decreases. An application
scientist could use these graphs to determine whether their



(a) SETI@home server (b) XtremLab server

Figure 8. Server costs on Cloud

(a) 10k USD (b) 15k USD

Figure 9. Cloud resources with given yearly budget



application requirements can be met using a cloud with a
given annual budget. For example, at 10K USD / year, one
could have a large instance with about 6Mbps in bandwidth
and 1.5 TB of storage total. At 15K USD, one could have
two instances with 8Mbps and about 1.6TB of storage total.

9 Conclusions

We determined the cost-benefits of cloud computing ver-
sus volunteer computing applications. We calculated VC
overheads for platform construction, application deploy-
ment, compute rates, and completion times. We found that
in the best-case scenario, hosts register at a rate of 124 cloud
nodes per day. We found that the ratio of volunteer nodes
needed to achieve the compute power of a small EC2 in-
stance is about 2.83 active volunteer hosts to 1.

We detailed the specific costs of a large and small VC
project. We find that monthly VC project costs range be-
tween 5K-12K, and startup costs range from 4K to 43K. If
cloud computing systems are to replace VC platforms, pay-
per-use costs would have to decrease by at least an order of
magnitude.

With these performance and monetary cost-benefits in
mind, we compared the two platforms. We find that at least
∼1404 volunteer nodes are needed before VC becomes
more cost effective in terms of cents per FLOP. Neverthe-
less, the cost of a 1000-node cloud will exceed that of VC
system after three days. We also find that 4 months on EC2
with 1000 nodes can support over a year of SETI@home.
We also examined the size of a cloud platform sustainable
by VC costs. With 12K per month, SETI could purchase
a maximum of 2 TeraFLOPS sustained over a month with
High CPU instances.

We also consider hybrid approaches where a VC server
is hosted on a cloud to lower the start-up and monthly
costs. The savings ranges between 40-95% depending on
resource usage. In general, if bandwidth needs do not ex-
ceed 100Mbit and storage needs are less than 10TB’s, host-
ing a server on a cloud is likely cheaper than conducting a
project on one’s own. Server bandwidth on cloud is partic-
ularly expensive.

We have made available online our Excel file [12] so that
scientists can determine themselves their own project cost-
benefits. Also, to allow users to quickly and easily deploy
a BOINC server on EC2, we have created an Amazon Ma-
chine Image (AMI) with a BOINC server pre-installed and
configured. Instructions for the AMI deployment have been
made available online [11]. This can be used as a testing or
production server.

For future work, we will consider cost models of other
clouds or ISP’s other than Amazon where for example net-
work bandwidth is significantly cheaper. In this case, dif-
ferent components of the server can be hosted at different

clouds or ISP’s depending on costs. We will also investi-
gate the reduction of server costs on EC2 using dynamic
instance creation and load balancing.
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