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1. Introduction. Our aim is to formulate and study a “modular change
problem”. Let A be a set of t natural numbers a1, . . . , at (which are coin
denominations or semigroup generators). Integer linear combinations of
these numbers are clearly multiples of gcdA, their greatest common divisor.
If indeterminate coefficients, say xi’s, are nonnegative, xi ∈ N0, then those
combinations form a numerical semigroup S (under addition),

S = S(A) :=
{
n ∈ N0

∣∣∣n =
t∑

i=1

xiai, all xi ∈ N0

}
,

which includes 0 and all multiples of gcdA large enough. In fact, the fol-
lowing is known.

Proposition 1.1. All integer linear combinations of integers ai in A
coincide with all the multiples of gcdA. If the coefficients are nonnegative
integers, the combinations include all multiples of gcdA large enough.

Let Ω (= Ω(A) = |N−S| ≤ ∞) denote the cardinality of the complement
of S in N. Hence, if the given numbers are relatively prime, that is,

(1.1) gcd(a1, . . . , at) = 1 ,

then Ω <∞ is the number of integers n ∈ N0 without any representation

(1.2) n =
t∑

i=1

xiai ,

with

(1.3) all xi ∈ N0 .

The largest of these omitted n’s is denoted by g(A) (or N(A)); by defini-
tion g(A) = ∞ if Ω = ∞, and g(A) = −1 if Ω = 0. The study of the
functions Ω and g dates back to Sylvester [14] and Frobenius (cf. [2]), re-
spectively. Another related function—the number of partitions (1.2)–(1.3)
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of n, denoted by νn(A)—is older and was studied by Euler. The study of
Ω, g, and/or νn constitutes the classical “change problem” (cf. [9], where
only νn is considered).

Let q ∈ N and let L, L = Lq, be a complete system of residues modulo
q (e.g., Z ⊃ L = {0, 1, . . . , q − 1} unless otherwise stated). For a κ ∈ L, we
impose the additional requirement

(1.4)
t∑

i=1

xi ≡ κ (mod q)

and consider the related functions Ωκ, Nκ and νnκ which represent the
number of so-called κ-omitted integers n (among nonnegative ones, n ∈ N0);
the largest of them, +∞, or −1; and the number of κ-representations of n,
respectively. Then (A, q) is the pair of arguments of the functions and

g(A, q) := max{Nκ(A, q) : κ ∈ Lq} .

This new problem, the “modular change problem”, includes the classical
one (for q = 1) and is prompted by applications of the problem (1.2)–(1.4)
in constructive graph theory [13] where the following condition is desirable.

(1.5) A solution exists for all natural n large enough.

Our main result yields a useful equivalent of the condition (1.5) (or
finiteness of g) in case of our modular problem. Moreover, explicit formulae
in case of two generators (t = 2) and, in general case, efficient algorithms
for evaluating both all Ωκ and all Nκ are provided.

Theorem 1.2. The finiteness of an Nκ(A, q) is equivalent to the con-
junction of (1.1) and

(1.6) gcd(q, a2 − a1, a3 − a2, . . . , at − at−1) = 1 ,

and is equivalent to the finiteness of g (or all Nκ’s).

The proof of necessity uses the general solution of a linear Diophantine
equation. (It is not excluded that t = 1, in which case (1.1) and (1.6) mean
that a1 = 1 = q.)

A correct reference to Sylvester’s problem (and result, proved by W. J. C.
Sharp [14] using a generating function) will be provided.

2. General results. We need the following notation:

Di = gcd(a1, . . . , ai), D0 := 0 ,

whence D1 = a1 and Di = gcd(Di−1, ai), i = 1, . . . , t. It is known that the
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general integer solution x of (1.2) is the integer vector

(2.0) x = x̃0 +
t−1∑
j=1

ujyj

where x̃0 is a particular integer solution of (1.2) and yj ’s are t − 1 integer
vectors which form a basis for the rational solution space of the simplified
(homogeneous) equation

(2.1)
t∑

i=1

xiai = 0

such that uj can be arbitrary integers. Hence, each yj is a t-vector which is
divisor minimal, that is, its components are relatively prime. In particular,
it is known that a solution y of (2.1) for t = 2, y = (x1, x2), is unique up to
a factor of ±1,

(2.2) y = ±(a2/D2,−a1/D2) .

For j = 1, . . . , t, let ξj be an integer column j-vector with components
ξij satisfying the auxiliary equation

(2.3)
j∑

i=1

aiξij = Dj

whence ξ1 = ξ11 = 1. Assume that not only all ξj but also x̃0 and all yj are
column vectors, yj = [yij ]t×1. Then

x̃0 = nξt/Dt

provided that Dt |n. By Proposition 1.1, the equation (2.3) can be replaced
by

(2.4) Dj−1wj + ajξjj = Dj (j = 1, . . . , t) .

Now, a solution of (2.4) determines the last component ξjj of the vector ξj
and the remaining components can be computed recursively,

ξij = ξi,j−1wj for i < j and j ≥ 2 .

We are now ready to construct all vectors yj , j < t. Assume that the last
t− j − 1 components of yj are zero, and the (j + 1)th component yj+1,j is
negative and has the smallest possible absolute value. Then

Djzj + aj+1yj+1,j = 0 for some zj ∈ N0 ,

whence, using (2.3), (2.2), and the Kronecker δ symbol, we finally have

(2.5) yj =

 zjξj
yj+1,j

0

 =
(
aj+1

[
ξj
0

]
−Dj [δi,j+1]t×1

)/
Dj+1 (1 ≤ j < t) .
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The above method which produces a “first-column-missing upper trian-
gular” matrix [yij ]t×(t−1) (see also [1]) usually gives solution vectors yj with
large components yij (in absolute value) depending on the ordering of ai’s.
A computationally efficient method to find Dt and a vector ξt together with
all basis solutions yj (with components small enough) can be found in [6,
5]. The above method, however, readily gives the general solution to each
equation (2.3). Namely, if k replaces j there, then x̃0 = ξk and the corre-
sponding solution basis is formed by the columns of the leading k × (k − 1)
submatrix of [yij ].

From (2.5), using (2.3) to eliminate ξjj , we get
t∑

i=1

yij =
(
ξjjaj+1 −Dj + aj+1

j−1∑
i=1

ξij

)/
Dj+1(2.6)

=
(
Dj(aj+1 − aj) + aj+1

j−1∑
i=1

(aj − ai)ξij
)/

ajDj+1, j < t .

P r o o f o f T h e o r e m 1.2. First, by Proposition 1.1, the existence of
an integer solution of (1.2) for any n is equivalent to (1.1).

Necessity of (1.1) is thus proved. Hence, if p is a prime divisor of the
left-hand side of (1.6) then p - ak for all k and therefore p |

∑
i yij in (2.6)

for all j. Then by (2.0), for any n = (kq − 1 + κ)a1 (k ∈ N) in (1.2), (1.4)
is not satisfied since p | q, a contradiction.

Sufficiency . Using (2.0) and (2.6) one can see that (1.1) and (1.6) imply
the existence of a solution to (1.2) and (1.4) for any n and for any κ ∈ Lq.
Now, let −Yn,κ and Zn,κ be the corresponding parts of the right-hand side
of (1.2) with nonpositive and nonnegative coefficients, respectively. Assume
that the number +Yn,κ is as small as possible. Thus Y0,0 = 0 = Z0,0 (where
n = 0 and κ = 0).

Let −Y 0 be a linear combination of ai’s such that, for all i, the coefficient
of ai is chosen to be the smallest of (nonpositive) coefficients of the ai in
all −Y0,κ (where n = 0). For n = 1 and κ = 0, let Y = Y1,0 and Z = Z1,0

whence 1 = −Y + Z. Consider the following a1 consecutive integers n:

(a1 − 1)Y + Y 0 ,

(a1 − 2)Y + Z + Y 0 ,

. . . . . . . . . . . . . . . . . . . .

(a1 − 1)Z + Y 0 .

Each of them is fully representable, i.e., has representations (1.2)–(1.4) for
all κ ∈ Lq, because any representation can be modified by adding any of the
q expressions 0 = −Y0,κ + Z0,κ where n = Y 0 − Y0,κ has a representation
(1.2) and (1.3) by the very definition of Y 0. Each larger integer also has full
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representations, by adding a multiple of a1 to representations of one of the
a1 integers above.

The above sufficiency proof extends that of the existence of g for q = 1,
due to Ö. Beyer, as presented in Selmer [12] (1986).

In what follows (1.1) and (1.6) are assumed. Moreover,

(2.7) a1 < . . . < at .

A generator which has a 1-representation (modulo q) by the remaining
generators can be removed fromA without altering the value of anyNκ. Call
the set A of generators q-independent if either q = 1 = t = a1 or t > 1 and no
ai in A is 1-representable modulo q by the remaining generators; otherwise
A is called q-dependent (1-representable modulo 1 means representable).
Hence the 1-independence of A (q = 1) is the known notion of independence
of generators.

Note that

(2.8) |A| = t ≤ qa1 = qminA

is a necessary condition for A to be q-independent (whence at ≥ dt/qe+t−1
if A is q-independent).

In fact, suppose qa1 < t. Then |A − {a1}| ≥ qa1. Hence there is j ≥ 2
such that aj ≡ a1 (mod qa1) or there are i, j ≥ 2 with ai ≡ aj (mod qa1).
In either case A is q-dependent.

Recall that g(A, q) is the largest integer (or +∞) which is not fully
representable modulo q by A. The Frobenius problem consists in finding
(an upper bound for) the integer g(A), g(A) = g(A, 1) = N0(A, 1), i.e., if
q = 1 and κ = 0. In this context we shall assume

(2.9) at ≤ g(A− {at}, q) if t ≥ 2 ,

i.e., first we shall possibly eliminate excessively large (irrelevant) genera-
tors. This natural assumption, which only admits of independence of the
largest generator at from the remaining ones, is usually omitted in the pub-
lished upper bounds for g(A, 1) or—as in [11]—it is sometimes replaced by
requiring the independence of the whole A.

Given a positive integer ñ which has a representation (1.2)–(1.3) with
n = ñ (e.g., ñ = ai,

∑
ai, etc., the smallest ñ = a1), let

m = qñ

and, for each residue r modulo m and a fixed κ ∈ Lq, let nrκ be the least
n which is in the residue class of r modulo m and has a κ-representation.
Hence, by the choice of m, if n≡r (mod m), n clearly has a κ-representation
if and only if n ≥ nrκ. Thus, the finiteness of Nκ’s is equivalent to the
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existence of all numbers nrκ; moreover,

(2.10) Nκ = max
r
nrκ −m

because, if Nκ is finite, there is % ∈ N0 with % < m such that Nκ ≡ %
(mod m), whence Nκ is clearly m smaller than n%κ. This extends a formula
for g due to Brauer and Shockley [2, Lemma 3] (q = 1 and κ = 0). Thus,
knowing the qm numbers nrκ [and a κ-representation of each nrκ] we can
determine all sets, say Ic

κ, of κ-omitted integers [and a κ-representation of
each positive n such that n 6∈ Ic

κ]. Analogously, on partitioning Ic
κ into

residue classes modulo m,

Ωκ := |Ic
κ| =

m−1∑
r=0

(nrκ − r)/m(2.11)

= −(m− 1)/2 +
∑

r

nrκ/m (cf. [11])

=
∑

r

bnrκ/mc (cf. [7]) .

This formula generalizes those by Selmer [11, Theorem] and Nijenhuis [7],
respectively, for Ω if q = 1.

3. The case of two generators, t = 2. Throughout this section,

(3.1) κ ∈ {−1, 0, . . . , q − 2} .
Let us use standard notation:

a = a1, b = a2, x = x1, y = x2 (a < b) .

Since (1.1) and (1.6) are assumed to hold,

(3.2) gcd(a, b) = 1 = gcd(q, b− a) .

Sylvester’s contribution to the change problem is misquoted or misplaced
quite often (cp. [8, 11, 12, 4] and (!) [13]). The following is what Sylvester
actually presents in [14] (where in fact p and q stand for a and b, resp.): “If
a and b are relative primes, prove that the number of integers inferior to ab
which cannot be resolved into parts (zeros admissible), multiples respectively
of a and b, is

1
2 (a− 1)(b− 1) .”

It is explained in [14] by means of an example that integers in question are
to be positive. Notice that it belongs to the mathematical folklore now that
the bound ab above [integer ab − a − b] is the largest integer which is not
representable as a linear combination of a and b with positive [nonnegative]
integer coefficients.
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We refer to κ-representations, κ-omitted integers and symbols g(A, q)
and Nκ(A, q) as defined in Introduction. In order to avoid trivialities, as-
sume

(3.3) 1 ≤ a < b but a > 1 if q = 1 ,

because if 1 ∈ A then S = N0, whence g({1, b}, q) = −1 if q = 1. Define

(3.4) g := qab− a− b ,

whence, by (3.2), g is odd;

Nκ := qab− b− (q − 1− κ)a, − 1 ≤ κ ≤ q − 2(3.5)
= g − (q − 2− κ)a, by (3.4) .

Theorem 3.1. Under the above assumptions, if t = 2 and A = {a, b},
the largest κ-omitted integer Nκ(A, q) = Nκ (whence g(A, q) = Nq−2 = g)
and Ωκ = (g + 1)/2 is the number of κ-omitted integers.

Hence the interval [0, g] contains as many κ-representable integers as
κ-omitted ones. The proof is based on a series of auxiliary results which
follow.

Proposition 3.2 (Folklore). If a, b ∈ N and gcd(a, b) = 1 then, for each
n ≥ (a− 1)(b− 1), there is exactly one pair of nonnegative integers % and σ
such that σ < a and n = %a+ σb.

Notice for the proof that, for j = 0, 1, . . . , a − 1, if gcd(a, b) = 1, all
integers n − jb are mutually distinct modulo a. Hence, for exactly one j,
say j = σ, we have n = %a+ σb, whence % ≥ 0 because %a ≥ −a+ 1.

It is well known that

(3.6) (x, y) = (x0 + ub, y0 − ua), u ∈ Z ,
is a general solution of (1.2) in our case, which agrees with (2.0) and (2.2).
Hence we have

Proposition 3.3. For any κ, if n < qab (or n ≤ g in (3.4)) then n has
at most one κ-representation.

Using (3.4), let

I := Z ∩ [0, g], I′ := Z ∩ [0, qab) .

Let I→κ denote the set of κ-representable integers and let

(3.7) Iκ := I→κ ∩ I, I′κ := I→κ ∩ I′, Ic
κ := I− Iκ .

Moreover, k + A := {k + x | x ∈ A} if A ⊆ Z. Notice that if q = 1
(and κ = −1), then I→κ = S, whence, by Proposition 3.2 and formula (3.4),
Ic

κ = N0−S. We are going to show that in general Ic
κ is the set of κ-omitted

integers (cf. the end of the preceding section).
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Proposition 3.4. For any κ, Nκ ∈ Ic
κ.

P r o o f. By (3.3) and (3.5), Nκ ≥ 0. By (3.5) and (3.6), all solutions of
(1.2) for n = Nκ are of the form

x = κ+ 1 + (q − u)b− q and y = ua− 1, u ∈ Z .
Then x, y ≥ 0 can be satisfied only if 1 ≤ u < q, which is a contradiction if
q = 1; otherwise, due to (3.2), x+y (= κ+(b−1)q− (b−a)u) 6≡ κ (mod q),
contrary to (1.4).

The following transformation is used by Nijenhuis and Wilf [8] in order
to solve Sylvester’s problem (with q = 1 and κ = −1).

Proposition 3.5. The transformation

ϕ : Iκ 3 n 7→ g − n

is a bijection onto Ic
q−2−κ if 0 ≤ κ ≤ q − 2, and onto Ic

κ if κ = −1.

P r o o f. By (3.4) and (3.5), g = Nq−2. Hence, if n ∈ Iκ then ϕ(n) 6∈
Iq−2−κ because otherwise g = n+ϕ(n) ∈ Iq−2, contrary to Proposition 3.4.
Moreover, injectivity of ϕ is clear. Notice that assumptions (3.2) ensure
the existence of a solution (x1, y1) of (1.2) such that 0 ≤ x1 < qb and
x1 + y1 ≡ q − 2− κ (mod q). Suppose n ∈ Ic

q−2−κ if κ ≥ 0, and n ∈ Ic
−1 if

κ = −1. Then clearly y1 < 0. Therefore, by (3.4), g − n = (qb− 1− x1)a+
(−y1 − 1)b ∈ Iκ, whence ϕ(g − n) = n, which proves surjectivity of ϕ.

Corollary 3.6. |I−1| = |Ic
−1| = |I|/2 = (g + 1)/2 (cf. (3.7)).

Proposition 3.7.

(q − 2− κ)a = min
{

Iq−2−κ if κ ≥ 0 ,
I−1 if κ = −1 .

Proposition 3.8. max(Z− I→κ ) = Nκ.

P r o o f. Owing to Proposition 3.4, it is enough to show that k ∈ I→κ if
k > Nκ. To this end, assume q ≥ 2 because the case q = 1 is covered by
Proposition 3.2. Next, assume κ 6= q − 2 and Nκ < k ≤ g. Then, by (3.5),
0 ≤ g− k < g−Nκ = (q− 2−κ)a, whence, due to Propositions 3.7 and 3.5,
k ∈ Iκ and we are done. Finally, assume that n = k > g (= Nq−2). Then

nk := k − (q − 1)ab ≥ (a− 1)(b− 1) by (3.4) ,

whence, by Proposition 3.2, nk = %a+σb for exactly one pair (%, σ) ≥ (0, 0)
and σ < a. Hence, (1.2) and x, y ∈ N0 are satisfied if

x = %+ (q − 1− j)b and y = σ + ja

for q consecutive values of j, j = 0, . . . , q − 1, whence, by (3.2), the congru-
ence (1.4) is satisfied for one of these j’s. Thus k ∈ I→κ .

Corollary 3.9. Ic
κ is the set of κ-omitted integers.
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P r o o f o f T h e o r e m 3.1. The first part of the Theorem follows from
Proposition 3.8. As for the counting part, let

I−κ = Iκ − {g, g − 1, . . . , g − a+ 1} .

Then, by (3.7), Proposition 3.8 and formula (3.5), |I−κ | = |Iκ| − a for κ <
q − 2. Moreover, using Proposition 3.3, one can see that, for each κ ≥ 0,

ψκ : I−κ−1 3 n 7→ n+ a

is a bijection onto Iκ − {(kq + κ)b | k = 0, 1, . . . , a− 1}, a set of cardinality
|Iκ| − a, by (3.7), (3.4) and (3.1). Hence, |Iκ−1| = |Iκ| for each κ ≥ 0,
which, due to (3.7) and Corollaries 3.6 and 3.9, ends the proof.

The following result extends Corollary 3.9 and Proposition 3.3 and re-
duces determining νnκ, the number of κ-representations of n, to the mem-
bership problem for the residue (n mod qab) (cf. [9] for q = 1).

Corollary 3.10. (A) The set of integers n such that n ∈ N0 and νnκ =
k, k ∈ N0, is Ic

κ of cardinality (g + 1)/2 if k = 0, else ((k − 1)qab + I′κ) ∪
(kqab + Ic

κ) of cardinality qab. Hence, kqab + I→κ is the set of integers n
such that νnκ ≥ k + 1, k ≥ 0. Moreover ,

(B) For n ∈ N0, νnκ is bn/(qab)c+ 1 or bn/(qab)c according as (n mod
qab) is representable (∈ I→κ ) or is not (∈ Ic

κ).

Theorem 3.1 is equivalent to a part of the next result. Moreover, the
author’s paper [13] referred to above contains a result equivalent to the
non-counting parts of this result in case q = 2 and κ = −1.

Theorem 3.11. Given any integers ma, mb and

ñ := ama + bmb, Ñκ := ñ+ g − (q − 1− ε̃κ)a (= ñ+ g if q = 1)

(see (3.4) for g) where

ε̃κ ≡ (κ+ 1−ma −mb) (mod q), 0 ≤ ε̃κ < q ,

all integers n, n ≥ ñ, which cannot be represented as integer linear combina-
tions xa+ yb under assumptions (3.2) and (3.3) and requirements x ≥ ma,
y ≥ mb and x + y ≡ κ (mod q) are in the interval [ñ, Ñκ], their number is
(g + 1)/2 (which is independent of κ) and Ñκ is the largest of them. On
the other hand , the uniqueness of (x, y) is implied by either of the following
inequalities: ma ≤ x < ma + qb, mb ≤ y < mb + qa.

4. Algorithms. Let g(A, q) < ∞ and t > 1. Then two algorithms for
evaluating the integers Nκ and Ωκ can be presented. One, (W): a toroidal
lattice-of-lights, extends Wilf’s circle-of-lights [15], and another one, (N): a
minimum-path algorithm, devised after Nijenhuis’ [7].
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The algorithm (W) processes consecutive integers n ∈ N0 using the
following simple rule. (n =) 0 is 0-representable; any n ∈ N is (κ + 1)-
representable iff n − ai is κ-representable for some i = 1, 2, . . . , t where
κ ∈ Lq. The corresponding information (0: no (or light off) or 1: yes (light
on)) on n and any κ is put at position (r, κ), r = (n mod at), of the re-
sulting doubly cyclic (toroidal) 0-1 list of size qat. Additionally, RP[κ], the
number of κ-representable integers, is updated and the a1th of consecutive
κ-representable integers n is recorded as N [κ]. The process stops at the
first n which is the a1th of consecutive fully representable integers. Then
output is Nκ = N [κ] − a1 and Ωκ = n + 1 − RP[κ]. Thus, since t ≤ at,
space complexity is O(qat). Since g ≥ a1−1, time complexity can be shown
to be O(tqg) or O((t + q)g) depending on the (data structure dealing with
0-1 vectors and) implementation. As a by-product the algorithm gives the
following inequality which is not sharp in general but, for q = 1, it improves
on one due to Wilf:

(4.1) g ≤ (qat − 2)at − 1 for t ≥ 2 .

P r o o f. This is true if t = 2 (and q = 1). Else, if not all lights are
on, each full sweep around the lattice increases the number of lights which
are on because otherwise (it would only cause the rotation of lights and) g
would be infinite, contrary to Theorem 1.2. We may stop at n such that at
most z := dat/a1e − 1 lights are left off. Then g ≤ n + za1. Since 1 is at
(0, 0) due to the initial condition, the first sweep adds at least two new 1’s
(if t > 2 or q > 1). Thus, n ≤ (qat − 2− z)at, whence the result follows.

The bound (4.1) on g can be improved considerably. Erdős–Graham’s
important upper bound for g(A, 1) (see [3]) (whose simple proof can be
found in Rödseth [10]) can be extended to any admissible q. Adapting
Rödseth’s argument to formula (2.10) with m = qat gives the result. Let
qA be the sum of q copies of the set A, let A0 = qA ∪ {0} − {qat}, and let
h = 2bat/(t− 1 + 1/q)c. Then

N0(A, q) ≤ max
∑

bj∈A0

yjbj − qat with max over yj ’s from N0 such
that

∑
yj ≤ h and some of yj ’s

are small,

≤ max
xi∈N0,Σxi≤qh, xt<q

t∑
i=1

xiai − qat

≤ (qh− q + 1)at−1 − at (for κ = 0) ,

and

Nκ(A, q) ≤ N0(A, q) + κa1, κ = 0, 1, . . . , q − 1 ,
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whence

(4.2) g(A, q) ≤ 2qat−1bat/(t− 1 + 1/q)c − (q − 1)(at−1 − a1)− at .

Therefore g is O(qa2
t/t) (and so isΩκ for any κ becauseΩκ ≤ g+1). It can be

seen that the bound (4.2) is sharp in the sense that, for each q ≥ 1 and each
t ≥ 2, there is an A with |A| = t, at large enough and g(A, q) = Θ(qa2

t/t),
Θ indicating the exact order of magnitude.

The algorithm (N) is more efficient but is also only pseudo-polynomial
(i.e., a common bound on complexities is a polynomial in t, q and some
ai). The algorithm is based on generating all q2a1 integers nrκ as sums
of generators ai, see formulae (2.10)–(2.11) with m = qa1, the smallest
possible value of m. It maintains a heap (i.e., a binary tree) of κ-heaps
whose entries are available sums which are put in increasing order along
paths going from the root of the κ-heap, κ-heaps being similarly ordered
by their roots. The algorithm starts by taking 0 as n00. Next, if nrκ is
identified (as the smallest available sum) and removed from the heap, the
algorithm accommodates each of the sums s = nrκ + aj in the (κ+1)-heap,
i.e., inserts s as the (r, κ + 1)-entry where r = (s mod m) provided that
the entry either has not appeared yet or is larger than s. Time of labour
associated with each s is O(log2(q2a1)). The space and time complexities
of the algorithm are O(t+ q2a1) and O(tq2a1 log2(q2a1)), respectively. Our
complexity estimates correct some of those by Nijenhuis [7].

For the set A = {271, 277, 281, 283} (dealt with by Wilf [15] for q = 1),
our computer programs (W) and (N) found data presented in Table 1 for
q = 5, 3, 1 in stated seconds on PC AT 386 (20 MHz) (A) and XT (8 MHz)
(X), respectively. Notice that q = 2 (or any even q) is not allowed.

Table 1

q = 5 q = 3 q = 1
κ N Ω N Ω N Ω

0 63 699 32 099 38 225 19 316 13 022 6533
1 63 970 32 098 38 496 19 316
2 62 886 32 097 37 954 19 316
3 63 157 32 098
4 63 428 32 099(

WA WX
NA NX

) (
9.12 65.14
1.27 9.29

) (
4.12 28.95
0.44 3.13

) (
0.94 6.37
0.01 0.33

)
Time (seconds):

Programs (N) and (W) can easily be supplemented so as to generate q2a1

integers n(1)
rκ (this is the smallest κ-representable integer in the residue class

of r modulo qa1), together with an explicit representation of each of them.
This can yield all sets Ic

κ of omitted integers [and some representations of
the remaining ones].
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5. Problems and concluding remarks. A natural, though not easy,
problem is to study the function κ 7→ (Nκ, Ωκ) in case t ≥ 3. Partial
questions can be of interest.

(a) Formulae (3.5) in case t = 2 and many examples of pairs (A, q)
with t ≥ 3 suggest that Nκ ∈ {g − ja1 | j = 0, 1, . . . , q − 1}, g = g(A, q).
Nevertheless, this is not the case in general. Namely, if a and b are relatively
prime natural numbers, a < b and b − a is odd then, for A = {a, b, a + b}
and q = 2, one has g = g(A, 2) = ab− a = Nb mod 2 and ab/2 = Ωκ for both
κ = 0, 1; moreover,

Na mod 2 =
{
g + a− b = ab− b if b < 2a ,
g − a otherwise.

(For the proof, use representations by the set {a, b} with q = 1, see Section 3.
In particular, all omitted integers there and half of the set {ia, jb | i =
0, . . . , b−1; j = 1, . . . , a−1} can coincide with our κ-omitted integers.) It is
easily seen, however, that all Nκ’s are in the closed interval [g− (q−1)a1, g].
In fact, use (2.7) and (2.10) with m = qa1 to see that all integers nrκ + a1

are (κ + 1)-representable and their residues modulo qa1 form a complete
system, whence

Nκ+1 ≤ Nκ + a1 for all pairs κ, κ+ 1 in Z .

Hence, the result follows.

(b) For q = 1, it is known [8] that Ω ≥ (g + 1)/2. For any q, by
using the transformation n 7→ g − n as in Proposition 3.5, one can prove
maxκΩκ ≥ (g + 1)/2 or, more generally,

max
κ

Ωκ + min
κ
Ωκ ≥ g + 1 .

Characterize all (or find more interesting examples of) pairs (A, q) with
t ≥ 3 such that Ωκ = const on Lq (q > 1) where possibly const = (g + 1)/2
(q ≥ 1) (cp. t = 2 above or supersymmetric semigroups in [4] for q = 1).

(c) Characterize (A, q) with q > 1 and t = |A| > 2 such that Ωκ >
g(A, q)/2 for all κ ∈ Lq. Characterize A such that this holds for all admissi-
ble q (or—on the contrary—does not hold for almost all such q). Determine
the largest admissible integer q, denote it by ξ(A), such that

(5.1) Ωκ > g(A, q)/2 for all κ ∈ Lq .

Let ξ′(A) be the largest integer k such that (5.1) holds for all admissible
q ≤ k. Notice that ξ′ ≤ ξ for all t ≥ 2. If t = 1 then ξ′ = ∞ and ξ = 1 (and
A = {1}). Characterize A with ξ′ = ξ.

In what follows, A = At,a := {a, a + 1, . . . , a + t − 1} with t ≥ 2, a set
of consecutive generators (dealt with in [8]) with t elements, a being the
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smallest. One can see now that ξ′ = ∞ = ξ iff t−1 divides a, iff Ωκ = const
on Lq for each q; moreover, const = (g + 1)/2 iff a = 1 = q or q = 2 and
t − 1 | a − 1, or finally, t − 1 | a − 2 with the restriction that q = 1 if t ≥ 4.
On the other hand, for t ≥ 3, we have ξ′ = t and ξ = a if t− 1 | a− 1 unless
a = 1 and then ξ′ = 2 = ξ.
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[13] Z. Skupie ń, Exponential constructions of some nonhamiltonian minima, in: Proc.
4th CS Sympos. on Combinat., Graphs and Complexity (held in Prachatice 1990),
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